
éêçãçíçê=W

=

báåÇîÉêÜ~åÇÉäáåÖ=îççêÖÉÇê~ÖÉå=íçí=ÜÉí=ÄÉâçãÉå=î~å=ÇÉ=Öê~~Ç=
j~ëíÉê=áå=ÇÉ=áåÑçêã~íáÅ~=Ç~í~Ä~ëÉë

j~é=ã~íÅÜáåÖ=íê~ÅâáåÖ=Ç~í~

mêçÑK=ÇêK=_~êí=hrfgmbop

hêáëíçÑ=dÜóë

Dankwoord

Deze thesis is niet tot stand kunnen komen zonder een aantal mensen.
Allereerst zou ik graag promotor Prof. dr. Bart Kuijpers en begeleider Bart
Moelans willen danken voor de begeleiding doorheen het ganse jaar. Ook
bedank ik Leen De Temmerman van de universiteit van Gent voor de vlotte
samenwerking en voor het verschaffen van de noodzakelijke gegevens. Ook
Prof. dr. Philippe Demaeyer en Prof. dr. Nico Van de Weghe van de univer-
siteit van Gent had ik graag willen danken voor de gastvrijheid die ik heb
mogen genieten toen ik in Gent was. Verder wil ik ook mijn vriendin Vera
bedanken voor haar steun tijdens het ganse jaar! Uiteraard ook mijn ouders
voor de steun die ze me hebben gegeven. En natuurlijk kunnen ook mijn
medestudenten niet vergeten worden voor de onvergetelijke 4 jaren die we
samen hebben doorgebracht.
Dus bij deze bedankt allemaal!

Kristof Ghys

Abstract

Route planners become more and more available for everyone. These
intelligent devices are very popular and are very easy in use. The police of
Ghent had a problem with new and transferred cops. They did not know the
environment, so it would be better if they got a route planner in their car
which showed the right way. The problem is that the ordinary route planners
are not able to fulfill all the wishes for law enforcement. They do not take
into account for instance where the school gate is situated and to avoid
this area when they are on an intervention around school time if possible.
This thesis tries to make a custom-made route planner for police officers.
This thesis is about mapping the GPS points got from real-life trajectories
of experienced police officers mapped to the real network topology. The
analysis of these trajectories afterwards is very interesting and will be done
in further work.

How do they get to the place of intervention? Do they take many risks
by driving too fast or are they careful enough and do not drive too fast at
all. We are trying to make a custom-made route planner for these officers
especially for new or transferred cops who do not know the environment
yet. We did this by analysing real trajectories from police officers on patrol.
A first step is to record these real-life trajectories. Then we have these
trajectories we can map to the real network topology, analyze it and finally
we can make a custom-made route planner. In this work we try to map the
GPS points recorded to the real network topology. We try a relatively new
technique called beads. This is an estimate where the police car could have
been between two succeeding points knowing that they do not exceed some
maximum speed and knowing the time between both points.

Our recordings are pretty accurate in theory (every 10 meters a GPS
point) but in practice this is of course not always the case. Sometimes there
are even gaps of more than 400 meters. Most algorithms found in literature
are based on real-time mapping and they have points time-based recorded
for instance every 5 seconds a point. These are the biggest differences with
our data. The fact that we have every 10 meters a point recorded is in
our advantage because then our beads algorithm performs best. It can then
better calculate where it could have been between two succeeding points,
than if it was time-based recorded.

Dutch Summary -
Nederlandstalige samenvatting

De politie van Gent had een probleem met nieuwe of overgeplaatste poli-
tieagenten. Deze agenten hebben namelijk nog geen ervaring in een stad als
Gent en kennen bijgevolg de weg niet. Hierdoor duurt het natuurlijk langer
dan ervaren agenten om naar de interventie te gaan en dit moet verbeterd
worden voor een betere dienstverlening. Daarom besliste de politie van
Gent om de universiteit van Gent hierover aan te spreken en vroeg hen om
een oplossing. Omdat de universiteit van Gent samenwerkt in een Vlaams
project “Knowledge representation and database problems for spatiotemporal
data: a calculus approach to representing knowledge about trajectories.” en
omdat de universiteit Hasselt meer ervaring heeft op het gebied van de recon-
structie en analyse van trajecten, alsook met het behandelen van onzekere
of partiële informatie, werd dit probleem aan de UHasselt overgemaakt. Het
hoofddoel van deze thesis is om een op maat gemaakte routeplanner voor
agenten te ontwikkelen. Deze thesis is een eerste deel van vele waarin we
de verworven data omzetten naar de ‘echte’ wegen topologie. Toekomstig
werk zal vooral inhouden de trajecten te analyseren en tot slot dan een
routeplanner voor de agenten te maken.

De universiteit van Gent vergaarde real-life trajecten van de agenten
door hun een GPS toestel, dat enkel GPS punten opnam mee te geven op
patrouille. Hierdoor krijgen we een beeld van hoe de agenten zich doorheen
de stad bewegen en hoelang ze erover doen. Dit geeft ons een goed zicht
op bepaalde feiten zoals bv. het vermijden van een schoolomgeving, het
vermijden van zone 30 omgevingen en de voorkeur geven aan hoofdwegen.
Dit zijn zeer interessante feiten om in rekening te brengen wanneer we een
op maat gemaakte routeplanner willen ontwikkelen voor agenten. Zij zijn
immers (als het om een hoog prioritaire interventie gaat) minder gebonden
aan verkeersregels.

We stellen 2 technieken voor om de eigenlijke mapping van GPS coördi-
naten naar de eigenlijke topologie van het wegennetwerk te gaan. Eentje is
een näıeve oplossing terwijl de andere een meer doordachte en betere oplos-
sing is. De näıeve methode werkt als volgt. We kijken voor elk GPS punt
welke straten er het dichtste bij liggen (5 dichtste) en deze straten behouden
we, dan hebben we achteraf een klein netwerk waarop we een kortste pad al-
goritme zoals bv. A* [46] toepassen . De meer doordachte manier van werken
is er eentje die gebruikt maakt van de techniek van beads. Met deze tech-
niek berekenen we een gebied waarin de auto aanwezig zou kunnen geweest
zijn in de tijd tussen punt 1 en punt 2. Dit doen we door een bepaalde
maximumsnelheid vast te stellen (bv. 120 km/uur in bebouwde kom, wat
realistisch is omdat deze snelheid waarschijnlijk nooit gehaald wordt in be-
bouwde kom en dus dat alle straten in dit gebied liggen) en dan de straten

te berekenen die in dit gebied liggen. Hier krijgen we dan ook een verkleind
netwerk waarop we in plaats van het kortste pad, k -kortste paden bereke-
nen. Maar voor we de k-kortste paden berekenen gaan we aan de straten
een gewicht toekennen. De gewichten worden toegekend door elk GPS punt
te beschouwen en dan krijgt de dichtstbijzijnde straat gewicht n, de straat
die het 2de dichtste erbij ligt krijgt gewicht n − 1 en zo verder tot de nde

straat gewicht 1 krijgt. Uiteraard kan men n zelf kiezen, maar wij kozen
voor n = 5.

Een vergelijking van beide algoritmen is zeer interessant. De näıve
oplossing, die op het eerste zicht geen enkele kans op slagen heeft blijkt
achteraf toch een goede indruk te geven van de genomen route. De data die
we hebben is vrij precies desondanks het feit dat er soms gaten in optreden.
De näıeve oplossing is dikwijls evengoed als de beads oplossing, maar de
näıeve oplossing is veel sneller (tot 5 keer gemiddeld en soms zelfs tot 10
keer sneller). Wanneer er echter gaten optreden geeft de näıeve methode
geen oplossing terwijl de beads methode een juiste oplossing geeft. Waar
beide algoritmen het moeilijk mee hebben zijn loops in de data. Dit is om-
dat we ervan uitgegaan zijn dat loops niet zouden voorkomen en dit dus
zo geprogrammeerd is. Na grondige analyse van de beschikbare data blijkt
echter dat loops af en toe wel degelijk voorkomen, vooral op het einde van
het traject wanneer de agenten moeten zoeken naar het juiste huisnummer of
de juiste straat. We kunnen dus concluderen dat desondanks dat de näıeve
oplossing veel sneller is, ze niet altijd een juist resultaat geven. Daarentegen
geeft de beads methode wel altijd een oplossing en een juiste maar duurt
dit langer. Door het feit dat we de berekeningen niet in real-time moeten
uitvoeren, is het niet erg dat de berekening langer duurt.

Zoals reeds gezegd houdt het algoritme geen rekening met loops. Dit
moet nog ingebouwd worden. De analyse van deze data moet ook nog
gebeuren om dan tot een goede op maat gemaakte routeplanner te komen.
Verder kan er ook nog uitgezocht worden in hoeverre mate Google Earth een
alternatief is om de routes te bepalen. Google Earth maakt van de opeenvol-
gende GPS punten ook al een mooie opeenvolging die op eerste zicht perfect
op het stratennetwerk ligt, maar waarschijnlijk zal de output hiervan geen
informatie bevatten over de straten die zijn genomen en dus zal dit onbruik-
baar zijn om verder te gebruiken. Het zal wel bruikbaar zijn om de data te
visualiseren. Wanneer de GPS systemen zullen in gebruik genomen kan het
een mogelijkheid zijn om op het hoofdkwartier een real-time verbinding te
houden met de patrouilles, zo kan er dan ook zeer snel gereageerd worden
op de interventies en kan de dichtstbijzijnde patrouille gestuurd worden. Er
kan ook voor gekozen worden om ook de files beter in kaart te brengen zodat
ook daar beter op gereageerd kan worden. De mogelijkheden zijn enorm en
dit zijn slechts enkele toepassingen die realiseerbaar kunnen zijn wanneer er
een full-time link is met de patrouilles.

Contents

1 Introduction 3
1.1 Problem description . 7
1.2 Map-Matching . 8
1.3 Available data . 11

1.3.1 The real (imperfect) GPS data 11
1.3.2 How much data . 11
1.3.3 Survey . 12
1.3.4 Privacy and Security 14

1.4 How the problem was handled 15

2 Mapping GPS points to road segments 17
2.1 Technical specifications of GPS devices 17
2.2 Mapping data to road network 20

2.2.1 Input . 20
2.2.2 Output . 21
2.2.3 Naive . 22
2.2.4 Limiting the scope . 23
2.2.5 Special Cases . 26

2.3 More optimal algorithms . 31
2.3.1 Score calculating algorithm 31
2.3.2 k-shortest paths . 33

2.4 Comparison of the used algorithms 37
2.4.1 Naive algorithm . 37
2.4.2 Beads combined with k-shortest path 37
2.4.3 Results . 37
2.4.4 Conclusion . 38

2.5 Future work . 41
2.5.1 Implementation improvements 41

3 Implementation 43
3.1 Used Hard/Software . 43

3.1.1 Hardware . 43
3.1.2 Software . 43

CONTENTS 2

3.2 Package structure . 44
3.3 Grafical User Interface . 48
3.4 External libraries . 48
3.5 External Programs . 49
3.6 Details . 50

3.6.1 Overall view . 50
3.6.2 ArcExplorer . 50

3.7 Database structure . 51
3.7.1 Tables . 51

4 Problems with solution 52

A Survey 60

B GUI 63

Chapter 1

Introduction

Nowadays, we use databases everywhere, from the local shop in our neigh-
borhood to the big multinationals who store the information about products
in it. Today we see that there is a huge growth in data from local-awareness
devices. The most known localation aware device is of course the GPS de-
vice. GPS devices are relatively cheap to buy and therefore many people
have one. The main advantage of these devices is that they can show the
route to everywhere from your current location. Even if you miss a street
the device will automatically recalculate the best route to your destination
within a few seconds. That is why more and more households use a GPS
device for navigation purposes.

Most people use the GPS device as a navigational tool but it can also
be used for storing the GPS coordinates for analysis afterwards. We can
for instance analyse the routes taken by a person and then we can see why
they took one road instead of another road that seemed better. The main
disadvantage of storing the GPS coordinates is that the GPS coordinates
are not perfect. They do not match the road. Every GPS device takes these
‘mistakes’ into account by mapping the exact street driven on instead of
just modelling the GPS coordinates got from the satellite. There are many
algorithms described for use within the GPS devices like [45].

Since the beginning of times, people have observed moving objects, from
insects to stars and planets and wondered how they moved. When we ex-
amine todays movements we have different ideas then in the past but there
is still much to learn from those past ideas for movement. One of the most
famous movements written down was this of Napoleons march to Moscow
by Charles Joseph Minard (see Figure 1.1). In Figure 1.1 we see the march
of Napoleons army to Moscow and how for instance the weather influenced
the casualties in his army. There are even more aspects to be found in this
picture (6 in total) but we refer you to [23] or [48] if you want to know more
about it.

4

Figure 1.1: Charles Minard‘s “Carte figurative des pertes successives en
hommes de l‘Armee Française dans la campagne de Russie 1812-1813” from
1861

Figure 1.2: Reference system in Latitude/Longitude

5

Before we can go on, we define some of the most important words in the
domain of Moving Object Databases (MODs). A strict definition of move-
ment relates this concept to change in the physical position of an entity
with respect to some reference system within which one can access posi-
tions. Most frequently, the reference system is in a geographical space (see
Figure 1.2). Furthermore a trajectory is the path made by the moving en-
tity through the space where it moves. For creating or following a path we
need a certain amount of time. Therefore, time is an inseparable aspect of a
trajectory. This is emphasised in the term ‘space-time path’ [28], one of the
synonyms for ‘trajectory’. When these trajectories are stored in a database
we speak of moving objects databases. The area of MOD has become more
interesting in the past years. In this domain and especially in trajectory
databases, we try to extend the database technology to support the repre-
sentation and querying of moving objects and their trajectory. Researchers
in the field of MOD have been studied the representation issues of trajecto-
ries into computer systems aiming at keeping track of object locations, as
well as supporting location-aware queries [49]. If, only time-dependent loca-
tions need to be managed (e.g., mobile phone users, cars, ships, etc.), then
moving point is the basic abstraction; while, if the time-dependent shape or
extent is also of interest (e.g. group of people, spread of vegetation), then
we are talking about moving regions.

A straightforward approach widely used is to model a moving point by
generating periodically a location-time point of the form (l, t), indicating
that the object is at location l at time t where l may be a coordinate pair
(x, y) (see Figure 1.3). The point is stored in a database, and the database
query language is used to retrieve the location information. This method
is called point-location management, and it has several critical drawbacks,
such as (1) it does not enable interpolation or extrapolation, (2) it leads to
a critical precision/resource trade-off, and (3) it leads to inefficient software
development.

For practical reasons, however, trajectories have to be represented by
finite sequences of time-referenced locations. Such sequences may result
from various ways used to observe movements and collect movement data:

• Time-based recording: positions of entities are recorded at regularly
spaced time moments, e.g. every 5 minutes;

• Change-based recording: a record is made when the position of an
entity differs from the previous one;

• Location-based recording: records are made when an entity comes
close to specific locations, e.g. where sensors are installed;

• Event-based recording: positions and times are recorded when certain
events occur, in particular, activities performed by the moving entity
(e.g. calling by a mobile phone);

6

Figure 1.3: Point location based recording.

• Various combinations of these basic approaches.

For this thesis we work with GPS coordinates. They are stored using
the point-location management method, so we have the triple (x, y, t) with
(x, y) the location l and t the time. Another aspect of the data we got is
that it is change-based recorded, we have every 10 meters a point recorded.
Of course this is not always the case (for instance there are gaps as described
in Section 2.2.5) but most of the time the 10 meters is respected. Take note
of the fact that there is a point recorded every 10 meters instead of using
time based recordings like often described in other papers (see Section 1.2).

The aim of this thesis is comparable to the knowledge written down by
Minard (see Figure 1.1). We too want to track and know the movements
of the police cars (see Section 1.1) for analysis afterwards. The purpose
is knowledge discovery about the routes taken by the experienced police
officers. Why did they take that particular route and not another shortest
path? We hope we can answer this and many more questions afterwards.

1.1 Problem description 7

For doing data analysis there is no straight-forward definition in hand-
books. But most people involved in data analysis agree in following an
iterative process [30]:

1. formulate questions;

2. choose analysis methods;

3. prepare the data for application of the methods;

4. apply the methods to the data;

5. interpret and evaluate the results obtained.

There is need for semantics about the data, and especially need for cer-
tainty about the trajectories driven on. For example we need the exact
position where they drove because then we can see whether or not they
passed the school gate and not just drove in the environment around the
school. It is not obvious to see where the school gate lays, but it is easier to
see where there is a school, it is because of this reason we need the semantics
about certain locations and about the trajectories.

In this thesis we especially prepare the data for application because we
do not have perfect data (see Section 1.3.1). We examine the behaviour, the
configuration of characteristics corresponding to a given reference (sub)set,
of traject. A trajectory of a single entity is a configuration of locations
corresponding to a time interval. One of the main goal of the analysis of
movement data is to characterize the overall movement behaviour of all the
trajectories of these entities over the entire time period the data is consisted
of, in other words to build a pattern representing the overall behaviour of
the data. And furthermore concerning the movement of entities, we may
be interested to know whether and how the movement is related to various
spatial, temporal, and spatiotemporal phenomena such as weather, traffic
jams, incidents, schools,. . .

1.1 Problem description

The police of Ghent had a problem with new or transferred police officers.
As in every large city there are a lot of new police officers starting in the
city. They do not know the city very well and because they do not know the
environment yet, it takes them longer than experienced police officers to go
from one place in the city to the place of intervention. You could solve this
problem by putting an experienced police officer with an inexperienced cop,
but there are not enough experienced police officers to put with the new
officers. It would be better if we could develop a route planner specialized
for the police so that the new cops too can quickly respond to an intervention
and navigate quickly through the city at any given time at any given period.

1.2 Map-Matching 8

One of the obvious questions is of course whether or not we should do
all this research instead of buying a commercial route planner. The solution
is simple, the shortest/fastest route (calculated by these commercial route
planners) is not the best solution for the police because of several factors:

• They do not take into account the hour of the day, e.g. at 5 o’clock
there is always a traffic jam at the station, so we avoid this area around
5 o’clock;

• They do not take into account certain locations (like schools), e.g. In
the area around schools there may be a lot of unpredictable children
for who we need to be more careful;

• They do not take into account extra information (like school routes
[34]), e.g. tram lines embedded in the road where the police can drive
on, for easier traffic flow;

• They do not take into account (local) traffic jams.

So these route planners are not flexible enough to deal with life threat-
ening situations where even the smallest delay because of the software could
cause serious damage and perhaps even death.
The police asked the university of Ghent (UGent) for some help with this
problem but because they worked together with the university of Hasselt
(UHasselt) in a Flemish project “Knowledge representation and database
problems for spatiotemporal data: a calculus approach to representing knowl-
edge about trajectories.”[18] and because UHasselt had more experience in
the field of reconstruction and analysis of trajectories and with the uncer-
tainty of partial information, the problem was handed to the UHasselt.

As already described in Section 1 semantics are really important. It is
for instance important to know if there is a school in the neighborhood but
it is even more important where the school gate lays, at which road because
it will be more dangerous to pass here than to pass the other side of the
school.

Most of the data we got from the GPS devices is not perfect (see Section
1.3.1). There already has been done a lot of research in the area of map
matching which we describe in Section 1.2 but most of the map-matching
algorithms are real-time based because they are implemented for route plan-
ning within the GPS devices self and not for offline analysis afterwards like
we need to do.

1.2 Map-Matching

The technique of mapping GPS coordinates to the road network itself is
called map-matching. Here we describe some related work that already has
been done.

1.2 Map-Matching 9

In [3] three algorithms for map-matching are discussed. Here they too
consider the real trajectory instead of matching algorithms that use current
positions. Their data was consisted of samples every 30 seconds which means
that the car could have travelled a distance of 417 meters before a next point
is recorded! This is a big difference between their data set and ours (we
have every 10 meters a point). They discuss an incremental map-matching
algorithm which sequentially matches the next possible road segment and
which tries to make a global-optimal solution by introducing a look-a-head.
They tried to match the trajectory with the Fréchet distance and the weak
Fréchet distance but they both had the same outcome, both were equally
good. They were compared in running time and in quality of the results.
The incremental approach was much faster but produced worse results.

In [45] a method for real-time map-matching is used instead of afterwards
map-matching. This method is especially used within the GPS devices.
Because the GPS signals have a systematic error of < 100 meters, thanks
to the ‘selective availability’ imposed by the U.S. Military, digital mapping
data is used. The system tracks a vehicle on all possible roads within a
error region and then instantly computes which roads may be invalid. This
method is called Road Reduction Filter (RRF) algorithm.

In [26] they analysed the GPS coordinates recorded from an ambulance.
They got a new recorded point ‘every 500 meters or 5 minutes’ or ‘every
333 meters or 15 minutes’. Their recorded GPS coordinates consisted out
of a tuple with information about: position, time, velocity (given as speed
and heading) and distance travelled since last point recorded. The velocity
information is redundant but if we need to calculate it afterwards it takes
more CPU time then when stored directly in the database. Because the
GPS device recorded GPS points all the time the first job was to mark the
point where they got a call from headquarters and mark the ending points.
Then they define a network position out of the GPS coordinates that lays on
edges for better handling these points. In the last step they try to compute
a trajectory by choosing a sequence of positions from the candidate network
positions calculated in the previous step. They do not say how well they
have done it, and they conclude that they are currently improving the run
times.

In [11] they wanted to identify the route taken by a traveller. They did
not have information about the time travelled so far or between succeeding
points and they did not have the travel speed. Their GPS coordinates are
recorded every second. The main purpose of the article is to find the path
that is closest to the GPS coordinates in minimum amount of computations.
They calculate a score for the entire path by using the distance between the
GPS points and the edges in the network. They did not state how they
handled the gaps in the data, they just calculated the routes from which
they had the GPS points and then tried to glue it together, if the distance
between 2 succeeding points was to big they stopped with this path and tried

1.2 Map-Matching 10

Figure 1.4: Probabilistic model (A → F are street segments)

it again with a fresh start. At every intersection they try the new calculated
routes made by adding the routes of the intersection to this path. They
concluded that their algorithm was very good of handling the GPS points
but never stated what was exactly the accuracy of the GPS data recorded
with the GPS devices.

Research has already been done in the field of mobile phone data con-
verting to the street network. In [13] the idea was to introduce a new pricing
system for poster sites according to mobile phone data. They used a proba-
bilistic model for reconstructing the trajectories. They had prior knowledge
about high-frequented streets. Therefore these streets were more likely to be
walked on than less frequented streets. For track-to-street mapping they use
the Hidden Markov Model [41], this is a model which finds the most likely
sequence of states from observations and transition probabilities. They as-
sign to each point in space a probability to belong to one (or more) street
segments (see Figure 1.4). Then they combine the segments to the street
network by calculating the sum probabilities of point over all the segments.
Their main problem was to acquire mobile phone data and had to stop the
project because they could not acquire the necessary data.

Many of these described ideas are for real-time mapping and not for
mapping GPS coordinates afterwards. However some of the ideas could be
used, for instance the look-ahead of the neighbour streets.

1.3 Available data 11

1.3 Available data

UGent provided us with the data for analysis. The dataset consists out of
two parts: one with the recorded GPS points and one with extra informa-
tion about the routes taken by the officers by letting them fill in a survey
afterwards with questions like why they had taken that route, and whether
or not it was out of experience (see Section 1.3.3). When we examine the
surveys we see that not all surveys are filled in completely or with good
info, e.g. reason was: ‘according to me shortest’, this was expected because
the police have already enough paperwork and do not always want to fill
in yet another paper. However some of the answer were very useful: ‘no
traffic lights on the road’ is a very interessenting thing to know. You find
the survey in appendix A. We wrote a program for quickly digitalizing these
surveys on a computer (see appendix B) afterwards.

The data recorded by the experienced officers in the car where asked to
start recording with the GPS device from the moment they got a call from
headquarters and to stop recording when they arrived at their intervention.
Afterwards they were asked to fill in the survey. Of course with the recorded
data, you see obvious things like when they arrived they forgot to put the
device out and half an hour later the device recorded one last point.

1.3.1 The real (imperfect) GPS data

UGent have chosen the GPS devices for the retrieval of GPS coordinates.
They chose for a GPS device that only tracks a route and not gives a route
(see Section 2.1). The device only records the route taken by storing every 10
meters a position (waypointing a route) (change-based recording). Normally
this should work perfect but since the points recorded are not always on the
road taken (95% is off-road). We need an algorithm for the mapping to the
actual road taken. Another problem from the retrieval of GPS coordinates
was the problem that there were gaps in the data. There was not always
recorded a point every 10 meters, sometimes there even was a gap of more
than 100 meters.

1.3.2 How much data

An algorithm can only be tested when we have enough data. We got from
UGent 527 routes, taken over 3 months. The routes consist out of 94 GPS
points at average which means we have nearly 50000 (49538) GPS points
recorded. There are 388 routes which have less than 10 GPS points, so
most likely these routes are not representative. 97 routes have more than
100 GPS points and 11 of these routes have even more of 1000 GPS points.
There are even routes of 2200 GPS points or even 3400 GPS points. Most
likely the users (police officers) did not turn off their device as requested.

1.3 Available data 12

Figure 1.5: All trajectories recorded on one map

Another interesting thing to remark is that only 122 of the routes start at
headquarters. In Figure 1.5 all trajectories are modelled.

1.3.3 Survey

The second dataset we can refer to is the survey afterwards filled in by the
police officers. In this survey we hope they tell us why they have driven the
way they did. The questions they had to answer were the following and we
explain why these questions were important to know:

1. Number of device: there were 2 devices in use for quicker acquiring
the data;

2. Start and end positions: we need to know from where to where they
have driven, as detailed as possible so therefore we asked for the house
number if they knew it;

3. Time of departure: this is especially interesting because most likely
the route at 9 am is different from the route at 8 pm (e.g. because of
less traffic);

4. Date: a sunday, weekday, saturday, these are all very interesting data

1.3 Available data 13

to collect (e.g. a great event happened on a particular date and there-
fore some roads were closed);

5. High priority: when the intervention is of high priority they can skip
traffic lights, drive faster than when the intervention is of low priority;

6. Weather circumstances: are there roads they avoid when it has rained
because they are more slippy than other roads;

7. State of road: Did they drive slower on roads which are in bad condi-
tion;

8. How was the route selected: Did they use any aid like a own GPS
device, did they had to drive because they got directions from head-
quarters, or other;

9. Why route chosen: This is probably the most important question, why
did they drive the way they did;

10. Special circumstances: Did they encountered problems, like road blocks,
double-parked cars in a one-way street;

11. How well did they know the route: If they knew the route very well
the trajectory could be more important because they knew how to
drive to for instance avoid traffic jams than if they did not knew the
environment;

12. Remarks: At the end they could leave their remarks.

When looked at some of the surveys there are some interesting things
to remark. Almost every intervention was not a priority, this means that
they could not take much risks and could not discard the traffic lights.
Another interesting point to mark is that in the choice of the route taken
they frequently said that the route they had chosen was the shortest or
easiest to take. At the question if there were some special circumstances
most of them did not answer this question but the few that did, stated that
some roads were blocked because they were working on that street.

Some of the above issues could have been avoided by using a custom-
made route planner (the custom-made route planner could have stored and
processed the inaccessible roads and could have avoided these roads). This
is once again a good reason why we should research and try to make a
better route planner. Therefore it will be important that these surveys
will be evaluated and analysed. It is also important that the evaluation
of these surveys happens quickly after the analysis of the route because
then the police officers could remember why they drove the way they did.
These analysis of the surveys can be very important if the surveys are filled
in completely because then you could have detailed information about the

1.3 Available data 14

routes taken and why they took that road, and could give a first impression
where the problems lay and what needs to be given special attention. . .

1.3.4 Privacy and Security

When we record the GPS signals of a person, vehicle or something else, we
need to keep in mind that we could invade the privacy of these people but
because in this work we record the GPS signals of public law enforcements
we do not need to keep in mind privacy. What we can do with regard to
privacy is keep in mind that the place of intervention could be filtered and
only the street is recorded and not the house number for the privacy of the
people who needed the help of the police because of domestic problems or
other embarrassing problems.

The surveys taken is another aspect of privacy. Of course they are anony-
mously taken.
All these aspects of privacy could be discarded if and because the data is
kept internally and no external companies can record or can obtain these
valuable information.

We could ask ourselves the question what should happen if the soft-
ware is publicly used. Then we need techniques for ensuring the privacy
and security of the data. There are four themes to classify the existing ap-
proaches, namely Policy-based approaches, Cryptography-based approaches
for data access and release, k-anonymity approaches for personal location
collection, and Location privacy-based approaches for trajectories. Here we
shortly introduce the main characteristics of these approaches, if you want
to know more about them we refer you to [50].

Policy-based approaches is very straight-forward to understand. We de-
fine a policy, stating a set of rules about who is allowed to access their
personal data and for which purpose. This approach is both used in secu-
rity as in privacy fields. In the security context it is used to allow system
administrators specify and apply operational policy that will tie privileges
to selected users while in the privacy context it allows the user to define
his own policy. For our purpose we can use this technique because the only
persons who will use it are the police officers.

When Cryptography-based approaches for data access and release is used
we cipher the identity of the user prior to sending it to the service provider.
This is not very usable for us because there is only one person namely the
police, so we will not use this technique.

The main idea of k-anonymity approaches is to subdivide the area around
the user’s location and delay the request as long as the number of users in
the specified area falls below the desired value of K.

Most of the above techniques were not useful for our purpose. We have
trajectories and most of the previous methods describe the privacy of indi-
viduals and how they can prevent that their privacy is not violated. The

1.4 How the problem was handled 15

last approach location privacy-based approaches seems to be the best for
our trajectories. Here we have two principal categories: k-anonymity for
location position collection and Confusion-based techniques. The first cat-
egory aims at preserving the anonymity of a user by obscuring his route.
It uses 2 zones, application zone where the application can trace the users’
movements and mixed zone where it cannot trace the movements. When a
user enters the mixed zone the applications do not receive any location in-
formation but they receive a pseudonym. Since applications do not receive
any location information when users are in a mix zone, the identities are
said to be ‘mixed’. The pseudonym of any user changes whenever he or she
enters a mix zone. In this way, Location Based Services (LSB) applications
that see a user coming from the mix zone cannot distinguish that user from
any others who are in the mix zone at the same time and cannot therefore
link users entering the mix zone, to others leaving it. The second category
introduces fake routes or modifies the true users’ trajectory. One possible
way of doing this is path confusing. Here for every trajectory there is made
another trajectory and the algorithm chooses one point in space where the
2 trajectories meet each other. By doing it this way there is no knowing of
which trajectory is used by the user because you can not know which one is
followed by the user and which one was generated by the algorithm. These
2 ways of anonymity are illustrated in Figure 1.6

1.4 How the problem was handled

In the next chapter we describe which data was available, which algorithms
we used (and which we did not use), we compare 2 algorithms (the naive
approach and the combined beads k-shortest path algorithm) and we con-
clude to tell what can still be approved and how the work can be continued.
In chapter 3 the structure of both the program as the database is discussed.
To conclude we have combined some of the problems occurred in chapter 4.
In appendix A you find the survey the police officers were asked to fill in and
in appendix B you find the grafical user interface of the program written to
digitalize the survey’s.

1.4 How the problem was handled 16

Figure 1.6: a) Confusion based trajectory (path confusing) b) k-anonymity
for location position collection (mixed zone ←→ application zone)

Chapter 2

Mapping GPS points to road
segments

It is very important that we can work with realistic data instead of the raw
data got from the GPS devices. As stated before it is more important to
know for instance where the school gate is, at which road, then knowing that
the police passes a school (perhaps on the back where there are no children
or very few). Therefore we have to map the raw GPS coordinates to the
actual roads.

Here we describe the hardware used for the retrieval of the GPS coor-
dinates (Section 2.1) (hardware specifications done by and info got from
UGent). Afterwards in Section 2.2 we describe the Input and Output we
produce and we describe the algorithms we looked at, in Subsections 2.2.3
and 2.2.5 we describe a naive algorithm and some special cases with their so-
lution. In Section 2.3 we give the algorithms used in this work. To conclude
we have a comparison between the algorithms in Section 2.3.2.

2.1 Technical specifications of GPS devices

[21] Because we would like to examine the routes taken by the officers for
analysis, we needed to track their routes. A device that could track a route
is a GPS device, but there were some specifications it had to have and some
it may not have.
The idea was that the experienced police officers were asked to start record-
ing from the moment they got a call from headquarters and to stop recording
when they arrived at their intervention so the device must have a button
to start and stop recording the route. The device should not show a back-
ground map on the screen because otherwise they got an aid for knowing
how to drive. The coordinates of the tracks need to be read afterwards on
a computer, by preference directly in Lambert72 coordinates [2]. These are
the main criteria. For all the GPS devices found on the market there were

2.1 Technical specifications of GPS devices 18

Figure 2.1: Garmin GPS 60 (left) and Magellan Explorist 210 (right)

only two who satisfy these main criteria: Garmin GPS 60 [31] and Magellan
Explorist 210[24] (see Figure 2.1).

Magellan has the largest memory but the batteries from both devices
are not big enough to let the device track for more than a week. So it is
not necessary to have a very big memory if the devices can not use more
memory than tracked in a week. Therefore the memory from both devices
were big enough to store all the track points for one team during one week.
The recording of the track points happens automatically by the Magellan,
so we have to guess when the GPS device records the track points, if we are
driving fast he will record few tracking points and if we drive slowly it will
record more tracking points. The advantage of the Garmin GPS was that
we could choose how many track points needed to be recorded per time- or
length measure. We have chosen for recordings of every 10 meters.
By examining the advantages as well as the disadvantages, criteria 4 (the
user friendliness) was the most important one for choosing the Garmin GPS
60, in spite of the extra 20% cost. You find the rest of the specifications in
table 2.1.

2.1 Technical specifications of GPS devices 19

Criterium Garmin GPS 60 Magellan Explorist
210

1. Register track
points per time or
length measure

yes no

2. Memory capac-
ity

max 10000 track points
(number of tracks per
track log file is limited
to max capacity, not
less)

max 150 track log files
of each 2000 track
points

3. Life cycle bat-
teries

max 28h (dependent of
brand battery)

max 18h (dependent
of brand battery)

4. User friendly very simple; format
into which the tracks
are recorded is clearly
and easily convertible
to Lambert72 and to
shapefile format

easy; during testing
phase the coordinates
of the recorded tracks
seemed to be incorrect
(during navigation the
coordinates were cor-
rect)

5. Accuracy 5 à 15m in x and y 5 à 15m in x and y

6. Price 227e 188e
7. Possibility to
connect to 12V of
car

yes (31 e) yes (28 e)

8. Possibility/Ne-
cessity external
antenna

yes (36 e) no

9. Necessary time
to initialize

cold start(after 8h of
not used): max 1 min;
hot start: min 20s

cold start: max 1 min;
hot start: min 20s

Table 2.1: Specifications of the two GPS devices

2.2 Mapping data to road network 20

2.2 Mapping data to road network

We describe in this section the input and output but also a relatively new
technique of beads (see Section 2.2.4). Furthermore we describe several
algorithms which could be useful. We also explain some of the problems
which could occur and how to solve them.

2.2.1 Input

We have two available datasets, the road data and the GPS data. Here we
describe both of them more in detail.

Roads

The route network is represented by a shapefile from TeleAtlas. We inserted
it into the postgreSQL[36] database with PostGIS extension[38]. We limited
the street network to only the district Ghent because the police of Ghent
mostly operate within this district. We filtered the data of the routes outside
of Ghent because they were not as important to analyse as the routes taken
within the city. Another problem was the connection between the program
and the database. The dataflow from the database to the program to load
the road network in main memory was to slow (3 minutes). Because we
know the data of the route network is static, we could preprocess this data,
like calculating the neighbor relation, the length of the street; and write it
then to disk (this takes about 30 minutes but it has to be done one time
only). The next time we use the program the preprocessed data is read from
local disk instead of calculated again.
For narrowing the search area of the network the calculation of the trajectory
we use beads (see Section 2.2.4). This has a positive influence on the several
algorithms described next (see Section 2.2.4).

GPS

The police officers needed to start recording when they got a call for an
intervention and they needed to stop recording when they arrived at the
intervention. The routes recorded are GPS coordinates. Every route is a
sequence of GPS coordinates (GPS points). They are stored with (x, y, t)
information, so we speak of point-location management. (x, y) is of course
the location and t is the time. These coordinates form the route taken,
sometimes with gaps, sometimes perfectly on the actual road taken but
they can not be used directly without any kind of preprocessing. They need
to be mapped to the road network for being analysed.

The reason why it is so important to map it to the actual road network
is that we need to analyse the data afterwards. With the raw data we
can examine some queries stating that the point is close to a school, but

2.2 Mapping data to road network 21

we cannot express if it passes the school gate for instance. Therefore it is
pertinent that we map it to the actual road network. The data-mining aspect
will be more interesting on the actual road network than on the raw GPS
data. Another reason is that when we work with the actual road network
the intelligent route planner will be easier to make because we have exact
roads they have taken otherwise it always will be a guess which of the roads
they have taken.

2.2.2 Output

For the export of the route we used shapefiles because UGent was used to
these type of files but we also used a GML[20] file for exporting these routes
because this is more convenient to work with afterwards. The output is a
(streetId, t) tuple where the streetId is the unique streetId given (interna-
tionally agreed) at a road segment and t is the time that they started at
this road segment.
We have chosen to keep the time aspect in the data because this is a very
important aspect of the data, by analysing the time we can see if they got
stuck in a traffic jam, and we can determine their speed afterwards if needed
because streetId is stored as a geometry (MultiLineString). An example can
be found in listing 2.1.

2.2 Mapping data to road network 22

Listing 2.1: Part of GML file

<route>
. . .

<gml :Mul t iL ineSt r ing srsName=”EPSG:31370”>
<gml :L ineSt r ing>

<gml : coo rd ina t e s>
103419.648276815 ,196982.992453492 103416.220612467 ,
196982.11083326 103336.019739619 ,196973.81727373

</ gml : coo rd ina t e s>
</ gml :L ineSt r ing>

</ gml :Mul t iL ineSt r ing>
<gml:timeStamp>

<gml:TimeInstant>
<gml : t imePos i t i on>

2006−10−03−T08:34:31
</ gml : t imePos i t i on>

</ gml:TimeInstant>
</gml:timeStamp>
<gml :Mul t iL ineSt r ing srsName=”EPSG:31370”>

<gml :L ineSt r ing>
<gml : coo rd ina t e s>

104102.778915869 ,193032.047188972 104104.719059269 ,
193007.076320557 104108.048140889 ,192974.973109803
104110.011252964 ,192960.570967148

</ gml : coo rd ina t e s>
</ gml :L ineSt r ing>

</ gml :Mul t iL ineSt r ing>
<gml:timeStamp>

<gml:TimeInstant>
<gml : t imePos i t i on>

2006−10−03−T08:36:22
</ gml : t imePos i t i on>

</ gml:TimeInstant>
</gml:timeStamp>

. . .
</ route>

2.2.3 Naive

A first approach for calculating the road segments driven on is very straight-
forward. We calculate the road segments which are closest to the GPS coor-
dinates and afterwards we combine them to a smooth following road. This
would seem the easiest and best way to calculate the road but this is not.

2.2 Mapping data to road network 23

First of all we have the problem of the inefficient retrieval of the GPS co-
ordinates (see Figure 2.5), they do not match the road segments driven on.
Like you see at Figure 2.5 the GPS points start at the wrong road segment
but they appear to recover themselves by going to the right road which they
actually have driven on. The same happens at the right top of the figure
where there is a mismatch too. A second problem is that there are gaps in
the GPS points, they do not following each 10 meters as promised. When
we look at Figure 2.6 we see that there is a serious gap (marked by an el-
lipse) of 140 meters. Another common problem is seen in Figure 2.7 where
there are two possible roads. This problem could be solved by examining
the timestamp given by each GPS point and looking at the direction of both
road segments (one-way or not) for determining which road we are driving
on.

2.2.4 Limiting the scope

For mapping from the recorded GPS points to the actual road network there
are several possibilities, we explain here an algorithm using beads and one
with k-shortest paths. To compare we tried a second algorithm and hoped
the algorithm mapped the GPS coordinates well to the actual road network.
We hoped that the k-shortest path problem could solve our case. The reason
why we have chosen for the k-shortest path algorithm was a guess. But it
turned out to be a well-weighted guess because it seemed they took a shorter
path.

Beads

Describing trajectories brings uncertainty that either results from the in-
terpolation methods used to build the trajectory or from the measurement
errors introduced by sensors that captures objects movement. These kinds
of uncertainty will be referred to as: interpolation uncertainty and mea-
surement uncertainty, respectively. Normally with the help of GPS devices,
the measurement uncertainty should be very small compared to the inter-
polation uncertainty, but the GPS coordinates are not always perfect (see
Section 1.3.1). Interpolation uncertainty can be managed by bead-model.
However, in order to reduce the complexity of evaluating certain queries,
minimal bounding mechanisms must be used which requires to determine
the maximal speed of the object. In case of network constrained movements,
like cars in a road network the uncertainty between two succeeding sampled
positions could be further reduced by exploiting the network topology.

There are various ways for reconstructing the GPS data or trajectory
samples (finite sequences of time-space points), of which linear interpolation
is the best-known [37]. But linear interpolation relies on the assumption that
between two succeeding points the object moves with a constant minimal

2.2 Mapping data to road network 24

speed. It is more realistic if the object moves within a bounded speed limit.
Given such upper bounds, an uncertainty model has been proposed which
construct beads. We calculate the possible locations where a certain object,
in our case a car, can be given the time between succeeding points and a
maximal speed. Normally this would give us an ellipse but for complexity
reason we calculate a bounding box by determining a point R(X1, Y1) and
a point U(X2, Y2) (see Figure 2.2).
R is calculated by moving away from b as followed:

• X1 is the maximal point at the X-axis you can reach if you move away
from b and still want to be on time at b, so if drive at maximal speed
(say v) away from b in X direction where do we need to return for
being just in time at b;

• Y1 is the maximal point at the Y-axis you can reach if you move away
from b and still want to be on time at b, so if drive at maximal speed v
away from b in Y direction where do we need to return for being just
in time at b.

U is calculated by moving away from a as followed:

• X2 is the maximal point at the X-axis you can reach if you move away
from a and still want to be on time at a, so if drive at maximal speed
v away from b in X direction where do we need to return for being
just in time at a;

• Y2 is the maximal point at the Y-axis you can reach if you move away
from a and still want to be on time at a, so if drive at maximal speed
v away from b in Y direction where do we need to return for being just
in time at a.

S is calculated by taken the X-coordinate of U and the Y -coordinate of R,
and T is calculated by taking the X-coordinate of R and the Y -coordinate
of U . The hardest thing to determine is the maximal speed v. We have
concluded by experimenting that a good value of v = 120 km/h

As we can see in Figure 2.3 the bead calculated is very big although the
distance between points A and B is only 13 meters but when we examine the
time needed for travelling from A to B it is very big nl. 35 seconds (possibly
they had to stop for a traffic light). This is exactly the reason why the bead
is so big. The bead calculates the region where the police car could have
been when it travelled at a maximum speed of 120 km/h over a time of 35
seconds. Therefore the bead is so big and the reason why so many streets
are found. On the other hand when we look at Figure 2.4 the distance here
between succeeding points A and B is 11 meters but the time between them
is only 1 second, therefore the bead calculated is very small but yet enough
to contain the 2 road segments who surround the points.

2.2 Mapping data to road network 25

Figure 2.2: Representation of the ellipse used by the beads method (bound-
ing box is also displayed). a and b are GPS coordinates.R,S,T ,U are as
described in Subsection 2.2.4

2.2 Mapping data to road network 26

Figure 2.3: Real-life example. Seconds between 2 succeeding points (dotted
points A and B) is 35 seconds

Algorithms

Here we describe different methods for trying to map the GPS coordinates to
the real topology of the road network. First we try it with a naive algorithm
then we explain an algorithm we use in several other algorithms. Then we
examine several k-shortest path problems.

2.2.5 Special Cases

There are several special cases which are difficult to handle, we describe each
of them and present a solution for solving these special cases if needed.

Triangle problem

When we have a triangle as we can see in Figure 2.8 we can clearly see that
they drove the outer lines of the triangle and not the opposite tick line. But
logically the computer estimates the shortest/fastest path and therefore the
thick line is chosen. We can solve this by examining the score calculated
(as described in Section 2.3.1) of each of the lines and make according to
these scores a better route, but once again this is not optimal. When we

2.2 Mapping data to road network 27

Figure 2.4: Real-life example. Seconds between 2 succeeding points (points
A and B) is 1 seconds

2.2 Mapping data to road network 28

Figure 2.5: Faulty GPS signals are circled

examine line 1 and presume the following: line 1 has a score of 6, line 2
has a score of 5 and line 3 has a score of 6, because the Dijkstra algorithm
works backwards we have the choice between lines 2 and 3 but because line
3 has a higher score the algorithm will choose this road segment instead of
line 2. This could be solved by making a globally optimal solution and not
a locally optimal solution by examining all routes within a certain threshold
(see Subsection 2.3.2).

Traffic jams

A second problem is seen in Figure 2.9. As we clearly can see the road
segment at the top is chosen, but there is no obvious reason why they have
chosen this route. Perhaps there was a traffic jam on the straight road
segment, or are the GPS signals faulty, less likely. This problem we only can
fix by asking the police why they drove like they did but probably they will
not remember it anymore because the data was taken almost a year ago.
For this reason it is pertinent that we examine these routes as quickly as
possible and get feedback from the police as soon as possible.

Gaps

When we examined the data we concluded that sometimes there were gaps
in the route (see Figure 2.6 and Figure 2.10). There are several reasons why
there could be gaps in the routes:

• A first explanation could be a faulty GPS signal because of bad re-
ception of the coordinates. Normally this should not occur so we may
exclude this option.

• Secondly there could be an interruption between the GPS satellite and
the device because of a dense area of forest or a tunnel or because of
high buildings (if the GPS signals are blocked because of tall buildings
we speak of urban canyons).

2.2 Mapping data to road network 29

Figure 2.6: a) Extract from the data with a gap in the ellipse. b) Google
Map extract from the same area.

2.2 Mapping data to road network 30

Figure 2.7: More then one possible road segment

Figure 2.8: More then one possible road segment

The solution to these possibilities could be answered by Google Maps[15].
We could try and search for satellite photo’s of the area and see what could
be the problem. We did this for the gaps in Figure 2.6 and in Figure 2.10.
For the first gap it could not be seen why there was a gap (see Figure 2.6)
but for the second gap it was obvious (see Figure 2.10): they drove into a
tunnel that is why there were not GPS coordinates recorded.
Without these semantics we have to guess why there were no GPS coor-
dinates recorded. Thankfully we have these aid and this can help us for
determining which road they have driven on, for instance if they drive into
the tunnel they have to get out of the tunnel at the other side and the
GPS coordinates followed just outside the tunnel could be faulty because of
satellite search of the GPS device.

2.3 More optimal algorithms 31

Figure 2.9: Strange GPS point, possible traffic jam or not?

2.3 More optimal algorithms

In this subsection we describe the more optimal algorithms which were useful
and which we have used in this work.

2.3.1 Score calculating algorithm

We describe here the algorithm used in several of the following sections.
When we got the GPS points we calculate which road segments are closest
to these points. The street that is the closest to the point gets weight n,
the street that is secondly closest receives weight n − 1 and so on till the
n-th closest street receives weight 1, here too we calculate with beads the
possible road segments because otherwise we have to check which roads are
too far away to be reliable. Another approach could be to check that the
streets has to be within x meters for being reliable. We have chosen by
experimenting for n to be 3 and x to be 15 meters. By doing it one of these
ways each of the road segments driven on will receive relatively high scores
in comparison with other routes not driven on.

An example of the algorithm can be found in table 2.2 and in Figure
2.11. Here we clearly can see that this is a very good algorithm to start
from. You see that the ending scores will follow the actual route taken. The
score of streetId 1 is 5 when we continue we come to 2 neighbours one with
score 3 (streetId 3) and one with score 7 (streetId 4). Here we immediate
see that streetId 4 is the best. One we continue this algorithm we see that

2.3 More optimal algorithms 32

Figure 2.10: a) Google Maps extract from the location in b where we see a
tunnel within the ellipse. b) Extract of the data with an obvious gap within
the ellipse. (Arrow for orientation purposes)

2.3 More optimal algorithms 33

Figure 2.11: A → M are GPS coordinates. 1 → 18 are streetIds

this is a pretty good start. Therefore we use this algorithm in the following
section to make a first good impression of the route taken and tune this
further.

Listing 2.2: Pseudo code for calculating score

c l o s e s tPo i n t s = getClose s tSt ree t sFrom (Point p)
for (every s t r e e t found && i < n)

s t r e e t . s c o r e += n − i

2.3.2 k-shortest paths

The k-shortest path problem is a well known problem in networks. It is used
when there are more constraints then only the distance of the path taken
(as is the case in our work, the second constraint is the scores calculated as
described in Subsection 2.3.1). Instead of finding one shortest path there
are k paths found between 2 fixed nodes. We explain several possibilities
and conclude which is used in this work.

Double Sweep

One of the possible algorithm was the Double Sweep algorithm which was
mentioned at [5]. There we found a schema of the algorithm but not the
entire algorithm. In [39] we found that this was especially used for routing
airplanes because there were several parameters to keep in mind like refueling
points, navigational waypoints or technicians who were based on one airport

2.3 More optimal algorithms 34

Id Initial A B C D E F G H I J K L M
1 0 3 5 5 5 5 5 5 5 5 5 5 5 5
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 2 3 3 3 3 3 3 3 3 3 3 3 3
4 0 1 4 7 7 7 7 7 7 7 7 7 7 7
5 0 0 0 2 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 1 4 5 5 5 5 5 5 5 5 5
9 0 0 0 0 2 5 7 8 9 9 9 9 9 9
10 0 0 0 0 1 3 6 9 11 13 13 13 13 13
11 0 0 0 0 0 0 1 3 6 9 12 12 12 12
12 0 0 0 0 0 0 0 0 0 1 3 4 5 5
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 1 3 5 5
16 0 0 0 0 0 0 0 0 0 0 0 3 6 9
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.2: Example of the calculating algorithm

but not the other (for repairs). Another reason why this was not the best
solution was that this algorithm computed k-shortest paths from one node
to every other node in the network, this was not needed because we knew
the starting and ending point.

The problem of D. Eppstein

Perhaps one of the most famous k-shortest path problem is that of David
Eppstein[6]. He finds the k shortest paths by generalizing it to finding the
route from a start node (s) to every other node in the network because
this is much easier: use breadth first search. Use a priority queue of paths,
initially containing zero-edge path from s to itself; then expand it by one-
edge paths and so on. At the end remove the shortest from the queue and
add this path to the output paths. The complexity was O(dk+klogk) if the
bounded degree of the graph was d. Then we translate the problem from
one with two terminals, s (startnode) and t (ending node), to a problem
with only one terminal. One can find paths from s to t by finding paths
from s to any other node and concatenating a shortest path from that node
to t. But we cannot apply this idea directly, for instance because each path
from s to t may be represented in many ways as a path from s to some node
followed by a shortest path from that node to t.

2.3 More optimal algorithms 35

The main criteria why we did not use this algorithm was that it could contain
cycles, something that we did not want to have because it most unlikely that
the police took the same road more than once.

Removing path algorithm

Santos [40] discussed several algorithms. One was the removing path algo-
rithm. The main idea is that the second shortest path is the path in the
network where the shortest path is deleted from, the third shortest path is
the shortest where the second shortest is deleted from too and so on. We
can summarize the algorithm as described in Listing 2.3.

Listing 2.3: Pseudo code for removing path algorithm

do {
c a l c u l a t e s h o r t e s t path ;
remove sho r t e s t path from the network ;
put i t in r e s u l t l i s t ;

} while (k−s h o r t e s t paths found) ;
output r e s u l t l i s t

The problem of Yen

In [4] we find several other algorithms like Yen, Lawler, Katoh and Hoff-
man. We describe only Yen because that is the algorithm we have chosen to
use. Yen’s algorithm uses the Dijkstra algorithm for calculating k-shortest
paths. First the shortest path is calculated using A* algorithm. Yen takes
every node in the shortest path, except the terminating node and calculates
another shortest path (spur path) from each selected node to the terminat-
ing node. For each such node, the path from the start node to the current
node is the root path. Two restrictions are placed on the spur path: (1) It
must not pass through any node on the rootpath (the paths are loopless)
and (2) It must not branch from the current node on any edge used by a
previously found k-shortest path. If a new spur-path is found it is appended
to the root path for that node, to form a complete path from start to end
node. Then the score is calculated for this new shortest path (as described
in Subsection 2.3.1), if this score is greater or equal to that of the shortest
path calculated at the beginning it is added to the results list. If k-paths
are found we return the path with the highest score. The complexity of the
algorithm is O(n3). Calculating the spur paths from each node is O(n) and
using a shortest-path algorithm (Dijkstra) O(|V |2 + |E|) with |V | number
of vertices (intersections) and |E| the number of streets (edges).

To clarify the algorithm we have an example. The road network is seen
in Figure 2.12. Assume that all arrows have weight 1. We try to find the
shortest from A to D. It is clear that the shortest path is A,B, C, D so we

2.3 More optimal algorithms 36

Figure 2.12: Roadnetwork used in the example of the problem of Yen

include this path in the result path. Now we try to find other paths starting
from this shortest path. We proceed in every step with the next node and
start with node A. These succeeding nodes we call the rootpath. We start
with rootpath A, so we try to find a path from A to D that is not already in
the result list. Now we find the path A,E, F,G, H,D (this is the only path
we can follow because the succeeding node B has already been followed and
is in the result list). We also add this path to the result list. Now we go
a step further in the rootpath and start with the nodes A,B. Now we find
A,B, F, G, H,D (here too we can not follow the succeeding node C after B
because this is already been followed). We have found all paths possible in
the road network and the algorithm comes to an end.

Conclusion shortest paths algorithms

A shortest path problem like A* or Dijkstra do not match the exact route
taken because not every route the police took is exactly the shortest/fastest,
there are some influences for taking one road at a particular time of the day,
for instance at 5 o’clock there will be a traffic jam at road x so we take
road y. Therefore we need to search for an algorithm that is the best in
polynomial time and can match the route taken by the police. A perfect
solution is the k-shortest paths algorithm. First we calculate a shortest path
by A* then we find several shortest paths and afterwards we take the route
with the highest score calculated as in Section 2.3.1. We used the algorithm
of Yen for implementation because this was the easiest to implement with
the data structures used and there were only a few adjustments needed to
the Dijkstra algorithm already implemented.

2.4 Comparison of the used algorithms 37

2.4 Comparison of the used algorithms

In this section we compare the naive algorithm with the new bead technique
combined with the k-shortest path algorithm. We hope to conclude that
despite the fact that the bead algorithm will work slower we come to much
better results than when we worked with the naive algorithm. The naive
algorithm is described in Section 2.2.3 while the bead algorithm is defined
in Section 2.2.4. We summarize the working of both algorithms in the next
sections and we examine the algorithms when processed on 30 routes.

2.4.1 Naive algorithm

The naive algorithm is very easy to understand. We just look at which
streets are closest to the points and we keep these streets. Then afterwards
we calculate the shortest path between start and ending node within this
new network and keep this path.

The results of this algorithm matched exactly the routes taken by the
police. That is when the GPS points are very frequent and when there are
no gaps in the data.

2.4.2 Beads combined with k-shortest path

This algorithm is combined out of several steps:

1. At first we limit the network by calculating for each succeeding points
which roads they could have driven on (as described in Section 2.2.4).

2. Then we calculate for each GPS point which roads are closest to this
point (as described in Section 2.3.1).

3. Then the last step is to calculate within this limited network, as cal-
culated in step 1, k-shortest paths and we take the shortest path with
the highest score as calculated in step 2.

This algorithm ensures that the k-shortest path problem is calculated
on a limited network instead of the global network which is very smart as
calculating the shortest paths is the hardest thing to do the bigger your
network is. The preprocessing step (step 1 & 2) does not take as long as
calculating the shortest paths on a entire network. It takes 15 seconds in
general.

2.4.3 Results

There were some routes which were not capable for testing purposes because
they laid out of the district of Ghent with only a few streets but because
we had not the data available it was impossible for mapping it to the actual

2.4 Comparison of the used algorithms 38

road network. We have examined 30 routes which had a lot of GPS points
(more than 500) as well as routes which had only 50 GPS points. You find
all details in the table on the next page. The routes are ordered from highest
GPS points to lowest. We will highlight some of the results written down in
the table.

We see that in half the cases the naive algorithm is as good as the beads
algorithm and produces the same result much quicker but when there are
gaps in the data the naive algorithm does not produce an answer whereas the
beads algorithm produces a perfect road. Sometimes we see that as well as
the beads algorithm as the naive algorithm does not include loops (because
we have programmed it not to include loops), these loops are present because
the police had to search at the end for the house number or even for which
street to turn into, we supposed that the police did knew the environment
well, but as is proven this is not the case. However this certainly does not
happen in all routes but because it sometimes happens we have included this
into the test results. In a rare case the network we got is not big enough
to include all patrols from the police of Ghent, sometimes it felt out of the
district of Ghent. Like said before this is a rare case but it happens once in
a while.

2.4.4 Conclusion

As we can see in the table on the next pages the naive algorithm is very
good for data which is nearly perfect and when the succeeding GPS points
are close to each other but when there are gaps in the data, how small they
are, the naive algorithm is not good enough anymore despite the fact that
this is a very quick algorithm. The beads algorithm always performs a good
answer but is a lot slower (double as slow but most of the time 4, 5 times
and sometimes even 10 times slower).

2.4 Comparison of the used algorithms 39

Figure 2.13: Real-life example. Seconds between 2 succeeding points (dotted
points A and B) is 35 seconds

2.4 Comparison of the used algorithms 40

Figure 2.14: Real-life example. Seconds between 2 succeeding points (dotted
points A and B) is 35 seconds

2.5 Future work 41

2.5 Future work

There is still a lot of work to be done. We have mapped the imperfect GPS
data to the real road topology for analysis. But the interesting part still
needs to be done namely the data mining of the collected data. So the next
step in the process is to analyze the surveys and the data together and find
out some data mining rules why they drove that particular road. Do they
avoid areas where are crowded people at particular times of the day, like
schools, or do the police officers know when and where there are traffic jams
and do they avoid these places? These are all very interesting questions to
be answered. After this analysis the main goal is of course to come to a route
planner which is ideal for police officers. This will be the main challenge to
achieve.

For doing these kind of data mining we need to have the coordinates
of schools, zone 30 and all other kind of interesting mining data, the real
questions will be if these data is publicly available and if it is, if we can get
it. Other interesting data is when traffic jams occur, in which area and how
they evolve in time and if the police officers take these routes or not.

When the route planner will be used by the police, it could be considered
to maintain a full time link between headquarters and the police cars to have
a better look at where which patrol is. This can lead to a better reaction to
interventions. Furthermore the real-time traffic information could also be
modelled at headquarters to inform the police officers that there is a traffic
jam where they need to pass or even build it right in the route planner to
handle these situations.

Google Earth can be a possibility for displaying the data or even for
mapping it to the real network. Here we both have the satellite as the
actual road data available. It seemed that it even made a path from the
succeeding GPS points, however I do not think it will map it with the real
data like the name of the street or the coordinates of the street. This can
be further explored to see whether or not this can be helpful in the mapping
the GPS coordinates to the actual road network.

2.5.1 Implementation improvements

There are still some issues to be handled.
The software has a quite good error handling. Every time something

went wrong the user is informed by pop-up messages but the messages are
not always as clear as needed to be. Here there could be much improvement,
normally the user does not come in contact with these type of error messages
but it could be, so therefore it is pretty important that the messages are clear
enough that the user can handle the problem himself.

It needs to be checked what happens when the police have to make a U-
turn or when the police took a wrong street and returned on the same point.

2.5 Future work 42

Apparently this happens a few times especially at the place of intervention.
Probably they did not get the right house number or they did not knew
the environment very well. The algorithm is designed not to include loops
(because we thought this would not occur) and therefore the calculated route
is not entirely the same as the route taken by the police officers. This can be
solved by allowing loops to occur in the path but this makes it more difficult
and we need to be careful not to loop indefinitely.

Another problems that occurred when the data was closely examined
is that nearly all interventions were of low priority. This means that the
police had to respect the traffic rules but sometimes they drove into the
wrong direction, of course the algorithm does not take these irregularities
into account and a parallel street is chosen instead. Here too we need to be
careful when we want to change the algorithm, this would mean that the
network is not a directed graph anymore and the algorithm becomes a lot
more difficult and has to take more time than when the network is directed.

Chapter 3

Implementation

For the implementation of the map-matching algorithm we have chosen for
Java. Java is very flexible and can be run on every computer without any
change of the code. As Database Management System we have chosen for
postgreSQL [36] because the software needed to be run on the computers
of UGent and we did not know whether or not they had a license to work
with DB2 [16] from IBM. We used the PostGIS extension [38] for the spatial
data. This was entirely new for me but it was pretty straightforward to
work with and well commented on the forums on the internet. They have a
very active community behind it who help where they can. This was a great
aid in some difficult problem solving.

3.1 Used Hard/Software

3.1.1 Hardware

Everything was done on a Dell Inspiron 6400 laptop with specifications:

• double-core Centrino Intel processor 1,66 Ghz 1 Mb cache each

• 1024 Gb DDR RAM

• 40 Gb Hard disk size

3.1.2 Software

The software made for this thesis is written in Java [44]. The program used
for writing the code is Netbeans [32]. This is a very good program that
auto-completes your source code and can write all the necessary getters and
setters for you, which is very convenient. The choice for a DBMS was at first
a bit difficult to choose. At first we thought we should use the DBMS used
at the university namely DB2 UDB from IBM [16] but because of network
traffic we decided it had to be installed on my computer but there were a

3.2 Package structure 44

lot of downloads available at the IBM website and it was difficult to know
which was the best for me to use. Additionally we had the problem that all
the software had to be run on a computer at UGent so it would be better
if all the software needed was open-source. Therefore we tried other DBMS
like MySQL [29] and postgreSQL [36]. Both of these DBMS are open-source
projects and both of them have spatial extenders but postgreSQL got our
preference because it had a better graphical user interface and because some
of the team members already had experience with this DBMS.
Because UGent works a lot with shapefiles the output of the programs made
are also shapefiles. For examining these shapefiles we used ArcExplorer
[8] from ESRI[7] but we also exported the output to GML [20] format for
conveniences afterwards.
The data from the road network was provided by TeleAtlas. The data
was available in shapefiles, for the extra data (like the direction we can
drive on the road segment for example) the data was stored in a .dbf file.
However postgreSQL does not support these type of files there were open-
source programs available who could convert these .dbf files to valid SQL-
queries. These open-source programs had the disadvantage that they did
not support the Long type. So we needed to go to the commercial market
and found exactly what we needed with the software from sqlManager[43].

For converting the data directly got from server to a workable format
we used GPSBabel[22] which transform all kinds of GPS data to other GPS
data.

3.2 Package structure

Database package: db

In the package db we find everything that has to deal with the underlying
database. It fetches from the database all necessary tables and puts it into
the right datastructure. The main classes found here are:

• Connectie: This is the most important class we work with. This file
includes all functions that deal with the database and it defines all
needed queries.

• DBStreet: Street info like stored in the shapefile from TeleAtlas.

• DBStreetWithInfo: Some street info and completed with extra in-
formation about length of the street, maximum speed, one-way and
with the removal of some redundant columns like tollrd which indi-
cates whether or not you have to pay to access this road, this data is
redundant for police cars.

• GPSInfo: GPS coordinate used for displaying the points in the GUI.

3.2 Package structure 45

• AlReadyExistsSameRouteException: As the class name states
this exception is thrown when there already exists the same route in
the database. For instance when the user wants to load the same file
twice.

• CouldNotLoadFileException: This exception is thrown when the
file could not be loaded. Especially used by input of the GPS coordi-
nates from file (.shp or .gdb file).

• CouldNotLoadNetworkException: Exception is thrown when the
network could not be loaded. This is thrown when the shapefile for
the network is corrupt or when it could not be read.

GPS package: GPS

Here we find everything that includes the algorithms of map matching like
the beads algorithms or the naive algorithm.

• Beads: In this class we find the main algorithm for calculating the
beads.

• StreetScore: A simple datastructure file for storing the streetId and
the corresponding score. Includes all necessary functions like com-
pareTo(), toString() and equals().

• StreetScoreTime: A simple datastructure file for storing the streetId,
the score and the time associated with it. Includes also the necessary
functions and also a Comparator to compare 2 StreetScoreTime in-
stances.

• StreetScoreVector: Datastructure for storing a Vector of StreetScore
items. It is easier to make a new class for this type of datastructure to
handle all the necessary functions like add() and contains() and more
important override of the toString() function.

• TimestampLong: Stores a streetId with the time passed there.

GUI package: gui

In this package we find everything that deals with the Grafical User Interface
(GUI).

• GdbFilter: Filter for the FileChooser to let the user only choose
‘.gdb’ files.

• ShapeFilter: Filter for the FileChooser to let the user only choose
‘.shp’ files.

3.2 Package structure 46

• InterfaceWithGUI: The main Panel where all the buttons, labels
and events are defined.

• MyTable: Table overridden by a own class for better handling the
columns, events,. . .

• MyTableModel: DefaultTableModel overridden by a own class for
better handling the data and for making the sorting easier.

Parser package: parser

This package includes the parser for converting the ‘.gdb’ file (got directly
from the GPS server) to a better format in XML (Google Earth KML [14])
(with the aid of GPSBabel[22]) and further to parse this XML-based format
to store it in the database.

• Parser: The actual parser is found in here. It uses the SAX parser
[27]. It filters out all the unnecessary tags and remains the data of the
tags which are needed for the analysis.

• Tags: The main tags needed for extracting the data.

Road network package: roadNetwork

Here we find several basic datastructures especially for storing the road net-
work. There has been taken into account the expansion of the datastructure
and it will be very easy to extend the current classes and datastructures
with other objects or to change them with own classes. The structure can
also be found in Figure 3.1

• Roads: Head structure for the road network. Consist out of Hashtable
of Points and PointsData for quickly knowing the length of the street-
segment. Contains also the real roadnetwork as Hashtable <Point,
RoadData> Hashtable has been chosen because of instant retrieval of
the points.

• RoadData: As the name states, the road data is stored in here.
A Vector of Out objects and SecondaryData object. You can store
everything in this datastructure what has something to do with a
street.

• SecondaryData: Currently only used for storing the Geometry in
the form of a MultiLineString but it can be extended to store much
more.

• Out: Consist out of ExtraData and Point. It is used for knowing
which points are neighbours of which other points and there can be
stored additional data in the ExtraData variable.

3.2 Package structure 47

Figure 3.1: Structure of the Road class

• ExtraData: The time with a streetId is stored in this class.

• GPSPoint: Very basic (point, timestamp) tuple.

• Points: (point1, point2) tuple. Used for storing 2 succeeding points
for storing with the PointsData class. Tuple (point1, point2) will be
stored the same as the tuple (point2, point1).

• PointsData: Currently only used for storing the length but it is
easy to work further with, for instance also store the one-way or not
variable.

Useful structures package: util

In this package we find several useful structures like comparators and algo-
rithms like Dijkstra, AStar or k-shortest path implemented.

• Dijkstra: The Dijkstra algorithm is implemented in this class, but
also the k-shortest path is implemented in here (AlgorithmMultiDijk-
stra).

• AStar: The AStar algorithm is implemented in this file.

• Direction: Basic enum type with POSITIVE, NEGATIVE, BOTH
or CLOSED status.

• StreamGobbler: Used for retrieval of output from Process objects
like the export of shape files.

• Comparators: In this package there are a few Comparator objects
to be found, I do not explain in detail because they are pretty straight
forward.

3.3 Grafical User Interface 48

3.3 Grafical User Interface

For the graphical user interface we tried to make it as easy as possible for the
user. Therefore we have chosen for one screen with all the functionalities,
few parameters to set and a clearly overview. The user can choose how
he wants to name the output and where he wants it to be stored. For the
input the user can choose between a shape file and the .gdb file directly got
from the GPS server. When loaded the routes are numbered and displayed
on the right together with their starting and ending timestamp. The user
can delete a route if he does not want to use it anymore or when it is a
invalid route (only 1 GPS point stored) or display it with one button in
ArcExplorer. In Figure 3.2 you find the GUI.

Figure 3.2: GUI of the map-matching program

3.4 External libraries

As with every project here too we used some other external libraries.

Swing layout extensions

The default layout extension when you work with Java, Swing is the most
intuitive solution when you make a GUI for Java. Thanks to the very
intuitive GUI builder in Netbeans[32] it is very easy to make a good GUI.

PostgreSQL [36]

For connecting and communicating with the database we need this library.

3.5 External Programs 49

PostGIS [38]

Default library for working with geographical data and the postgreSQL data-
base. Here we find the definitions and classes for Geometry, MultiLineString
and Point.

SAX [27]

SAX is the Simple API for XML [27], originally a Java-only API. SAX was
the first widely adopted API for XML in Java, and is a “de facto” standard.
It is a very straight-forward and easy in use software packet for dealing with
XML files and is very well documented.

3.5 External Programs

GPSBabel

GPSBabel[22] is a program that converts waypoints, tracks, and routes be-
tween popular GPS receivers and mapping programs. It also has powerful
manipulation tools for such data. We used the program for converting the
data directly got from the GPS server to a better interpretable format like
KML[14] (XML based). The data from the server is a .gdb file and can be
read by Garmin Mapsource [12] but it is much easier when we could read
it automatically in a XML based format. This program handles these kind
of conversions perfectly and has a GUI as well as a command-line based
interface. We used the command-line interface because doing it this way is
much easier for automation of the process instead of working with the GUI.
GPSBabel is a open-source initiative and therefore free of charge.

ArcExplorer

ArcExplorer[8] is a light-weight GIS data[33] viewer for viewing, navigating
and querying the GIS data. Very easy in use and written in java. We have
used this program because UGent works with this program and because is
the program for viewing GIS data. It’s very straight forward to learn and
to view the data. It’s a bit more difficult to handle the data further but the
main objective was to view the data. ArcExplorer is free of charge.

ArcMap

ArcMap is a part of the ArcGIS Desktop[9] software. Everybody can get a 60
day evaluation CD so I only used the software for 60 days but this was long
enough to do everything I wanted to do. The software is used for knowing
the direction of traffic flow. You could assign each road segment an arrow
which indicated the traffic flow. This could not be done by ArcExplorer

3.6 Details 50

which was too light-weighted for these kind of actions. The arrows were a
great aid in testing the algorithms.

3.6 Details

In this section we describe more in detail which classes are the most im-
portant and we describe the most important functions described in these
classes.

3.6.1 Overall view

The main algorithm is described in the file Beads.java. In this file you
can call the function calculatePath(Integer routeId) to calculate the path
of the GPS points with id routeId. The algorithm will then combine all
steps. At first it will retrieve all GPS points from the database with id
routeId. It will then limit some of the road network by calculating the
streets within each bead. Then it will calculate the scores associated with
each street. To conclude it will calculate the k-shortest path and return the
path with the highest score. The k-shortest path algorithm is defined in the
file Dijkstra.java with the function algorithmMultiDijkstra(Hashtable
<Long,RoadWeightedData> roads,Long start, Long end). It is made static
because there is no need to define variables or to make an instance of this
object. The arguments are very straightforward nl. roads in the form of a
Hashtable because you need the road data when you want to form a shortest
path algorithm, and furthermore we need the start and end streetId for
calculating the path from start to end.

The file Connectie.java is very easy to understand. It handles the con-
nection between the postgreSQL database and the program. We work with
a typical 3 layer structure. We’ve got the database, the actual program and
in between a file which handles the queries. The name of the functions are
chosen to be very clear and to say everything.
We tried to be as complete as possible when made a own data structure.
Therefore we have overridden in most of the datastructures the following
functions equals(), compareTo(), toString() and made in some cases a Com-
parator class to compare 2 objects of the same class.

3.6.2 ArcExplorer

As output we have chosen to produce a .shp file because UGent was used to
work with these kind of data. For viewing the .shp file we used ArcExplorer
(see Section 3.5). In Figure 3.3 you find an example route.

3.7 Database structure 51

Figure 3.3: GPS points and their matching streets.

3.7 Database structure

3.7.1 Tables

• streets: This table contains all street information without extra in-
formation, just the .shp file inserted in the database.

• completestreets: This table contains all street information plus all
extra information about a street, like the maximum speed, the length
of the street, one-way or not.

• gpspointsallinfo: Here we find the GPS points with the right data
types.

• tmpsgpspoints: This table is used for converting the GPS points
from the original form (with almost all data types as varchar).

• routes: The computed routes are stored in here and are extracted
from this table.

Chapter 4

Problems with solution

As with every project we came to some problems which where sometimes
easy to solve but there also were problems which needed some special skills
and knowledge to solve.

Choice of DBMS

One of the first issues was the choice of the DBMS. At the University of
Hasselt we had experience with DB2[16] from IBM but because of network
traffic we decided that the server could better be run on the localhost instead
of a central server. Therefore we needed to find which version we could
download for installing. There were way too many options available and
we could not decide which was the best for installing on my computer.
Another problem was that the server had to be installed at headquarters in
Ghent because the project was made for them. Therefore we searched for
a better, if possible open-source DBMS, we tried postgreSQL [36] of course
with PostGIS extender (spatial extender for postgreSQL) and decided this
was exactly what we needed!

Import .dbf file

For the extra information, for instance in which direction we could pass
the street, we needed to input a ḋbf file, but postgreSQL does not support
standard input from a ḋbf file so we searched for a program that converted
the dbf file into SQL statements. We found an open-source program [1] but
the program did not support the long type. We tried to adjust the source
code but some of the basic functionalities where hidden in a j̇ar file which
was unadaptable. We had to go to a commercial product (EMS Data Import
for PostgreSQL[43]) which supported the long type and could insert all these
records (more than 365000) within a few minutes.

53

Displaying GIS data

When we think about GIS software we immediately think of Arc Explorer[8]
the freeware software packet for displaying GIS data. During our education
we only worked ones with this software packet. Learning to work with this
packet was straight-forward. Just make a project and add layers and you
could do basic things but we could not do more sophisticated stuff like
display arrows according to the direction of traffic. We used ArcMap[10]
instead for doing these kind of things. ArcMap needed more memory usage
but the map was more intuitively in use thanks to the arrows which indicated
the direction of the traffic. Another problem of ArcExplorer was that when
we searched for the streetids we had to make a real query and not simply
use the search function included in the packet.
We tried several open-source alternatives for displaying GIS data, one was
JUMP[42] but as stated before here too we had the problem of displaying
long objects and it could not be used.

Data

The data we used from TeleAtlas was in WGS84 coordinate system but the
GPS coordinates got from the GPS devices were in Lambert72. One of the 2
coordinates needed to be transformed. UGent helped us by translating the
WGS84 coordinates to the Belgian Lambert72 coordinates with which they
were used to work with. Afterwards we needed to convert the converted
shapefile to the postgreSQL database but there were several Lambert72
possibilities here too the expertise of the UGent was very useful in finding
the right coordinate system. For the postgreSQL database the Lambert72
coordinate system was translated into the number 31370.

Start of routes

A frequent problem we had was that some of the police officers started
recording when they still were at the parking lot of headquarters (see Figure
4.1). We solved this by making a polygon that contains the headquarters
and when the route starts here, the street with id from ’Antonius Triestlaan‘
(10560001258396) has been chosen to start from because this is their main
entrance.

Conversion WGS84 to Lambert72

Thanks to the postGIS extension of postgreSQL there is a function for trans-
forming one coordinate system to another. However to convert from WGS84
(lat/long with srid:4326) to Belgian Lambert72 (srid:31370) there is mistake
in the database which they promised to remove in the next version. There
were a few other people with the same problem who tried to solve it [35]

54

Figure 4.1: GPSPoints start at parking lot of headquarters, this area has
been filtered out to start at road segment at the bottom left instead of closest
roadsegment (see circle)

55

en [25] but I tried both references but both did not work. There is still a
mistake of a few meters.

Bibliography

[1] Sebastian Baumhekel. DbasePsql. http://www.tv.com.pl/
stepbystep/dbasepsql/ Last visited: 1 may 2007.

[2] J-P Beeckman. Wat men moet weten om zonder zorgen te navigeren
met GPS. Nationaal Geografisch Instituut.

[3] Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk.
On map-matching vehicle tracking data. In VLDB ’05: Proceedings
of the 31st international conference on Very large data bases, pages
853–864. VLDB Endowment, 2005.

[4] A. W. Brander and Mark C. Sinclair. A comparative study of k-shortest
path algorithms. In Proc. 11th UK Performance Engineering Worksh.
for Computer and Telecommunications Systems, September 1995.

[5] Juliana Castillo. Analysis and Implementation of K-Shortest Path
Algorithms in Geographic Information Systems. In . University
of Texas at Dallas, 2005. http://charlotte.utdallas.edu/mgis/
prj mstrs/2005/Spring/castillo/website/index.htm Last Visited:
1 may 2007.

[6] David Eppstein. Finding the k shortest paths. SIAM J. Comput.,
28(2):652–673, 1999.

[7] ESRI. http://www.esri.com Last Visited: 2 may 2007.

[8] ESRI. ArcExplorer GIS Data Viewer. http://www.esri.com/
software/arcexplorer/index.html Last Visited: 1 may 2007.

[9] ESRI. Arcgis. http://www.esri.com/software/arcgis/about/
desktop gis.html Last Visited: 29 july 2007.

[10] ESRI. ArcMap map-authoring application. http://www.esri.com/
software/arcgis/about/arcmap.html Last Visited: 1 may 2007.

[11] F. Marchal and J. Hackney and K.W. Axhausen. Efficient map-
matching of large GPS data sets - Tests on a speed monitoring ex-
periment in Zurich. 2004.

BIBLIOGRAPHY 57

[12] Garmin. Mapsource. http://www8.garmin.com/cartography/ Last
Visited: 29 july 2007.

[13] GeoPKDD. Techn. meeting munich. Internal report.

[14] Google. Kml. http://code.google.com/apis/kml/documentation/
Last Visited: 20 july 2007.

[15] Google. Maps. http://maps.google.com/ Last Visited: 26 july 2007.

[16] IBM. DB2 Universal DataBase (UDB). http://www.ibm.com/db2 Last
Visited: 29 july 2007.

[17] Jose Macedo, Christelle Vangenot, Walied Othman, Nikos Pelekis, Elias
Frentzos, Bart Kuijpers, Irene Ntoutsi, Stefano Spaccapietra, and Yan-
nis Theodoridis. Trajectory data models.

[18] Bart Kuijpers. Knowledge representation and database prob-
lems for spatio-temoral data: a calculus approach to rep-
resenting knowledge about trajectories., 2005–2008. http:
//www.uhasselt.be/english/onderzoek/groepen/teams p dep/
abstract project.asp?id=R-0920\&pnummer=1265 Last visited: 27
april 2007.

[19] Bart Kuijpers and Walied Othman. Trajectory databases: Data models,
uncertainty and complete query languages. In International Conference
on Database Theory (ICDT), pages 224–238, 2007.

[20] Ron Lake. Geography mark-up language: foundation for the geo-web
(GML). John Wiley and Sons, Published 2004. ISBN 0470871547.

[21] Leen De Temmerman. Technical specification of GPS devices. Technical
report, Ghent University, 2006.

[22] Robert Lipe. GPSBabel. http://www.gpsbabel.org/ Last Visited: 29
july 2007.

[23] Kraak M.-J. Geovisualization illustrated. ISPRS Journal of Photogram-
metry and Remote Sensing, 57:390–399(10), April 2003.

[24] Magellan. Officiele website van magellan. http://www.magellangps.
com/products/product.asp?segID=355\&prodID=1267 Last Visited:
20 july 2007.

[25] Maptools. forum. http://lists.maptools.org/pipermail/proj/
2006-October/002601.html Last Visited: 29 july 2007.

[26] A.J. Mason. Emergency vehicle trip analysis using gps avl data: A
dynamic program for map matching. 2005.

BIBLIOGRAPHY 58

[27] David Megginson. Simple api for xml. http://sax.sourceforge.net/
Last Visited: 20 july 2007.

[28] Harvey J. Miller. A measurement theory for time geography. Geograph-
ical Analysis.

[29] MySql. Mysql dbms. http://www.mysql.org/ Last Visited: 29 july
2007.

[30] Stefano Spaccapietra Natalia Andrienko, Gennady Andrienko
Nikos Pelekis. Basic concepts of movement data.

[31] Garmin Nederland. Officiele website van garmin nederland. http:
//www.gps-garmin.nl/gps60.html Last Visited: 20 july 2007.

[32] Netbeans. Netbeans. http://www.netbeans.org/ Last Visited: 1 au-
gust 2007.

[33] OGC, Open Geospatial Consortium. Open Geospatial Consortium.
http://www.opengeospatial.org/ Last Visited: 27 july 2007.

[34] Octopus plan. http://www.octopusplan.be Last Visited: 20 may
2007.

[35] PostGIS. forum. http://postgis.refractions.net/pipermail/
postgis-users/2006-October/013570.html Last Visited: 29 july
2007.

[36] PostgreSQL. . http://www.postgresql.org/ Last Visited: 1 august
2007.

[37] Ralf Hartmut Güting and Markus Schneider. Moving Objects Data-
bases (The Morgan Kaufmann Series in Data Management Systems)
(The Morgan Kaufmann Series in Data Management Systems). Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[38] Refractions Research. Spatial Extender for PostgresSQL. http:
//postgis.com/ Last visited: 1 may 2007.

[39] Sundarapandian V. Rink K.A., Rodin E.Y. A simplification of the
double-sweep algorithm to solve the k-shortest path problem. Applied
Mathematics Letters, 13:77–85(9), November 2000.

[40] Jose L. Santos. K shortest path algorithms, 2006. http://www.dis.
uniroma1.it/∼challenge9/papers/santos.pdf Last Visited: 20 july
2007.

[41] Sean R. Eddy. What is a hidden markov model. Nature Biotechnology
22, 1315 - 1316, 2004.

BIBLIOGRAPHY 59

[42] Vivid Solutions. Jump unified mapping platform. http://www.
vividsolutions.com/JUMP/ Last Visited: 1 may 2007.

[43] SQLManager.net. Ems data import for postgresql. http:
//www.sqlmanager.net/en/products/postgresql/dataimport Last
Visited: 20 july 2007.

[44] Java sun. Java. java.sun.com/ Last Visited: 1 august 2007.

[45] George Taylor. Road reduction filtering for gps-gis navigation. Trans-
actions in GIS, 5:193–207(15), June 2001.

[46] Wikipedia the free encyclopedia. A* search lgorithm. http://en.
wikipedia.org/wiki/A-star Last Visited: 29 july 2007.

[47] Yannis Theodoridis and Dimitris Papadias. Range queries involving
spatial relations: A performance analysis. In Spatial Information The-
ory, pages 537–551, 1995.

[48] Edward R. Tufte. The visual display of quantitative information.
Graphics Press, Cheshire, CT, USA, 1986, ISBN: 0-9613921-0-X.

[49] Stefanie Andrae und Stephan Winter. Summarizing GPS trajectories by
salient patterns, Technikum Kaernten, Villach, Austria 2 Department
of Geomatics, The University of Melbourne, Australia.

[50] Vassilios S. Verykios, Maria Luisa Damiani, and Aris Gkoulalas-
Divanis. Privacy and security in spatio-temporal data and trajectories,
GeoPKDD.

Appendix A

Survey

ENQUÊTE ROUTEKEUZES DOOR HULPDIENSTEN

Mijn doctoraatsonderzoek aan de Universiteit Gent (vakgroep geografie) heeft als doel
de routes gevolgd door hulpdiensten te vergelijken met de routes weergegeven door
routeplanners. Het is de bedoeling om uit deze vergelijking aspecten te halen die van
belang zijn voor hulpdiensten, maar die routeplanners niet in rekening brengen. We
denken hierbij bijvoorbeeld aan het vermijden van bepaalde straten wegens te veel
verkeerslichten, verkeersdrempels, file etc. Het is dus absoluut NIET de bedoeling om te
achterhalen of de ‘beste’ weg is gevolgd of om gemaakte routekeuzes te evalueren;
integendeel, we gaan trachten om uit de praktijkervaring suggesties te doen om tot
betere routeplanners te komen.

De gereden trajecten worden geregistreerd via GPS; van belang zijn enkel de ritten
NAAR een interventie, dus niet de terugrit naar de thuisbasis.
De gegevens worden volledig anoniem verwerkt.
Per interventie dient 1 vragenlijst te worden ingevuld.
Voor verdere inlichtingen, opmerkingen of vragen kunt u mij steeds contacteren:
Leen De Temmerman, Krijgslaan 281 S8, 9000 Gent, 09/2644636.
Leen.DeTemmerman@UGent.be

*****ALVAST HEEL ERG BEDANKT VOOR UW MEDEWERKING!*****

VRAGENLIJST (1 enquête per interventie)

De vragenlijst bestaat uit 2 soorten vragen: open vragen en meerkeuzevragen. Indien bij
deze laatste meerdere keuzes mogelijk zijn, is dit vermeld.

1) Nummer toestel (zie etiket op toestel - omcirkel): nr 1 nr 2

2) Straatnaam (+ eventueel ter hoogte van welk huisnummer of bij autosnelwegen ter

hoogte van welke km-paal):

 VERTREKPLAATS (dit kan Antonius Triestlaan zijn, maar ook andere lokatie) :
 …………………………………………………………………………………………...

 AANKOMSTPLAATS (= plaats van interventie):……………………………………...

 GEREDEN AFSTAND: …………….. km

3) Tijdstip in uur (van 0 tot 23u) en minuten van:

 VERTREK (tijdstip van oproep): …………..u min

 AANKOMST (op interventie): …………..u min

4) Datum (dd/mm/jj): ……../……./ 06

Zie ommezijde aub

5) De rit is:
 O prioritair (met zwaailichten en/of sirenes)
 O niet-prioritair (zonder zwaailichten of sirenes)

6) Weersomstandigheden (meerdere keuzes mogelijk):
 O regenval
 O sterke wind/rukwind
 O mist – zichtbaarheid < 100m
 O hagelbui
 O normaal (droog)

7) Staat van wegdek:
 O droog
 O nat/plassen

8) Hoe hebt u deze route gekozen (meerdere keuzes mogelijk):
 O intuïtief (op het gevoel de juiste richting gevolgd)
 O ervaring/kennis (ik ken de weg van vertrek- naar aankomstplaats)
 O kaart/stratenatlas
 O GPS (afzonderlijk toestel of geïnstalleerd in wagen)
 O richtlijnen gevraagd/gekregen via radiocontact
 O andere – specificeer: ………………………………………………………………..

9) Waarom hebt u specifiek déze route gekozen?
…….…………………………………………………………………………………………...……
…………………………………………………………………………………………………….…
………………………………………………………………………………………………………
………………………………………………………………………….…………………………...

10) Waren er speciale omstandigheden (bv. wegomlegging) waardoor u een andere weg
hebt gevolgd dan dat u van plan was?
………………………………………………………………………………………………………
………………………………………………………………………………………………………..
………………………………………………………………………………………………………
………………………………………………………………………………………………………..

11) Hoe goed is uw kennis van het wegennetwerk in het gebied tussen vertrekplaats en
aankomstplaats? Omcirkel het cijfer dat best bij deze rit past.

Ik ben niet vertrouwd met dit gebied Ik ben volledig vertrouwd dit gebied

|__|
 1 2 3 4 5 6 7

12) Indien u opmerkingen of suggesties hebt, gelieve deze hier te vermelden.
………………………………………………………………………………………………………
………………………………………………………………………………………………………
………………………………………………………………………………………………………
………………………………………………………………………………………………………
………………………………………………………………………………………………………
………………………………………………………………………………………………………..

Appendix B

GUI

Auteursrechterlijke overeenkomst
Opdat de Universiteit Hasselt uw eindverhandeling wereldwijd kan reproduceren, vertalen en distribueren is uw

akkoord voor deze overeenkomst noodzakelijk. Gelieve de tijd te nemen om deze overeenkomst door te

nemen, de gevraagde informatie in te vullen (en de overeenkomst te ondertekenen en af te geven).

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:

Map matching tracking data

Richting: Master in de informatica Jaar: 2007

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de

Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt behoud ik

als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -, vrij te

reproduceren, (her)publiceren of distribueren zonder de toelating te moeten verkrijgen van

de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de

rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat de

eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt door

het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de Universiteit

Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de eindverhandeling

werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze

overeenkomst.

Ik ga akkoord,

Kristof Ghys

Datum: 20.08.2007

Lsarev_autr

