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Abstract

Ecotron facilities allow accurate control of many environmental variables coupled with extensive monitoring of ecosystem
processes. They therefore require multivariate perturbation of climate variables, close to what is observed in the field and
projections for the future. Here, we present a new method for creating realistic climate forcing for manipulation experiments
and apply it to the UHasselt Ecotron experiment. The new methodology uses data derived from the best available regional
climate model projection and consists of generating climate forcing along a gradient representative of increasingly high
global mean air temperature anomalies. We first identified the best-performing regional climate model simulation for the
ecotron site from the Coordinated Regional Downscaling Experiment in the European domain (EURO-CORDEX) ensemble
based on two criteria: (i) highest skill compared to observations from a nearby weather station and (ii) representativeness
of the multi-model mean in future projections. The time window is subsequently selected from the model projection for
each ecotron unit based on the global mean air temperature of the driving global climate model. The ecotron units are
forced with 3-hourly output from the projections of the 5-year period in which the global mean air temperature crosses
the predefined values. With the new approach, Ecotron facilities become able to assess ecosystem responses on changing
climatic conditions, while accounting for the co-variation between climatic variables and their projection in variability, well
representing possible compound events. The presented methodology can also be applied to other manipulation experiments,
aiming at investigating ecosystem responses to realistic future climate change.

Keywords Regional climate model - Climate forcing - Controlled environment experiment - Global warming -
Ecosystem response

Introduction

Ecosystem climate change experiments are one of the key
instruments to study the response of ecosystems to a change
in climate. There are primarily four different factors that are
altered in such experiments: air temperature, precipitation,
CO; concentration, and nitrogen deposition (Curtis and
Wang 1998; Rustad et al. 2001; Lin et al. 2010; Wu
et al. 2011; Knapp et al. 2018). More recently, multi-factor
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experiments are starting to emerge. In those experiments,
different combinations of the four main drivers are altered
(Kardol et al. 2012; Yue et al. 2017). What is common in
the majority of climate change experiments is that while
the drivers of interest are being altered, all other variables
are being held equal between the different treatment groups.
Consequently, differences in the response can be related to
the change in the main driving factor (or multiple driving
factors).

Altering only one or a limited number of climate change
drivers allows for a straightforward analysis of the observed
responses and has provided a wealth of mechanistic
insights in ecosystem responses to environmental changes
(e.g., Hovenden et al. 2014; Karlowsky et al. (Karlowsky
et al. 2018; Terrer et al. 2018)). However, the resulting
multivariate combination of climate variables may be
physically unrealistic and may miss key aspects related to
natural climate variability and the co-variance of multiple
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variables, linked to each other by synoptic conditions. This
is particularly important for representing compound events,
where the combination of non extreme drivers can lead
to extreme impacts (Zscheischler and Seneviratne 2017;
Zscheischler et al. 2018; Rineau et al. 2019). For example,
droughts and heatwaves often co-occur (Zscheischler and
Seneviratne 2017), and soil moisture conditions and
precipitation occurrence are linked (Guillod et al. 2015;
Moon et al. 2019). Incorporating the co-variability of key
climate drivers is also important for the studied responses.
For instance, heatwaves characterized by similar extreme air
temperature can lead to different plant responses depending
on the atmospheric conditions: under different shortwave
radiation, relative humidity, and surface wind conditions,
the leaf temperature and the potential for heat stress vary a
lot (De Boeck et al. 2016).

Until recently, it was not possible to simulate plausible
future climates in ecosystem climate change experiments
(Korell et al. 2019), as these experiments require accurate
manipulation of environmental variables to represent cur-
rent and future climate conditions. Controlled environment
facilities meet these requirements by providing systems
to simultaneously manipulate as well as measure multiple
parameters (e.g., Lawton 1993; Lawton 1996; Griffin et al.
1996; Steward et al. 2013; Clobert et al. 2018), especially
in combination with an observation station in the field pro-
viding real-time observations of most of those parameters
(Rineau et al. 2019). This approach is powerful especially
when combined with a measurement station in the field
providing real-time observations of most of these required
parameters (Rineau et al. 2019). In such facilities, climate
change experiments can be informed by meteorological
forcing representing both present and future climatic con-
ditions in a holistic manner. For instance, this forcing can
include both realistic changes of climate variability as well
as important drivers of changes in the frequency, intensity,
and duration of meteorological extremes. This potential is
especially interesting in gradient experiments covering a
range of global warming levels, as this combination allows
for the detection of non-linearities, thresholds, and possible
tipping points in ecosystem responses to increasing climate
change forcing (Kreyling et al. 2018; Rineau et al. 2019).

Sampling realistic climate information in a climate
change context is challenging but can be achieved by using
climate model output. Global climate models (GCMs) are
generally used to assess the climate state and variability
at global to continental scales with a resolution of 100
to 250 km. By dynamically downscaling GCMs, regional
climate models (RCMs) typically resolve the climate
on a regional scale with higher spatial resolutions of
1 to 50 km. As such, RCMs allow a more realistic
representation of meso-scale atmospheric processes and
processes related to orography and surface heterogeneities.

@ Springer

As climate models realistically simulate the atmospheric
state under past, present, and future climatic conditions
with a high temporal resolution, they are suited to
provide a holistic and physically consistent climate forcing
for ecosystem climate change experiments. Generally,
ensemble climate projections show a large spread for
future climate conditions (Keuler et al. 2016), especially
for variables relevant for ecosystem experiments such as
extreme air temperature, droughts, and intense precipitation
(Sillmann et al. 2013; Orlowsky and Seneviratne 2013;
Rajczak and Schir 2017; Greve et al. 2018). This spread is
related to (i) different climate sensitivities of the GCMs, (i)
structural differences between the models, and (iii) natural
variability within the climate system. The Coordinated
Regional Climate Downscaling Experiment in the European
domain (EURO-CORDEX) provides an ensemble of high-
resolution dynamically downscaled RCMs (Kotlarski et al.
2014) and is therefore highly suitable to serve as a base
for the selection of representative climate forcing for
climate change experiments. With a suite of GCM/RCM
combinations available, a well-informed choice on the most
adequate RCM/GCM simulation can be made based on (i)
the model skill in representing the observed climatology
and (ii) the air temperature sensitivity to future increases in
greenhouse gas concentrations.

So far, statistically downscaled GCM output has only
rarely been used as climate forcing in ecosystem experi-
ments. Thompson et al. (2013) describe a process for gener-
ating air temperature forcing for experiments in which they
use daily air temperature output from a GCM (MIROC) and
a stochastic weather generator to generate hourly weather.
They validated their method against statistical characteris-
tics of air temperature observations. Likewise, the Montpel-
lier CNRS ecotron facility is driven by multivariate statisti-
cally downscaled GCM projections (using the ARPEGEv4
model; Roy et al. 2016). They force their experiment with
climatic conditions of an average climatological year of
the period 2040-2060. During the summer months, they
artificially simulate an extreme event by including drought
and heatwave by reducing the irrigation amount to zero
and increasing the air temperature artificially. However,
by using a climatological year, possible extreme events
are dampened by averaging. Both studies lack a thorough
evaluation procedure for selecting the used climate model.
Moreover, to the best of our knowledge, no study accounts
for the co-variance between climate variables.

In this paper, we present a new method for creating
realistic climate forcing for manipulation experiments.
From an ensemble of dynamically downscaled climate
model simulations, we select one simulation that well
represents present-day climate conditions for four key
variables in the region of interest and is representative of the
multi-model mean of these variables in future projections.
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In this way, the new methodology accounts both for co-
variance of climate parameters and for climate variability
while naturally incorporating extreme events under present
and future climate conditions. Furthermore, the method can
be combined with a gradient approach. We apply the new
methodology to generate climate forcing for the UHasselt
Ecotron Experiment, an infrastructure consisting of 12
climate-controlled units, each equipped with a lysimeter
containing a dry heathland soil monolith extracted from
the National Park Hoge Kempen in Belgium (Rineau et al.
2019). In this experiment, six units are directly forced with
regional climate model output along a global mean air
temperature (GMT) gradient anomaly.

Data and methods

New methodology for generating climate forcing for
ecosystem climate change experiments

In our methodology, variability and co-variance between
variables are preserved by selecting the best-performing
RCM simulation and subsequently extract the required
variables from the grid cell covering the location of the
experiment. By extracting a single grid cell of a single
RCM simulation, climate extremes are not smoothed and the
climate variability inherent to the model is fully preserved.
The units in the ecosystem climate change experiments
follow a gradient of increasing GMT anomalies. In this way,
a given unit is forced with the climatic conditions consistent
with, e.g., a 2 °C warmer world, and the units represent
conditions associated with increasingly warmer climates.
The methodology presented here is deployed in three
steps. First, the best-performing RCM projection needs
to be selected based on two criteria: (i) the simulation
should have high skill in reproducing mean and extreme
present-day climatic conditions and (ii) the projected future
air temperature anomalies should be close to the multi-
model mean; that is, the selected simulation should be
representative of the future mean projection (Fig. 1, step
1). To this end, the model performance is evaluated
for four variables that are highly relevant for ecosystem
climate change experiments: precipitation, air temperature,
relative humidity, and surface wind speed. Precipitation is
considered one of the most important variables, as water
availability is likely to constrain plant growth the most.
Second, the time windows for the different units along
the GMT anomaly gradient are defined based on the annual
GMT projection of the driving GCM of the chosen RCM
simulation (Fig. 1, step 2). To span a large range of
climate change scenarios, we use projections following
the Representative Concentration Pathway (RCP) 8.5, a

1. Select RCM projection based on
e High skill in present day compared to observations
*  Representativity of multi-model mean in future
projections
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Fig. 1 Methodology for generating climate forcing along the GMT
anomaly gradient

worst-case scenario following an unabated greenhouse gas
emissions pathway (Riahi et al. 2011). The UHasselt
Ecotron experiment, including all units, is running for
5 years. We choose time windows corresponding to the
experimental period and centered around the year in which
the climatological GMT anomaly (averaged with a 30-
year period) crossed the predefined thresholds for the first
time. In the third step, the values of all necessary variables
are extracted from the chosen RCM projection based on
the defined time windows for the grid cell covering the
experiment location (Fig. 1, step 3). These time series are
then directly used to force the ecotron units, in the highest
available temporal resolution.

@ Springer
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The UHasselt Ecotron experiment

The UHasselt Ecotron experiment is an ecotron infrastruc-
ture consisting of replicated experimental units in which
ecosystems are confined in enclosures. By allowing the
simultaneous control of environmental conditions and the
online measurement of ecosystem processes, the ecotron
units are suited for experiments with highly controlled cli-
mate change manipulation of large intact parts of the ecosys-
tem. The infrastructure allows intensive monitoring and
control of key abiotic parameters on 12 large-scale ecosys-
tem replicas, called “macrocosms.” These macrocosms had
been extracted without disruption nor reconstitution of the
soil structure from the same dry 6- to 8-year-old heathland
plot in the National Park Hoge Kempen (50° 59° 02.1” N,
5° 37 40.0” E) in November 2016.

The infrastructure is a W-E oriented, 100 m by 10
m wide, and 6 m tall building (Fig. 2a). Only 12 of
the 14 units are used, excluding the outermost to avoid
boundary effects. Each unit consists of three compartments
in which the abiotic environmental variables are controlled:
the dome, the macrocosm, and the chamber. The dome
is transparent for photosynthetic active radiation (PAR)
and long- and medium-wave ultraviolet radiation (UVa
and UVb, respectively). Here, wind and precipitation are
measured and generated, and CO;, N,O, CH4, PAR,
and net radiation (NR; i.e., the difference in incoming
and outgoing short-and longwave radiation) are measured.
The second compartment, the macrocosm, contains the
extracted soil column (the ecosystem) enclosed in a
lysimeter. In this compartment, the soil water content,
soil water tension, soil electrical conductivity, and soil
temperature are measured and controlled. The chamber,
the third compartment, the air pressure, air temperature,
relative humidity, and CO, concentration are controlled.
The ecotron infrastructure is linked with an Integrated
Carbon Observation System (ICOS) ecosystem station,
which provides real-time information on local weather and
soil conditions. These data are used to simulate the current
weather conditions within the ecotron units with a frequency
of at least once every 30 min (Rineau et al. 2019).

The aim of the UHasselt Ecotron experiment is to study
the ecological and societal impacts of climate change, by
manipulating climatic variables alone or in combination
and, across a wide range of predicted values, while
monitoring as many soil biota and processes as possible
and to translate them into socio-economic values using
heathland as a case study (Rineau et al. 2019). Examples
of measured ecosystem processes are evapotranspiration,
net ecosystem exchange, CHy or N>O emissions. The main
research questions of this multi-disciplinary experiment are
how climate change will affect the transitioning of the
heathland ecosystem to alternative stable states like pine
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Fig. 2 The UHasselt Ecotron experiment. a (picture: Liesbeth
Driessen). b Scheme of a unit with the three compartments (1)
denoting the dome; (2) the lysimeter, shown in detail on the right; and
(3) the chamber. ¢ An overview map with location of the infrastructure
and reference weather observation stations

forest or acid grassland and what the consequences are for
ecosystem services. The experiment will run uninterrupted
for a period of at least 5 years. Six units will be used to
simulate a gradient of increasing variability in precipitation
regime. They are driven by the ICOS station and a perturbed
precipitation time series following a gradient of increasingly
long periods with no precipitation (2, 6, 11, 23, 45, and 90
days). In the remaining six units, atmospheric conditions
along the GMT anomaly gradient will be simulated as
described in “New methodology for generating climate
forcing for ecosystem climate change experiments.” The 3-
hourly RCM output is linearly interpolated to a 30-min time
resolution to force the ecotron units. For soil temperature
and soil water tension however, the 30-min ICOS data is
used. This is because leaving the lysimeter uncontrolled
would lead to (i) an overestimation of soil temperature
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variability as the lysimeter is exposed to air temperature
in the chamber (despite being thermically insulated), and
(ii) accumulation of water at the bottom of the lysimeter,
hence considerably overestimating soil water level, as soil
water movements are mimicked by suction from the bottom.
Following the gradient design, each ecotron unit represents
the local climate conditions of a globally 0 °C (historical),
+1 °C (present day), +1.5 °C (Paris Agreement), +2 °C,
+3 °C, and +4 °C warmer world. The climatology of the
unit forced by +1 °C can thereby be directly compared to
the unit driven by the ICOS station and thus representing the
present-day observed conditions. In this regression design,
there is no experiment replication. To minimize the noise
in initial ecosystem responses, the units are allocated to the
two gradient experiments based on a cluster analysis of the
variance of the 14 variables measured during a test period
of 11 months (Rineau et al. 2019).

Meteorological data
EURO-CORDEX

The best-performing RCM simulation compared to obser-
vations is selected from the Coordinated Regional Climate
Downscaling Experiment in the European domain (EURO-
CORDEX), an ensemble of high-resolution dynamically
downscaled simulations available at a horizontal resolution
of 12 km (0.11° on a rotated grid; Jacob et al. 2014; Kot-
larski 2014). The simulations, hereafter referred to as GCM
downscalings, cover the historical period (1951-2005) and
the three RCP scenarios (RCP 2.6, 4.5, and 8.5, for the
period 2006-2100) by using GCMs as initial and lateral
boundary conditions. Additionally, for each RCM, a reanal-
ysis downscaling is provided in which the RCM is driven
by the European Centre for Medium-Range Weather Fore-
casts (ECMWF) ERA-Interim as initial and lateral boundary
conditions for the period 1990-2008 (hereafter referred to
as reanalysis downscalings). These reanalysis-driven simu-
lations allow to evaluate the skill of the RCMs themselves
by comparing them to observations (Kotlarski et al. 2014).
In this study, we use the variables for daily mean,
minimum, and maximum air temperature, precipitation,
mean surface wind, and relative humidity of all available
simulations (Table 1). We consider the values of the 12 km
by 12 km pixel covering the location of the reference
station providing the observations. As relative humidity
is not directly available for all simulations, we converted
specific humidity to relative humidity using the mean air
temperature and surface air pressure for every simulation.
Comparing the applied conversion with the simulations for
which relative humidity is available proves this conversion
is applicable. Neither specific nor relative humidity is
publicly available for the simulations with RegCM4-2 and

ALARO-0 and the mean surface wind speed variable is not
available for ALADINS3 and ALARO-0; therefore, we do
not analyze these variables for the respective simulations.
Once the EURO-CORDEX ensemble member is
selected, the relevant variables (precipitation, mean air tem-
perature, surface air pressure, surface up-welling latent heat
flux and sensible heat flux, wind speed, and relative humid-
ity) are extracted from the 3-hourly RCP 8.5 simulation for
the pixel covering the ecotron location for the time windows
in which the GMT anomalies are crossed for each dome.
These 3-hourly values (except for surface up-welling latent
heat flux and sensible heat flux) are then linearly interpo-
lated to 30-min resolution and used to drive the climate con-
trollers in the ecotron units. For precipitation, one additional
step was added where drizzle (precipitation of less than 1
mm) was postponed and accumulated until it reached 1 mm
to start a rain event in the ecotron. The surface air pres-
sure is calculated from the mean sea level pressure using the
elevation of the ecotron facility (43 m a.s.l.) and assuming
hydrostatic equilibrium. The concentrations of the control-
lable greenhouse gases (CO,, CH4, and N,O) are deter-
mined based on the annual values calculated by van Vuuren
et al. (2011) according to RCP 8.5. These correspond to the
prescribed concentrations of the RCM simulations.

Weather station observations

Reference station data is obtained from the European Cli-
mate Assessment and Dataset (Klein Tank et al. 2002). The
three operational weather stations closest to the UHasselt
Ecotron experiment are Maastricht Airport (11 km), Aachen
(37 km) and Heinsberg-Schleiden (29 km; Fig. 2c). These
weather stations provide daily observations from the end
of the 19" century (Maastricht Airport and Aachen) or
mid 20" century (Heinsberg-Schleiden) until the present-
day, thereby covering both the EURO-CORDEX GCM and
reanalysis downscaling periods. All stations record air tem-
perature (°C), precipitation (mm day_l), relative humidity
(%) and surface wind speed (m s71) at daily resolution,
except for the Heinsberg-Schleiden station where there are
no surface wind observations available.

The seasonal cycles of the observations for the different
stations follow a similar annual course (Fig. 3). For air
temperature, the curves overlay and for precipitation they
are similar. Relative humidity (RH) has a small offset
between the three stations, possibly owing to the differences
in absolute height and local topography. The difference in
surface wind speed between Maastricht Airport and Aachen
is considerable but plausible considering the large spatial
variability in wind speed. Given that the model evaluation
showed very little sensitivity to the choice of the reference
station, we hereafter present the results with the reference
station closest to the ecotron facility (Maastricht Airport).

@ Springer
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Table 1 Bias in annual precipitation (P bias) and rank based thereof (from 1-best to 18-worst) for the EURO-CORDEX GCM downscalings for
the period 19512005 over Maastricht Airport

RCM GCM P bias (mm year™ 1y Rank
CCLM4-8-17 CNRM-CERFACS-CNRM-CM5 145 8
CCLM4-8-17 ICHEC-EC-EARTH 8 1
CCLM4-8-17 MOHC-HadGEM2-ES -174 9
CCLM4-8-17 MPI-M-MPI-ESM-LR 24 2
ALADINS3 CNRM-CERFACS-CNRM-CM5 550 14
HIRHAMS ICHEC-EC-EARTH 323 12
HIRHAMS MOHC-HadGEM2-ES 101 6
HIRHAMS NCC-NorESM1-M 571 16
WRF331F IPSL-IPSL-CM5A-MR 726 18
RACMO22E ICHEC-EC-EARTH 99 5
RACMO22E MOHC-HadGEM2-ES 36 3
REMO2009 MPI-M-MPI-ESM-LR 225 10
ALARO-0 CNRM-CERFACS-CNRM-CM5 560 15
RCA4 CNRM-CERFACS-CNRM-CM5 319 11
RCA4 ICHEC-EC-EARTH 386 13
RCA4 IPSL-IPSL-CM5A-MR 691 17
RCA4 MOHC-HadGEM2-ES 111 7
RCA4 MPI-M-MPI-ESM-LR 70 4

Metrics and diagnostics

The evaluation of the EURO-CORDEX ensemble mem-
bers is performed using different metrics accounting for
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performance of representing the climatic means, distribu-
tions, and extremes.

A ranking is made of the reanalysis downscalings,
assigning the lowest ranks to the best-performing models
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and higher ranks to the least-performing models (1-best
to 9-worst). First, the bias is calculated as the difference
between the averages of the daily modelled and observed
variables. The second metric, the Perkins skill score (PSS),
is a quantitative measure of how well each simulation
resembles the observed probability density functions by
measuring the common area between two probability
density functions (Perkins et al. 2007). The mean absolute
error (MAE) is calculated by taking the means of the
absolute differences between the modelled and observed
seasonal cycles, calculated based on the whole series. This
is done for the whole series and to capture the potential
errors in the extremes, also for the 1st, 10th, 90th, and 99th
percentiles which are calculated based on the daily time
series of both observed and modelled time series. Next, the
root mean square error (RMSE) is calculated by taking the
root of the squared errors. The Spearman rank correlation
(hereafter referred to as Spearman) coefficient shows the
correlation of the observed and modelled series, calculated
based on daily values. Finally, the Brier skill score (BSS) is
calculated, which gives an indication of the improvement of
the Brier score (an index to validate probability forecasts)
compared to a background climatology in which each event
has an equal occurrence probability (Brier 1950; Murphy
1973). For the GCM downscalings, we use the same
ranking method and scores, except for the RMSE, Spearman
rank correlation, and BSS because the internal variability,
inherent to individual simulations with a coupled climate
model, cannot be predicted on multi-decal timescales, and

Fig.4 Seasonal cycle of the

can therefore not be compared to observations on a day-by-
day basis (Fischer et al. 2014; Meehl et al. 2014).

In addition to the performance metrics computed on the
actual time series, the RCM performance is also evaluated
based on the bias in climatological diagnostics related to
air temperature and precipitation. To this extent, the average
diurnal air temperature range (DTR; K; the difference
between the daily maximum and minimum air temperature)
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number of wet days (defined as days during the year for
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mm, to account for differences in drizzle; (Casanueva et al.
2016) and the number of frost days (days with a minimum
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the ranking is established based on the difference between
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and magnitude between the two seasons (e.g., negative
correlation between air temperature and relative humidity
in summer reflecting heatwave conditions, and a positive
correlation between wind speed and precipitation in winter
reflecting storm conditions).

After choosing the best-performing simulation based
on the evaluation of both the reanalysis and GCM
downscalings, the climate change signals for this simulation
are investigated by calculating changes in various climate
change indices, based on the Expert Team on Climate
Change Detection and Indices (ETCCDI; see http:/
etccdi.pacificclimate.org/list_27 _indices.shtml) for the 5-
year periods defined by the GMT anomalies relative to
the reference period (1951-1955). These indices are widely
used for analyzing changes in extremes (e.g., Zhang et
al. 2009; Orlowsky and Seneviratne 2013; Sillman et al.
2013). The air temperature indices are (i) A T (°C), the
mean daily air temperature change; (ii)) A TXx (°C), the
difference in the annual maximum value of daily maximum
air temperature; (iii) A TNn (°C), the difference in the
annual minimum value of daily minimum air temperature;
(iv) A frost days, the difference in the number of frost
days (with a minimum air temperature below 0 °C); (v)
A summer days, the difference in the number of summer
days (with the maximum air temperature above 25 °C); and
finally (vi) A GSL (days), the difference in growing season
length, defined as the annual count between the first span of
at least 6 days with a daily mean air temperature higher than
5 °C and the first span after July st of 6 days with a daily
mean air temperature lower than 5 °C. The precipitation
indices are (i) A PRCPTOT (mm), the difference in annual
accumulated precipitation (as simulated over the 5-year
period); (ii) A Rxlday (mm), the difference in monthly
maximum 1-day precipitation; (iii) A R10mm (days), the
difference in the number of days per year with more than
10 mm precipitation, (iv) A CDD (days), the difference
in the maximum length of a dry spell (measured as the
maximum number of consecutive days with less than 1 mm
precipitation); and finally, (v) A CWD (days), the maximum
length of a wet spell (measured as the maximum number of
consecutive days with more than 1 mm precipitation).

Applying the new methodology for the UHasselt
Ecotron experiment

The best-performing RCM simulation is identified by
elimination based on expert judgment based on the
performance of the two selection criteria. Next, we define
the time windows for the different units along the gradient
based on the 30-year averaged GMT anomaly of the driving
GCM under RCP8.5 relative to 1951-1955. Based on these
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Fig.5 Ranking of the reanalysis downscalings based on performance
on mean air temperature (a), mean daily precipitation (b), mean
relative humidity (c¢), and mean surface wind speed (d) compared to
observations from Maastricht. The metrics shown are the bias, Perkins
skill score (PSS), mean absolute error (MAE) for the entire time series
and the 1st, 10th, 90th, and 99th percentiles, root mean square error
(RMSE), Spearman rank correlation (Spearman), and Brier skill score
(BSS). Rankings are from 1-best to 9-worst. Gray colors indicate that
the variable is not available for the considered model
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time windows, we extract the 3-hourly data for all necessary
variables from the simulation for the 12-km by 12-km grid
cell covering the location of the experiment.

Results

Identification of the best-performing model
simulation

First criterion: skill in present-day climate

Overall, model skill strongly varies across RCMs (Fig. 4).
While the annual air temperature cycle is generally well
represented by all RCMs, biases may reach up to 2
degrees in individual months for some RCMs. The biases
in precipitation are generally positive (up to factor 2.4)
and vary across RCMs. Only CCLM4-8-17 simulates
precipitation in the same range as the observed climatology
(nearly no bias (100.22 %) on annual mean precipitation
amounts), while the other RCMs overestimate the total
precipitation amounts from 114 % up to 182 %. For relative
humidity and surface wind speed, all RCMs generally
succeed in representing the seasonal cycle, but exhibit
deviations in amplitude and absolute values (e.g., amplitude
biases of RCA4 (—37.8 %), ALADINS53 (23.3 %) and
CCLM4-8-17 (+16.3 %) for relative humidity, and annual
mean biases for WRF331F (+15.6 %) and HIRHAMS
(—9.1 %) for surface wind speed). Overall, these seasonal
cycles indicate that for all simulations, the relative bias in
precipitation is large compared to biases in other variables.

The rankings of the reanalysis downscalings for the
four variables (Fig. 5) indicate that, overall, CCLM4-8-17,
RACMO22E, REMO2009, and HIRHAMS are performing
best. CCLM4-8-17 and RACMO22E show the highest
relative skill for precipitation, while REMO2009 and
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Fig. 6 Ranking of the reanalysis (a) and GCM (b) downscaling for
the historical period based on climatological diagnostics. Diurnal
air temperature range (DTR) in summer (July—August) and winter
(December—February), number of wet days defined as days with pre-
cipitation > 0.1 mm and precipitation > 1 mm, number of frost
days defined as days with mean air temperature < 0 ° C, monthly

HIRHAMS demonstrate high skill for air temperature.
CCLM4-8-17 is the best-performing model based on the
bias and total MAE metrics for air temperature and
precipitation but is ranked in the mid range for the metrics
related to the shape of its air temperature