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Abstract: Increasingly more people cycle with electrically-powered pedal assistance. The reduced
pedalling effort attracts physically challenged people and seniors, who have a higher risk of falling.
Since electric bicycles are heavier and the centre of masses are located higher, accidents happen easily.
This study analyses the influence of the addition of a battery and motor unit on the stability behaviour
of common bicycles for women. Based on market research, seven typical bicycle configurations
are determined. Geometrics, mass values, and cycling postures are measured, and the theoretical
stability behaviour is determined analytically based on the stability model of Whipple and Carvallo.
The research shows that bicycles without pedal assistance have a smaller self-stable and semi-stable
range than most electric bicycles. The electric bicycle with a motor implemented in the front wheel
perform best, as the extra weight of the motor enhances the gyroscopic self-stabilization of the front
wheel. Furthermore, a battery in the lower mid-tube is preferred over one in the luggage rack as it
lowers the center of mass of the rear frame assembly. Knowledge about the optimal configuration to
maximize the stability will enhance the cycling comfort and minimize the chance of accidents.
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1. Introduction

It is generally accepted that cycling is an easy and intuitive activity accessible for nearly all.
Though, learning to cycle demands some bravery. Instinctively, newcomers pedal gently and cautiously,
which results in a low speed and an unstable bicycle. Only when levelling up the speed, the bicycle
becomes stable and easily manageable.

The stability behaviour of bicycles is subject to numerous research studies. In 1899, the initial
equations were formulated by Carvallo and Whipple to correctly estimate the stability behaviour of a
bicycle without a cyclist [1,2]. The Carvallo Whipple model formed the base of various, new adapted
and expanded models, which are listed in a fairly complete review by Meijaard et al. [3]. Meijaard et al.
compared and evaluated the wide variety of models theoretically, based on a benchmark bicycle. The
models were, furthermore, evaluated experimentally by, e.g., Jones, Stevens, Weir, and Zellner [4–6].

Schwab et al. [7] created a generally accepted, accurate, and feasible method to theoretically
calculate stability behaviour in the function of different bicycle dimensions and compositions [8].

Adding an electromotor or battery-unit to the model is, to the author’s knowledge, never addressed
in literature, even though increasingly more people cycle with electrically-powered pedal assistance [9].
The decreased pedalling effort attracts seniors and physically challenged people who have an increased
chance of accidents [10]. According to Twisk et al., a higher centre of mass may destabilize a bicycle,
which is the case for electric bicycles due to the addition of the battery-unit [11].
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To maximize the stability of electric bicycles and minimalize the chance on accidents, this study
analyses the influence of different motor and battery placements on the stability behaviour of
conventional recreational bicycles. Singularly bicycles for women are addressed, as 80% of all sold
electric bicycles considers no upper mid tube and are for recreational use. Fifty popular bicycles for
women with and without pedal assistance are segmented into seven typical bicycle configurations. The
mean geometrics, mass values, and cycling postures are defined. The theoretical stability behaviour is
calculated based on Meijaard et al. [3] and Schwab et al. [7]. The results are compared and evaluated.

2. Materials and Methods

A comparison is made between the self-stable behaviour of bicycles for women with pedal
assistance and bicycles for women without pedal assistance. The geometrics, mass values, and the
cycling posture of 50 popular bicycles are measured and the self-stable range is calculated based on the
Carvallo Whipple Model [1,2] with the reviewed work of Meijaard et al. [3].

2.1. Object

City bicycles for women with pedal assistance (referred to as electric bicycles) and without pedal
assistance (referred to as conventional bicycles) form the object of the research. City bicycles are
designed as safe and comfortable means of transportation for everyday use. They are equipped with
suspension in the fork, lights, a bell, gears, a luggage rack, and mudguards. Speed is of little import.
The cyclists adopt a relaxed posture situated between the ‘Dutch bike position,’ which is fully vertical
with a high aerodynamic drag and the ‘trekking bike position,’ which has a bit more bent forward for a
higher pedalling efficiency, which is presented in Figure 1.
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Figure 1. (a) Dutch bike position; (b) city bike position; (c) trekking bike position; (d) racing bike 
position. 

Modern electric bicycles can be segmented into six categories, which distinguish themselves by 
motor placement and battery placement, as presented in Figure 2. The motor is located in the front 
wheel (electric bicycle 1, 2), rear wheel (electric bicycle 3, 4), or bottom bracket (electric bicycle 5, 6), 
and the battery is located in the luggage rack (electric bicycle 1, 3, 5) or lower mid-tube (electric bicycle 
2, 4, 6). 

  
(1) (2) (3) (4) (5) (6) 

Figure 2. Electric bicycle configuration 1 till 6. 

Figure 1. (a) Dutch bike position; (b) city bike position; (c) trekking bike position; (d) racing bike position.

Modern electric bicycles can be segmented into six categories, which distinguish themselves by
motor placement and battery placement, as presented in Figure 2. The motor is located in the front
wheel (electric bicycle 1, 2), rear wheel (electric bicycle 3, 4), or bottom bracket (electric bicycle 5, 6),
and the battery is located in the luggage rack (electric bicycle 1, 3, 5) or lower mid-tube (electric bicycle
2, 4, 6).
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Figure 2. Electric bicycle configuration 1 till 6. Figure 2. Electric bicycle configuration 1 till 6.

2.2. Model

The Carvallo Whipple model is utilized to determine the stability behaviour of a conventional
bicycle and six electric bicycles [1,2]. The model considers four rigid bodies to embody a bicycle:
a front wheel (F), a front frame including a fork and handlebar (H), a rear wheel (R), and a rear frame



Appl. Sci. 2020, 10, 5672 3 of 12

including a rigidly attached rider (B), as seen in Figure 3. The model ignores motion of the rider relative
to the frame, joint friction, structural compliances, and dampers.
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Figure 3. The four rigid bodies of a bicycle.

The longitudinal motion of the bicycle can be described by a single degree of freedom when an
ideal contact is assumed between the rigid wheels and road surface with knife-edge rims and without
longitudinal tire slip. The rear wheel rotates with θR relative to the rear frame (with forward motion
being negative). The lateral motion of the bicycle can be described by two degrees of freedom when
the lateral tire slip is assumed to be zero: the steer angle is δ (with right steering being positive) and the
lean is φ (with right leaning being positive). When the bicycle is moving at a constant forward speed,
the linearized equation of the Carvallo Whipple model for the lateral motion is given by Equation (1).

M
..
q + vC1

.
q +

(
v2K2 + gK0

)
q = f (1)

where q = [φ, δ]T is the vector of degrees of freedom, f =
[
Tφ, Tδ

]
is the vector of applied generalised

forces, vC1 is the non-symmetric velocity sensitivity matrix, and v2K2 + gK0 is the non-symmetric
stiffness matrix. M, C1, K0 and K2 are defined in terms of 25 design parameters of the bicycle, given by
Table 1.

Table 1. 25 Design parameters of the Carvallo Whipple model.

Parameter Symbol Parameter Symbol

Wheel base w Forward speed v
trail c Steer axis tilt λ

Rear wheel R Front wheel F
Radius rR Radius rF
Mass mR Mass mF

Mass moments of inertia

IR = IRxx 0 0
0 IRyy 0
0 0 IRzz

 Mass moment of inertia IF =

 IFxx 0 0
0 IFyy 0
0 0 IFzz


Rear frame B Front frame H

Position centre of mass CgB =

 xB
yB
zB

 Position centre of mass CgH =

 xH
yH
zH


Mass mB Mass mH

Mass moments of inertia

IB = IBxx 0 IBxz
0 IByy 0

IBxz 0 IBzz

 Mass moment of inertia

IH= IHxx 0 IHxz
0 IHyy 0

IHxz 0 IHzz
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2.3. Calculation Method

The 25 design parameters are influenced by the bicycle geometrics, the addition of a battery
and motor, and the cyclist. The values are determined for the six electric bicycle configurations and
a conventional bicycle. The bicycle and cyclist are simplified to geometric shapes (cylinders, torus,
cuboids, and spheres) to calculate the inertia tensors in the local centres of gravity. The shapes form a
part (cyclist, motor, battery, framework, fork, handlebar, and wheel) and the parts form assemblies
(front wheel, rear wheel, front frame, and rear frame). In the case of pedal power assistance, the mass
values of the battery is added to the rear frame and the mass values of the motor is added to the front
wheel, rear wheel, or rear frame assembly, depending on the motor placement. Table 2 presents an
overview of the parts for the seven bicycle configurations.

Table 2. Parts of every assembly for the seven bicycle configurations.

Bicycle 1
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Io  = Il – m(plo ploT) + m(ploT plo) I3 (2) 
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The inertia tensors are calculated in the centres of gravity of the assemblies. The centre of gravity
of the rear frame assembly depends on multiple components (cyclist, motor, battery, and framework)
and is calculated afterward. Therefore, the inertia tensor of the shapes are initially calculated in an
external, uninfluenced point and for every configuration translated to the centre of gravity of the
assembly with a derived formula of the parallel axis theorem (10). The formula is derived as follows.

To translate the inertia tensor of a geometric shape from the local centre of gravity {l} to an external
point {o}, the parallel axis theorem is utilized, given by Equation (2).

Io = Il - m(plo plo
T) + m(plo

T plo) I3 (2)

Wherein, Io is the inertia tensor in {o}, Il is the inertia tensor in {l}, plo is the place vector from {o} to
{l}, and m is the mass. Io is translated from the external point {o} to the centre of gravity of a part {c}
given by Equation (3) and presented in Figure 4.

Ic = Il - m plc plc
T + mlc

T plc I3 (3)

plc is expressed in function of plo and pco given by Equation (4).

plc = plo − pco (4)
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Il is expressed in function of Io given by Equation (5).

Ic = Il−m(plo plo
T - plopco

T - pcoplo
T + pcopco

T) + m(plo
Tplo−plo

Tpco - pco
Tplo + pco

Tpco)I3

= Il - m(Plo Plo
T) + m(Plo

T Plo) I3 − m(−Plo Pco
T - Pco Plo

T + Pco Pco
T) + m(−2 Plo

T Pco+ Pco
T Pco) I3

= Io−m(−plopco
T
−pcoplo

T + pcopco
T) + m(−2plo

Tpco + pco
Tpco)I3

(5)
wherein Ic is the inertia tensor in {c} and pco is the place vector from {o} to {c}. When the inertia tensors
of multiple shapes are translated, Io is given by (6a) and (6b).

Io1 = f (Il1,m1,plo1) (6a)

Io2 = f (Il2,m2,plo2) (6b)
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The mass values of the shapes (i) in {o} are summarized to determine the mass values of the part
(j) in {o}, given by (7a) until (7c).

Io
[ j] =

∑
Ioi

[ j] (7a)

m[ j] =
∑

mi
[ j] (7b)

pgo
[ j] =

∑ mi
[ j]

m[ j]
ploi

[ j] (7c)

wherein pgo is the place vector from {o} to {g} and the centre of mass of part (j).
The inertia tensor of the part is translated from reference frame {o} to {c}, given by Equation (8)

and presented in Figure 5.

Ic = ( f Ili, miploi) =
∑

Ili −mi ploi ploi
T + m ploi

T ploi I3 –m(−ploi pco − pco ploi
T + pcopco

T) +

m(−2ploi
Tpco + pco

Tpco)I3
(8)

ploi is expressed in function of pgo, given by (9a) till (9d).

m pgo =
∑

mi ploi

(9a)

∑
mi ploi pcoT

= (
∑

mi ploi

) pco
T = m pgo pco

T (9b)
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∑
mi pgo ploi

T

= pco(
∑

mi ploi ) = m pco pgo
T (9c)

∑
mi ploi pco

= (
∑

mi ploi

)
T

pco = m pgo
T pco (9d)

Ic is expressed in function of pgo, given by (10).

Ic =
∑

Io+
∑

mi ploi pcoT+
∑

mi pgo ploi
T−

∑
mi pco pcoT (−2

∑
mi ploi pco)I3 + (

∑
mi pco pco T ) I3

= Io + m pgo pco
T + m pco pgo

T
−m pco pco

T
− 2m pgo

TpcoI3 + m pco
TpcoI3

(10)
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2.4. Data Acquisition

A market research with five large bicycle stores in Ghent, Belgium (‘Fiets! XL Gent’,’Plum Gent’,
‘As Adventure Lochristi’, ‘Het Verzet Deinze,’ and ‘PDG bikestore Drongen) has led to a list of the
50 most sold city bicycles with and without pedal assistance from the period of 2017 until 2018. The
geometrics of the 50 bicycles were measured to determine prototypical dimensions for city bicycles
based on the work of Schwab et al. [7]. The results are reported in Table 3. The bicycle parts were not
weighted, and the masses were estimated based on literature, material, and volume.

The dimensions of electric and conventional bicycles were compared with t-tests. The geometrics
of front and rear wheels without a motor were equal for conventional bicycles and electric bicycles.
The geometrics of the rear framework without motor and battery was similar, as electric bicycles
with a motor implemented in the front wheel often use a traditional framework. A significant
difference was found in the steer stem height, which was positioned 90 mm higher for electric bicycles
(with t (48) = 5189, p = 0.001). Consequently, the mass and the center of mass location of the front
frame assembly varied due to a difference in steer height. The cyclist posture is more upright and the
mass values of the rear frame assembly are different. The dimensions and weight of the motor and
battery unit can be found in Table 4.
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Table 3. Prototypical dimensions and masses of the seven bicycle configurations.

Bicycle Geometrics Value Bicycle Geometrics ValueConventional Electric

Stem length 190 mm 270 mm Steer tube radius 20 mm
Front frame mass 3.20 kg 4.02 kg Lower mid-tube radius 27.5 mm

Rear framework mass 8.03 kg Seat tube radius 16 mm
Front wheel mass 3.82 kg Seat post radius 14 mm
Rear wheel mass 3.80 kg Rear fork radius 10 mm
Rear hub width 130 mm Front fork radius 14 mm
Seat post length 210 mm Bottom bracket height 290 mm
Seat tube angle 69◦ Trail 100 mm
Seat tube length 490 mm Head tube angle 68◦

Wheel base 1120 mm Steer axis tilt 22◦

Rear wheel radius 345 mm Chain stay length 445 mm
Front wheel radius 345 mm Fork length 470 mm
Handlebar radius 11 mm Front hub width 100 mm
Steer stem radius 14 mm Handlebar length 100 mm

Table 4. Standardized dimensions and masses of different motor and battery units.

Wheel Motor Mid Drive Motor Battery Pack in
Lower Mid Tube

Battery Pack in
Luggage Rack

Weight 2.9 kg 3.1 kg 2.5 kg 2.5 kg
Dimensions [x,y,z] [160, 100, 160] mm [200, 180, 150] mm [330, 90, 90] mm [370, 120, 80] mm

A bicycle with an adjustable steer stem and seat post is configured according to the standard
dimension found for the electric and conventional bicycle. A woman with anthropometric characteristics
situated between the 25th and 75th percentiles of the Belgian population is measured and her
bicycle posture is captured on the electric and conventional bicycle, which is presented in Table 5.
The measurement methods are based on the work of Schwab et al. [7].

Table 5. Anthropometrics of a standardized woman on the electric and conventional bicycle.

Parameter
Value

Parameter ValueConventional Electric

Forward lean angle 65◦ 70◦ Upper leg mass 9.71 kg
Weight 64 kg Upper arm mass 0.99 kg
Length 170 mm Torso mass 30.93 kg

Hip joint to hip joint 250 mm Lower leg mass 3.11 kg
Head circumference 540 mm Lower arm mass 1.13 kg

Lower arm circumference 220 mm Head mass 3.11 kg
Lower arm length 290 mm Upper leg length 460 mm

Lower leg circumference 290 mm Upper leg circumference 500 mm
Lower leg length 460 mm Upper arm length 260 mm

Torso length 420 mm Upper arm circumference 240 mm
Chest depth 150 mm Shoulder to shoulder 390 mm

2.5. Calculations

2.5.1. Inertia Tensors

The electric and conventional bicycles are modelled according to the work of Schwab et al. [7].
The bicycle and cyclist are simplified to geometric shapes fully determined by skeleton points 1 to
33. Point 1 to 31 are defined in the work of Schwab et al. Point 32 is the centre of gravity of the lower
mid-tube and point 33 is the centre of gravity of the luggage rack, which is necessary to define the
position of the battery unit. All the skeleton points are presented in Figure 6.



Appl. Sci. 2020, 10, 5672 8 of 12

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 13 

2.5. Calculations 

2.5.1. Inertia Tensors 

The electric and conventional bicycles are modelled according to the work of Schwab et al. [7]. 
The bicycle and cyclist are simplified to geometric shapes fully determined by skeleton points 1 to 
33. Point 1 to 31 are defined in the work of Schwab et al. Point 32 is the centre of gravity of the lower 
mid-tube and point 33 is the centre of gravity of the luggage rack, which is necessary to define the 
position of the battery unit. All the skeleton points are presented in Figure 6. 

 
Figure 6. Location of the skeleton points in the bicycle cyclist model. 

The inertial tensors of the shapes are calculated in their centres of gravity and are rotated 
according to their individual position around the y-axis and x-axis, given by Equation (11). 

Il = R(ra) Icg R(ra)T (11) 

where 𝑟𝑎 is the rotation angle around the axis and R(ra) is the rotation matrix around the axis. The 
rotation matrix around the y-axis is given by Equation (12) and the rotation matrix around the x-axis 
is given by Equation (13). 

R(ra)y = 
cos(𝑟𝑎) 0 sin(𝑟𝑎)0 1 0− sin(𝑟𝑎) 0 cos(𝑟𝑎)  (12) 

R(ra)x = 1 0 00 cos(𝑟𝑎) −sin(𝑟𝑎) 00 sin(𝑟𝑎) cos(𝑟𝑎)  (13) 

The rear frame assembly considers the following parts: the rear framework (IBb), the cyclist in the 
electric posture (IBc(electric)), or in the conventional one (IBc(conventionall)) and optionally a mid-drive motor 
(IM(crank)) and battery unit in the lower mid-tube (IA(tube)) or on the luggage rack (IA(luggage)). Table 6 
presents the different configurations. The inertia tensors from the shapes that form the parts are 
translated with the parallel axis theorem to the origin of the coordinate system (skeleton point 1), 
given by Equation (2), and are summed to determine the inertia tensors of the parts in skeleton point 
1. The centre of gravity of the parts are determined and given by Figure 7C. The centre of gravity of 
the rear frame assembly of every configuration is calculated (CgB), given by Equation (4) and the 
derived formula of the parallel axis theorem is utilized to translate the inertia matrix in skeleton point 
1 to CgB, given by Formula (10). 
  

Figure 6. Location of the skeleton points in the bicycle cyclist model.

The inertial tensors of the shapes are calculated in their centres of gravity and are rotated according
to their individual position around the y-axis and x-axis, given by Equation (11).

Il = R(ra) Icg R(ra)T (11)

where ra is the rotation angle around the axis and R(ra) is the rotation matrix around the axis.
The rotation matrix around the y-axis is given by Equation (12) and the rotation matrix around the
x-axis is given by Equation (13).

R(ra)y =


cos(ra)i 0 sin(ra)i

0 1 0
− sin(ra)i 0 cos(ra)i

 (12)

R(ra)X =


1 0 0
0 cos(ra)i − sin(ra)i0
0 sin(ra)i cos(ra)i

 (13)

The rear frame assembly considers the following parts: the rear framework (IBb), the cyclist in
the electric posture (IBc(electric)), or in the conventional one (IBc(conventionall)) and optionally a mid-drive
motor (IM(crank)) and battery unit in the lower mid-tube (IA(tube)) or on the luggage rack (IA(luggage)).
Table 6 presents the different configurations. The inertia tensors from the shapes that form the parts
are translated with the parallel axis theorem to the origin of the coordinate system (skeleton point 1),
given by Equation (2), and are summed to determine the inertia tensors of the parts in skeleton point 1.

The centre of gravity of the parts are determined and given by Figure 7C. The centre of gravity of the
rear frame assembly of every configuration is calculated (CgB), given by Equation (4) and the derived
formula of the parallel axis theorem is utilized to translate the inertia matrix in skeleton point 1 to CgB,
given by Formula (10).

Table 6. Inertia tensors of the rear frame assembly.

Bicycle 1
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As the front frame is fully defined by the handlebar and fork and it has only two configurations: 
one for the electric bicycle, which is a bit higher and heavier and one for the conventional bicycle. 
The inertia tensor is directly determined in the centre of gravity of the assembly. 

The front wheel and rear wheel assembly are fully defined by the wheel and, optionally, an 
electromotor with the same centre of gravity. Consequently, the inertia tensor is directly determined 
in the centres of gravity of the assemblies. 

2.5.2. Eigenvalues 

The eigenvalues of the linearized equation of the Carvallo Whipple model (1) are calculated to 
evaluate the self-stability of the seven bicycle configurations [1,2]. Three modes determine the 
stability of the bicycle: capsize, weave, and caster. In the capsize mode, the bicycle leans into a spiral 
path until it ultimately keels over. In general, the capsize is stable at low speeds, and becomes less 
stable as speed increases. In the weave mode, the bicycle presents an oscillation between the leaning 
left and steering right and vice versa. Weave is generally unstable at low speeds, and becomes less 
pronounced as speed increases until it is no longer unstable. Weave is an oscillation around the 
heading of the bicycle, while caster describes a motion around the steering axis. The caster mode is 
comparable with the mechanism of a caster wheel on a shopping cart and is overall stable while the 
capsize and weave mode determine the stability range of the bicycle [7]. 

3. Results  

All bicycle configuration present similar graphs. Figure 7 addresses an example of the 
eigenvalues, namely from bicycle configuration 1. From 0 km/h till point A, four eigenvalues are 
found: two positive ones from the weave mode corresponding to a falling motion and two negative 
ones from the capsize and caster mode corresponding to a righting motion. The weave mode 
dominates and, without any rider corrections, the bicycle falls over as an unstabilized inverted 
pendulum. At point A, the two positive eigenvalues form a complex conjugate pair and the steering 
perturbation lead to an oscillatory weave motion. From point A until point B, the bicycle is less stable 
by the decreasing eigenvalue of the weave mode. From point B until point C, all the eigenvalues are 
negative and the corrective actions of the bicycle are large enough to prevent the bicycle from falling 
and small enough to not exhibit overcorrection. The bicycle is self-stable without any actions of the 
cyclist. 
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As the front frame is fully defined by the handlebar and fork and it has only two configurations: 
one for the electric bicycle, which is a bit higher and heavier and one for the conventional bicycle. 
The inertia tensor is directly determined in the centre of gravity of the assembly. 

The front wheel and rear wheel assembly are fully defined by the wheel and, optionally, an 
electromotor with the same centre of gravity. Consequently, the inertia tensor is directly determined 
in the centres of gravity of the assemblies. 

2.5.2. Eigenvalues 

The eigenvalues of the linearized equation of the Carvallo Whipple model (1) are calculated to 
evaluate the self-stability of the seven bicycle configurations [1,2]. Three modes determine the 
stability of the bicycle: capsize, weave, and caster. In the capsize mode, the bicycle leans into a spiral 
path until it ultimately keels over. In general, the capsize is stable at low speeds, and becomes less 
stable as speed increases. In the weave mode, the bicycle presents an oscillation between the leaning 
left and steering right and vice versa. Weave is generally unstable at low speeds, and becomes less 
pronounced as speed increases until it is no longer unstable. Weave is an oscillation around the 
heading of the bicycle, while caster describes a motion around the steering axis. The caster mode is 
comparable with the mechanism of a caster wheel on a shopping cart and is overall stable while the 
capsize and weave mode determine the stability range of the bicycle [7]. 

3. Results  

All bicycle configuration present similar graphs. Figure 7 addresses an example of the 
eigenvalues, namely from bicycle configuration 1. From 0 km/h till point A, four eigenvalues are 
found: two positive ones from the weave mode corresponding to a falling motion and two negative 
ones from the capsize and caster mode corresponding to a righting motion. The weave mode 
dominates and, without any rider corrections, the bicycle falls over as an unstabilized inverted 
pendulum. At point A, the two positive eigenvalues form a complex conjugate pair and the steering 
perturbation lead to an oscillatory weave motion. From point A until point B, the bicycle is less stable 
by the decreasing eigenvalue of the weave mode. From point B until point C, all the eigenvalues are 
negative and the corrective actions of the bicycle are large enough to prevent the bicycle from falling 
and small enough to not exhibit overcorrection. The bicycle is self-stable without any actions of the 
cyclist. 
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As the front frame is fully defined by the handlebar and fork and it has only two configurations: 
one for the electric bicycle, which is a bit higher and heavier and one for the conventional bicycle. 
The inertia tensor is directly determined in the centre of gravity of the assembly. 

The front wheel and rear wheel assembly are fully defined by the wheel and, optionally, an 
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2.5.2. Eigenvalues 
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stable as speed increases. In the weave mode, the bicycle presents an oscillation between the leaning 
left and steering right and vice versa. Weave is generally unstable at low speeds, and becomes less 
pronounced as speed increases until it is no longer unstable. Weave is an oscillation around the 
heading of the bicycle, while caster describes a motion around the steering axis. The caster mode is 
comparable with the mechanism of a caster wheel on a shopping cart and is overall stable while the 
capsize and weave mode determine the stability range of the bicycle [7]. 

3. Results  

All bicycle configuration present similar graphs. Figure 7 addresses an example of the 
eigenvalues, namely from bicycle configuration 1. From 0 km/h till point A, four eigenvalues are 
found: two positive ones from the weave mode corresponding to a falling motion and two negative 
ones from the capsize and caster mode corresponding to a righting motion. The weave mode 
dominates and, without any rider corrections, the bicycle falls over as an unstabilized inverted 
pendulum. At point A, the two positive eigenvalues form a complex conjugate pair and the steering 
perturbation lead to an oscillatory weave motion. From point A until point B, the bicycle is less stable 
by the decreasing eigenvalue of the weave mode. From point B until point C, all the eigenvalues are 
negative and the corrective actions of the bicycle are large enough to prevent the bicycle from falling 
and small enough to not exhibit overcorrection. The bicycle is self-stable without any actions of the 
cyclist. 
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As the front frame is fully defined by the handlebar and fork and it has only two configurations: 
one for the electric bicycle, which is a bit higher and heavier and one for the conventional bicycle. 
The inertia tensor is directly determined in the centre of gravity of the assembly. 

The front wheel and rear wheel assembly are fully defined by the wheel and, optionally, an 
electromotor with the same centre of gravity. Consequently, the inertia tensor is directly determined 
in the centres of gravity of the assemblies. 

2.5.2. Eigenvalues 

The eigenvalues of the linearized equation of the Carvallo Whipple model (1) are calculated to 
evaluate the self-stability of the seven bicycle configurations [1,2]. Three modes determine the 
stability of the bicycle: capsize, weave, and caster. In the capsize mode, the bicycle leans into a spiral 
path until it ultimately keels over. In general, the capsize is stable at low speeds, and becomes less 
stable as speed increases. In the weave mode, the bicycle presents an oscillation between the leaning 
left and steering right and vice versa. Weave is generally unstable at low speeds, and becomes less 
pronounced as speed increases until it is no longer unstable. Weave is an oscillation around the 
heading of the bicycle, while caster describes a motion around the steering axis. The caster mode is 
comparable with the mechanism of a caster wheel on a shopping cart and is overall stable while the 
capsize and weave mode determine the stability range of the bicycle [7]. 

3. Results  

All bicycle configuration present similar graphs. Figure 7 addresses an example of the 
eigenvalues, namely from bicycle configuration 1. From 0 km/h till point A, four eigenvalues are 
found: two positive ones from the weave mode corresponding to a falling motion and two negative 
ones from the capsize and caster mode corresponding to a righting motion. The weave mode 
dominates and, without any rider corrections, the bicycle falls over as an unstabilized inverted 
pendulum. At point A, the two positive eigenvalues form a complex conjugate pair and the steering 
perturbation lead to an oscillatory weave motion. From point A until point B, the bicycle is less stable 
by the decreasing eigenvalue of the weave mode. From point B until point C, all the eigenvalues are 
negative and the corrective actions of the bicycle are large enough to prevent the bicycle from falling 
and small enough to not exhibit overcorrection. The bicycle is self-stable without any actions of the 
cyclist. 
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As the front frame is fully defined by the handlebar and fork and it has only two configurations: 
one for the electric bicycle, which is a bit higher and heavier and one for the conventional bicycle. 
The inertia tensor is directly determined in the centre of gravity of the assembly. 

The front wheel and rear wheel assembly are fully defined by the wheel and, optionally, an 
electromotor with the same centre of gravity. Consequently, the inertia tensor is directly determined 
in the centres of gravity of the assemblies. 

2.5.2. Eigenvalues 

The eigenvalues of the linearized equation of the Carvallo Whipple model (1) are calculated to 
evaluate the self-stability of the seven bicycle configurations [1,2]. Three modes determine the 
stability of the bicycle: capsize, weave, and caster. In the capsize mode, the bicycle leans into a spiral 
path until it ultimately keels over. In general, the capsize is stable at low speeds, and becomes less 
stable as speed increases. In the weave mode, the bicycle presents an oscillation between the leaning 
left and steering right and vice versa. Weave is generally unstable at low speeds, and becomes less 
pronounced as speed increases until it is no longer unstable. Weave is an oscillation around the 
heading of the bicycle, while caster describes a motion around the steering axis. The caster mode is 
comparable with the mechanism of a caster wheel on a shopping cart and is overall stable while the 
capsize and weave mode determine the stability range of the bicycle [7]. 

3. Results  

All bicycle configuration present similar graphs. Figure 7 addresses an example of the 
eigenvalues, namely from bicycle configuration 1. From 0 km/h till point A, four eigenvalues are 
found: two positive ones from the weave mode corresponding to a falling motion and two negative 
ones from the capsize and caster mode corresponding to a righting motion. The weave mode 
dominates and, without any rider corrections, the bicycle falls over as an unstabilized inverted 
pendulum. At point A, the two positive eigenvalues form a complex conjugate pair and the steering 
perturbation lead to an oscillatory weave motion. From point A until point B, the bicycle is less stable 
by the decreasing eigenvalue of the weave mode. From point B until point C, all the eigenvalues are 
negative and the corrective actions of the bicycle are large enough to prevent the bicycle from falling 
and small enough to not exhibit overcorrection. The bicycle is self-stable without any actions of the 
cyclist. 
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As the front frame is fully defined by the handlebar and fork and it has only two configurations: 
one for the electric bicycle, which is a bit higher and heavier and one for the conventional bicycle. 
The inertia tensor is directly determined in the centre of gravity of the assembly. 

The front wheel and rear wheel assembly are fully defined by the wheel and, optionally, an 
electromotor with the same centre of gravity. Consequently, the inertia tensor is directly determined 
in the centres of gravity of the assemblies. 

2.5.2. Eigenvalues 

The eigenvalues of the linearized equation of the Carvallo Whipple model (1) are calculated to 
evaluate the self-stability of the seven bicycle configurations [1,2]. Three modes determine the 
stability of the bicycle: capsize, weave, and caster. In the capsize mode, the bicycle leans into a spiral 
path until it ultimately keels over. In general, the capsize is stable at low speeds, and becomes less 
stable as speed increases. In the weave mode, the bicycle presents an oscillation between the leaning 
left and steering right and vice versa. Weave is generally unstable at low speeds, and becomes less 
pronounced as speed increases until it is no longer unstable. Weave is an oscillation around the 
heading of the bicycle, while caster describes a motion around the steering axis. The caster mode is 
comparable with the mechanism of a caster wheel on a shopping cart and is overall stable while the 
capsize and weave mode determine the stability range of the bicycle [7]. 

3. Results  

All bicycle configuration present similar graphs. Figure 7 addresses an example of the 
eigenvalues, namely from bicycle configuration 1. From 0 km/h till point A, four eigenvalues are 
found: two positive ones from the weave mode corresponding to a falling motion and two negative 
ones from the capsize and caster mode corresponding to a righting motion. The weave mode 
dominates and, without any rider corrections, the bicycle falls over as an unstabilized inverted 
pendulum. At point A, the two positive eigenvalues form a complex conjugate pair and the steering 
perturbation lead to an oscillatory weave motion. From point A until point B, the bicycle is less stable 
by the decreasing eigenvalue of the weave mode. From point B until point C, all the eigenvalues are 
negative and the corrective actions of the bicycle are large enough to prevent the bicycle from falling 
and small enough to not exhibit overcorrection. The bicycle is self-stable without any actions of the 
cyclist. 

Bicycle 7

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 13 

Table 6. Inertia tensors of the rear frame assembly. 

 
Bicycle 1

 

Bicycle 2

 

Bicycle 3

 

Bicycle 4

 

Bicycle 5

 

Bicycle 6

 

Bicycle 7

 

Rear 

frame 

assembly 

IBb+ 

IBc(electric) + 

IA(luggage) 

IBb + 

IBc(electric) + 

IA(tube) 

IBb + 

IBc(electric) + 

IA(luggage) 

IBb + 

IBc(electric) + 

IA(tube) 

IBb + 

IBc(electric) + 

IM(crank) + 

IA(luggage)  

IBb + 

IBc(electric) + 

IM(crank) + 

IA(tube) 

IBb + 

IBc(conventionall) 

As the front frame is fully defined by the handlebar and fork and it has only two configurations: 
one for the electric bicycle, which is a bit higher and heavier and one for the conventional bicycle. 
The inertia tensor is directly determined in the centre of gravity of the assembly. 
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in the centres of gravity of the assemblies. 

2.5.2. Eigenvalues 

The eigenvalues of the linearized equation of the Carvallo Whipple model (1) are calculated to 
evaluate the self-stability of the seven bicycle configurations [1,2]. Three modes determine the 
stability of the bicycle: capsize, weave, and caster. In the capsize mode, the bicycle leans into a spiral 
path until it ultimately keels over. In general, the capsize is stable at low speeds, and becomes less 
stable as speed increases. In the weave mode, the bicycle presents an oscillation between the leaning 
left and steering right and vice versa. Weave is generally unstable at low speeds, and becomes less 
pronounced as speed increases until it is no longer unstable. Weave is an oscillation around the 
heading of the bicycle, while caster describes a motion around the steering axis. The caster mode is 
comparable with the mechanism of a caster wheel on a shopping cart and is overall stable while the 
capsize and weave mode determine the stability range of the bicycle [7]. 

3. Results  

All bicycle configuration present similar graphs. Figure 7 addresses an example of the 
eigenvalues, namely from bicycle configuration 1. From 0 km/h till point A, four eigenvalues are 
found: two positive ones from the weave mode corresponding to a falling motion and two negative 
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perturbation lead to an oscillatory weave motion. From point A until point B, the bicycle is less stable 
by the decreasing eigenvalue of the weave mode. From point B until point C, all the eigenvalues are 
negative and the corrective actions of the bicycle are large enough to prevent the bicycle from falling 
and small enough to not exhibit overcorrection. The bicycle is self-stable without any actions of the 
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Figure 7. Stability behaviour of bicycle configuration 1.

As the front frame is fully defined by the handlebar and fork and it has only two configurations:
one for the electric bicycle, which is a bit higher and heavier and one for the conventional bicycle.
The inertia tensor is directly determined in the centre of gravity of the assembly.

The front wheel and rear wheel assembly are fully defined by the wheel and, optionally,
an electromotor with the same centre of gravity. Consequently, the inertia tensor is directly determined
in the centres of gravity of the assemblies.

2.5.2. Eigenvalues

The eigenvalues of the linearized equation of the Carvallo Whipple model (1) are calculated to
evaluate the self-stability of the seven bicycle configurations [1,2]. Three modes determine the stability
of the bicycle: capsize, weave, and caster. In the capsize mode, the bicycle leans into a spiral path
until it ultimately keels over. In general, the capsize is stable at low speeds, and becomes less stable as
speed increases. In the weave mode, the bicycle presents an oscillation between the leaning left and
steering right and vice versa. Weave is generally unstable at low speeds, and becomes less pronounced
as speed increases until it is no longer unstable. Weave is an oscillation around the heading of the
bicycle, while caster describes a motion around the steering axis. The caster mode is comparable with
the mechanism of a caster wheel on a shopping cart and is overall stable while the capsize and weave
mode determine the stability range of the bicycle [7].

3. Results

All bicycle configuration present similar graphs. Figure 7 addresses an example of the eigenvalues,
namely from bicycle configuration 1. From 0 km/h till point A, four eigenvalues are found: two positive
ones from the weave mode corresponding to a falling motion and two negative ones from the capsize
and caster mode corresponding to a righting motion. The weave mode dominates and, without any
rider corrections, the bicycle falls over as an unstabilized inverted pendulum. At point A, the two
positive eigenvalues form a complex conjugate pair and the steering perturbation lead to an oscillatory
weave motion. From point A until point B, the bicycle is less stable by the decreasing eigenvalue of the
weave mode. From point B until point C, all the eigenvalues are negative and the corrective actions
of the bicycle are large enough to prevent the bicycle from falling and small enough to not exhibit
overcorrection. The bicycle is self-stable without any actions of the cyclist.

As only the capsize and weave mode are significant for bicycle stability, the seven bicycle
configurations are compared based on these values. Table 7 present the cycling speed of (i) the
transition of the inverted pendulum motion to the oscillatory weave motion in point A, (ii) the start of
the self-stable mode in point B, and (iii) the end of the self-stable mode in point C. Initially, the bicycles
present the motion of an unstabilized inverted pendulum. For bicycle 1 and 2, it reaches up to 1.25 km/h.
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For bicycle 3 until 7, it reaches up to 1.40 km/h. After this point, the bicycles get increasingly more
stable and presents an escalating weave oscillation. For bicycle 1 and 2, it reaches up to 14.72 km/h, for
bicycle 3 to 14.64 km/h, for bicycle 4 to 14.57 km/h, for bicycle 5 and 6 to 14.50 km/h, and for bicycle
7 to 14.28 km/h. Subsequently, the self-stable mode starts and reaches up to 23.09 km/h for bicycle
1, to 23.68 km/h for bicycle 2, to 22.07 km/h for bicycle 3, to 22.66 km/h for bicycle 4, to 22.44 km/h
for bicycle 5, to 23.10 km/h for bicycle 6, and to 22 km/h for bicycle 7. From point A to B, the bicycle
is easy to stabilize. This semi-stable range is 13.47 km/h for bicycle 1 and 2, 13.24 km/h for bicycle 3,
13.17 km/h for bicycle 4, 13.1 km/h for bicycle 5 and 6, and 12.88 km/h for bicycle 7. From point B
to C, the bicycle is self-stable. The self-stable range is 8.37 km/h for bicycle 1, 8.96 km/h for bicycle
2, 7.43 km/h for bicycle 3, 8.09 km/h for bicycle 4, 7.94 km/h for bicycle 5, 8.6 km/h for bicycle 6, and
7.72 km/h for bicycle 7. The sum of both ranges counts 21.84 km/h for bicycle 1, 22.43 km/h for bicycle
2, 20.67 km/h for bicycle 3, 21.26 km/h for bicycle 4, 21.04 km/h for bicycle 5, 21.70 km/h for bicycle 6,
and 20.6 km/h for bicycle 7.

Table 7. Key points and ranges of the stability behaviour of every bicycle configuration.

Velocity [km/h]
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Point A 1.25 1.25 1.40 1.40 1.40 1.40 1.40
Point B 14.72 14.72 14.64 14.57 14.50 14.50 14.28
Point C 23.09 23.68 22.07 22.66 22.44 23.10 22.00

Semi stable range 13.47 13.47 13.24 13.17 13.1 13.1 12.88
Self-stable range 8.37 8.96 7.43 8.09 7.94 8.6 7.72

Semi and Self-stable range 21.84 22.43 20.67 21.26 21.04 21.7 20.6

Figure 8 presents the deviation from the mean for every bicycle configuration for point A, B, C
and for the semi-stable range, self-stable range, and the sum of both. The horizontal lines correspond
to the mean and two times the standard deviation. When comparing the points, the highest difference
is found for bicycle 7 in point B. However, no significant differences are found since all the values are
within two times the standard deviation.
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When addressing the ranges, some significant differences are found. The semi-stable range is
significantly higher for bicycle configuration 1 and 2 and smaller for bicycle configuration 7. The
self-stable range is significantly higher for bicycle configuration 2 and smaller for bicycle configuration 3.
When comparing the whole range when the bicycle is easy to stabilize, bicycle 2 performs significantly
better than the other configurations. Bicycle configuration 3 and 7 perform significantly less.

4. Discussion

Literature shows that a forward leaned rider with stretched arms and hands on the handlebar
have little influence on the self-stability behaviour of a bicycle while an upright rider position with
flexed arms and hands on the handlebar changes the open-loop dynamics drastically, which results
in a decreased self-stability [7]. Since the forward lean angle on the conventional bicycle is smaller
(65◦ versus 70◦) than on the electric one, a better self-stable behaviour is expected for the conventional
bicycle. On the other hand, the difference in the forward lean is the result of a difference in the front
frame assembly. Collins concluded that the centre of gravity of the front frame assemble should be 9
cm in front of the steering axis, which is measured perpendicularly on the steer tube [12]. The centre of
gravity of the front frame assembly of the electric bicycle is closer to the optimum described by Cornell,
which results in an enhanced self-stable behaviour of the electric bicycle. Since both systems counteract,
only marginal differences are found between the conventional and electric bicycles. The self-stable
mode of the conventional bicycle starts at a lower speed than the electric bicycles. Additionally, the
complex conjugate pair is formed early, which causes a significantly smaller semi-stable range than the
electric bicycles. The self-stable range is relatively small, even though the electric bicycle with the motor
in the rear wheel and the battery pack in the luggage rack (configuration 3) performs worse. When
considering the whole period, the bicycle is easy to stabilize. The conventional bicycle and the electric
bicycle with the motor in the rear wheel and the battery pack in the luggage rack perform worse.

Significant differences are found between the six electric bicycle configurations. Most notably,
the semi-stable range is significantly higher for the electric bicycles with a motor in the front wheel.
Bottomley described the “gyroscopic self-stabilization” of a bicycle in 1868. The gyroscopic effect
of a spinning front wheel increases the stability [13]. Currently, the idea is universally accepted in
literature [14]. Addressing electric bicycles, the front wheel motor adds weight to the front wheel
assembly, which increases the self-stabilization effect. When taking the self-stable range into account,
the electric bicycle with a front wheel motor and a battery located in the lower mid-tube performed the
best. Furthermore, this effect is observed for every bicycle configuration. When a battery is located
in the lower mid-tube, the self-stable range is higher than when the battery is located in the luggage
rack. Jones discussed that the gyroscopic effect is only relevant for a light riderless bike, whereas a
heavier cyclist overpowers the effect [4]. Similar to the influence of the cyclist’s posture discussed by
Schwab et al. [7], the differences could be assigned to the lower location of the centre of mass of the
rear frame assembly due to the lower battery placement.

Knowledge about the stability behaviour of common bicycles can improve bicycle design to
increase the level of comfort of the cyclist. A low A and B value and a high C value is preferred to
minimize the counteractions of the user and increase the bicycle stability. The study showed that motor
and battery placement significantly influence the stability behaviour. However, it should be noted that
cyclist weight and posture are equally important. For future work, different types of cyclists should be
taken into account.

5. Conclusions

Significant differences are found in the self-stable and semi-stable range between electric and
conventional bicycles. The more upright posture on an electric bicycle decreases the self-stable range,
while the higher steer stem improves it. In general, this leads to a lower self-stable and semi-stable
range for conventional bicycles. Electric bicycles with a motor implemented in the front wheel perform
best, as the extra weight of the motor enhances the gyroscopic self-stabilization of the front wheel.
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Furthermore, a lower centre of mass of the rear frame assembly positively influences the stability
behaviour. Therefore, a motor in the lower mid tube is preferred over a higher located motor in the
luggage rack.
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