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Summary

We propose a Bayesian latent vector autoregressive (LVAR) model to analyze multivariate longi-

tudinal data of binary and ordinal variables (items) as a function of a small number of continuous

latent variables. We focus on the evolution of the latent variables while taking into account the

correlation structure of the responses. Often local independence is assumed in this context. Lo-

cal independence implies that, given the latent variables, the responses are assumed mutually

independent cross-sectionally and longitudinally. However, in practice conditioning on the latent

variables may not remove the dependence of the responses. We address local dependence by

further conditioning on item-specific random effects. A simulation study shows that wrongly as-

suming local independence may give biased estimates for the regression coefficients of the latent

vector autoregressive process as well as the item-specific parameters. Novel features of our pro-

posal include (i) correcting biased estimates of the model parameters, especially the regression

coefficients of the latent vector autoregressive process, obtained when local dependence is ignored
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and (ii) measuring the magnitude of local dependence. We applied our model on data obtained

from a registry on the elderly population in Belgium. The purpose was to examine the values of

oral health information on top of general health information.

Key words: Bayesian approach; Local dependence; Local independence; Oral health and general health;

Vector autoregressive models.

1. Introduction

Various applications in medicine, sociology, psychology, etc. require analyzing multivariate lon-

gitudinal data. In these applications, a set of subjects is repeatedly measured over time and the

subject’s condition is expressed by a number of correlated variables (items). Frequently, these

items are considered as manifestations of one or more underlying latent characteristic. Hence, to

measure the change in a subject’s condition, it might be useful to work with the lower dimen-

sional latent scores, rather than to work with the original items. However, any proposed model

for the change in the latent level should properly account for the complex correlation structure

induced by repeatedly collecting multiple observed responses. This paper focuses on the evolution

of the latent characteristics but simultaneously take into account the correlation structure of the

observed responses.

Our motivating data set consists of oral health (OH) and general health (GH) indicators

collected in the BelRAI registry on elderly people in Belgium. These indicators were obtained

with a questionnaire that was planned every six months. The indicators are assumed to be

the manifestations of the so-called latent OH and GH status, respectively. In this study, the

clinical researchers were interested to know whether OH status can additionally predict GH

status given the current GH status and vice-versa. The research question was triggered because

many caregivers are not convinced of the value of OH information on top of GH information. In
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addition, since in the future we are looking for a better OH questionnaire, it is of interest to see

how much the new OH indicators will improve prediction of the medical condition of the subjects

over the current OH indicators.

The above research questions suggest to use an item response theory (IRT) model (see e.g.

De Ayala, 2009; Reckase, 2009) to link the binary and ordinal responses over time to the latent

variables (factors) and a bivariate longitudinal model for the evolution of these variables. Since

our interest is placed on the cross-lagged effects of the latent factors, a bivariate autoregressive

process is argued to be appropriate. Borrowing ideas from time series literature on dynamic factor

analysis models, Zhang and Nesselroade (2007), Hutton and Chow (2014), and Cui and Dunson

(2014) proposed to use the vector autoregressive (VAR) process to model the evolution of the

latent factors. However, these proposal make use of a standard assumption in IRT models, that

is local independence, which may be too simplistic (Andrich, 2017).

For a LVAR model, this local independence assumption implies independence of (i) the re-

sponses of different items at the same time point, (ii) the responses of the same item over time,

(iii) and the responses of different items at different time points given the latent variables. In

other words, it is assumed that the latent factors account for all three sources of correlations:

(i) cross-sectional correlations: correlations between the responses at a particular time point,

(ii) auto-correlations: correlations between repeated measurements of the same response over

time, and (iii) cross-lagged correlations: correlations between different responses at different time

points.

When local independence does not hold, we speak of local dependence. Statistical models

that do not properly take the local dependence into account may yield biased estimates, leading

to possibly misleading inference (Andrich, 2017). Although the focus is on the evolution of the

latent variables, adequate modeling of the associations of the responses over time by taking into

account local dependence is necessary (Cagnone and others, 2009).
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The recent literature dealing with local dependence falls into two following approaches: (i)

adding random effects or (ii) modeling the conditional probability. Liu and Hedeker (2006) adds

shared random effects for all items while de Jong and others (2007), Proust-Lima and others

(2013), Verhagen and Fox (2013), and Fox and others (2017) incorporate item-specific random

effects. Cagnone and others (2009) and Wang and others (2013) also include random effects

when making use of the univariate autoregressive process for a single latent variable. For the

latter approach, Olsbjerg and Christensen (2015) allow the conditional probability of a response

of an item at a particular time point to depend on the response of that item at the previous

time point. Alternatively, Andrich (2017) includes an extra parameter, so-called the magnitude

of the dependence, to model the conditional probability. Unfortunately, these models are limited

to the case of a single latent factor. Little effort has been made to deal with local dependence

when vector autoregressive process for multiple latent variables is used. The generalized latent

trait model, proposed by Dunson (2003), can be used for multiple latent factors. However, this

proposal encounters substantial computational challenges with a poorly behaving sampler due to

high posterior dependence in the model parameters (Ghosh and Dunson, 2009; Cui and Dunson,

2014).

In this paper, we propose a LVAR model that combines an IRT model for the observed

responses and a VAR(1) process for the latent factors. We address the evolutions of the latent

variables while taking into account local dependence. Our model allows for multiple latent factors.

This proposal corrects for biased estimation of the regression coefficients of the VAR(1) process

and item-specific parameters. In addition, we introduce a quantity to measure the magnitude

of local dependence, ranging from 0 to 1 with a high value indicating local dependence. Novel

aspects of our proposal include (i) an extension of Cui and Dunson (2014) by the introduction

of subject-specific random effects to model local dependence, (ii) a generalization of Cagnone

and others (2009) by assuming more than one latent variable, (iii) and an introduction of the
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magnitude of local dependence, generalizing the magnitude of dependence proposed by Andrich

(2017) for a very limited case: the Rasch model (one-parameter IRT model) with a single latent

factor and only two time points.

The article proceeds as follows. In Section 2, we present our proposed model along with the

identification, prior specification, and estimation procedure. We provide in Section 3 an extensive

simulation study to investigate the performance of our proposal. We also compare our proposal

with a model assuming local independence. The usefulness of our proposal is illustrated in Section

4 where we model the development of OH and GH indicators recorded in the BelRAI database.

The paper concludes with some discussions in Section 5.

2. Proposed models

2.1 Model specification

Suppose that K items are repeatedly recorded on N individuals over time. Let Yijk be the

response for the kth item of the ith individual at the jth time point where i = 1, ..., N , j = 1, ..., ni,

k = 1, ...,K with ni (ni 6 T ) is the number of occasions for individual i and T is the largest

number of occasions. In this paper, we assume that for each subject the measurements are taken

on a subset of the set of T equidistant time points: {t1, ..., tT }. We then assume that the observed

items are manifestations of R (2 6 R) latent factors. Denote ξij = (ξij1, ..., ξijr, ..., ξijR)
T

the

R× 1 vector of latent factors for individual i at time point tj .

A popular model, linking the responses to the latent variables, makes use of two-parameter

IRT models for binary items (Fox, 2010) and polytomous IRT models for ordinal items (Ostini

and Nering, 2005), namely,

h(P (Yijk 6 m)) = θkm + βTk xij + λTk ξij , (2.1)

where h(.) is a link function (typically a logit or probit function) and m (0 6 m 6 ck−2) is some
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score of item k with ck is the number of categories. For a binary variable (ck = 2 and m = 0), we

model the probability being equal to 0 instead of 1 as typically done in the IRT literature. The

parameters θkm and λk are item-specific location (cut-point) and discrimination (factor loading)

parameters, respectively. The cut-points {θkm} are non-decreasing in m. The K×R matrix whose

kth row is λTk is called the factor loading matrix and denoted by Λ. Furthermore, βk is a p × 1

vector of regression parameters and xij is a p × 1 vector consisting of the values of p covariates

for individual i at time point tj .

We make use of a VAR(1) process to model the evolution of those latent factors:

ξi1 ∼ N(µ,Ω),

ξij ∼ N(µ+ Γ(ξi,j−1 − µ),Ω− ΓΩΓT ), ∀j > 2,

(2.2)

where µ is a R× 1 vector and Γ and Ω are R×R matrices. The diagonal and off-diagonal entries

of Γ are referred to as autoregressive and cross-lagged parameters, respectively. We here assume

that the latent factors satisfy the Markovian property.

The combination of the level 1 and level 2 model yields a LVAR model. This model assumes

local independence, i.e.

P (Yijk 6 m|xij ,xij′ , ξij , ξij′ )P (Yij′k 6 m
′ |xij ,xij′ , ξij , ξij′ )

= P (Yijk 6 m,Yij′k 6 m
′ |xij ,xij′ , ξij , ξij′ )

.

The model specified by (2.1) and (2.2) is similar to the proposal by Cui and Dunson (2014) where

the authors assume local independence. However, often local independence does not hold as we

also encountered in our motivating data set (Section 4). We will show later that ignoring local

dependence can give substantially biased estimates, especially for the regression coefficients of the

VAR(1) process. Therefore, we need to address local dependence. We propose to extend model

(2.1) with a random intercept, i.e. the model we propose is now

h(P (Yijk 6 m)) = θkm + βTk xij + λTk ξij + bik, (2.3)

where bik is the random effect for item k of individual i, assumed to be normally distributed

N(0, σ2
bk). Our proposal generalizes the approach by Cagnone and others (2009). More specifically,
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Cagnone and others (2009) limits to the case that R = 1. Our proposal does not have that

limitation.

The random effects and the latent factors jointly account for the longitudinal association of

the responses of the same item over time. More specifically, the variability of the left hand side

of (2.3) is explained by the latent factors and the random effects with the proportions

λTkCov(ξij)λk

λTkCov(ξij)λk + σ2
bk

and
σ2
bk

λTkCov(ξij)λk + σ2
bk

, (2.4)

respectively, where Cov(ξij) is the marginal covariance matrix of ξij . Following (2.2), we see

that Cov(ξij) = Ω. Indeed, Cov(ξi1) = Ω and Cov(ξij) = ΓCov(ξij−1)ΓT + Ω − ΓΩΓT =

ΓΩΓT + Ω− ΓΩΓT = Ω. Therefore (2.4) can be rewritten as

λTk Ωλk

λTk Ωλk + σ2
bk

and
σ2
bk

λTk Ωλk + σ2
bk

. (2.5)

We call the second formula in (2.5) the magnitude of local dependence for item k, denoted by

Dk. All Dk (k = 1, ...,K) range from 0 to 1 with a high value indicating local dependence.

The magnitude of local dependence, Dk, is similar to the intraclass correlation which can be

defined as

ICCk =
σ2
bk

λTk Ωλk + σ2
bk + π2/3

.

This definition is obtained by assuming that underlying each binary/ordinal item is a continuous

variable whose relative value in comparison with (a) given threshold(s) indicates the value of the

binary/ordinal variable (Goldstein and others, 2002; Browne and others, 2005). In addition, the

correlation between the items and the latent variables is calculated as

λk
Tωr√

λk
TΩλk + σ2

bk + σ2
0

,

where σ2
0 equals π2/3 or 1 if the logit or probit link function is used, respectively (see Section

A in the Supplementary Material). Note that when R = 1, σbk = 0, and the probit link is used,
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this correlation coefficient reduces to the biserial correlation coefficient (e.g. Johnson and Albert,

1999).

The inclusion of random effects allows for inter-individual variability, i.e. for each item two

individuals having the same latent factors and observed values of covariates may still score dif-

ferently related to unmeasured characteristics. For this reason the random effects are referred to

as item-specific response tendencies. By the incorporation of random effects, we now assume that

this model adequately takes into account the correlation structure of the observed responses.

2.2 Identification issues

Without adding further restrictions, model (2.3) is non-identifiable because of indeterminacy be-

tween the factor loadings (λk), location parameter (θkm), and the latent factors (ξij). A necessary

condition for identifying this model is that the latent factors must have a scale and an origin

(Oort, 2001). Scales of the latent factors can be imposed by fixing one factor loading per factor

at a non-zero value or by fixing R factor variances at one occasion at a non-zero value. Fixing

the origins for the latent factors can be done by fixing R item-specific location parameters (one

location parameter per factor) or fixing R factor means at one occasion (Oort, 2001). In this

paper, we fix the R factor means at 0 and the R factor variances at 1 at the first occasion, i.e.

µ=0 and Ω is a correlation matrix. Under this assumption, (2.2) is reduced to

ξi1 ∼ N(0,Ω),

ξij ∼ N(Γξi,j−1,Ω− ΓΩΓT ), ∀j > 2.

(2.6)

In addition to these restrictions, we must further impose at least R(R−1) independent restrictions

on Λ and/or Ω (Jöreskog, 1969). This can be done by requiring that certain elements of Λ and/or

Ω have fixed values (Jöreskog, 1969), typically zero, or using priors with zero mean and small

variance (Muthén and Asparouhov, 2012). We consider both approaches later.
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2.3 Prior distributions

To complete the Bayesian specification of the LVAR model, prior distributions have to be given

to the parameters. An informative prior may be chosen when prior knowledge or historical data

is available and relevant. For example, prior knowledge about the structure of the latent factors

should be taken into account. When there is no information or no intention to use prior informa-

tion into the analysis, a non-informative prior is used. We specify the level 1 and level 2 model

parameters separately. For both types of parameters a variety of prior distributions have been

selected, basically all of them are vague but should take the above model considerations into

account.

The level 1 model parameters are the location parameters θkm, the discrimination parameters

λk and the regression coefficients βk. In the literature, a variety of priors has been suggested for

θk0 in the binary case, varying from independent normals (Johnson and Albert, 1999), univariate

hierarchical priors (Bradlow and others, 1999) and a multivariate hierarchical prior together

with the discrimination parameters (Fox, 2010). For ordinal items, the prior must take into

account their natural order (θkm 6 θkm′ when m < m
′
). Again a number of priors has been

proposed to impose that constraint, see e.g. Albert and Chib (1993) and Albert and Chib (2001).

In the latter paper, a transformation turns the cut-points into unconstrained parameters. For

the discrimination parameters, Johnson and Albert (1999) proposed a truncated normal, while

Bradlow and others (1999) suggested a univariate hierarchical prior and, as indicated above,

Fox (2010) suggested a joint hierarchical prior. Finally, for the logistic regression parameters

βk, vague normal priors can be given. However, these priors do not protect against separation

problems in the data, see e.g. Albert and Anderson (1984), Lesaffre and Albert (1989). One can

take a normal prior with a realistic value for the prior (Lesaffre and Lawson, 2012) or a Cauchy(0,

2.5) or Cauchy(0, 5) prior (Gelman and others, 2008).

In this paper, we have taken a hierarchical prior for the cut-points (taking into account the
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ordering) and another hierarchical prior for the discrimination parameters, i.e.,

θkm | µθ, σθ
iid∼ N(µθ, σ

2
θ), k = 1, ...,K,m = 0, ..., ck − 2, given the order constraint,

λkr | σλ
iid∼ half−N(1, σ2

λ), k = 1, ...,K, r = 1, ..., R,

where µθ, σθ, and σλ are hyperparameters. Hierarchical priors have the advantage that the pa-

rameters are connected as much as the data allow for. Hence, they ensure some stability in the

estimation process. For the regression coefficients, a Cauchy(0, 5) prior was taken. Finally, a

half-normal or a half-Cauchy distribution can be given to σbk (1 6 k 6 K) (Gelman, 2006). For

more details on the chosen priors, we refer to Section 3.

The level 2 model parameters are Γ and Ω. Vague priors such as a normal distribution with

large variance can be given for the autoregressive and cross-lagged parameters in Γ. When R = 2,

Ω has only one parameter, namely ρ, which can take a uniform prior on [−1, 1]. For more details

on the chosen priors, we refer to Section 3.

2.4 Estimation

Estimating the model parameters of the suggested LVAR model is quite challenging (see Section B

of the Supplementary Material), and requires a Markov Chain Monte Carlo (MCMC) procedure.

To deal with missing values, we assume that the missingness mechanism is missing at random

(MAR). Hence, the likelihood was obtained by integrating out the missing values (Little and

Rubin, 2002):

L(η|Yobs) =

∫
f(Yobs, Ymiss|η)dYmis

where Yobs and Ymis are the observed and missing parts of the data, respectively, and η are the

model parameters. From L(η|Yobs), we defined the posterior distribution by multiplying it with

the priors.

Sampling from the posterior distribution was done using the software package Stan (Carpenter

and others, 2017). To assess convergence, we checked the trace plots and used the Gelman-Rubin
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diagnostic to ensure that the estimated potential scale reduction factor (Rhat) for all parameters

was smaller than 1.1. The converged chains were run until the effective sample size was large

enough for the parameters of interest (e.g. Monte Carlo error/posterior SD 6 0.05). Finally,

we used Watanabe’s information criterion WAIC (Watanabe, 2010) for model comparison as

suggested by Luo and Al-Harbi (2017).

3. Simulation study

To assess the performance of the proposed model, we performed six simulation studies. Simula-

tion study 1 compares our proposed model assuming local dependence, i.e. level 1 is based on

model (2.3), (referred as model DEP) and a model assuming local independence, i.e. level 1 is

based on model (2.1), (referred as model INDEP) in four scenarios where the magnitude of local

dependence is 0, 0.3, 0.6, and 0.9, respectively. Simulation study 2 investigates the effect of mis-

specification of the distribution for the subject-specific random effects. The third one examines

the effect of ignoring important covariates and the fourth one investigate how the magnitude

of local dependence can reflex misspecification with respect to the number of latent variables.

We also examine the proposal with a small sample size in simulation study 5. Finally, we did a

sensitivity analysis for the magnitude of local dependence under different priors.

The results from the simulation studies show that model DEP and model INDEP perform

fairly similarly when local independence exits and model DEP outperforms model INDEP in

case of local dependence. Specifically, model INDEP provides substantially biased estimates.

Biased estimates are also observed when important covariates are ignored. Another result is that

local dependence can be used to detect misspecification with respect to the number of latent

variables. Finally, our proposed model can work with relatively small datasets and in this case,

the magnitude of local dependence does not change much under different sets of priors. We

here present the results for the simulation study 1, scenario 2, i.e. comparing model DEP and
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INDEP where magnitude of local dependence is around 0.3. For the other simulation studies and

scenarios, the readers are referred to Section C of the Supplementary Material.

The following setting was taken. We fixed the number of individuals at N = 400. For each

individual, the number of repeated measurements was randomly sampled in {2, . . . , 12} (i.e.

2 6 ni 6 T = 12 ∀i). The sampling procedure is set so that there are more individuals with fewer

observations. The number of latent factors was fixed at two and the number of items at seven

with three binary and four ordinal items representing the first and the second factor, respectively.

Two elements of the factor loading matrix, Λ, are fixed at zero, i.e.,

Λ =



λ11 λ12
λ21 λ22
λ31 0
0 λ42
λ51 λ52
λ61 λ62
λ71 λ72


. (3.7)

We have taken two covariates: a binary covariate assuming 1 with probability 0.5, and a N(0, 1)

distributed covariate. With this setting, 100 simulated datasets are generated. From each com-

plete data set, item values were put as missing using a missing at random mechanism where

the probabilities of being missing depend on the covariates and the previous response of that

item, starting at the second time point. The sampling procedure for ni, the true values of the

model parameters, and the parameters for coding missing values are given in Section C of the

Supplementary Material.

Denote Γ =

(
γ11 γ12
γ21 γ22

)
, the following prior distributions are then specified:

θkm | µθ, σθ
iid∼ N(µθ, σ

2
θ), k = 1, ...,K,m = 0, ..., ck − 2, given the order constraint,

µθ ∼ Cauchy(0, 5),
σθ ∼ half−Cauchy(0, 5),

λkr | σλ
iid∼ half−N(1, σ2

λ), k = 1, ...,K, r = 1, ..., R,
σλ ∼ half−Cauchy(0, 5),

βk
iid∼ Cauchy(0, 5), k = 1, ...,K,

γ11, γ12, γ21, γ22
iid∼ N(0, 100),

ρ ∼ Uniform(−1, 1),

σbk
iid∼ half−Cauchy(0, 5), k = 1, ...,K.
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For each model, three chains with 5 000 iterations were run and the last 2 500 iterations of each

chain were retained for posterior summaries. Convergence was checked as explained above.

All fittings passed the convergence check. For each parameter, we computed the average

relative bias ((estimated-true)/true) (RB), the mean squared error (MSE) of the estimate, and

the coverage probability (CP), i.e. the proportion where the 95% credible interval (CI) covers the

true value. The results are provided in Table 1.

The results show that the estimators from model DEP are unbiased. Except for γ11 and

γ22 and some others, the average relative biases are negative in the model INDEP with values

ranging around -0.33. This means that model INDEP shrinks these parameters towards 0 with

about 0.33. For the bivariate AR process, model INDEP overestimates the autoregressive effects

while it substantially underestimates the cross-lagged effects. The relatively poor performance

of model INDEP compared to model DEP is also seen in the MSE, which is often higher for

the INDEP model. Finally, the coverage of the 95% CI’s for model INDEP is low, especially for

the autoregressive and cross-lagged effects while around the nominal level for model DEP. Thus,

ignoring local dependence can give substantially biased estimates. In particular, it downgrades

the cross-lagged effects, which in various cases are of the main interest.

4. Application to BelRAI database

4.1 BelRAI dataset

From 2010 onwards, the Belgian National Institute for Health and Disability Insurance (NIHDI)

funded initiatives to reduce the risk of institutionalization for older people, i.e keeping them

longer at home by providing home care. The individuals who were aged 65 and older, frail, and at

risk of institutionalization were referred to health care agencies by the physicians, social services,

or nurses but the decision is upon the subject and/or their family members. Health care agencies

delivered at home the intervention programs, which were classified into different types: case man-
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agement, day care, night care, occupational therapy, psychological support, and others. During

the delivery of interventions, the professional caregivers, such as nurses, occupational therapists,

physiotherapists, or psychologists completed the BelRAI Home Care instrument (questionnaire),

under the consent of their clients and/or family members. The BelRAI instrument represents the

Belgian version of the interRAI instruments, which are comprehensive assessments that evaluate

at regular intervals the physical, clinical, psychological and social condition of an elderly person.

The questionnaire was filled in at baseline and every six months afterwards. This information

can be used to draw up a personalized care plan. More details about the BelRAI database can

be found in Almeida Mello and others (2016) and references therein.

Our study involves N = 5 420 participants with 13 199 observations. We were interested in

the relation between OH and GH status over time. Common manifestations of general health

deterioration in older people include limited physical functioning, cognitive impairment, and

depression (Ganguli, 2009) whereas common oral health issues are chewing difficulty, dryness

of the mouth (Razak and others, 2014), and non-intact teeth (De Visschere and others, 2016).

Therefore, three binary OH and four ordinal GH indicators mentioned above were internationally

chosen with an intention that they can capture all relevant information to evaluate the OH and

GH status (http://www.interrai.org/). The OH status was evaluated via three binary OH-related

items: non-intact teeth (NT), chewing difficulty (CD), and dry mouth (DM). Four interRAI

validated scales, evaluating the functional, cognitive, and mental condition of the subjects and

their stability, represent the GH status: Activities of Daily Living (ADL), Cognitive Performance

Scale (CPS), Depression Rating Scale (DRS), and Changes in Health, End-Stage Disease, Signs,

and Symptoms Scale (CHESS). We collapsed the original classes (7, 7, 15, and 6 respectively) of

the GH indicators into four and coded each GH indicator from 0 to 3 where lower values indicate

a better health condition. These items are supposed to represent the true OH and GH status,

but to reveal the true states probably a more extensive examination is required. Additionally,
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we included age (at baseline), gender (70% is female), living status (53% living alone), and type

of intervention (70% is case management) into the analysis. It is of interest to describe the

development of OH and GH status over time and to assess the importance of the cross-lagged

effects, i.e. the additional information that the current OH (resp. GH) status provides on the

future GH (resp. OH) status (Figure 1).

4.2 Results

All models in this section take the same prior specification as specified in Section 3. Three chains

with 5 000 iterations were run for each model and the last 2 500 iterations of each chain were

retained for posterior summaries. WAIC was computed for model comparison. The implemented

formula for WAIC computation is provided in Section D of the Supplementary Material. We per-

formed a posterior predictive check (PPC) as a goodness-of-fit test with the following discrepancy

function (van der Linden, 2016):

χ(y,η) =

N∑
i=1

ni∑
j=1

K∑
k=1

(Yijk − E(Yijk|η))2

V ar(Yijk|η)
,

where E(Yijk|η) =
ck−1∑
m=0

m×P (Yijk = m|η), V ar(Yijk|η) =
ck−1∑
m=0

(m−E(Yijk|η))2×P (Yijk = m|η),

and η is the set of all parameters. Using this discrepancy function, we computed the posterior

predictive p-value (sometimes called Bayesian p-value), which is the proportion that the function,

computed from the original data, is larger than its value, computed from the generated data, i.e.

estimated PPP-value =
1

K

K∑
i=1

I[χ(y,ηk) > χ(ỹk,ηk)]

where η1, ...,ηK is a converged Markov chain from p(η | y), ỹk a replicated data generated from

p(y | ηk). For a well chosen model, PPP-value will be around 0.5.
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We start with a model DEP where the factor loading matrix is specified as:

Λ =



λ11 0
λ21 0
λ31 0
0 λ42
0 λ52
0 λ62
0 λ72


.

Since the posterior predictive p-value (PPP-value) of this model is 0.45, we can continue with

this model. For a PPP-value close to 0 or 1, this model can be extended by allowing the cross-

loadings to be estimated. In this case, a prior distribution with mean zero and small variance

should be used otherwise the model will be unidentified (Muthén and Asparouhov, 2012). As an

illustration, we specified λkr ∼ N(0, 0.01) for the cross-loadings. The WAIC for model DEP with

and without the cross-loadings is 73692 and 73693, respectively, with PPP-values of 0.46 and

0.45, respectively. As a result, no extension with regard to the cross-loadings is needed and the

model DEP without the cross-loadings is chosen.

We also fitted the corresponding model INDEP to the data. Table 2 gives parameter estimates

(95% credible interval) for the autoregressive and cross-lagged parameters as well as WAIC for

model DEP and model INDEP (See Table A9 in the Supplementary Material for the other

regression parameters). Since WAIC is much smaller for model DEP, we conclude that local

dependence exists in the data structure. In fact, the magnitude of local dependence (95% CI)

for the seven items are 0.84 (0.80, 0.89), 0.29 (0.18, 0.39), 0.61 (0.54, 0.68), 0.86 (0.83, 0.89),

0.70 (0.64, 0.75), 0.74 (0.69, 0.78), 0.68 (0.62, 0.74), respectively. As indicated by the simulation

study, these values of magnitude of local dependence are high and local dependence should be

taken into account. Hence, between these two models, model DEP should be used for statistical

inference.

Table 3 provides estimates and 95% CI’s for the correlation coefficients between the OH, GH

indicators and the latent OH, GH status. Moderate and high correlation coefficients indicate that

the observed indicators can capture the latent status. Specifically, chewing difficulty associates
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the most with the latent OH status, while cognition and depression are strongly associated with

the latent GH status. In addition, chewing difficulty is also highly correlated with the latent GH

status.

The results from model DEP in Table 2 indicate that the current OH status provides additional

information in predicting the future value of GH status given the current GH status. Moreover,

higher values for current OH correspond to higher values of future GH. In other words, the im-

portance of the cross-lagged effect means that having a poor OH status is additionally predictive

of a poor GH status in the future.

The clinical consequence of the findings is that the caregivers should not ignore OH status

when preparing personalized care plans. The cross-lagged effect from OH to GH in the BelRAI

population suggest that the presence of OH problem can be considered as a symptom of GH

problem in the future.

5. Discussion

We have proposed a Bayesian LVAR model utilizing a vector autoregressive process for the latent

level while taking local dependence into consideration. The proposal is particularly useful for

analyzing the evolution of the latent factors. Our contribution includes (i) extending the approach

by Cui and Dunson (2014) where the authors assume local independence, (ii) generalizing the

approach by Cagnone and others (2009) where that approach limits to the case of a single latent

variable, and (iii) introducing a quantity to measure the magnitude of local dependence proposed

by Andrich (2017) for a limited case. We applied this model to analyze the changes of the OH and

GH status over time. The results offer a persuasive evidence to caregivers about the usefulness

of OH information on top of GH information.

Several consequences can occur when ignoring the local dependence. Biased estimation when

assuming local independence can result in a misleading inference. In our application, ignoring local
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independence would have affected considerably the clinical conclusions made from the BelRAI

data. In fact, compared to model DEP, the effects of OH on future GH in model INDEP is

insignificant. Although the proposal by Andrich (2017) can correct for the biasedness, it limits

to the Rasch model, i.e one-parameter IRT model, with a single latent factor and only two time

points. Our proposal is applicable to a broader setting with multiple latent factors.

A potential application of the LVAR framework is to predict future item values for subjects

included in the study. Wang and others (2017) propose a two-stage prediction procedure for a

setting with one latent factor but that procedure can be extended to the case of multiple latent

variables. First, one predicts the latent factors using, e.g. forecasting techniques from the time

series literature (e.g. Brockwell and Davis, 2016). The second step is to predict the item values

via the link from the latent factors. The precision of the prediction depends upon the quality of

prediction from the two steps. Again, ignoring the local dependence, which affects the parameter

estimates in both steps, might give wrong predicted values.

A noticeable feature of the proposed model is that it can serve as an indicator for checking

the assumption that the observed responses well represent the latent variables. The magnitude of

local dependence can indicate how well the observed items represent the latent variables because

a high magnitude means a low proportion of the explained variability, contributed by the latent

variables. For example, in the BelRAI application, although the observed indicators can capture

the latent variables, high values of magnitude of local dependence suggest that the observed OH

and GH indicators do not well represent the latent OH and GH status.

We argue that our model is useful in a more broadly sense than in the current example.

Indeed, examples can be found in clinical trials of a similar type. For example, the effect of

ceftriaxone, a treatment to slow the disease progression of amyotrophic lateral sclerosis (ALS)

which is a neurodegenerative disease, on ten ALS functional rating scales was evaluated on three

latent factors, bulbar, upper limb, and lower limb functions (Wang and Luo, 2017). In behavioral
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science, Hutton and Chow (2014) examine the daily emotional status of individuals and study

the individuals’ regulation of positive affect and negative effect, each represented by a battery of

items, comparing the laboratory versus the field settings. Our proposal can also be applied to the

study described by Dunson (2003) where the neurobehavioral development in rodents exposed

to the pesticide methoxychlor was examined, where the neurologic function and behavior are

measured by a number of tests.

Although our focus was on two latent factors, it is relatively straightforward to generalize our

model to the case of more than two factors. Most of the above specification remains the same

except that some attention has to be paid on the VAR(1) process. Extensions for larger R require

some notice on the prior distribution for the correlation matrix Ω. Another generalization, which

is to relax the assumption of constant time difference, is the topic of our current research. In this

case, the autoregressive and cross-lagged parameters need to be adjusted in order to reflect the

effect of time length.

As suggested by Oort (2001), we keep the factor loadings of each item invariant over time in

order to keep the meaning of that item constant. We assume invariant factor loadings because

the interpretation becomes difficult if the meaning of the indicators changes over time. However,

in other applications, this assumption can be relaxed by allowing the factor loadings of an item

varying around an average value (e.g. de Jong and others, 2007; Fox, 2010).

Depending on the research question, a particular model can be chosen for the latent factors.

In our paper when interest is placed on the cross-lagged effects, a bivariate autoregressive process

is argued to be appropriate since the cross-lagged parameters directly address those effects. This

choice, which is useful for testing the cross-lagged effects at the latent level, can therefore further

serve as an exploratory tool supporting the establishment of the causal relationship between the

latent factors (Eichler, 2013). When the effect of covariates on the latent factors or when the

cluster nature of the latent variables is of interest, multivariate linear mixed models (e.g. Verbeke
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and others, 2014; Wang and Luo, 2017) or multilevel models (e.g. de Jong and Steenkamp, 2010;

Fox, 2010) may be more appropriate for the latent factors.

One assumption is that the design should be roughly balanced. However, for subjects, it does

not require the observed repeated measurements are equidistant because MAR mechanism can

deal with intermittent missingness. For unbalanced designs and/or informative missingness (re-

sponses and/or covariates), further extensions are needed. The former can be tackled by allowing

the parameters of the AR process to depend on time distance and the latter can be tackled by

simultaneously modeling the missingness mechanism.

We limited to the comparison between model DEP and model INDEP. However, other com-

parisons can be made. For example, local dependence can be extended so that the responses at

the same time point can be correlated stronger than implied by the latent factors. To do so,

we could assume a multivariate distribution for the random effects. However, this may create

computational issues (Verbeke and others, 2014). In addition, this extension lacks the attractive

feature of our proposal, that is dimension reduction. Another deviation that we are currently

studying is to compare our proposal with the latent linear mixed model (Wang and Luo, 2017),

which focuses on the mean structure of the latent variables. We will report the results soon.

6. Software

Software in the form of R code, together with a simulated input data set and complete documen-

tation is available on Github at https://github.com/tdt01/local dependence

7. Supplementary Material

Supplementary Material is available online at http://biostatistics.oxfordjournals.org.
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Table 1. Simulation study 1, scenario 2: Average relative bias (RB), mean squared error (MSE), and
coverage probability (CP) for the selected parameters

Model DEP Model INDEP
Parameter True value RB MSE CP RB MSE CP

θ2 0.60 -0.053 0.113 96 -0.384 0.104 81
θ3 0.90 -0.003 0.111 97 -0.341 0.154 73
θ41 -3.00 0.003 0.076 98 -0.373 1.285 0
θ42 -1.00 -0.022 0.066 94 -0.399 0.185 30
θ43 2.70 0.031 0.079 95 -0.342 0.886 0
θ51 -4.00 -0.039 0.292 95 -0.454 3.420 0
θ52 -1.50 -0.076 0.218 94 -0.474 0.588 20
θ53 2.60 0.032 0.187 96 -0.412 1.223 7
θ71 -2.50 0.001 0.039 96 -0.232 0.360 2
θ72 -1.00 -0.001 0.034 94 -0.247 0.082 48
θ73 1.40 0.018 0.030 95 -0.200 0.097 41
λ11 1.20 0.009 0.016 96 -0.193 0.065 32
λ12 0.30 0.067 0.010 95 0.186 0.013 78
λ21 4.00 0.031 0.233 97 -0.298 1.662 17
λ22 0.50 0.101 0.044 99 -0.208 0.055 66
λ31 4.10 0.009 0.235 94 -0.255 1.347 27
λ42 3.10 0.016 0.047 98 -0.348 1.206 0
λ51 0.60 0.116 0.065 95 -0.456 0.143 39
λ52 5.20 -0.030 0.252 93 -0.392 4.484 2
λ61 0.40 0.140 0.032 94 0.004 0.036 67
λ62 3.00 0.003 0.050 94 -0.348 1.140 0
λ71 0.30 0.100 0.017 93 0.093 0.019 69
λ72 1.70 -0.006 0.014 96 -0.268 0.219 3
β11 0.30 0.142 0.034 97 0.008 0.026 93
β12 0.50 0.005 0.010 95 -0.124 0.012 86
β21 0.10 0.476 0.233 95 0.025 0.114 92
β22 0.20 0.138 0.074 95 -0.203 0.034 92
β31 -0.10 -0.120 0.303 96 -0.338 0.146 91
β32 0.20 0.030 0.057 98 -0.322 0.029 97
β41 -0.20 -0.064 0.131 97 -0.453 0.062 87
β42 0.40 -0.047 0.034 96 -0.402 0.041 61
β51 0.30 0.311 0.350 95 -0.307 0.134 95
β52 -0.30 0.055 0.128 93 -0.410 0.062 83
β61 -0.10 -0.509 0.133 97 -0.643 0.068 92
β62 -0.20 0.098 0.040 94 -0.248 0.020 92
β71 -0.20 -0.032 0.047 96 -0.247 0.035 94
β72 -0.10 0.339 0.015 95 0.057 0.009 92
σb1 0.80 -0.007 0.020 94 - - -
σb2 2.50 0.030 0.149 95 - - -
σb3 2.70 0.036 0.189 92 - - -
σb4 2.10 0.012 0.033 92 - - -
σb5 3.30 -0.009 0.089 95 - - -
σb6 1.90 0.002 0.020 98 - - -
σb7 1.30 -0.002 0.013 96 - - -
γ11 0.90 -0.006 0.000 97 0.071 0.004 0
γ12 0.10 0.029 0.000 98 -0.612 0.004 1
γ21 0.12 0.055 0.000 95 -0.572 0.005 0
γ22 0.85 -0.010 0.000 95 0.098 0.007 0
ρ 0.40 -0.045 0.003 96 -0.157 0.009 73
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Table 2. BelRAI data: Posterior means (95% credible intervals) for auto-regressive, cross-lagged parame-
ters, and WAIC for model DEP, which assumes the local dependence, and model INDEP, which assumes
the local independence.

model DEP model INDEP
Mean 95% CI Mean 95% CI

γ11 0.978 0.959 0.996 0.995 0.985 1.003
γ12 -0.003 -0.033 0.027 -0.005 -0.031 0.024
γ21 0.058 0.025 0.094 -0.005 -0.034 0.022
γ22 0.878 0.843 0.909 0.964 0.947 0.980

WAIC 73693 72775 74611 114921 113935 115908

Table 3. Correlation coefficients between the OH, GH indicators and the OH, GH status

OH GH
Item Mean 95% CI Mean 95% CI
Non-intact teeth 0.39 0.33 0.45 0.22 0.18 0.26
Chewing difficulty 0.84 0.78 0.90 0.47 0.42 0.52
Dry mouth 0.62 0.56 0.67 0.35 0.30 0.40
ADL 0.20 0.17 0.23 0.35 0.31 0.38
CPS 0.30 0.27 0.34 0.54 0.49 0.58
DRS 0.27 0.24 0.31 0.48 0.44 0.52
CHESS 0.23 0.20 0.27 0.41 0.37 0.45
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Fig. 1. The hypothesized relationship of the oral health (OH) and general health (GH) status. Three
binary OH items and four ordinal GH items are selected to represent OH and GH status, respectively.
The individual is measured at the first visit and then every 6 months afterwards. The random effects are
added to take into account the local dependence. The index i for subject i is suppressed.


