Neural Networks 140 (2021) 39-48

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

L))

Check for
updates

Long-term Cognitive Network-based architecture for multi-label
classification

Gonzalo Napoles **, Marilyn Bello ”¢, Yamisleydi Salgueiro ¢

2 Department of Cognitive Science & Artificial Intelligence Tilburg University, The Netherlands

b Faculty of Business Economics, Hasselt University, Belgium

¢ Department of Computer Science, Central University of Las Villas, Cuba

4 Department of Computer Science, Faculty of Engineering, Universidad de Talca, Campus Curicé, Chile

ARTICLE INFO ABSTRACT

Article history:

Received 1 August 2020

Received in revised form 27 February 2021
Accepted 1 March 2021

Available online 6 March 2021

This paper presents a neural system to deal with multi-label classification problems that might
involve sparse features. The architecture of this model involves three sequential blocks with well-
defined functions. The first block consists of a multilayered feed-forward structure that extracts hidden
features, thus reducing the problem dimensionality. This block is useful when dealing with sparse
problems. The second block consists of a Long-term Cognitive Network-based model that operates on
features extracted by the first block. The activation rule of this recurrent neural network is modified
to prevent the vanishing of the input signal during the recurrent inference process. The modified
activation rule combines the neurons’ state in the previous abstract layer (iteration) with the initial
state. Moreover, we add a bias component to shift the transfer functions as needed to obtain good
approximations. Finally, the third block consists of an output layer that adapts the second block’s
outputs to the label space. We propose a backpropagation learning algorithm that uses a squared
hinge loss function to maximize the margins between labels to train this network. The results show

Keywords:

Long-term cognitive networks
Recurrent neural networks
Backpropagation

Multi-label classification

that our model outperforms the state-of-the-art algorithms in most datasets.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

When it comes to traditional pattern classification (Duda, Hart,
& Stork, 2012), each instance (example) is expected to be associ-
ated with a single decision class. Thus, one fundamental assump-
tion in classic supervised learning is that each problem instance
belongs to only one concept (Bello, Napoles, Vanhoof, & Bello,
2019). In contrast, in multi-label learning (also referred to as
multi-label classification (MLC)), each instance involves multiple
semantic meanings simultaneously, i.e. each instance is associ-
ated with a set of labels instead of a single label. The learning
problem in MLC aims at computing a function able to associate a
given instance with a set of labels.

The literature reports a fair variety of algorithms (Gibaja &
Ventura, 2014; Herrera, Charte, Rivera, & Del Jesus, 2016b; Zhang
& Zhou, 2013) to deal with MLC problems, where the main
focus is to obtain the highest prediction rates possible. Herrera
et al. (2016b) discern among three types of MLC algorithms: the
data transformation methods, adaptation algorithms, and ensem-
ble classifiers. The former group transforms a given multi-label
dataset into one or more easier-to-handle single-label problems.

* Corresponding author.
E-mail address: g.r.napoles@uvt.nl (G. Napoles).

https://doi.org/10.1016/j.neunet.2021.03.001

After the transformation, a single-label classifier can be applied to
solve the individual problems. Two well-known representatives
of this family are the binary relevance (Godbole & Sarawagi, 2004;
Zhang, Li, Liu, & Geng, 2018) and the label powerset (Boutell, Luo,
Shen, & Brown, 2004) transformations. Adaptation methods han-
dle the multi-label dataset directly. Thus they are based on mod-
ifications or generalizations of existing single-label classification
models. Some solutions reported on the literature include neural
networks (Kongsorot & Horata, 2014; Law, Chakraborty, & Ghosh,
2017; Zhang & Zhou, 2006), support vector machines (Elisseeff &
Weston, 2002), decision trees (Vens, Struyf, Schietgat, DZeroski,
& Blockeel, 2008), and nearest neighbor classifier (Zhang & Zhou,
2007). Finally, the third group consists of ensemble solutions such
as ensembles of binary classifiers (Read, Pfahringer, Holmes, &
Frank, 2009) and ensembles based on multi-class methods (Read,
Pfahringer, & Holmes, 2008).

Since multi-label objects can be associated with several con-
cepts simultaneously, the decision class boundaries often overlap.
To handle this issue, researchers have employed neural
network solutions (Hinton & Salakhutdinov, 2006) to learn com-
plex multi-label class boundaries. In the MLC literature, modifica-
tions to the multilayer perceptron model (Zhang & Zhou, 2006),
radial basis functions (Zhang, 2009), extreme learning machines

0893-6080/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.neunet.2021.03.001
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2021.03.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:g.r.napoles@uvt.nl
https://doi.org/10.1016/j.neunet.2021.03.001
http://creativecommons.org/licenses/by/4.0/

G. Ndpoles, M. Bello and Y. Salgueiro

(Kongsorot & Horata, 2014) and deep neural networks (Lian, Liu,
Lu, & Luo, 2019; Yeh, Wu, Ko, & Wang, 2017) have been reported.
Some of these solutions rely on Convolutional Neural Networks
(CNNs) (Goodfellow, Bengio, & Courville, 2016; LeCun, Bengio,
& Hinton, 2015) to tackle diverse types of problems concerning
image (Wei, et al.,, 2015; Wu, et al., 2015; Zhu, Liao, Lei, &
Li, 2017), sound (Choi, Fazekas, & Sandler, 2016), text (Rios &
Kavuluru, 2015) and video (Abu-El-Haija, et al.,, 2016; Janwe &
Bhoyar, 2018). For example, in Wang, et al. (2016) the authors
proposed a unified framework for multi-label image classification.
Such a framework involves CNNs and recurrent neural networks
(RNN) to model the label co-occurrence dependency in a joint
image/label embedding space. Another interesting solution was
reported in Chen, Ye, Xing, Chen, and Cambria (2017). This piece
of research presented an ensemble of CNNs and RNNs to capture
both the global and the local textual semantics and model high-
order label correlations while having a tractable computational
complexity. In Chen, Chen, Yeh, and Wang (2018) the authors
proposed an RNN-based approach for image multi-label clas-
sification. This neural system allows identifying visual objects
of interests with varying sizes without the prior knowledge of
particular label ordering while also exploiting the underlying
information about label co-occurrence.

A serious issue present in many MLC problems concerns data
sparsity. Overall, data sparsity negatively impacts the perfor-
mance of machine learning methods (Adomavicius & Zhang,
2012). This is especially critical in neural-network-based methods
where data sparsity often leads to underfitting (Krishnan, Liang, &
Hoffman, 2018). However, sparse datasets are ubiquitous in real-
world applications, so developing methods capable of handling
this condition is necessary. There is no well-accepted approach
to handling sparse inputs for neural networks. Most articles ad-
dressing this issue pre-process the data either by imputing the
values or deleting the cases or attributes, with all the difficulties
they imply (Garcia, Luengo, & Herrera, 2015). Other approaches
adapt algorithms with capabilities to handle data sparsity without
the need for a pre-processing step (Law & Ghosh, 2019).

In this paper, we present a neural system to solve MLC prob-
lems described by tabular data that might involve sparse features.
The architecture of this model involves three sequentially con-
nected neural blocks. The first block involves a multilayered
feed-forward network that extracts high-level features. This block
reduces the dimensionality of the space by encoding the rel-
evant information in the high-level features. The second block
consists of a Long-term Cognitive Network (LTCN)-based net-
work (Napoles, Vanhoenshoven, Falcon, & Vanhoof, 2020), which
performs the reasoning on the extracted features. The reasoning
mechanism of this network is modified to include the neurons’
initial state (i.e., the activation vector) when computing the vector
state in each abstract layer. This strategy prevents the input signal
from vanishing as the recurrent inference process progresses.
Finally, the third block adapts the outputs of the recurrent block
to the label space. In addition, we propose a backpropagation
learning algorithm to compute the network’s learnable param-
eters. This method uses a squared hinge loss function to in-
crease the separability between the labels, potentially reducing
the misclassifications.

Overall, the contributions of this paper can be summarized
as follows. Firstly, we present a three-block neural system for
potentially sparse MLC problems. Secondly, we propose a new
updating rule to prevent the input signal of the LTCN model from
vanishing when performing the recurrent inference process in the
second block. Finally, we introduce a backpropagation algorithm
to train the neural system as a whole while taking into account
the new LTCN'’s reasoning mechanism.

The rest of this paper is organized as follows: Section 2 briefly
introduces the LTCN model, which is an important building-block

40

Neural Networks 140 (2021) 39-48

of our solution. Section 3 presents the three-block neural system
to solve MLC problems, while Section 4 introduces the back-
propagation learning formalism. The simulations on benchmark
problems and the comparison against state-of-the-art methods
are discussed in Section 5. Section 6 provides some concluding
remarks and future work directions to be explored.

2. Long-term cognitive networks

Before presenting our proposal, we will briefly describe the
LTCN model (Napoles et al., 2020), a recurrent neural system
conceived initially for modeling and simulation purposes. This
model does not allow for explicit hidden neurons as modeling
scenarios often demand to operate with models that are inter-
pretable to some extent. However, perhaps the most attractive
feature of this network is that it allows domain experts to in-
ject prior knowledge into the model through the weight matrix.
This is why LTCN-based simulation models are often trained
in a non-synaptic fashion (i.e., learning the transfer function
parameters).

When designing an LTCN model, both problem features and
decision variables are mapped onto neural concepts, while the
weights connecting the concepts are expected to be provided by
domain experts. These weights do not change from an iteration to
another as typically occurs in recurrent systems; only the sigmoid
transfer function attached with each neuron does.

Eq. (1) displays the reasoning mechanism used to compute the
activation value aErH)(k) of the ith neural entity in the (r + 1)-th
iteration,

M
") = £ wid (k) (1)
j=1

where wj; denotes the weight connecting the corresponding neu-
rons, k is the index of the initial activation vector (the need for
this index will become clear when presenting the backpropaga-
tion method in Section 4), while f,.r“) is the transfer function
used to keep the neurons’ activation values within the activation
interval.

Although LTCNs have proven quite effective (in terms of both
accuracy and interpretability) to address simulation problems
(Napoles, Salmeron, & Vanhoof, 2019; Napoles et al., 2020), we
need to take into consideration the particularities of MLC prob-
lems. For example, if we let an LTCN-based model operate on
sparse MLC datasets, the model will likely report good results,
but the training time would be unnecessarily costly. Besides, the
non-synaptic learning approach (Napoles et al., 2020; Napoles,
Vanhoenshoven, & Vanhoof, 2019) is no longer the best option
since experts are not expected to provide the relationships among
variables in complex problems.

3. The proposed ML-LTCN architecture

Before describing the details of our proposal, let us define the
multi-label classification problem.

Let us suppose that ¢/ is a N-dimensional instance space called
the universe, and £ = {l;, L, ..., I} denotes the label space
with L possible class labels. The task of multi-label learning is to
learn a function ® : &f — 2% from the multi-label training set
{(ug, £1) | 1 < k < K}. For each multi-label instance (uy, L),
u, € U is a N-dimensional feature vector (x1(k), xo(k), .. ., Xn(k))
and £, C L is the set of labels associated with uy. For any unseen
instance u € U, the multi-label classifier ®(-) predicts ®(u) C L
as the set of labels associated with u.

The neural architecture proposed in this section involves three
sequentially connected blocks. The first one contains a multilay-
ered feed-forward network aimed at extracting hidden features

G. Ndpoles, M. Bello and Y. Salgueiro

Fig. 1. ML-LTCN classifier with six problem features, three hidden features and
two possible labels. In this example, x; is the ith problem feature, h; is the jth
hidden feature, y, is the numerical value associated with the vth output, and
I, € {—1, 1} is a binary label as determined by a fixed threshold.

from raw data. The second one involves an LTCN that equips
the models with improved reasoning capabilities by operating on
the extracted features. Finally, the third block is the output layer
connecting the LTCN block with the problem labels.

It would be convenient to define the concept of abstract layer
in a recurrent neural network such as the LTCN model. We can
define an abstract layer as the state vector produced with Eq. (1)
in each iteration. Hence, we can say that our architecture will
comprise T = S+R+ 1 layers, with S being the number of hidden
layers in the first block and R being the number of abstract hidden
layers in the second block.

Concerning the number of neurons in the first block, we have
adopted the following strategy. The number of hidden neurons in
that block decreases with the number of layers, starting with the
number of problem features and ending with the desired number
of high-level features. The number of abstract hidden neurons in
the second block is equal to the number of hidden features. It
is worth mentioning that the number of abstract hidden neurons
does not change from an iteration to another. Finally, the number
of neurons in the third block matches the number of problem
labels. Fig. 1 depicts, as an example, the ML-LTCN model for a
problem with N = 6 features and L = 2 labels, whereas H = 3
stands for the number of hidden features to be extracted with
the aid of the first reasoning block. For the sake of clarity and if
no confusion arises, we will assume that the weights feeding the
second block are frozen with the identity matrix.

For each instance, the first neural block receives a vector x €
RN (assuming that discrete features have already been one-hot
encoded if necessary) and produces a vector h € R, which will
be used to feed the second layer. Similarly, the third layer receives
a vector h € RY that is mapped to an output vector y € R, Notice
that the resultant labels are derived from the vector y € R,

41

Neural Networks 140 (2021) 39-48

It should be highlighted that each block in the pipeline has
a well-defined function. For example, the first block reduces the
problem’s dimensionality while comprising the relevant infor-
mation of potentially sparse features into high-level ones. The
purpose of this block is similar to the encoding sub-network
of autoencoders. The second block aims at discovering hidden
patterns from the high-level features extracted by the first block.
The third block maps the hidden patterns to the label space, thus
assigning the corresponding class labels to the instance.

Eq. (2) formalizes how to compute the activation values of
neurons in an unfolded ML-LTCN, regardless of the neural block
they belong to,

(2)

M)
t+1 t) (t t+1) (0 t+1
a iy =£ [Y wial (k) + ¢ Pak) — b
j=1

implicit explicit

where M(®) stands for the number of neurons in the tth layer, k is
the index of the activation vector used as the initial stimulus, b;
denotes the bias weight of each neuron, while wj; is the weight
connecting two neurons, the latter belonging to the current layer.
Moreover, ¢; is a learnable parameter that controls the extent to
which the neuron’s initial activation value ago)(k) is taken into
account when computing its next activation value.

Observe that the reasoning mechanism in Eq. (2) makes no
distinction between hidden/outputs layers and iterations of the
LTCN model. The rationale behind this assumption is that the
activation values of LTCN’s neurons in each iteration define a
sort of abstract hidden neurons that form abstract hidden layers.
Another important detail of the ML-LTCN model is that, when
it comes to computing the activation values of neurons in the
second block, we use the initial activation value of each neu-
ron multiplied by a learnable weight. This strategy prevents the
signal that arrives at the second neural block to vanish due to
the LTCN’s recurrent reasoning process. Hence, we gather the
neuron’s knowledge into two categories: implicit and explicit. The
former refers to the knowledge that each abstract neuron receives
from others during the reasoning steps. In contrast, the latter
refers to the bias and the memory the neuron has about its initial
activation. In the first and third blocks, we can assume that there
the initial state of neurons is zero.

Eq. (2) leads to a new type of LTCN that considers the ini-
tial state and the previous neurons’ states when computing the
network state (i.e., the activation values of neurons in a given
abstract layer). This is a fundamental difference with the original
LTCN model proposed in Napoles et al. (2020). The inspiration
for this modification comes from the Long Short-term Mem-
ory (Hochreiter & Schmidhuber, 1997) that uses the input vector
in each calculation step. In that way, we significantly reduce the
risk for the LTCN to converge to unique fixed-point attractors
since the input signal will modify the network state in each
abstract layer. As stated in Napoles et al. (2019), unique fixed
points usually hinder the prediction capabilities of recurrent net-
works without external inputs since different inputs would be
associated with a single output.

The second block has two operation modes: the unfolded
one (depicted in Eq. (2)) and the folded one, which replaces
the weights w{’ with % 3" wi{’. The unfolded operation mode is
mainly used when performing the backward pass (see Section 4).
In contrast, the folded mode is mainly used during the forward
pass.

Finally, the proposed ML-LTCN model operates with scaled ex-
ponential linear units (Klambauer, Unterthiner, Mayr, & Hochre-
iter, 2017). These neural units use the transfer function depicted
below:

f(X)={

x>0
x<0

Bx

Ba(e* — 1) 3)

G. Ndpoles, M. Bello and Y. Salgueiro

where o« and B are parameters derived from the inputs. The
advantage of this transfer function is that it performs an internal
normalization operation such that the current layer preserves the
mean and variance of the previous one. The self-normalizing step
is convenient in neural models involving many blocks and layers.
When classifying an instance, the output of this function in the
last layer is transformed with the sign function to determine the
labels to be attached to that instance.

4. Backpropagation learning

In this section, we derive a backpropagation algorithm to ad-
just the parameters attached to the ML-LTCN model. This means
that we need to estimate the weights of the multilayered network
in the first block, the weights of the folded LTCN model (which
include the weights of external inputs) in the second block, the
output weights in the last neural block, and the corresponding
bias weights in each block. It is worth mentioning that, while we
perform the forward pass with the folded LTCN, the backward
pass is performed on the unfolded LTCN. In the end, the LTCN
model is a recurrent system in which weights do not change from
an iteration to another.

Before moving forward, it seems convenient to set the no-
tation straight. Let T denote the total number of layers of the
ML-LTCN model, which include both regular layers (the ones in
the first and third blocks) and abstract layers (the ones in the
unfolded LTCN model). Hereinafter there will be no distinction
among the different types of layers. Likewise, we assume that
wj(f), bg” and cl-([are the weights that connect two neurons, the
neuron’s bias, and the input weight in the tth layer, respectively.

Eq. (4) displays the regularized squared hinge loss function to
be minimized by the algorithm, which is aimed at maximizing the
margins between labels,

(Z max{0, l;(k)a

such that
M=) p(0)

Z Z((c))

j=1 i=1

(4)

Z Rm)

(5)

where L is the number of labels, [;(k) takes -1 when the ith label
is not associated with the kth instance, otherwise it takes 1. Also,
aET)(k) is the activation value of the ith neuron in the output layer
whereas A > 0 is a constant to control the ¢, regularization
component.

Case 1. When t = T, the partial derivative of the global error
£ is computed as follows:

de
= — (k) + & (k)L(k)?.
8a$t)(k) l() ()l()

Case 2. When 1 < t < T, the partial derivative of the global
error € is calculated as follows:

(6)

pe "0 g 3a (k)
8a(t)(k) = Z 8a(t+1)(k) x aa(t)(k) (7)
i j=1 j i
Mg’:” o (k) aa k)
= X
= aa" (k) a‘}‘*”(k) aa" (k)
ME+D 3
f o« W&

= Z 8a(t+1) k)

pa aa]?””(k) ij

such that a([“)(k) is the raw activation value of the jth neuron,

while f(-) is tI!1e transfer function.

42

Neural Networks 140 (2021) 39-48

Once as/aa?)(k) have been calculated for all layers, we can
compute the partial derivatives of the global error with respect
to the target parameters:

ae de_ da Oky 9@ (k
O = 20 (r)(c) al(n({) + 40w (k) (8)
dw{ (k) (k) 9a (k) dw (k)
0& d
= % —(r{ gV + 2w,
aa; (k) oa; (k)
e dE aa?)(k) aa (k)
(t) = (t) x —(t) x (t) 9)
k) ad k) aa k)~ abl(k)
Y of
= SO S =0
da; (k) oa; (k)
aE e ad (k) aalk
O a O * aér)(J a(r)() (10)
acky adk) 0ak) "~ ac(k)
= o x g xa
t =(t
aa; (k) oa; (k)

Eq. (11) shows the gradient vector for the model parameters
attached to the tth layer,
woe = (a8)
YRR T .
Bwﬁ (k) ac; (k)

In addition to the regularization, the MP-LTCN model will
likely benefit from adopting a dropout strategy (Srivastava, Hin-
ton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) to control
overfitting. The dropout seems to be especially useful in the first
block, where a large number of problem features might lead to
a multilayered structure with many parameters. However, the
mathematical formulation of the learning method holds as we

only need to determine which weights will be updated in each
epoch.

aE
ab (k)

(11)

5. Numerical simulations

In this section, we conduct some numerical simulations to
evaluate the performance of our model.

5.1. Dataset characterization

Aiming at conducting the numerical simulations, we will use
12 multi-label datasets taken from the RUMDR repository (Charte,
Charte, Rivera, del Jesus, & Herrera, 2016). In these problems (see
Table 1), the number of objects (K) ranges from 207 to 13,929, the
number of features (N) goes from 72 to 1,717, and the number of
labels (L) from 4 to 53. Also, we report the sparseness rate (SR),
which is defined as the number of zero elements in the feature
matrix divided by the size of the feature matrix. Likewise, we
show the TCS metric (Charte, Rivera, del Jesus, & Herrera, 2016)
as a theoretical complexity indicator. The measure is calculated
as the product of the number of attributes, the number of labels,
and the number of distinct label sets. We transfer the values to
a logarithmic scale to avoid reporting large values. The higher
the value, the more complex the pre-processing of the dataset.
Remark that TCS values are logarithmic. Therefore, a difference
of only one unit implies one order of magnitude lower or higher.

More details about these datasets are given next. D1 is about
classifying music into emotions that it evokes according to the
Tellegen-Watson-Clark mood model. D2 and D8 problems try to
predict the subcellular locations of proteins according to their
sequences. They contain 1,392 sequences for Gram-negative bac-
terial (Gnegative) species. The Gene Ontology (GO) and PseAAC
features (including 20 amino acid, 20 pseudo-amino acid, and

G. Ndpoles, M. Bello and Y. Salgueiro

Table 1

Datasets used during the simulations.
ID Name Domain K N L SR TCS
D1 emotions Music 593 72 6 0.005 9.360
D2 GnegativePseAAC Biology 1,392 440 8 0490 11.11
D3 GpositivePseAAC Biology 519 440 4 0476 9.410
D4 scene Image 2,407 294 6 0.012 10.18
D5 VirusPseAAC Biology 207 440 6 0488 10.71
D6 yeast Biology 2,417 103 14 0.001 12.56
D7 enron Text 1,702 1,001 53 0916 17.50
D8 GnegativeGO Biology 1,392 1,717 8 0995 1247
D9 GpositiveGO Biology 519 912 4 0991 10.14
D10 ohsumed Text 13,929 1,002 23 0959 17.09
D11 slashdot Text 3,782 1,079 22 0992 15.12
D12 VirusGO Biology 207 749 6 0985 11.24

400 dipeptide components) are provided. The decision classes
consist of eight subcellular locations. Similarly, D3 and D9 contain
519 sequences for Gram-positive species and four subcellular
locations. D4 contains 2,407 images and six classes: beach, sunset,
fall foliage, field, mountain, and urban. Each image is described
with 294 visual numeric features corresponding to spatial color
moments in the LUV space. D5 and D12 contain 207 sequences for
Virus species, described by GO and PseAAC features, respectively.
The labels correspond to six subcellular locations. D6 contains
micro-array expressions and phylogenetic profiles for 2,417 yeast
genes. Each gen is annotated with a subset of 14 functional
categories such as metabolism, energy, etc. D7 is a subset of
Enron Email Corpus. It is based on a collection of email messages
categorized into 53 topic categories, such as company strategy,
humor, and legal advice. D10 includes medical abstracts that were
associated with 23 cardiovascular disease categories. D11 consists
of article blurbs with subject categories representing the label
space, which were mined from http://slashdot.org.

5.2. Exploring the ML-LTCN classifier

The first simulations aim to explore the algorithm’s perfor-
mance for different configurations. Particularly, we are interested
in studying how the model behaves when altering the learning
rate and the number of abstract layers in the second neural
block. Likewise, we want to determine a default parameter setting
(i.e., parameter values that lead to acceptable predictions overall).

All simulations conducted in this research use an ML-LTCN
model with three hidden layers in the first block, such as each
layer is one third smaller than the previous one. For example,
if we have N = 1000 problem features and we want to extract
H = 100 high-level features with S = 3 hidden layers, then the
first layer would have 660 neurons, the second one would have
330 neurons, while the last one would have 100 neurons.

Furthermore, we use three hidden layers in the first neu-
ral block such as each layer is one third smaller than the pre-
vious one, and the number of hidden features is set to 100
for larger datasets (> 440 features) and 50 for smaller ones
(< 400 features). The number of abstract layers in the second
block varies from one to five. The regularization parameter (see
Eq. (4)) was set to A{V=1.0E—2 in all layers while the dropout
parameter was set to 0.5. Finally, we use the ADAM optimization
method (Kingma & Ba, 2015) such that the number of epochs was
set to 200, and the learning rate changes from 0.001 to 0.005. We
adopted a batch strategy in the backpropagation learning to keep
the simulation times low in these experiments.

Fig. 2 shows the simulation results when varying the number
of abstract layers in the LTCN model and the learning rate. Aim-
ing to measure the ML-LTCN classifier’s performance, we have
adopted the Hamming Loss (HL) measure (Herrera et al., 2016b).
This measure quantifies the fraction of labels that are incorrectly

43

Neural Networks 140 (2021) 39-48

predicted. In the subsequent experiments, we will also use the
accuracy and the F-measure as performance measures.

Overall, we can conclude that our model performs well for
most datasets when increasing the number of abstract layers
while keeping the learning rate small. Likewise, the results advo-
cate against using more abstract layers with rather larger learning
rates. There are problems such as the D7 dataset in which our
proposal performs similarly regardless of the parameter setting.

In the remaining simulations, we will use three abstract lay-
ers with a learning rate of 0.001 while retaining the settings
of other parameters as described above. This means that we
will not optimize the network’s parameters for each problem.
Instead, we found it more convenient to compare our proposal
against other classifiers when using default parameter values. The
reason behind this decision is that hyperparameter tuning is a
time-consuming process that usually demands extra data.

Next, we will evaluate the effect of both the dropout and
the regularization on the algorithm’s performance. Fig. 3 shows
the HL values attached to each dataset when suppressing these
strategies individually. The baseline model refers to the ML-LTCN
algorithm using both dropout and regularization, as described
above.

Overall, the simulation results suggest that the dropout is
more effective when contrasted with the ¢, weight regularization.
In the case of datasets D2, D3 and D5, the negative effect of
not using dropout becomes more evident. Similarly, the reader
can observe that the results do not change significantly when
suppressing the regularization component. Notice that no con-
trolling the overfitting at all is not an option as the results often
deteriorate perceptibly. Since there seems to be little harm in
using both strategies together, we will use the baseline model in
the remaining simulations.

5.3. Comparison against state-of-the-art algorithms

In this subsection, we compare the prediction capabilities of
our model with the state-of-the-art classifiers, which are imple-
mented in the MULAN (Tsoumakas, Spyromitros-Xioufis, Vilcek,
& Vlahavas, 2011) software tool and the Scikit-multilearn li-
brary (Szymal, Kajdanowicz, et al., 2019). These state-of-the-art
algorithms are briefly described below.

e Backpropagation for Multi-Label Learning (BP-MLL) (Mandz-
iuk & Zychowski, 2019; Zhang & Zhou, 2006). This feed-
forward neural network for MLC problems uses an error
function to capture the correlation among the labels. This
function penalizes the predictions that include labels that
are not truly relevant to the processed instance.

e RAndom k-labELsets (RAKEL) (Padmashani, Nivaashini, &
Vidhyapriya, 2019; Tsoumakas & Vlahavas, 2007). This
method generates random subsets of labels while training
a multiclass classifier for each subset. RAKEL involves two
essential parameters, ¢ and k. The former determines the
number of classifiers, while the latter denotes the length of
the label sets.

e Multi-label kNN (Zhang & Zhou, 2007; Zhu, et al., 2020) is an
adaptation of kNN to the MLC scenario. This method uses
the a priori and conditional probabilities of each label to
determine the label set of unseen instances.

e Binary Relevance (BR) (Godbole & Sarawagi, 2004; Zhang
et al., 2018). This method generates a binary dataset per
each label such that positive patterns are the ones associated
with the label. When a new pattern is presented to the
model, the output will be the set of positive classes.

G. Ndpoles, M. Bello and Y. Salgueiro

0.001 1

(d) D4
0.0490 7
0.0488 "
2 4
8 0.0485
©0.0483”
2

‘€ 0.04807 |
£ 0.0478" ’
T 0.04757 /
0.04737
0.0470" S
0.005 ~ _ =
0.004 S = 4 S
0.0 -

lon 0003
My, 0002~ 5 Sy
rae 0.001 1 208\
(g) D7
0.0350" <
2 0.0348"
8
2003467
£ 1
£ 00344
£
003427 -
0.0340% S]
0005 . -
0.004 b 4 0
Y’ 0.003 _
Srry 0,002 2 S
9rage 0001 1 aostf

(j) D10

(k) D11

Neural Networks 140 (2021) 39-48

0230"
4 00957 > 0.2207
o - o T
En0_090 0.210
£ o i
£ 0.085~ £ g?gz
£ 0.
S 0.080" 8 01807 .
) it
L S NG
_ - —W
0005 . z 0005~ y 2
0.004 - s O 0004 - PR
ley, 0003 S] lon 0003 <, c
i, 0.002 ~ 2 1 \ay®! 1, 0.0 2 a\ay®
Orarg 0001 1 qos "0 ragg 0001 1 st
(b) D2 (c) D3
02107 A‘ o220
2
2 02057 S 0215
c o
E 0.200” £ 0.210”
T 01957 E 0.205" %“‘
1001 4}"’ 4'
0.200 S S
= 3 ' —
0.005 - ~ 5 0.001 = = 1
0004’ ~ 4 0002 B]
e, = ~ i = - e
iy 00027~ o “?;0\\@19‘ "oar, 0.0 SN
‘agg 0001 1 208 Orate 0005 5 @°°
(e) D5 (f) D6
0.039
0.040" 0.038~
§0035’ g 00377
20. < 0.036 ‘
E’ 0.0307 é’ 0.0357 ‘A
1 0.034”
§00%5 5 0033
T 0020~ T 0032"
i 00317 ‘
0.015 00307
0.005 0005~ =
0.004 S - s B
0.00
CE, = 3 el
iy, 0.00: 2 Y
9rate 0,001 1 et
(h) D8 (i) D9
0.0200" o086t A \
0.01957 ol
2 0.0190° 50054
 0.01857 o 0.0527
£ 0.0180 £ 0.050”
E 0.01757 E 0048” Y‘
T 00170 T i .
0.046 V
0.0165 00447 I\
0.0160" -
0.005 — 0.005 _ —
0.004 Z s 0 0.004 = s O
S S T le, 0003 <, .
e"”/? 0.002 ~ 2 “ao\\"“ al'/y,',7 0.002 ~ 2 ac\\a\Je
lagg 0001 1 208 Tagg 0.001 1 208

(1) D12

Fig. 2. Performance of the proposed ML-LTCN method in terms of HL values when varying the number of abstract layers in the second block and the learning rate

of the ADAM optimizer. Some figures have been rotated for better visualization.

e Adaboost

(ABoost) (Bogaert, Lootens, Van den Poel, &

Ballings, 2019; Schapire & Singer, 1999) is an adaptation of
the Adaboost method for MLC. It breaks down the problem
into a binary problem where each test instance is classified

according to its label association.

e Multi-label Hierarchical Adaptive Resonance Associative
Map Neural Network (ML-HARAM) (Benites & Sapozhnikova,
2015, 2017). This neural system was initially developed for
text datasets with high dimensionality. Overall, it aims to
increase the classification speed by adding an extra layer of
adaptive resonance theory to group the learned prototypes

into large clusters.

44

e Multi-label Twin Support Vector Machine (ML-TSVM) (Chen,
Shao, Li, & Deng, 2016). This algorithm uses the one-against-
all strategy to construct multiple non-parallel hyperplanes
from solving a series of quadratic programming problems.
Each hyperplane is closer to its corresponding class but far
away from the others.

We use the same default parameter settings provided by the
MULAN and Scikit-multilearn library, thus no algorithm performs
hyperparameter tuning. It goes without saying that we are es-
pecially interested in evaluating how ML-LTCN performs when
compared with the BP-MLL algorithm as both are neural network
solutions. In addition, we are also interested in the achievements

G. Ndpoles, M. Bello and Y. Salgueiro

0.228

0.182
0.182
0.187
0.202

0.088

0.048
0.048

o
=]
N
o

Hamming loss
P 0.184
I 0.074

0.092
I 0.166

S <
3
S 5888 .3
I + 10 3 ° s 9 R
3 & o <
HIUTHL
| |
DI D2 D3 D4 D5 D6 D7 D8 D9 DiI0 D1l Di2
= baseline without dropout
(a)
o ™M
ISP
3 g < 2g oo
s s g 5 S 3
- o
o
w
%]
o
2 0
o
£ g5 S =
© 2o
T [P + 2
2 9 o T T % S 2
S s 8883 3
I + ¥ 5 S oo 8N I
3 3 o o
o o o o
H L
DI D2 D3 D4 D5 D6 D7 D8 D9 D10 D1l D12
= baseline without regularization

(b)

0.221
0.224

0.182
0.191

o
Q
3 3 s
s 8 S
S
[
[%2)
o
g n
= g g g
£ g5 S 3
© g n =
T N 2 8
T S o) ¥ S
Q o - ™ T o
° 52388 m S
I s 5S2s°88
3 < S 3
HUTHL
| |
DI D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
® baseline no overfitting control

(c)

Fig. 3. Performance of the ML-LTCN method (a) without using dropout, (b)
without using regularization, and (c) without controlling the overfitting at all.
In this experiment, the baseline refers to an ML-LTCN using both dropout and
£, regularization.

of the ML-LTCN in datasets D7 to D12, as they have the highest
sparseness rate (SR over 90%) and include the three of the most
complex problems D7, D10 and D11.

Table 2 displays the average HL values attached with each clas-
sifier after performing a 10-fold cross-validation process. The best
(lowest) values were highlighted in bold. The reader can observe
that the proposed ML-LTCN algorithm outperforms (in terms of
HL value) the state-of-the-art models in 7 out of 12 benchmark
problems while ranking second in the remaining ones.

Table 3 displays the average accuracy reported by each clas-
sifier after performing a 10-fold cross-validation process. The

45

Neural Networks 140 (2021) 39-48

Table 2
Hamming loss reported by each algorithm (the smaller, the better).

ID BP-MLL RAKEL ML-kNN BR ABoost ML-HARAM ML-TSVM ML-LTCN
D1 0212 0217 0.195 0.252 0.304 0.226 0.239 0.184
D2 0.563 0.091 0.081 0.145 0.130 0.139 0.124 0.073
D3 0.581 0233 0.154 0.182 0.251 0.235 0.225 0.166
D4 0.273 0.101 0.087 0241 0.179 0.124 0.158 0.092
D5 0590 0217 0202 0.228 0.202 0.252 0.212 0.186
D6 0.221 0226 0.193 0.303 0.231 0.242 0.311 0.202
D7 0.211 0.048 0.052 0217 0.062 0.071 0.063 0.047
D8 0.651 0.014 0.018 0.027 0.130 0.039 0.088 0.013
D9 0.609 0.028 0.040 0.050 0.254 0.106 0.191 0.030
D10 0.645 0.058 0.070 0.142 0.072 0.096 0.073 0.033
D11 0.629 0.041 0.051 0.068 0.053 0.035 0.038 0.016
D12 0.649 0.038 0.065 0.069 0.202 0.258 0.174 0.043

Table 3

Accuracy reported by each algorithm (the larger, the better).
ID BP-MLL RAKEL ML-kNN BR ABoost ML-HARAM ML-TSVM ML-LTCN
D1 0573 0512 0532 0.529 0.048 0.268 0.150 0.816
D2 0.100 0535 0543 0.574 0 0.445 0.223 0.927
D3 0.246 0498 0.587 0.616 0 0.457 0.170 0.829
D4 0.368 0.624 0.667 0.452 0 0.552 0.266 0.907
D5 0.170 0.317 0.177 0.341 0 0.230 0.009 0.791
D6 0.522 0484 0516 0.419 0.335 0.198 0.004 0.798
D7 0.221 0.433 0.331 0.195 0.150 0.036 0.031 0.952
D8 0.104 0.943 0920 0.882 0 0.797 0.361 0.986
D9 0.220 0942 0.893 0.884 0 0.745 0.264 0.967
D10 0.054 0.403 0.047 0.292 0 0.066 0.202 0.966
D11 0.047 0.372 0.072 0.376 0 0.450 0.326 0.983
D12 0.184 0.891 0.758 0.821 0 0.142 0.163 0.957

Table 4

F-measure reported by each algorithm (the larger, the better).
ID BP-MLL RAKEL ML-kNN BR ABoost ML-HARAM ML-TSVM ML-LTCN
D1 0.658 0597 0.613 0.632 0.065 0.659 0.510 0.661
D2 0.164 0552 0548 0.633 0 0.548 0.393 0.669
D3 0356 0503 0590 0.642 0 0.609 0.280 0.664
D4 0491 0.646 0.681 0.566 0 0.702 0.474 0.721
D5 0.265 0.354 0.193 0.394 0 0.453 0.035 0.448
D6 0.635 0.600 0.620 0.538 0.456 0.614 0.112 0.603
D7 0342 0.545 0428 0.307 0.230 0.392 0.327 0.517
D8 0.180 0.951 0.929 0.905 0 0.858 0.520 0.959
D9 0306 0.944 0.896 0.900 0 0.814 0.418 0.948
D10 0.099 0.467 0.054 0.399 0 0.213 0.236 0.127
D11 0.088 0.389 0.075 0435 0 0.626 0213 0.571
D12 0.288 0.909 0.772 0.851 0 0.516 0.279 0.918

best (largest) values were highlighted in bold. The example-based
accuracy is defined as the proportion of the predicted correct
labels to the total number of labels for that instance. The overall
accuracy is computed as the average across all instances in the
dataset. According to this measure, our model stands as the
best-performing algorithm for all benchmark problems.

Table 4 portrays the average F-measure values reported by
each model after performing 10-fold cross-validation. Again, the
best (largest) values were highlighted in bold. The F-measure can
be understood as the harmonic mean of precision and recall. The
ML-LTCN method outperforms the state-of-the-art models in 7
out of 12 problems while performing well in the remaining ones.

Focusing the analysis on the last six datasets (D7 to D12 with
SR over 90%), we observe that ML-LTCN outperforms its competi-
tors. In the case of the HL values (Table 2), ML-LTCN was better
in four (D7, D8, D10 and D11) out of six problems. Meanwhile,
it ranked second in the other two (D9 and D12), only surpassed
by the RAKEL method. In the case of accuracy reported by each
method (Table 3), our proposal overtakes their competitors, in-
cluding the last six problems. In terms of F-measure (Table 4),
ML-LTCN achieved first place in three out of six problems (D8,
D9, and D12), second place in two (D7 and D11), and fourth place

G. Ndpoles, M. Bello and Y. Salgueiro

Neural Networks 140 (2021) 39-48

Table 5

Training time for each algorithm per dataset (in seconds).
ID BP-MLL RAKEL ML-kNN * BR ABoost ML-ARAM ML-TSVM ML-LTCN
D1 542 1,376 N/A 157 541 246 1,368 1,726
D2 14,936 13,168 N/A 358 9,383 2,930 26,265 3,587
D3 4,915 1,023 N/A 59 923 461 3,049 2,285
D4 10,941 16,378 N/A 348 7,382 3,837 23,166 3,505
D5 1,961 1,021 N/A 34 283 45 2,635 1,822
D6 2,889 28,304 N/A 321 4,324 1,233 28,917 1,952
D7 89,348 269,566 N/A 2,894 70,959 462 1,72,253 9,522
D8 192,446 23,077 N/A 1,780 36,184 233 19,910 17,360
D9 24,500 791 N/A 170 2,185 202 2,265 4,030
D10 822,808 6,224,029 N/A 91,088 1,499,204 230,989 2,369,682 57,776
D11 235,175 355,111 N/A 9,985 164,778 3,848 224,379 19,579
D12 6,653 559 N/A 81 848 16 1,490 2,366

In this lazy learner, the training phase technically does not

phase. Therefore, the training time is O(1).

(out of seven methods) in D10. Overall, the results suggest that
our method is a competitive solution for potentially sparse MLC
problems.

5.4. Further discussion

In this subsection, we will elaborate on the performance of
the state-of-the-art methods on datasets associated with larger
SR values (D7 to D12).

In our experiments, RAKEL ranked second on the last six
datasets, only surpassed by our proposal. RAKEL trains one multi-
class classifier for each subset of labels. This ensemble method,
RAKEL balances its bias and variance, being less sensitive to sparse
and high dimensional data, thus improving its performance (Ren,
Zhang, & Suganthan, 2016).

BR and ML-kNN have similar behavior in the datasets of in-
terest. The first one relies on a collection of binary classifiers and
a strategy to combine their outputs. The second one internally
works as a BR classifier since a separate set of a priori and
conditional probabilities are independently computed for each
label. Both methods disregard any potential correlations among
labels (Herrera, Charte, Rivera, & del Jests, 2016a), which is
often considered a drawback. However, in Yu, Pedrycz, and Miao
(2014) the authors argue that exploiting label correlations might
introduce unnecessary or misleading limitations on instances that
do not contain such correlations.

ML-HARAM and BP-MLL are neural network models. ML-
HARAM implements a winner-take-all approach where a limited
number of neurons is activated. This is equivalent to penaliz-
ing the model (Aggarwal, 2018), which translates into learning
sparse representations. In contrast, the performance of BP-MLL
was rather poor in datasets D7 to D12. This method has an
input layer with one neuron per each input attribute, while
the number of output neurons corresponds with the number of
labels. These nodes use a sigmoid activation function, where even
small weights produce half of their saturation regime, decreasing
the network performance in sparse data sets (Glorot, Bordes, &
Bengio, 2011).

In MLTSVM, each resulting hyper-plane is closer to its cor-
responding instances but far away from the others (Chen et al,,
2016). However, the lack of pre-processing might have affected
the hyperplane generation, thus leading to sub-optimal predic-
tions. A similar behavior revealed ABoost, even though it is an
ensemble-based method, reported the worst Hamming loss, ac-
curacy, and F-measure.

5.5. Computational complexity

Before concluding the paper, we will study the temporal com-
plexity of our proposal.

46

exist since all computations are done during the test

250299
250000
8
2 200000
o
£
©
o 150000
£
o
=]
£ 92775
s 100000 83487
50000 43226
392 5154 2156 4107 1212 921 I R 3543
0 - — —-— — — - —
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

Fig. 4. Training time difference when suppressing the first neural block in the
baseline architecture.

Table 5 displays the training time (in seconds) of all algo-
rithms across the datasets. It seems opportune to mention that
all experiments in this paper were performed in an HP EliteBook
laptop (with Intel Core i5 8-th generation processor). The results
show that BR is the fastest algorithm in this experiment; how-
ever, it does not produce impressive prediction results. Therefore,
it seems reasonable to compare the training time of the best-
perming algorithms, that is to say, RAKEL and ML-LTCN. The
results show that our proposal reports shorter training times in
7 out of 12 datasets (D2, D4, D6, D7, D8, D10, D11) while being
competitive for D1 and D5.

Finally, we measure the training time when removing the
first neural block from the ML-LTCN architecture. More explicitly,
the values in Fig. 4 concern the training time differences when
suppressing that block in the baseline architecture discussed in
Section 3.

The results of this experiment illustrate the advantages of
extracting high-level features in problems with large SR values
(e.g., D7, D8, D9, D10, and D11). These features contain relevant
information while being encoded in a lower-dimensional space.
This neural block not only brings a reduction in the training time
but also leads to better predictions. For example, we noticed that
suppressing the first block causes the average HL to increase from
0.09 to 0.12. This behavior holds even if we increase the number
of abstract layers in the second block.

6. Concluding remarks
In this paper, we have presented an algorithm termed ML-

LTCN to deal with potentially sparse MLC problems. The proposed
architecture involves three neural blocks. While the first block is

G. Ndpoles, M. Bello and Y. Salgueiro

devoted to extracting the high-level features from sparse data,
the remaining ones are oriented to computing the class labels to
be assigned to unseen instances. When it comes to the learn-
ing algorithm, we have adopted a squared hinge loss function
(used by support vector machines) since it allows increasing
the margins between positive and negative labels. The theoreti-
cal advantage of having well-separated labels is that the model
becomes less sensitive to the threshold determining the labels
attached to each instance. This eventually translates into having
fewer misclassifications.

The simulations suggest that the proposed model behaves well
when adding more abstract layers to the second block while
using rather small learning rate values. Moreover, the comparison
against the state-of-the-art methods shows that our model is a
fair competitor in terms of Hamming Loss, example-based accu-
racy and F-measure. It has not escaped our notice that we could
have obtained even better results by using a smaller batch size.
Despite this fact, we preferred to keep the simulation time as low
as possible. The further research steps will focus on exploiting
the cognitive component of LTCNs, which allows injecting prior
knowledge into the model. At the same time, we will try to
extract features from the problem labels in a bidirectional fashion,
thus notably reducing the burden of training the recurrent block.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors would like to sincerely thank Isel Grau from the
Vrije Universiteit Brussel, Belgium, who pointed out the advan-
tages of using the squared hinge function instead of the mean
squared error. This paper was partially supported by the Program
CONICYT FONDECYT de Postdoctorado, Chile through the project
3200284.

References

Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B., et
al. (2016). Youtube-8m: A large-scale video classification benchmark. arXiv
preprint arXiv:1609.08675.

Adomavicius, G., & Zhang,]. (2012). Impact of data characteristics on recom-
mender systems performance. ACM Transactions on Management Information
Systems, 3(1).

Aggarwal, C. C. (2018). Machine learning with shallow neural networks. In Neural
networks and deep learning (pp. 53-103). Springer, chapter 2.

Bello, M., Nédpoles, G., Vanhoof, K., & Bello, R. (2019). Methods to edit multi-label
training sets using rough sets theory. In T. Mihdlydedk, F. Min, G. Wang,
M. Banerjee, I. Diintsch, Z. Suraj, & D. Ciucci (Eds.), Rough sets (pp. 369-380).
Springer International Publishing.

Benites, F., & Sapozhnikova, E. (2015). HARAM: A hierarchical ARAM neural net-
work for large-scale text classification. In 2015 IEEE international conference
on data mining workshop (pp. 847-854). IEEE.

Benites, F., & Sapozhnikova, E. (2017). Improving scalability of ART neural
networks. Neurocomputing, 230(January), 219-229.

Bogaert, M., Lootens, J., Van den Poel, D., & Ballings, M. (2019). Evaluating multi-
label classifiers and recommender systems in the financial service sector.
European Journal of Operational Research, 279(2), 620-634.

Boutell, M. R,, Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene
classification. Pattern Recognition, 37(9), 1757-1771.

Charte, F., Charte, D., Rivera, A., del Jesus, M. J., & Herrera, F. (2016). R ultimate
multilabel dataset repository. In International conference on hybrid artificial
intelligence systems (pp. 487-499). Springer.

Charte, F., Rivera, A, del Jesus, M.]., & Herrera, F. (2016). On the impact of
dataset complexity and sampling strategy in multilabel classifiers perfor-
mance. In International conference on hybrid artificial intelligence systems (pp.
500-511). Springer.

47

Neural Networks 140 (2021) 39-48

Chen, S.-F., Chen, Y.-C,, Yeh, C.-K.,, & Wang, Y.-C. F. (2018). Order-free RNN with
visual attention for multi-label classification. In Thirty-second AAAI conference
on artificial intelligence.

Chen, W.-J.,, Shao, Y.-H., Li, C.-N.,, & Deng, N.-Y. (2016). MLTSVM: a novel
twin support vector machine to multi-label learning. Pattern Recognition, 52,
61-74.

Chen, G., Ye, D., Xing, Z., Chen,], & Cambria, E. (2017). Ensemble application
of convolutional and recurrent neural networks for multi-label text cat-
egorization. In 2017 International joint conference on neural networks (pp.
2377-2383). IEEE.

Choi, K. Fazekas, G., & Sandler, M. B. (2016). Automatic tagging using deep
convolutional neural networks. In ISMIR.

Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification (2nd ed.). John
Wiley & Sons.

Elisseeff, A., & Weston, J. (2002). A kernel method for multi-labelled
classification. In Advances in neural information processing systems (pp.
681-687).

Garcia, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining. In
Data preprocessing in data mining (vol. 72) (pp. 1-17). Springer International
Publishing.

Gibaja, E., & Ventura, S. (2014). Multi-label learning: a review of the state of the
art and ongoing research. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 4(6), 411-444.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks.
In Proceedings of the fourteenth international conference on artificial intelligence
and statistics (pp. 315-323).

Godbole, S., & Sarawagi, S. (2004). Discriminative methods for multi-labeled
classification. In Pacific-Asia conference on knowledge discovery and data
mining (pp. 22-30). Springer.

Goodfellow, L., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Herrera, F., Charte, F., Rivera, A.], & del Jests, M. J. (2016a). Adaptation-based
classifiers abstract. In Multi-label classification. problem analysis, metrics and
techniques (pp. 81-99). Springer.

Herrera, F., Charte, F., Rivera, A.], & Del Jesus, M.]J. (2016b). Multilabel
classification. In Multilabel classification (pp. 17-31). Springer.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science, 313(5786), 504-507.

Hochreiter, S., & Schmidhuber,]. (1997). Long short-term memory. Neural
Computation, 9(8), 1735-1780.

Janwe, N. J., & Bhoyar, K. K. (2018). Multi-label semantic concept detection in
videos using fusion of asymmetrically trained deep convolutional neural
networks and foreground driven concept co-occurrence matrix. Applied
Intelligence: The International Journal of Artificial Intelligence, Neural Networks,
and Complex Problem-Solving Technologies, 48(8), 2047-2066.

Kingma, D. P., & Ba, J. (2015). Adam: a method for stochastic optimization. In
Proceedings of the 3rd international conference on learning representations.
Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). Self-normalizing
neural networks. In Proceedings of the 31st international conference on neural

information processing systems (pp. 972-981). Curran Associates Inc.

Kongsorot, Y., & Horata, P. (2014). Multi-label classification with extreme
learning machine. In 2014 6th international conference on knowledge and
smart technology (pp. 81-86). IEEE.

Krishnan, R. G., Liang, D., & Hoffman, M. D. (2018). On the challenges of learning
with inference networks on sparse, high-dimensional data. In International
conference on artificial intelligence and statistics (vol. 84) (pp. 143-151).

Law, A., Chakraborty, K., & Ghosh, A. (2017). Functional link artificial neural
network for multi-label classification. In International conference on mining
intelligence and knowledge exploration (pp. 1-10). Springer.

Law, A., & Ghosh, A. (2019). Multi-label classification using a cascade of stacked
autoencoder and extreme learning machines. Neurocomputing, 358, 222-234.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),
436-444.

Lian, S.-m., Liy, J.-w., Lu, R.-k., & Luo, X.-1. (2019). Captured multi-label relations
via joint deep supervised autoencoder. Applied Soft Computing, 74, 709-728.

Manidziuk, J., & Zychowski, A. (2019). Dimensionality reduction in multilabel
classification with neural networks. In 2019 International joint conference on
neural networks (pp. 1-8). IEEE.

Napoles, G., Salmeron,]. L., & Vanhoof, K. (2019). Construction and super-
vised learning of long-term grey cognitive networks. IEEE Transactions on
Cybernetics, 1-10.

Napoles, G., Vanhoenshoven, F., Falcon, R., & Vanhoof, K. (2020). Nonsynaptic
error backpropagation in long-term cognitive networks. IEEE Transactions on
Neural Networks and Learning Systems, 31(3), 865-875.

Napoles, G., Vanhoenshoven, F., & Vanhoof, K. (2019). Short-term cognitive
networks, flexible reasoning and nonsynaptic learning. Neural Networks, 115,
72-81.

Padmashani, R., Nivaashini, M., & Vidhyapriya, R. (2019). Rakel algorithm and
mahalanobis distance-based intrusion detection system against network
intrusions. In International conference on artificial intelligence, smart grid and
smart city applications (pp. 689-696). Springer.

http://arxiv.org/abs/1609.08675
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb2
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb2
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb2
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb2
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb2
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb3
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb3
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb3
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb5
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb5
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb5
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb5
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb5
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb6
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb6
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb6
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb7
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb7
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb7
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb7
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb7
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb12
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb12
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb12
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb12
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb12
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb15
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb15
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb15
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb16
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb16
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb16
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb16
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb16
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb17
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb17
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb17
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb17
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb17
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb21
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb23
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb23
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb23
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb24
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb24
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb24
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb25
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb25
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb25
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb28
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb28
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb28
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb28
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb28
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb29
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb29
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb29
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb29
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb29
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb32
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb32
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb32
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb33
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb33
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb33
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb34
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb34
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb34
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb35
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb35
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb35
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb35
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb35
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb36
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb36
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb36
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb36
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb36
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb37
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb37
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb37
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb37
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb37
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb38
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb38
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb38
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb38
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb38
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb39
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb39
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb39
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb39
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb39
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb39
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb39

G. Ndpoles, M. Bello and Y. Salgueiro

Read, J., Pfahringer, B., & Holmes, G. (2008). Multi-label classification using
ensembles of pruned sets. In 8th IEEE international conference on data mining
(pp. 995-1000). IEEE.

Read,]., Pfahringer, B., Holmes, G., & Frank, E. (2009). Classifier chains for
multi-label classification. In Joint European conference on machine learning
and knowledge discovery in databases (pp. 254-269). Springer.

Ren, Y. Zhang, L, & Suganthan, P. N. (2016). Ensemble classification and
regression-recent developments, applications and future directions. IEEE
Computational Intelligence Magazine, 11(1), 41-53.

Rios, A., & Kavuluru, R. (2015). Convolutional neural networks for biomedical
text classification: application in indexing biomedical articles. In Proceedings
of the 6th ACM conference on bioinformatics, computational biology and health
informatics (pp. 258-267). ACM.

Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3), 297-336.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(56), 1929-1958.

Szymal, P., Kajdanowicz, T., et al. (2019). Scikit-multilearn: A python library for
multi-label classification. Journal of Machine Learning Research, 20(6), 1-22.

Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., & Vlahavas, 1. (2011). Mulan:
A java library for multi-label learning. Journal of Machine Learning Research,
12(Jul), 2411-2414.

Tsoumakas, G., & Vlahavas, I. (2007). Random k-labelsets: An ensemble method
for multilabel classification. In European conference on machine learning (pp.
406-417). Springer.

Vens, C., Struyf, J., Schietgat, L., DZeroski, S., & Blockeel, H. (2008). Decision trees
for hierarchical multi-label classification. Machine Learning, 73(2), 185.

Wang, J., Yang, Y., Mao,]., Huang, Z., Huang, C., & Xu, W. (2016). Cnn-rnn: A
unified framework for multi-label image classification. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 2285-2294).

48

Neural Networks 140 (2021) 39-48

Wei, Y., Xia, W,, Lin, M., Huang, J., Ni, B, Dong,]., et al. (2015). HCP: A flexible
CNN framework for multi-label image classification. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 38(9), 1901-1907.

Wu, F., Wang, Z., Zhang, Z., Yang, Y., Luo, J., Zhu, W., et al. (2015). Weakly semi-
supervised deep learning for multi-label image annotation. IEEE Transactions
on Big Data, 1(3), 109-122.

Yeh, C.-K., Wu, W.-C,, Ko, W.-],, & Wang, Y.-C. F. (2017). Learning deep latent
space for multi-label classification. In Thirty-first AAAI conference on artificial
intelligence (pp. 2838—2844).

Yu, Y., Pedrycz, W., & Miao, D. (2014). Multi-label classification by exploiting
label correlations. Expert Systems with Applications, 41(6), 2989-3004.

Zhang, M.-L. (2009). Ml-rbf: Rbf neural networks for multi-label learning. Neural
Processing Letters, 29(2), 61-74.

Zhang, M.-L, Li, Y.-K,, Liu, X.-Y.,, & Geng, X. (2018). Binary relevance for
multi-label learning: an overview. Frontiers of Computer Science, 12(2),
191-202.

Zhang, M.-L., & Zhou, Z.-H. (2006). Multilabel neural networks with applica-
tions to functional genomics and text categorization. IEEE Transactions on
Knowledge and Data Engineering, 18(10), 1338-1351.

Zhang, M.-L, & Zhou, Z.-H. (2007). ML-KNN: A lazy learning approach to
multi-label learning. Pattern Recognition, 40(7), 2038-2048.

Zhang, M.-L., & Zhou, Z.-H. (2013). A review on multi-label learning algorithms.
IEEE Transactions on Knowledge and Data Engineering, 26(8), 1819-1837.
Zhu, J., Liao, S., Lei, Z., & Li, S. Z. (2017). Multi-label convolutional neural network
based pedestrian attribute classification. Image and Vision Computing, 58,

224-229.

Zhu, D., Zhu, H,, Liy, X,, Li, H., Wang, F,, Li, H.,, et al. (2020). CREDO: Efficient
and privacy-preserving multi-level medical pre-diagnosis based on ML-kNN.
Information Sciences, 514, 244-262.

http://refhub.elsevier.com/S0893-6080(21)00081-2/sb40
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb40
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb40
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb40
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb40
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb41
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb41
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb41
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb41
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb41
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb42
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb42
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb42
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb42
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb42
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb44
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb44
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb44
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb45
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb45
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb45
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb45
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb45
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb46
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb46
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb46
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb48
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb48
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb48
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb48
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb48
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb49
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb49
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb49
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb51
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb51
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb51
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb51
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb51
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb52
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb52
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb52
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb52
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb52
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb54
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb54
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb54
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb55
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb55
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb55
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb56
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb56
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb56
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb56
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb56
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb57
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb57
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb57
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb57
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb57
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb58
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb58
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb58
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb59
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb59
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb59
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb60
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb60
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb60
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb60
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb60
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb61
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb61
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb61
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb61
http://refhub.elsevier.com/S0893-6080(21)00081-2/sb61

	Long-term Cognitive Network-based architecture for multi-label classification
	Introduction
	Long-term cognitive networks
	The proposed ML-LTCN architecture
	Backpropagation learning
	Numerical simulations
	Dataset characterization
	Exploring the ML-LTCN classifier
	Comparison against state-of-the-art algorithms
	Further discussion
	Computational complexity

	Concluding remarks
	Declaration of competing interest
	Acknowledgments
	References

