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Abstract: The application of high-throughput DNA sequencing technologies (WGS) data remain an
increasingly discussed but vastly unexplored resource in the public health domain of quantitative
microbial risk assessment (QMRA). This is due to challenges including high dimensionality of WGS
data and heterogeneity of microbial growth phenotype data. This study provides an innovative
approach for modeling the impact of population heterogeneity in microbial phenotypic stress response
and integrates this into predictive models inputting a high-dimensional WGS data for increased
precision exposure assessment using an example of Listeria monocytogenes. Finite mixture models were
used to distinguish the number of sub-populations for each of the stress phenotypes, acid, cold, salt
and desiccation. Machine learning predictive models were selected from six algorithms by inputting
WGS data to predict the sub-population membership of new strains with unknown stress response
data. An example QMRA was conducted for cultured milk products using the strains of unknown
stress phenotype to illustrate the significance of the findings of this study. Increased resistance to
stress conditions leads to increased growth, the likelihood of higher exposure and probability of
illness. Neglecting within-species genetic and phenotypic heterogeneity in microbial stress response
may over or underestimate microbial exposure and eventual risk during QMRA.

Keywords: quantitative microbial risk assessment; whole genome sequencing; exposure assessment;
predictive modeling; machine learning; finite mixture models; Listeria monocytogenes

1. Introduction

Microbial risk assessment (MRA) has been adopted as a framework to enable weighing of options
for public health protection and mitigation of the impact of exposures to microbial hazards [1,2]. MRA
involves the systematic determination of the risk associated with microbial hazards in a food with an
objective of characterizing the nature and likelihood of harm resulting from human exposure to these
microbial agents through food consumption [2]. The level in terms of the prevalence and concentration
of a pathogen ingested through consumption of a serving of a food are determined in one of the three
MRA steps referred to as exposure assessment.
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Exposure assessment involves assessing the growth, survival and inactivation of the
microorganisms from farm to fork in order to compute the final microbial concentration a consumer is
exposed to in a food serving while incorporating data on quantities consumed (Figure 1). If the MRA
is conducted based on available consumer level food samples, direct assay of microbial concentration
is possible at the point of consumption. However, this is often not the case and it becomes expedient to
model and project the impact of changes in conditions that may influence growth and inactivation
of the microorganisms starting from the concentration determined from foods samples from other
farm to fork steps. Such modeling is supported by availability of microbial concentration data at the
point of contamination such as farm, distribution, processing and retail levels of the value chain. It is
therefore desirable to model changes in microbial concentrations between the point of contamination
and human exposure to the pathogen, a concept termed as predictive microbiology [3] (Figure 1).
In predictive microbiology, “primary models” describe changes in microbial concentration with time.
The aim of primary models is to estimate kinetic parameters describing either inactivation rate or
the typical four phases of microbial growth which include the lag phase, maximum growth rate and
maximum population density [4]. Lag phase is an adaptation period where bacterial cells adjust to
a new environment after which they grow exponentially at the maximum growth rate (µmax) until
growth reaches a plateau at the maximum population density also referred to as the stationary phase [4].
These post-contamination growth or inactivation changes in microbial concentration are influenced
by food processing and storage environment conditions such as pH, organic acids, water activity
(influenced by desiccation and salt concentration) and temperature. The impact of these conditions on
microbial growth and/or inactivation can be described by secondary models (Figure 1) [4].

Figure 1. Food chain exposure assessment. This involves input data consisting of food consumption
data and microbial growth data together with associated food inherent, environmental and process
induced factors influencing microbial growth (I) or reduction (R) in any of the stages of the food
chain including processing, distribution, retail and consumer level. The final concentration at exposure
consists of initial contamination (Ho) plus the total increase (∑ I), minus total reduction (∑ R). Use of
molecular data will support exposure assessment for strain or microbial population subgroup i.
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The introduction of high-throughput DNA sequencing technologies (WGS) has made possible the
high resolution typing and study of bacteria at the strain level. The rapid drop in costs of WGS has
seen this approach incorporated as a standard surveillance technique in the high resolution subtyping
of strains for epidemiological purposes and a powerful tool in decision making during outbreak
investigations [5]. However despite the potential of this technology, the application of WGS data in
microbiological risk assessment has only been a subject of increasing discussion but remains a vastly
unexplored area in the public health domain [5].

The European Food Safety Authority (EFSA) recently made a comprehensive scientific opinion
concerning the use of whole genome sequencing for risk assessment of food-borne microorganisms [6]
while den Besten et al. reviewed the potential use of omics data for exposure assessment [7]. WGS
data has shown potential in predicting the potential for microbial growth or survival in the food
value chain and eventually in the host [6]. WGS data could assist in unraveling biological variability
which induces a diverse response in microorganisms to differing environmental conditions [8]. Strains
within a given bacterial species differ in their phenotypic characteristics such as variation in abilities
to grow or survive under conditions encountered in foods from farm to fork [6]. Variability in
microbial growth and/or inactivation may emanate from physicochemical properties of the food,
processing conditions or parameters and natural variation between individuals within the same
microbial population [7] (Figure 1). Genetic changes may result in large phenotypic differences in
growth, survival and inactivation of microorganisms [9]. Ignoring such changes in a seemingly
homogeneous microbial population which assumes population average behavior may result in over- or
underestimation of microbial exposure and associated risk [10]. WGS therefore provides the potential
to incorporate microbial strain variability in the identification of “high risk” bacterial subpopulations
and their distribution among the whole population [7] assuming that specific genetic determinants
commonly occur in all such sub-populations. This will assist in fine tuning of exposure assessments.
Carlin et al. [11] reported variability in cardinal growth parameters of six genetic groupings of Bacillus
cereus. Berendsen et al. [12] reported two distinct groupings in heat resistance of bacterial spores which
could be attributed to mobile genetic elements. Such genetic elements could therefore function as
predictors/biomarkers discriminating between different levels of resistance to stress conditions such
as heat.

Application of genotypic data for exposure assessment has been hindered by challenges in the
translation of high dimensional WGS data into reduced phenotypic information with a resultant
metric that is useful in MRA [13]. Loss of biological meaning or important genetic predictors may
result when data reduction methods are applied [14]. Approaches such as network analysis [15]
and machine-learning algorithms [14,16,17] are a family of techniques that solve the problem of
predictive modeling in cases of highly dimensional, heterogeneous datasets with complex relationships
between the predictors and the outcomes and to derive fewer features (e.g., genes) important for these
predictions. Incorporating WGS data in predictive modeling to draw conclusions beyond data obtained
will foster models supporting reduced need for frequent use of slow culture dependent laboratory
tests and food validation of growth, survival and inactivation models under differing conditions.

The other challenge involves attempts to resolve grouping of species into subgroups based
on their phenotypic stress response data such as growth or inactivation rate, the lag time and the
maximum population density. Some strains may be extra tolerant, some moderately tolerant, while
some may exhibit varying levels of susceptibility to process and storage conditions. This presents
evidence of unobserved heterogeneity in stress response. Most studies group strains into species
average responses and risk assessment efforts rely on reported historical studies to define growth or
inactivation parameters which may lead to modest stress tolerance or susceptibility reported in many
predictive microbiology studies. This can be misleading because such average effects may be a mixture
of substantial subgroups each with its subgroup specific proportion of strains and average growth
parameters for each subpopulation in the data. A befitting approach for this kind of analysis is finite
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mixture models [18]. This will assist in predicting pathogen behavior variability due to heterogeneity
in physiological state and stress response [7].

The aim of this study was to model the impact of population heterogeneity in microbial phenotypic
stress response and integrate this into predictive models inputting WGS data for increased precision
quantitative exposure assessment using an example of L. monocytogenes. The application of the
approaches from this study was demonstrated using an example of consumer level quantitative
microbial risk assessment (QMRA) to predict influence of different stress response subgroups of
L. monocytogenes on risk of illness from consumption of cultured milk in three consumer groups.
Scenario analysis after QMRA was used to illustrate the possibility that a QMRA assuming that
bacteria grows as a single population characterized by an average growth rate value may either over-
or underestimate the risk.

2. Materials and Methods

2.1. Methodology Outline

The first part of this study derived evidence that within each taxonomic unit population, there
are sub-populations differing in proportions and ability to grow under different stress conditions.
Finite mixture models were used to answer questions concerning: how many of g sub-populations or
components can be distinguished for each stress type? What underlying stress response category of
each of the g sub-populations represent its mean and variance? What are the relative proportions of
strains in each sub-population? The second aim of this study was to select machine learning predictive
algorithms inputting highly dimensional WGS data to predict into which of the g sub-populations that
new strains with unknown stress response data can be categorized. If the sub-population is predicted
for new strains, the proportion of each sub-population can then be calculated while the mean and
variance of the µmax or LPD for each of these populations is already computed from the finite mixture
models. The final aim was to illustrate the application and importance of the approaches derived in
the two previous objectives. QMRA was conducted with cultured milk products at consumer level as
an example to: predict stress phenotype components for new unknown strains given their WGS data;
estimate the probability of illness for three consumer sub-populations and the number of expected
cases per million consumers; and conduct scenario or sensitivity analysis to assess influence of changes
in proportion of strains in each stress phenotype component on risk of illness.

Figure 2 summarizes the methodology steps followed in this study.

2.2. Hazard Identification

L. monocytogenes is a ubiquitous Gram-positive bacterium that causes listeriosis. Listeriosis is
characterized by severe symptoms including septicemia and meningitis especially in highly susceptible
groups such as newborn children, pregnant women, the elderly and immunocompromised patients [19].
Listeriosis occurs at low frequencies but with high fatalities thereby ranking L. monocytogenes as a
food-borne pathogen of high concern. A vast majority of the cases (as high as 99%) have been attributed
to contaminated food [20].

Genetic variants or subtypes of L. monocytogenes referred to as strains have exhibited substantial
variation in virulence and environmental stress resistance [21]. Attempts to address this between strain
variation in virulence and stress resistance have focused on serogroups in most studies. There has
been some success in demonstrating the role of particular serogroups in increased number of sporadic
cases and outbreaks [22,23]. However, it has been recognized that serotypes from foods poorly reflect
disease distribution [21]. WGS rather than serotype data have therefore been proposed for higher
resolution studies on virulence and environmental stress resistance targeting genetic strain-specific
level of evidence [22]. Use of WGS data will be an important step towards increased understanding
and improved control efforts to address increase in disease incidence due to the emergence of single
or combinations of new virulence and environmental stress resistance genetic elements associated
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with L. monocytogenes [21]. Use of WGS data also presents a chance to improve public protection and
mitigation of impact of such exposures to microbial hazards through higher resolution MRA efforts.

Figure 2. Methodology flow diagram.

2.3. L. monocytogenes Strain Data

A collection of 166 L. monocytogenes strains from Canada and Switzerland, as well as associated
data including WGS data and growth phenotypes during different stress conditions, were obtained
from a previous study by Hingston et al. [24]. This panel of strains consisted of strains obtained from
food and food processing environment strains from Canada (n = 139) and Switzerland (n = 20),
six strains associated with sporadic human listeriosis cases and an asymptomatic human case
from Switzerland.

Hingston et al. [24] sequenced the strains and further evaluated their growth characteristics under
cold (4 ◦C), salt (6% NaCl, 25 ◦C), desiccation (33% RH, 20 ◦C) and acid (pH 5, 25 ◦C) stress conditions.
Growth parameters including relative lag phase duration (LPD), relative maximum growth rate (µmax)
and maximum cell density (Nmax) were studied for all the strains.
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2.4. Bioinformatics

L. monocytogenes genomes were assembled and processed into a matrix of percent similarity
between all genes (pangenome) converted to amino acid sequences from the L. monocytogenes genomes.
In summary, gene families were obtained through determination of predicted genes in amino acid
sequences based on the assembled genomes of the L. monocytogenes dataset using Prokka software.
Prokka was used to annotate and predict genes. Predicted genes based on the assembled genomes of
the L. monocytogenes dataset were aligned all-against-all using Roary, the pangenome pipeline used to
identify gene clusters and the pangenome [25]. The intersection of gene clusters common to all the
genomes from all the strains was used to define the core genes and the accessory genes were defined
as a complementary of the core genes i.e., those gene families that were not part of the core genes.
The pangenome sequences in the form of amino acid sequences were retrieved from Roary output.
A matrix of percent similarity between the genes in the pangenome and the L. monocytogenes genomes
was generated using TBLASTN, a Basic Local Alignment search tool (NCBI-blast version 2.2.31+) [26].
This matrix was used as input for predictive models.

2.5. Finite Mixture Modeling

2.5.1. Designation of Stress Response Phenotype Components

Interest was in the relative µmax for cold, salt and acid stress while the focus was on relative LPD
for the case of desiccation stress survival. Exploration using histograms indicated multi-modality
(Figure 3). Such multi-modality suggests the presence of some underlying or latent groups whose
structure is unknown.

Figure 3. Histogram of relative maximum growth rates (µmax) for acid, cold and salt stress response
and relative lag phase duration (LPD) of desiccation stress response in 166 L. monocytogenes strains.



Microorganisms 2020, 8, 1772 7 of 24

Stress response categories cannot be reliably described by assuming stress category cut-offs
which assume single distributions. There seemed to be underlying categories which correspond
to stress tolerance classes. Within each of the tolerance class, a rather ‘homogeneous’ distribution
seems plausible such that the relative areas of the local densities at the modes give an indication of
the proportion of the strains in that particular tolerance class. Such mixed populations consisting
of a joint distribution over observed and latent variables may be interpreted into their simpler
components using finite mixture models [18]. Assuming the population P of the strains is composed of
g sub-populations, P1, P2, . . . , Pg, the questions of interest would be: how many of the g sub-populations
can be distinguished for each stress type, what underlying stress response category they represent and
what are the relative proportions of strains in each sub-population? Each of the sub-populations Pj,
represents a proportion πj of the total population with the constraints: ∑

g
j=1 πj = 1 and 0 ≤ πj ≤ 1.

Letting X indicate the population from which an observation has been sampled, the distribution
of X is discrete consisting of support {1, 2, . . . , g} with corresponding probabilities {π1, π2, . . . , πg}:

X ∼
(

1 2 . . . g
π1 π2 . . . πg

)
. X is considered latent because it has not been observed [18]. The density of

outcome Y (relative LPD or µmax in this study) in sub-population Pj from the entire population of
strains P is equal to: f (y) = ∑j f (y|X = j)P(X = j) = ∑j πj fi(y). The distribution of Y is termed as
a finite mixture with g components [18]. In our case, the density of relative (LPD) or relative (µmax)

for L.monocytogenes is a stochastic variable Y|µ ∼ N(µ, σ2) such that: µ ∼
(

µ1 µ2 . . . µg

π1 π2 . . . πg

)
with

unknown number of g components. The interest in this study was to find out: how many components
or sub-populations Pj, what are the components and their relative proportions πj?

In order to determine the number of mixtures or the g sub-populations, one may either assume
knowledge of the number of sub-populations and thereby consider the number g of components
to be fixed or known. However, a more realistic approach to avoid subjective selection of g is to
treat it as a parameter in the likelihood, and to estimate it from the available data. This involves
the use of Non-Parametric Maximum Likelihood Estimation (NPMLE) which, unlike classical ML
Estimation theory, does not consider the number of parameters in the likelihood as fixed. NPMLE
involves the use of Expectation–Maximization algorithm initially designed for Maximum Likelihood
Estimation in situations with missing data. In our situation, we consider the underlying latent variable
X involving the component membership as missing. The number of components g is treated as a
parameter in the likelihood which is estimated from the available data.

The Expectation–Maximization (EM) algorithm commonly converges to local maxima depending
on the starting values. In order to initially estimate the potential number of sub-populations in the
data, the vertex exchange method (VEM) algorithm was applied [18]. VEM algorithm is flexible for the
support size and provides starting values for the EM algorithm. The EM algorithm which involves
fixed support size will in this way be initiated with starting values very close to the global maximum
which ensures proper convergence of the EM algorithm to a global maximum [18]. This avoids
convergence of the EM algorithm to a local maximum, an aspect which is dependent on starting values.
Both Phases 1 and 2 were computed in the R package CAMAN.

The initial solution of the combination of the VEM and the EM algorithms may sometimes
overestimate the number of components g. The appropriateness of the number of components
computed using the VEM and EM algorithms was checked using parametric bootstrap simulating
from a mixture model under the null hypothesis with g = go components [18]. To diagnose whether
the solution for Ĝ is the NPMLE, the gradient functions d(G, p) for the mixing distribution G were
plotted and conditions were checked (Supplementary File, Section S1).
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2.5.2. Classification of L. monocytogenes Strains into Components of the Mixture

After fitting of the mixture models, the next step was classification of the strains into the different
mixture components to indicate what component of the mixture each strain is most likely to belong to.
This is done based on posterior probabilities. Defining indicators Zij, i = 1, . . . , N, j = 1, . . . , g as:

Zij =

{
1, if observation i belongs to component j

0, otherwise.

We can define the component probabilities P(Zij = 1) = πj, which are referred to as the prior
probabilities [18]. These probabilities express how likely it is for the i-th strain to belong to component
j, without taking into account the observed response value yi for that strain. The posterior probability
for strain i to belong to the j-th component is then:

πij = P(Zij = 1|yi) =
fi(yi|Zij = 1)P(Zij = 1)

fi(yi)
=

πj fij(yi)

∑j πj fij(yi)
.

This posterior probability πij therefore expresses how likely it is for the i-th strain is to belong to
component g, taking into account the observed response value yi for that strain. πij depends on the
unknown parameters π1, . . . , πg and the general θ vector which can be replaced by their estimates from
the fitted mixture model. The classification rule followed involved classifying strain i into component
j if and only if πij = maxk{πik} which indicates classifying into the component to which the strain i is
most likely to belong [18].

2.6. Predictive Modeling

Figure 2 summarizes the methodology steps followed during the predictive modeling. The aim
was to predict growth at sub-population level using the genetic composition of the L. monocytogenes
strains. This is under the hypothesis that the machine learning models can recognize certain genetic
patterns from the input data and use this to predict the stress phenotype (relative µmax and LPD) in a
sample whose stress phenotype is unknown but whose genetic sequencing data are presented. Figure 2
illustrates the steps followed in the machine learning predictive modeling.

Supervised learning was conducted to classify patterns in the WGS predictor dataset (also referred
to as instances or features) into a set of categories (also referred to as classes or labels) represented by
the stress phenotype components. The aim was for each of the stress types to perform classification of
new strains into one of the stress response categories defined using finite mixture modeling by using a
ML model trained from a WGS training set of the data such that: yc = fc(X, θc), yc ∈ –Z [27], where
X is the WGS data vector for the new strain, yc is the category where the new observation belongs,
fc(.) is the classification function we are interested in training, θc is the parameter set for fc(.) and
–Z is the set of stress response categories. Interest may be for instance to classify an L. monocytogenes
strain which is highly salt stress tolerant (yht) from the possible set of stress tolerance categories (–Z)
susceptible, tolerant and highly tolerant. This classification function fc(.) can be used to predict the
stress response category for an L. monocytogenes strain whose stress phenotype is unknown given the
WGS data for the new strain.

2.6.1. Data Exploration

Some of the predictors may contain single unique values and are referred to as zero variance
predictors [28]. Such predictors may not be useful for splits in tree-based models because they
add no or little extra information. This situation also applies for those predictors that have
only a few unique values at very low frequencies which could be termed as near zero variance
predictors [28]. WGS predictors were explored for zero and near zero-variance predictors as proposed
by Kuhn and Johnson [28]. These were removed from the dataset as they have unique values at
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low frequencies and may during subsequent splitting of the data into cross-validation/bootstrap
subsamples result in propagation of zero and near zero-variance predictors subsequently resulting in
model fit instabilities [28].

Considerable imbalances in number of samples in each category of stress response (e.g., tolerant
or susceptible to acid) (Table 2). In such imbalanced data, poor class specific performance may result
due to bias in model training process towards important patterns in the predictors associated with the
larger classes [29]. Categories with the lowest number of samples had a considerably low number of
samples and up-sampling was performed where strains from the minority classes were sampled with
replacement until each category had approximately the same number [30].

2.6.2. Models

Ensemble methods consist of powerful prediction model choice in cases of complexities arising
from dimensionality and structure of the dataset or relationship between the predictors and outcomes.
Multiple weighted models are aggregated which results in a unit model outperforming the constituent
single models [27]. Examples of ensemble approaches include bootstrap aggregation (bagging),
adaptive boosting (boosting) and random forest, decomposition methods, negative correlation learning
methods, multi-objective optimization-based ensemble methods, fuzzy ensemble methods, multiple
kernel learning ensemble methods and deep learning-based ensemble methods [27]. Different
algorithms possess potentially useful characteristics depending on the type of data. ML models
were evaluated from algorithms commonly used in genetics including random forest (RF), support
vector machine (SVM) (radial and linear kernels), neural network (NN), stochastic gradient boosting
(GB) and logit boost (LB) [31–34]. These models are more likely to produce empirically optimum
results yielding most accurate models across many problem domains [28]. RF is characterized by
good performance in situations like this study where the number of predictors far exceed that of
samples. RFs are robust in the case of predictors characterized by weak effect, high correlations and
the presence of interactions. RF provide adequate accuracy for simple and complex classification
situations and have modest fine-tuning requirements for parameters and no distributional assumptions
for the predictor variables [28]. RF further improves on the advantages of bagged trees by decorrelation
of the trees [35]. For each of the decision trees built in a similar fashion to bagging, a random sample
of m predictors is chosen as split candidates from the full set of predictors and the split is allowed
to use only one of those m predictors. A new set of m predictors is selected at each split where the
number of m is approximately equal to the square root of the total number of predictors. This prevents
the problem of correlation where bagged trees look quite similar to each other [35]. SVM models
present training data as points in space, which are mapped so that the data from separate categories
are divided by a clear gap by making this gap as wide as possible [36]. SVMs apply mathematical
features that highly adapt them for the highly dimensional genetic data such as the flexibility in
choosing a similarity function, sparseness of solution for large data sets, aptness for large feature
spaces and the capacity to recognize outliers [37]. In support vector machines, the prediction equation
is only a function of the training set samples that are closest to the boundary also termed as the support
vectors [35]. These support vectors contain only the information necessary for classification of the new
samples [35]. SVM is a modeling choice which is powerful, highly flexible and robust to outliers [31].
The SVM method has the advantage of applying kernel functions of inner products of predictors
by arraying predictors in the observation space using a set of inner products [38]. This helps in
dealing with data complexities where classes cannot be easily separable by a hyperplane [35]. LB and
GB emanate from the boosting family of algorithms [39–41]. Boosting functions by coalescing or
boosting a number of weak classifiers (defined as classifiers that predict only marginally better than
random) into an ensemble classifier characterized by superior generalized classification accuracy [28].
Earlier boosting algorithms included AdaBoost, which led to later versions including Friedman’s
stochastic gradient boosting. GB has many properties in common with RF such as robustness to
outliers, missing data and presence of correlated and less important variables. Neural networks are
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powerful nonlinear regression techniques emanating from concepts mimicking mode of operation
of the brain [42,43]. The outcomes are modeled by an intermediary set of variables which are not
observable as in the case of partial least squares. These unobserved variables are referred to as hidden
variables or units and they are linear combinations of the original predictors which, in contrast to
partial least squares models, are not estimated in a hierarchical manner [28]. Each of the hidden units
consists of linear combination of some or all the predictors, which is transformed by a nonlinear
function g(·), for instance a sigmoidal function [28]. All analyses were conducted in R Version 3.5.1,
according to the codes in the Supplementary file (Section S4).

2.6.3. Model Selection

The predictive performance was evaluated on models generated from k = 10-fold cross-
validations [28,44].

2.6.4. Model Evaluation

Accuracy scores were calculated from the confusion matrix based on balanced accuracy
which calculates a posterior distribution rather than averaging the accuracy over the 10-fold
cross-validations [45]. To further interpret the accuracy of class distributions from the confusion
matrix for each of the models, Cohen’s Kappa (κ) was used. Zero κ values can be interpreted as no
agreement between the observed and predicted classes, while values of one suggest perfect agreement.
To interpret κ values, Landis and Koch [46] suggested values of “0–0.20 = slight”, “0.21–0.40 = fair”,
“0.41–0.60 = moderate”, “0.61–0.80 = substantial” and “0.81–1 = almost perfect”. An alternative
interpretation was proposed by Fleiss et al. [47] who suggested that κ values greater than 0.75 are
excellent, 0.40–0.75 are fair to good and <0.40 are poor. Sensitivity, specificity, positive predictive
value and negative predictive values associated with the prediction of stress response categories were
also computed.

Statistical hypothesis tests were used to evaluate if differences in mean accuracy from the
10-fold cross-validations between the algorithms for each stress type were significant. Due to
violations in analysis of variance (ANOVA) assumptions, [48] the non-parametric Kruskal–Wallis test
was conducted.

Bias-corrected and accelerated bootstrap (BCa) confidence intervals (CI) for the mean accuracies
of each model were calculated using 1000 simulations [49]. These CIs are second-order, in contrast
to the percentile intervals which are “first-order” intervals computed from quantiles of the bootstrap
distribution [49].

2.7. Example Application of Concept

The impact of L. monocytogenes stress response heterogeneity on the risk of illness in three
consumer groups attributable to consumption of cultured milk was modeled as an example illustrating
the potential of the approaches proposed in this study.

2.7.1. Prediction of L. monocytogenes Stress Response Components

The first step involved the classification of new strains of food origin whose stress phenotype is
unknown into one of the stress response components defined using finite mixture modeling (using ML
models selected from Section 2.6). Acid, cold, desiccation and salt stress response phenotypes were
predicted for a set of 201 L. monocytogenes strains previously whole genome sequenced. These strains
originated from dairy products (n = 37), fish (n = 35), mixed food types (n = 28), meat (n = 44),
ready-to-eat foods (n = 31) and vegetables (n = 26). Final models selected from Section 2.5 above were
used for prediction of the unknown stress response categories of these new strains whose WGS matrix
of predictors was derived as described in the bioinformatics Section 2.4.
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2.7.2. Quantitative Microbial Risk Assessment

The inherent or processing induced physico-chemical characteristics of a food such as the stress
factors studied here influence microbial growth, survival or inactivation. For instance, fermentation
lowers the pH which increases acidity of cultured milk products to around 4.6 in cultured dairy
products due to lactic acid fermentation in products such as yogurt, buttermilk and sour cream [22].
The strains in the acid stress response study by Hingston et al. [24] were tested for tolerance of pH 5
which is slightly higher than that of cultured milk products (pH 4-4.6), which is therefore within the
range invoking the need for stress adaptation in L. monocytogenes. These are popular dairy products
highly consumed by a large proportion of the population. Supplementary Table S1 from our predictions
indicated about half of strains associated with dairy products would be acid tolerant. Quantitative
microbial risk assessment on cultured milk products is therefore an interesting case to illustrate the
phenotype class prediction and role of L. monocytogenes strain heterogeneity in differing risks of illness
depending on the proportion of different sub-populations of stress response components.

Table 1 shows a summary of the quantitative risk assessment model for illness after exposure to
cultured milk containing L. monocytogenes including variables, equations or distributions of the input
parameters and data sources. There is scarcity of direct data on L. monocytogenes consisting of both
WGS and microbial concentrations in various food products. In this risk assessment, quantitative data
such as microbial concentrations were obtained from a large scale L. monocytogenes risk assessment by
FDA et al. [22].

Data for initial contamination, consumer storage time and portions consumed per serving was
obtained from FDA et al. [22] and the distribution was estimated by random sampling from uniform,
pert and log normal distributions, respectively depending on the available data. The mean and
variance of the relative µmax from the two components of the acid stress response were used together
with consumer storage period as inputs for the exponential phase of the three-phase linear model [50]
to determine increase during holding. SVMR predicted that 50% of the L. monocytogenes strains would
be acid stress susceptible growing at a reduced relative µmax of 0.762± 0.047 while the other half
would be resistance growing at a higher relative µmax of 1.007± 0.047. These relative µmax values and
proportion of strains belonging to each of the two mixture component were taken into account when
calculating increase during holding. It is assumed that the contamination in each serving will contain
both tolerant and susceptible L. monocytogenes at this proportion of 50%. The final dose consumed per
serving was calculated from the quantity consumed per serving and the total number of organisms
consumed. The number of organisms consumed were a sum of the initial number and the increase
due to growth during storage. This served as input for the exponential dose–response model [51].
The dose–response parameter r of the exponential dose–response model indicates the probability
of a single bacterial cell to cause listeriosis. This r parameter was used to model the probability of
illness for the three subpopulations including the healthy population, susceptible population and
transplant recipients [51]. Finally, the number of people in a population of one million likely to get ill
was generated from a binomial distribution. Sampling from the distributions were performed using
106 simulations in the R package. This risk assessment model also enabled a prove of concept that
a risk assessment assuming that L. monocytogenes grows as a single population characterized by an
average relative µmax value may either over or underestimate the risk of illness. To assess this, four
cases were evaluated against the baseline situation where 50% of the strains belonged to both the
susceptible and tolerant groups. The cases consisted of the case of only susceptible L. monocytogenes
(Case 1), 25% susceptible versus 75% tolerant and 75% tolerant versus 25% susceptible. For each of
these cases, the Spearman rank correlation was computed between the estimated number of cases per
million consumers and increased in L. monocytogenes due to growth during consumer storage.
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Table 1. Summary of the listeriosis quantitative risk assessment model for consumption of cultured milk at domestic level: variables, equations or distribution of the
input parameters and data sources.

Variable/Parameter Description Value/Equation Distribution Unit Data Source

Co Initial concentration 103 to 104 Uniform cfu/g [22]
Tsl Storage time Minimum 0.5, and Pert Days [22]

Most likely: 6 to 10
Maximum: 45

µmaxSusce
( µmaxTol)

Maximum growth rate for
susceptible (tolerant) L. monocytogenes Mean: 0.762± 0.047 (1.007± 0.047) Normal per hour Calculated

Serving Portion consumed Mean: 236.75 ± 170 Log normal gram [22]

Hold Increase during storage µmaxSusce ∗ Tsl + (µmaxTol) ∗ Tsl cfu/g
This study and [49]
model for exponential growth phase

D Ingested dose Serving × (Co+Hold) cfu/serving Calculated

rh
Dose–response parameter for
healthy subpopulation 2.37 × 10−14 − [51]

rs
Dose–response parameter for
susceptible subpopulation 1.06 × 10−12 − [51]

rt
Dose–response parameter for
healthy subpopulation 5.8 × 10−10 − [51]

PillH
Probability of illness for
healthy subpopulation 1−exp(−rh∗D) Exponential − Exponential dose–response model

[51]

PillS
Probability of illness for
susceptible subpopulation 1−exp(−rs∗D) Exponential − Exponential dose–response model

[51]

PillT
Probability of illness for
transplant subpopulation 1−exp(−rt∗D) Exponential − Exponential dose–response model

[51]

NillH
Number illness per million
servings for healthy subpopulation B(1000000, PillH) Binomial − Calculated

NillS
Number illness per million
servings in susceptible subpopulation B(1000000, PillS Binomial − Calculated

NillT
Number illness per million
servings for transplant subpopulation B(1000000, PillT) Binomial − Calculated



Microorganisms 2020, 8, 1772 13 of 24

2.8. Data Availability

L. monocytogenes strain data including accession numbers for sequencing data and the stress
phenotype data can be accessed online from Hingston et al. [24] at: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC5340757/bin/Table1.XLSX. The data used in example risk assessment are available
from the European Nucleotide Archive (ENA) under project number PRJEB15592.

3. Results

3.1. Bioinformatic Analysis

The number of core genes was 2258, while there were 5085 accessory genes making a total
of 7343 genes in the pangenome. The matrix of percent similarity between the 7343 genes in the
pangenome and the assembled L. monocytogenes genomes was generated for further use as input for
machine learning predictive models.

3.2. Finite Mixture Modeling

Results on NPMLE diagnosis and the diagnosis for appropriateness of the number of components
and adjustments where necessary are presented in Supplementary File (Section S1).

3.2.1. Cold Stress Response

Multi-modality in the relative µmax values for the cold stress response was observed (Figure 3)
suggesting that using the assumption of a homogeneous population would not be appropriate.
A homogeneous normal distribution assumes an average relative µmax 1.0 ± 0.06. The final model

consisted of the following two-component model (Figure 4a): µ ∼
(

0.76 1.01
0.03 0.97

)
which consists of a

weighed sum of normal distributions:

Y ∼ 0.03N(0.76, 0.0023) + 0.97N(1.01, 0.0023).

A possible interpretation of the two components of the relative µmax values of L. monocytogenes
strains is shown in Table 2. Component one represents strains with the lowest average relative µmax of
0.76 which consists of a small proportion (3%) of the strains. This population could be considered cold
stress susceptible. Strains with the highest relative µmax of 1.01 in component 2, consisting of a large
majority of strains (97%) can be considered as cold stress tolerant.

Table 2. Probabilities, averages of categories and interpretations of the L. monocytogenes stress
response categories.

Cold Acid

Component πj µj Interpretation Component πj µj Interpretation

1 0.03 0.76 Susceptible 1 0.04 0.41 Highly Susceptible
2 0.97 1.01 Tolerant 2 0.44 0.85 Susceptible

3 0.50 1.13 Tolerant
4 0.03 1.50 Highly Tolerant

Salt Desiccation

Component πj µj Interpretation Component πj µj Interpretation

1 0.16 0.83 Susceptible 1 0.21 0.87 Susceptible
2 0.77 1.01 Tolerant 2 0.74 1.02 Tolerant
3 0.07 1.18 Highly Tolerant 3 0.04 1.26 Highly Tolerant

 https://www.ncbi.nlm.nih.gov/pmc/articles /PMC5340757/bin/Table1.XLSX
 https://www.ncbi.nlm.nih.gov/pmc/articles /PMC5340757/bin/Table1.XLSX
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3.2.2. Salt Stress Response

The multi-modality in the relative µmax values for salt stress response (Figure 3) indicated that
using the assumption of a homogeneous population would not be appropriate. A homogeneous
normal distribution assumes an average relative µmax of 1.0 ± 0.1. The fitted model consisted of the

following three-component (Figure 4b) approximation: µ ∼
(

0.83 1.01 1.18
0.16 0.77 0.07

)
which consists of a

weighed sum of normal distributions with:

Y ∼ 0.16N(0.83, 0.0034) + 0.77N(1.01, 0.0034) + 0.07N(1.18, 0.0034).

Table 2 shows a possible interpretation of the three components of the relative µmax values for
response of L. monocytogenes strains to salt stress. The population in component one could be regarded
as salt stress susceptible, component two as tolerant and component three as highly tolerant strains.

(a) (b)

(c) (d)
Figure 4. Histogram of relative growth rate parameters and the superimposed mixture model for
the data.

3.2.3. Desiccation Stress Response

Multi-modality in relative LPD values for desiccation stress response (Figure 3) indicated that
using the assumption of a homogeneous population may not be appropriate. A homogeneous normal
distribution assumes an average relative LPD of 1.0 ± 0.13. The selected three-component model

(Figure 4c) was: µ ∼
(

0.87 1.02 1.26
0.21 0.74 0.04

)
. This three-component model consists of a weighed sum of

normal distributions with:

Y ∼ 0.21N(0.87, 0.006) + 0.74N(1.02, 0.006) + 0.04N(1.26, 0.006).
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A possible interpretation of the three components of the relative LPD values of L. monocytogenes
strains response to desiccation stress is shown in Table 2. Component one consists of a population
which could be termed as desiccation stress susceptible, component two as tolerant and component
three as highly tolerant strains.

3.2.4. Acid Stress Response

Multi-modality in the relative µmax values for acid stress response indicated heterogeneity
in relative µmax for the L. monocytogenes strains (Figure 3). A homogeneous normal distribution
assumes an average relative µmax of 0.99 ± 0.23. The four-component model (Figure 4d) was:

µ ∼
(

0.41 0.85 1.13 1.50
0.04 0.44 0.50 0.03

)
. This four-component model consists of a weighed sum of normal

distributions with:

Y ∼ 0.04N(0.41, 0.014) + 0.44N(0.85, 0.014) + 0.50N(1.13, 0.014) + 0.03N(1.50, 0.014).

The four components can be interpreted as shown in Table 2 by first considering the maximum
and minimum relative µmax values which are also biologically extremely high and low respectively
(0.41 and 1.50). This is evident when these maximum and minimum component means for acid stress
response were compared with the relative µmax means of the highest and lowest components for
growth under cold (0.76 and 1.01), salt (0.83 and 1.18) and desiccation (0.87 and 1.26) stress factors.
Components one, two, three and four could be termed as highly susceptible, susceptible, tolerant and
highly acid stress tolerant strains, respectively.

3.3. Predictive Modeling

3.3.1. Data Pre-Processing

A total of 4959 of the 7343 genes in the pangenome were near zero variance predictors and the
final predictor set consisted of 2384 genes. Initial modeling in the presence of class imbalances resulted
in dismal class specific model performance which was remedied after up-sampling.

3.3.2. Model Selection

The performance of the machine learning methods random forest (RF), support vector machine
(SVM) (radial (SVMR) and linear kernels (SVML)), neural network (NN), stochastic gradient
boosting (GBM) and logit boost (LB) was evaluated using the accuracy estimates from the 10-fold
cross-validation. The class specific model performances were also evaluated (Supplementary File,
Section S2). Table 3 presents the means, multiple comparison results and confidence intervals of the
mean accuracy values. Kruskal–Wallis rank sum tests were used. Pairwise Mann–Whitney U-tests
were conducted whenever the overall test indicated significant differences in model performances to
evaluate which models significantly differed from the others while controlling the familywise error
rate using the BH method [52].
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Table 3. Machine learning model performance for prediction of L. monocytogenes stress response categories.

Stress Type *

Model Acid Cold Salt Desiccation

GBM 0.87 abc (0.83–0.89) 0.97 a (0.96–0.98) 0.89 a (0.87–0.90) 0.89 ab (0.86–0.90)
RF 0.87 ab (0.86–0.88) 0.97 a (0.95–0.98) 0.89 a (0.87–0.90) 0.91 a (0.88–0.92)
SVMR 0.89 c (0.88–0.89) 0.97 a (0.96–0.98) 0.83 b (0.81–0.84) 0.83 c (0.80–0.84)
SVML 0.85 a (0.84–0.87) 0.96 a (0.94–0.97) 0.85 b (0.83–0.86) 0.88 ab (0.86–0.90)
NN 0.72 d (0.68–0.78) 0.96 a (0.93–0.98) 0.63 c (0.57–0.68) 0.69 d (0.56–0.76)
LB 0.89 bc (0.88–0.90) 0.97 a (0.97–0.98) 0.85 ab (0.83–0.88) 0.86 bc (0.85–0.88)

* Mean (range); means within a column with similar lower case superscript letter are not significantly different;
random forest (RF), support vector machine (radial (SVMR) and linear (SVML) kernels), gradient boosting
(GBM), neural network (NN) and logit boost (LB) models.

For the acid stress response, SVMR had significantly higher mean accuracy (0.89; 95% CI: 0.88,
0.89) and κ of 0.91 and was selected for prediction of acid stress response category from the WGS
predictors. RF with accuracy of (0.97; 95% CI: 0.95, 0.98) and κ of 0.98 was chosen for the prediction
of cold stress response component from the WGS predictors. GBM and RF had significantly higher
mean accuracies of 0.89 (95% CI: 0.87, 0.90) (Table 3) and a κ statistic of 0.98 and RF was selected
for prediction of the salt stress response components from the WGS predictors. RF had significantly
highest mean accuracy (0.91; 95% CI: 0.88, 0.92) (Table 3) and κ of 0.92 and it was therefore selected for
prediction of the desiccation stress response category using WGS predictors.

3.4. Example L. monocytogenes Quantitative Risk Assessment

3.4.1. Prediction of L. monocytogenes Stress Response Components

Supplementary Table S1 shows the predicted number of L. monocytogenes for each stress response
type and component or sub-group within each of the response type for L. monocytogenes strains from
different food types with unknown stress response components. The strains were classified into two
of the four components of the acid response. A larger proportion of the strains 57% (n = 115) were
acid stress tolerant while the rest of the strains were acid stress susceptible. Almost all (99%) of the
strains were cold stress tolerant. A strikingly similar pattern was observed for salt and desiccation
tolerance with 95% of strains being in the tolerant class. Two of the strains from meat and ready-to-eat
foods were highly salt tolerant. The results from the dairy strains were used as input for the example
microbial risk assessment on cultured dairy products.

3.4.2. Quantitative Microbial Risk Assessment

Table 4 shows the estimated probability of illness, the number of estimated illnesses per million
consumers from consumption of cultured milk products in three population groups and the increase
in microbial counts during storage for the baseline situation as well as for the three scenarios.
Estimated number of illnesses per million increased from zero (range: 0–3) to 2 (range: 0–33) and 790
(range: 4–23,653) for healthy population, susceptible population and transplant recipients, respectively.
This increase corresponded with increased probability of illness per serving resulting from ordered
increase in susceptibility from healthy, susceptible to transplant populations Table 4.
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Table 4. Results for quantitative microbial risk assessment of L. monocytogenes at the consumer level in
cultured milk products.

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

Number ill healthy per million 0 0 0 0 0 3
Number ill susceptible per million 0 0 1 2 2 33
Number ill transplant per million 4 321 585 790 1019 23653
Probability of illness healthy
×(10−6)

0.00 0.01 0.02 0.03 0.04 0.98

Probability of illness susceptible
×(10−4)

0.00 0.01 0.01 0.01 0.02 0.44

Probability of illness transplant
×(10−1)

0.00 0.00 0.01 0.01 0.01 0.24

Increase during storage: all susceptible
(cfu/g) 9 127 215 236 326 803

Increase during storage: 75 % susceptible
(cfu/g) 10 137 232 255 352 867

Increase during storage: 50 % susceptible
(cfu/g) 11 147 250 274 378 933

Increase during storage: 25 %
susceptible (cfu/g) 11 157 267 293 404 994

A homogeneous normal distribution assuming an average relative µmax 1.0 ± 0.22 resulted in
a higher estimated number of illnesses per million of zero (range: 0–4), 2 (range: 0–47) and 803
(range: 5–23,798) for healthy population, susceptible population and transplant recipients respectively.
It should however be noted that the proportion of consumers in these subpopulations would also affect
the national or population level risk estimates. For, instance, the healthy, susceptible and transplant
populations were recently suggested to account for 76.7 %, 23.3 % and 0.0062%, respectively of the
total population [53].

3.4.3. Scenario Analysis

To perform scenario analysis, rank correlation assisted in establishing the degree to which large
values of the estimated number of cases per million were associated with large values of increase in
concentration of the pathogen during consumer storage. Spearman rank correlation was computed
between the estimated number of cases per million and increase in concentration of the pathogen
during consumer storage for the baseline scenario which involved 50% tolerant strains and changing
the proportion of tolerant strains to 0%, 25% and 75%. The association was positive and increased with
increase in the proportion of tolerant L. monocytogenes from 0%, 25%, 50% (baseline) with the highest
proportion of tolerant strains of 75% showing highest positive association.

This trend was mirrored closely by the increase in concentration of the pathogen during storage
for case 1, case 2 and case 3 which were 236 ± 139, 255 ± 150, 293 ± 172 cfu/g, respectively compared
to 274 ± 161 cfu/g for the 50% tolerant proportion in the baseline situation.

4. Discussion

Microbial growth, a key input in exposure assessment during MRA, enables to estimate the
concentration of ingested pathogenic microorganisms which is a key input for the calculation of the
probability of illness from dose–response models. However, during exposure assessment, it is assumed
that the species is a homogeneous unit despite evidence of a diverse microbial population structure
and the associated increase in number of outbreaks. The first part of this study derives evidence that
within each taxonomic unit population, there are sub-populations of varying proportions and with
varying ability to grow under different stress conditions.

Refrigeration has been instrumental in decelerating the physical, microbiological and chemical
spoilage of foods during all the stages of the food chain including processing, distribution, retail and
domestic storage [54]. However, L. monocytogenes is recognized for its unique ability to survive and
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continue growing during refrigerated storage which increases risk of illness attributable to foods such
as refrigerated, ready-to-eat (RTE) foods [24]. For the cold stress response, assuming a homogeneous
normal distribution leads to an average relative µmax of 1± 0.06. A two-component model was selected
for the cold stress response. Almost all strains (97%) were cold tolerant with a high mean relative µmax

of 1 ± 0.002 for the tolerant group which was close to the one component arithmetic average relative
µmax of 1 ± 0.06. These findings are in agreement to the well-recognized ability of L. monocytogenes to
grow at temperatures as low as minus 0.4 ◦C [55].

A three-component approximation was appropriate for the salt stress response. A small proportion
of the strains (7%) were in the component representing high tolerance relative µmax (1.18 ± 0.0034) to
salt stress. This increases concern because apart from enhancing palatability of food, salt remains part
of the multiple hurdles of stress factors aimed at shelf life extension and improvement of microbial food
safety by inhibiting or reducing growth of spoilage and pathogenic microorganisms [56]. Desiccation
tolerance enables microorganisms to survive in food or on food contact surfaces for lengthy periods of
time with little access to nutrients and water [57]. The mechanism of action of desiccation of foods
on microorganisms is similar to that of salt stress due to a similar mode of action on microorganisms.
Both stress factors function though reducing the amount of unbound water available for microbial
growth in foods. One of the ways to achieve desiccation is the ability of sodium and chloride ions to
associate with water molecules which induces a desiccation effect [56]. Similar to salt stress response,
a three-component model for desiccation stress response was appropriate for this data.

The presence of organic acids or reduced pH either naturally inherent in foods or as process
additives is a common inhibitor of microbial growth either alone or together with other process
operations such as control of water availability, heating and cooling. Four components could be
distinguished for acid stress response. It was unique for this stress response to find two almost
equally prevalent subpopulations that were either highly susceptible (4%) or highly tolerant (3%) to
acid stress. Their relative µmax values were either biologically exceptionally low (highly susceptible
subpopulation) or high (highly tolerant subpopulation) which was also evident from comparing these
components with the mean relative µmax for highest and lowest components of growth under cold,
salt and desiccation stress phenotypes. Such high and low tolerance or susceptible strains for this and
other stresses are of great interest in not only refining QMRA, but also for food process operators,
control agencies and researchers investigating the biological mechanism underlying the persistence
of certain L. monocytogenes strains in the food processing environment [24]. Such strains have posed
challenges due to their persistence despite efforts to inactivate them either through processing of foods
or cleaning and disinfection of food process operations.

Changes in genetic composition of microorganisms often encode for large phenotypic differences
in growth, survival and inactivation [9]. Furthermore, genes are transferred between and within
bacterial species thus adding heterogeneity in growth within the taxonomic unit. WGS data could
therefore be highly discriminatory predictors or even act as biomarkers discriminating between
different levels of resistance to stress conditions. However, many applications of WGS data for
predicting phenotypes have been hindered by challenges in the translation of high dimensional
WGS data into reduced phenotypic information with a resultant metric that is useful in MRA [13].
The second aim of this study was to select predictive algorithms inputting highly dimensional WGS
data for predicting into which of the g sub-populations new strains with unknown stress response
data lies by treating the g sub-populations as classes. If the sub-population is predicted for new strains,
the proportion of each sub-population can then be calculated while the mean and variance of the
relative µmax or relative LPD for each of these populations is computed from the finite mixture models.

SVMR was selected for prediction of acid stress response while RF was chosen for cold, salt and
desiccation stress responses. RF, a tree-based approach, has a number of attractive properties. Decision
trees commonly suffer from high variance where for instance two randomly split training datasets
would result in quite different results if a decision tree is fit to each halve [35]. Bootstrap aggregation
or bagging reduces this variance in the context of decision trees by obtaining many training sets from
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the population. Separate prediction models are built from each of the training sets and eventually the
resulting predictions are averaged. These ML algorithms are increasingly applied in biology research
areas such as gene expression, tissue classification, gene function prediction, protein subcellular
location prediction, protein secondary structure prediction and protein folding prediction [58].

The final part of this study constructed an example consumer level QMRA of cultured milk
products with strains of unknown stress response phenotypes to illustrate the phenotype class
prediction and role of L. monocytogenes strain stress phenotype heterogeneity in contributing to differing
risk of illness. The first part of the QMRA involved predicting for each strain the stress response
sub-group where it lies for each of the stress factors and different food categories using the selected ML
models. As commonly known for L. monocytogenes, almost all (99%) of the strains were predicted to be
in the cold stress tolerant component. A similar pattern was observed for salt and desiccation tolerance
with 95% of strains being in the tolerant class. These two stress factors share similar mechanisms of
microbial inhibition and the similarities in predictions are therefore in agreement to well-grounded
principles of food preservation [56]. Acid stress response phenotype is important in cultured milk
products where organoleptic properties, safety and shelf-stability are dependent on lowering of the
pH to around 4.6 which increases the acidity [22]. The strains from cultured milk products used in this
QMRA were classified into a mixture of two normally distributed components each at 50% of the total
population leading to an equivalent number of both acid tolerant and susceptible strains.

The probability of illness per serving as well as expected number of cases per million consumers
increased with increased susceptibility from healthy population, susceptible population to transplant
recipients. This is in agreement with increased probability of a single bacterial cell to cause listeriosis
in more susceptible consumer groups [51]. The estimated number of illnesses per million increased
from zero (range: 0–3) to 2 (range: 0–33) and 790 (range: 4–23,653) for healthy population, susceptible
population and transplant recipients, respectively. This increase corresponded with increased
probability of illness per serving resulting from increased susceptibility for the three consumer
populations. These estimates are within the ranges of those estimated in report on risk characterization
of Listeria monocytogenes in ready-to-eat foods by the Joint FAO/WHO Expert Consultation on Risk
Assessment of Microbiological Hazards in Foods who estimated the number of cases ranging from
0.01 to 1580 at consumption exposures ranging of −1.5–7.5 (Log CFU/serving) [51]. It should however
be considered that the estimates from the FAO/WHO report concerned ready-to-eat foods in general
and the cultured milk in our case study is just a subset of ready-to-eat foods.

Assuming a homogeneous normal distribution where the relative µmax is the arithmetic average
from the data resulted in a higher estimated number of illnesses per million in the three consumer
sub-populations in comparison to the model taking into account that the strains consisted of a
mixture of two normally distributed components each containing 50% of both tolerant and susceptible
strains with different mean relative µmax values. We therefore demonstrate that use of population
average growth parameters resulted in overestimation of risk estimates from the QMRA. There were
sharp contrasts in number of strains classified under each stress response phenotype between our
findings and those of Hingston et al. [24] in their analysis which assumed a homogeneous normal
distributed population of strains. For instance, we found that 51 strains were tolerant to all the
stress phenotypes while the study of Hingston et al. [24] found none, 64 strains were tolerant to 3
stress types while Hingston et al. [24] found 2. Fifteen strains were tolerant to two stress phenotypes
while Hingston et al. [24] found 24 which is a higher number of strains. None of the strains were
susceptible to all the 3 stress phenotypes while Hingston et al. [24] found 5. This reflects differences in
proportions of tolerant and susceptible strains as well as between relative µmax values of single [24]
and mixture distributions (this study). This illustrated that assuming that the strains growing consist
of a homogeneous normal distributed population of strains may overlook the underlying phenotypic
stress subpopulations.

To assess the sensitivity of the risk to the proportion of strains in each component, Spearman
rank correlation was computed between the estimated number of cases per million and increase in
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concentration of the pathogen during consumer storage for the baseline scenario of 50% tolerant
and change in proportion of tolerant strains to 0%, 25% and 75%. We found out that increase in the
proportion of tolerant L. monocytogenes resulted in increased association between the estimated number
of cases per million and increase in concentration of the pathogen during consumer storage. This can be
attributed to the increase in concentration of the pathogen during storage for the scenarios involving 0%,
25% and 75% tolerant proportion groups which were 236± 139, 255± 150, 293± 172 cfu/g, respectively
compared to 274± 161 for the 50% tolerant proportion.

The approach demonstrated in this study is of potential practical benefit to research, food industry
and regulators in addressing the bottleneck to the application of WGS for exposure assessment during
QMRA. An important benefit will be the reduction in uncertainty in EA models and the corresponding
reduction in uncertainties when making risk estimates. A major milestone towards more accurate
decision making at improved reaction times will be the ability to conduct exposure assessment
using WGS in microbial strains where growth phenotypic data are not available. Use of WGS data
in predictive modeling to draw conclusions beyond data obtained will foster models supporting
reduced need for frequent use of slow culture dependent laboratory tests and food validation of
growth, survival and inactivation models under differing conditions. The use of WGS for exposure
assessment also supports the need for timely detection of shifts in bacterial stress tolerance arising from
genetic changes. This will improve public protection and mitigation through a dynamic MRA process
which maintains higher resolution despite changes in microbial genetic composition. The modeling
protocol will support a more straightforward construction of user friendly online platforms whose
performance improve with time in a similar way to many areas where machine learning methods
have found application. However, the practical application will involve the collection of a database
of strains with available WGS and phenotypic data on microbial adaptation to various inherent food
characteristics and conditions encountered during food processing and handling. This will enhance
the generalizability of the predictions by accounting for genetic variation in microbial populations.
The results from this study enhance the potential to conduct complete farm to fork MRA using WGS
data when used in combination with recently reported approaches where machine learning and WGS
were used for predicting risk of illness [33] and to improve hazard characterization in microbial risk
assessment [34] .

5. Conclusions

Results from our study demonstrate that reliance on growth parameters derived from population
average assumes that the pathogen acts as a uniform taxonomic unit which neglects within-species
heterogeneity in microbial stress response. Figure 5 presents an illustrative summary of the proposals
and findings from this study. Neglecting within-species heterogeneity in microbial stress response
may compromise the resolution of QMRA and the quality of evidence used for subsequent infection
control efforts. This is because microbial growth, which is a key input quantity in exposure assessment,
enables the estimation of the concentration of ingested pathogenic microorganisms which is a key input
for the calculation of probability of illness from dose-response models. Heterogeneity in the growth
rates has an impact on variation in survival of the pathogen in the environment, food and ultimately
through the human host barriers. Neglecting this heterogeneity hinders the predictive accuracy of risk
assessment efforts.

The rapid throughput of WGS sequencing data compared to laboratory growth studies will
support a future where predictive models based on WGS data greatly reduce the need for future
validation of models in the laboratory and in food.
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Figure 5. Overview of conclusions: Heterogeneous pathogen events. Pathogen populations (A–D) with
stochastically varying phenotypes enter various biotic and abiotic environments. Extreme environments
kill pathogens in environment (A), while favorable conditions support vigorous pathogen growth in
the environment (D). Intermediate environments support pathogen survival (B) or moderate growth
(C). Various surviving pathogen subsets emerging from the various events result in risk variation in an
often heterogeneous host population whose susceptibilities vary leading to stochasticity in disease risk.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/11/1772/
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