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ABSTRACT
Bayesian inference for generalized linear mixed models (GLMM) is appealing, but its widespread 
use has been hampered by the lack of a fast implementation tool and the difficulty in specifying 
prior distributions. In this paper, we conduct an extensive simulation study to evaluate the 
performance of INLA for estimation of the hierarchical Poisson regression models with overdisper-
sion in comparison with JAGS and Stan while assuming a variety of prior specifications for variance 
components. Further, we analysed the influence of different factors such as small number of 
observations per cluster, different values of the cluster variance and estimation from 
a misspecified model. A simulation study has shown that the approximation strategy employed 
by INLA is accurate in general and that all software leads to similar results for most of the cases 
considered. Estimation of the variance components, however, is difficult when their true value is 
small for all estimation methods and prior specifications. The estimates obtained for all software 
tend to be biased downward or upward depending on the assumed priors.
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1 Introduction

The Integrated Nested Laplace Approximation (INLA) 
by Rue et al. (2009) is a Bayesian estimation method 
which is computationally faster than its predecessors. 
Since its introduction, its performance compared to 
other software for Bayesian analysis has been widely 
reported in the literature. Taylor and Diggle (2013) com-
pared INLA and Markov chain Monte Carlo (MCMC) in 
the context of spatial log-Gaussian Cox processes. Their 
simulation study confirms the advantage of INLA in 
terms of computational time, but shows that INLA has 
a lower predictive accuracy in certain scenarios. The use 
of INLA for Bayesian inference for generalized linear 
mixed models (GLMMs) was investigated by Fong et al. 
(2010) making a comparison with the maximum like-
lihood approach via Penalized Quasi Likelihood 
(Breslow & Clayton, 1993). Fong et al. (2010) showed 
that the approximations were inaccurate for binary data 
with few or no replications. Further, the performance of 
Bayesian inference using INLA for a random intercept 
logit model was investigated by Grilli et al. (2015), who 
presented a comparison with Bayesian MCMC Gibbs 
sampling and maximum likelihood with Adaptive 

Gaussian Quadrature (AGQ) approximation. In contrast 
to the previous two studies, Grilli et al. (2015) showed 
that the specification of the prior distribution is more 
relevant than the choice of the estimation method. 
Following Fong et al. (2010), INLA’s developers 
addressed the inaccuracy of INLA for binary data with 
few or no replications by introducing a new correction 
term for INLA (Ferkingstad & Rue et al., 2015) and claim 
their correction has significantly improved the accuracy.

In this paper, we extend the investigation of Grilli et al. 
(2015) to longitudinal count data with overdispersion and 
evaluate the performance of INLA in comparison with 
JAGS (Plummer, 2003) and Stan (Stan Development 
Team, 2015) while assuming a variety of prior specifica-
tions for variance components. In contrast with the com-
parison presented in Ferkingstad and Rue et al. (2015), 
based on the difference between the results obtained by 
INLA after the correction to the results obtained by 
MCMC simulation, we base our comparison on the dif-
ference between the parameter estimates obtained for all 
methods and the true parameter values. Further, we inves-
tigate the influence of small sample sizes and true values on 
the cluster variance and overdispersion.
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We proceed as follows. In Section 2, the two case 
studies used for illustration are presented. In section 3, 
we review the generalized linear mixed effects model, 
Bayesian estimation approaches and prior specifica-
tions. Section 4 presents results obtained for the two 
studies where we apply the three estimation methods to 
the two longitudinal count data sets. The simulation 
design and the main results of the simulation study are 
commented in Section 5. Finally, Section 6 gives 
a discussion and concluding remarks.

2 Case studies

Two data sets with longitudinal count outcomes were 
used to illustrate the methodological aspects discussed 
in this paper.

2.1 Anopheles mosquitoes count data

A longitudinal entomological study was conducted 
between June 2013 and November 2013 in Jimma town, 
south-western Ethiopia, to investigate whether the ecologi-
cal transformation due to resettlement has an influence on 
the abundance and species composition of Anopheles mos-
quitoes. This was carried out by comparing villages who are 
at the centre of the town with those newly emerged villages 
located at the suburb of the town. The study design and 
rationale are presented in Degefa et al. (2015).

The study consists of a longitudinal count data where 
adult Anopheles mosquitoes resting inside human habi-
tations were collected monthly (June 2013— 
November 2013) from 40 selected houses using pyre-
thrum spray catches (PSCs). Half of the households 
belong to resettled villages and are considered to be at 
risk of Malaria infection. The second half of the house-
hold belongs to villages located in low-risk areas (con-
trol). Figure 1 (left panel) presents the monthly female 
Anopheles mosquito count while the right panel pre-
sents the mean evolution over time.

2.2 The epilepsy data

The epilepsy data set contains information about 59 
epileptics’ patients that are randomized into two treat-
ment arms, a placebo or a new drug in a randomized 
clinical trial of anticonvulsant therapy (Thall & Vail, 
1990). The response variable, the number of epilepsy 
seizures, was measured at four visits over time. The data 
was presented and analysed by Breslow and Clayton 
(1993) and used as an illustrating example in Fong 
et al. (2010) who evaluated the performance of INLA 
in comparison with penalized quasi-likelihood (PQL). 
The epilepsy data set is available in R (R Core Team, 
2016) as part of the R package INLA (Rue et al., 2009). 
Figure 2 shows the individual and average profiles of the 
epilepsy data for both treatment groups.

3 Hierarchical Bayesian models for count data

3.1 Hierarchical poisson-normal models

Generalized linear mixed models (GLMMs) extend the 
generalized linear model with a subject-specific random 
effect, usually of Gaussian type, added to the linear 
predictor to give a rich family of models that have 
been used in a wide variety of applications (McCulloch 
& Neuhaus, 2001; Molenberghs & Verbeke, 2005). The 
analysis presented in this paper is focused on count 
variables (number of female Anopheles mosquitoes and 
number of epilepsy seizures) which were repeatedly 
measured over time. Hence, we formulated 
a hierarchical Poisson model for both case studies. Let 
Yij represent the response variable of the ith subject 
measured at time j, i ¼ 1; 2; . . . ; I and j ¼ 1; 2; . . . ; J. 
A Poisson-Normal hierarchical (HPN) model can be 
formulated as 

Yij,PoissonðλijÞ;

ηij ¼ logðλijÞ ¼ xT
ij βþ b0i;

Figure 1. Female Anopheles mosquito count data. Individual count (left panel) and average profile (right panel) in at risk and control 
villages, Jimma town, Southwest Ethiopia (June—November 2013).
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b0i,Nð0; σ2
b0
Þ; (1) 

where xij is a p-dimensional design matrix of the fixed 
effect parameters β and b0i is a random intercept typi-
cally used to model repeated count responses. To com-
plete the specification, we used non-informative prior 
distributions, namely, a normal distribution with mean 
zero and variance 10,000 for β‘s and considered various 
non-informative prior distributions for σ2

b0 
(see 

Section 3.2).
The HPN model specified in (1) assumes that all 

sources of variability in the data can be captured by 
the random effects and the Poisson variability. 
A commonly encountered problem related to count 
data is overdispersion (or underdispersion), which 
may cause serious flaws in precision estimation and 
inference (Breslow, 1990) if not appropriately accounted 
for. A number of extensions of the HPN models have 
been proposed to account for extra-dispersion in the 
setting of longitudinal count data (2015; Aregay et al., 
2013; Molenberghs et al., 2007). Aregay et al. (2015) 
extend the HPN model in (1) by considering two sepa-
rate random effects added to the linear predictor. The 
mean structure for their model (HPNOD) is given by 

ηij ¼ logðλijÞ ¼ xT
ij βþ b0i þ uij;

uij,Nð0; σ2
uÞ; (2) 

where b0i is the random intercept used to account for 
possible clustering effect as before and the random effect 
uij included to accommodate the overdispersion not 
captured by the normal random effect b0i. The assumed 
priors for σ2

u are discussed in section 3.2. We choose the 
additive overdispersion model above rather than the 
multiplicative overdispersion model (Aregay et al., 
2013; Molenberghs et al., 2007) to keep parametrization 
of the model to be the same across softwares. Further, 
a comparison of the additive model and the multiplica-
tive model has been described by Aregay et al. (2015) 

and they reported the performance of the two 
approaches to be the same.

3.1.1 Model formulation for Anopheles mosquitoes 
count data
Let Yij represent the number of female Anopheles mos-
quito counts for household i during month j of the 
follow-up period, let tij be the time point (months) at 
which Yij has been measured, tij ¼ 1; . . . ; 6 for all 
households, and let xi be an indicator variable, which 
denotes the village type of the ith household, which 
takes the value of one if the household is located in 
a resettled (risk) village and zero if the household is 
located in a control village. We assumed 
Yijjβ; b0i,PoissonðλijÞ; i ¼ 1; . . . ; 40; j ¼ 1; . . . ; 6, and 
that the pattern of Anopheles mosquito abundance 
over time is log-linear and possibly different between 
the control and at-risk villages. Thus, the HPN model 
has a linear predictor of the form 

ηij ¼ logðλijÞ

¼ β00xi þ β01ð1 � xiÞ þ β10xitij þ β11ð1 � xiÞtij
þ b0i; (3) 

and the mean structure for the HPNOD is given by 

ηij ¼ logðλijÞ

¼ β00xi þ β01ð1 � xiÞ þ β10xitij þ β11ð1 � xiÞtij þ b0i
þ uij:

(4) 

3.1.2 Model formulation for epilepsy data

Breslow and Clayton (1993) analyzed the epilepsy data 
set presented in Section 2.2 using likelihood-based 
inference via penalized quasi-likelihood (PQL). Fong 
et al. (2010) used this data set to illustrate how 
Bayesian inference may be performed using INLA. We 
concentrate on the two random-effects models fit by 
Breslow and Clayton (1993) and Fong et al. (2010). Let 

Figure 2. Individual profiles (left panel) and average profile (right panel) of the epilepsy data for both treatment groups.
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Yij be the number of seizures for patient i at visit j, i ¼
1; 2; . . . ; 59 and j ¼ 1; 2; . . . ; 4, assumed to be condi-
tionally independent Poisson variables with mean 
expðλijÞ, where the linear predictor for the HPN 
model is given by 

ηij ¼ logðλijÞ

¼ β0 þ β1logðBaselinei=4Þ þ β2Trti þ β3Trti
� logðBaselinei=4Þ

þ β4logðAgeiÞ þ β5V4i þ b0i; (5) 

and the linear predictor for the HPNOD model is 
given by 

ηij ¼ logðλij

¼ β0 þ β1logðBaselinei=4Þ þ β2Trti þ β3Trti
� logðBaselinei=4Þ

þ β4logðAgeiÞ þ β5V4i þ b0i þ uij: (6) 

Here, Baselinei=4 denote the one-fourth of the baseline 
seizure count for the ith patient, Trti is an indicator 
variable for the treatment arm of the ith patient, which 
takes the value of one if the patient is assigned to the 
new drug and zero if the patient is assigned to the 
placebo group, and V4i is an indicator variable for the 
fourth visit. To aid convergence when fitting the HPN 
and HPNOD models (5) and (6), respectively, the cov-
ariates logðBaselinei=4Þ, logðAgeiÞ, and Trti �

logðBaselinei=4Þ were centred about their mean.

3.2 Priors for the variance components of the 
hierarchical Poisson models

A Bayesian approach is attractive for modelling complex 
longitudinal count data, but requires the specification of 
prior distributions for all the random elements of the 
model. For the hierarchical models in Section 3.1, this 
involves choosing priors for the regression coefficients 
and the hyperparameters σ2

b0 
and σ2

u of subject and 
observation-specific random effects, respectively. Two 
classes of prior distributions, informative and non- 
informative priors, are used in Bayesian modelling. 
One can use informative priors when substantial prior 
information is available, for instance, from previous 
studies relevant to the current data set. Non- 
informative prior distributions are intended to allow 
Bayesian inference for parameters about which little is 
known beyond the data included in the analysis at hand 
(Gelman, 2006). In this paper, we focus on the choose of 
non-informative prior.

The specification of a non-informative prior to 
express the absence of prior information about the 

cluster variance and overdispersion is often difficult 
(Gelman, 2006). Various non-informative prior dis-
tributions have been suggested in the Bayesian lit-
erature, including an improper uniform density on 
the scale of standard deviation (Gelman et al., 
2003), proper distributions such as the inverse �
gammað2;2Þ with small positive 2 for the variance 
(Lunn et al., 2012), and conditionally conjugate 
folded-non-central-t family of prior distributions 
for the standard deviation (Gelman, 2006). In this 
paper, we concentrate on the latter two approaches. 
We considered three specifications based on 
inverse � gammað2;2Þ for the variance and half- 
Cauchy prior (a special case of the conditionally 
conjugate folded-non-central-t family of prior dis-
tributions) for the standard deviation (see Figure 1 
in the supplementary material):

1. pðσ� 2Þ,Γð1; 0:0005Þ—the default choice of the 
INLA software (Rue et al., 2009);

2. pðσ� 2Þ,Γð0:001; 0:001Þ—the default choice of the 
BUGS software (Lunn et al., 2012) and the most popular 
choice in Bayesian analysis;

3. pðσ� 2Þ,Γð0:5; 0:0164Þ—a specification proposed 
by Fong et al. (2010);

4. Half—Cauchy prior with scale 25 on σ—a specifi-
cation proposed by (Gelman, 2006).

4 Result

4.1 Analysis of the Anopheles mosquitoes count 
data

In this subsection, we present the analysis of the 
Anopheles mosquitoes count data introduced in 
Section 2.1. We considered three estimation routines 
(namely: Stan, JAGS, and INLA) where all of them are 
accessed through R software version 3.3.2 (R Core 
Team, 2016) to fit the HPN and HPNOD models pre-
sented in section 3.1.1 and 3.1.2. For the Bayesian infer-
ence using runjags (Denwood, 2016) we run 3 chains 
with 30,000 MCMC iterations per chain from which the 
first 10,000 iterations are considered burn-in period, 
while for RStan (Stan Development Team, 2016) the 
results are based on 4 chains with 4000 MCMC itera-
tions per chain (with the first 2000 the burn-in period). 
Note that the models can be fitted in Stan using brms 
(Bürkner, 2017) as well. An elaborate discussion about 
two packages, RStan and brms, is given in Section 6 of 
the supplementary appendix. Model selection was made 
using the Deviance Information Criteria (DIC, 
Spiegelhalter et al., 2002) for INLA and JAGS and the 
widely applicable information criteria (WAIC, Vehtari 
et al., 2017) for Stan.
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The posterior means and standard deviations for the 
parameters of the HPN and HPNOD models estimated 
using INLA, JAGS, and Stan using the four prior speci-
fications are presented in Table 1. For all priors consid-
ered, the DIC and WAIC values of the HPNOD model 
are slightly higher than those of the HPN model, sug-
gesting the latter to be a preferred model for this dataset.

All prior distributions and all methods of estimations 
we examined yielded similar results for the regression 
coefficients. However, the results in Table 1 revealed the 
influence of the software used to fit the models and the 
prior specification on the parameter estimates corre-
sponding to the random effect terms. The three estima-
tion methods give similar point estimates for the 
variance of the random intercept under the 
Γð0:001; 0:001Þ and Γð0:5; 0:0164Þ priors in both the 
HPN and HPNOD models. On the other hand, the 
difference among estimation methods is noticeable 
under the Γð1; 0:0005Þ and half Cauchy prior, where 
the posterior mean for σ2

b0 
obtained from Stan is about 

6% larger than INLA under Γð1; 0:0005Þ prior and 
about 13% larger under the half Cauchy prior. Figure 3 
shows the posterior density of the precision of the ran-
dom intercept (σ � 2

b0
) obtained from JAGS, Stan and 

INLA using the four prior distributions. All estimation 

methods lead to a similar result under Γð0:001; 0:001Þ
and Γð0:5; 0:0164Þ priors, but the posterior density of 
INLA for σ � 2

b0 
deviates from that of Stan under the 

Γð1; 0:0005Þ and half Cauchy prior. For INLA, we 
observed differences in the point estimates of σ2

b0 
and 

σ2
u across priors, where a profound variation across 

priors is observed in the posterior density of σ2
u 

(Figure 4).

4.2 Analysis of the epilepsy data

The HPN and HPNOD models formulated in equations 
(5) and (6) were fitted using the three software and four 
priors discussed in the previous section.

Table 2 presents the posterior means obtained for 
all fitted models. The DIC (WAIC) values of the 
HPNOD model obtained for all estimation methods 
are smaller than those of the HPN model for all 
prior settings, indicating that the first model is pre-
ferred. The three estimation methods lead to virtually 
identical results for the HPNOD model under priors 
2 and 3. However, under the half Cauchy prior 
(prior 4), the posterior means for the random inter-
cept (σ2

b0
) and overdispersion (σ2

u) obtained for Stan 
and JAGS are slightly higher than the posterior mean 

Table 1. Parameter estimates of the HPN and HPNOD models for the Anopheles mosquitoes count data using INLA, JAGS and Stan
Stan JAGS INLA

HPN HPNOD HPN HPNOD HPN HPNOD

Pprior Param. Est sd Est sd Est SD Est SD Est sd Est sd

1 β00 1.55 0.23 1.55 0.22 1.55 0.23 1.55 0.23 1.56 0.23 1.56 0.23
β01 0.69 0.27 0.71 0.28 0.70 0.26 0.69 0.26 0.69 0.26 0.69 0.26
β10 −0.27 0.03 −0.27 0.03 −0.27 0.03 −0.27 0.03 −0.27 0.03 −0.27 0.03
β11 −0.25 0.05 −0.25 0.05 −0.25 0.05 −0.25 0.05 −0.25 0.05 −0.25 0.05
σb0 0.88 0.13 0.87 0.12 0.86 0.12 0.86 0.13 0.85 0.12 0.85 0.12
σu 0.00 0.00 0.03 0.02 0.03 0.02
DIC� 682.2 682.8 690.5 690.5 691.35 691.44

2 β00 1.55 0.24 1.55 0.23 1.55 0.23 1.56 0.23 1.55 0.23 1.55 0.23
β01 0.67 0.27 0.68 0.27 0.68 0.27 0.69 0.27 0.68 0.27 0.68 0.27
β10 −0.27 0.03 −0.28 0.03 −0.27 0.03 −0.28 0.03 −0.27 0.03 −0.28 0.03
β11 −0.25 0.05 −0.25 0.05 −0.25 0.05 −0.25 0.05 −0.25 0.05 −0.25 0.05
σb0 0.89 0.13 0.89 0.13 0.89 0.13 0.89 0.13 0.89 0.13 0.89 0.13
σu 0.04 0.05 0.08 0.05 0.08 0.05
DIC� 682.4 682.5 690.2 692.0 691.13 692.14

3 β00 1.55 0.23 1.55 0.23 1.55 0.23 1.56 0.23 1.55 0.23 1.55 0.23
β01 0.68 0.27 0.68 0.27 0.69 0.26 0.70 0.27 0.69 0.26 0.69 0.27
β10 −0.27 0.03 −0.28 0.03 −0.27 0.03 −0.28 0.03 −0.27 0.03 −0.28 0.04
β11 −0.25 0.05 −0.25 0.05 −0.25 0.05 −0.25 0.05 −0.25 0.05 −0.25 0.05
σb0 0.88 0.13 0.88 0.13 0.88 0.13 0.87 0.13 0.87 0.12 0.87 0.13
σu 0.05 0.05 0.14 0.05 0.13 0.04
DIC� 682.8 683.1 690.3 692.8 691.22 693.27

4 β00 1.54 0.24 1.55 0.24 1.55 0.23 1.57 0.24 1.56 0.23 1.56 0.23
β01 0.68 0.27 0.68 0.28 0.68 0.26 0.69 0.27 0.69 0.26 0.69 0.26
β10 −0.27 0.03 −0.28 0.03 −0.27 0.03 −0.28 0.04 −0.27 0.03 −0.28 0.03
β11 −0.25 0.05 −0.25 0.05 −0.25 0.05 −0.25 0.05 −0.25 0.05 −0.25 0.05
σb0 0.91 0.14 0.91 0.14 0.87 0.12 0.87 0.13 0.85 0.12 0.85 0.12
σu 0.10 0.06 0.14 0.06 0.12 0.05
DIC� 681.6 683.7 690.2 693.8 691.35 693.06
Time�� 4.28 4.74 2.88 6.06 2.49 2.56

* The WAIC (Vehtari et al., 2017) is reported rather than DIC for Stan. 
** The computational time for INLA is in seconds whereas the computational time for JAGS and Stan is in minutes.
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obtained for INLA. Figures 5 and6 show the poster-
ior density of the precision of the random intercept 
(σ � 2

b0
) and the precision of the overdispersion para-

meter (σ� 2
u ) obtained from JAGS, Stan and INLA 

using the four prior distributions. We notice 
a small difference between JAGS and INLA as well 
as Stan and INLA for the two prior specifications 
(priors 1 and 2). Differences between estimation 
methods are clearly seen when the half Cauchy 
prior is used.

5 Simulation study

A simulation study was conducted to compare the per-
formance of the three Bayesian software and the four 
prior specifications for σb0 and σu presented in 
Section 3.2.

5.1 Simulation setting

The simulation represents a longitudinal study where 
the data are Poisson distributed. The steps for the 
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simulation study are as follows: For i ¼ 1; . . . ;N clus-
ters (subjects), j ¼ 1; . . . ; J observations per cluster 
observed at equally spaced sampling times 
tij ¼ ðti1; . . . ; tiJÞ

0, we generate Yij,PoissonðλijÞ where 

ηij ¼ logðλijÞ

¼ β00xi þ β01ð1 � xiÞ þ β10xitij þ β11ð1 � xiÞtij þ b0i
þ uij;

(7) 

with b0i,Nð0; σ2
b0
Þ; uij,Nð0; σ2

uÞ, and xi is an indicator 
variable such that xi ¼ 0 for i � N=2 and xi ¼ 1 
otherwise. The model formulated in (7) is the HPNOD 
model discussed in (3.1.1). Low, moderate, and 
high levels of overdispersion were considered 
corresponding to σu ¼ 0:2; 1 and 2, respectively 
(Aregay et al., 2015). A model without overdispersion 
(HPN) was formulated by omitting uij from the mean 
structure in (7). The true values of the fixed effect 

parameters for both the HPN and HPNOD models are 
β ¼ ðβ00; β01; β10; β11Þ

0 ¼ ð2; � 2; 0:05; 0:2Þ0. To study 
how the performance of the estimation methods and 
the role of the prior distribution are affected by the value 
of the cluster variance, we used four different values for 
the standard deviation parameter of the random inter-
cept term, i.e σb0 ¼ 0:1; 0:5; 1; 1:5. Further, in order to 
study the effect of small number of observations per 
cluster, we considered four balanced designs with J ¼
2; 5 observations per cluster and the number of clusters 
equal to N ¼ 20 and 40. In total 4� 4� 2� 2 ¼ 64 
simulation setting was considered. For each setting 500 
datasets were generated. For each dataset, the HPN and 
HPNOD models were fitted with INLA, JAGS, and Stan 
using a flat prior distribution Nð0; 1000Þ for the fixed 
effect parameters and using the four prior distributions 
listed in Section 3.2 for σ2

b0 
and σ2

u. For JAGS and Stan, 
we ran 3 chains with 20,000 iterations per chain from 

Table 2. Parameter estimates of the HPN and HPNOD models for the epilepsy data set using INLA, JAGS and stan
Stan JAGS INLA

HPN HPNOD HPN HPNOD HPN HPNOD

PPrior Param. Est sd Est sd Est SD Est SD Est sd Est sd

1 1 β0 1.62 0.08 1.57 0.08 1.62 0.08 1.58 0.07 1.62 0.08 1.58 0.08
β1 0.88 0.14 0.88 0.14 0.88 0.13 0.89 0.13 0.88 0.14 0.88 0.13
β2 −0.34 0.16 −0.34 0.15 −0.34 0.15 −0.33 0.15 −0.34 0.15 −0.33 0.15
β3 0.34 0.21 0.35 0.21 0.34 0.20 0.35 0.20 0.34 0.21 0.35 0.21
β4 0.47 0.36 0.48 0.36 0.47 0.36 0.48 0.35 0.48 0.36 0.48 0.35
β5 −0.16 0.05 −0.10 0.09 −0.16 0.05 −0.10 0.09 −0.16 0.05 −0.10 0.09
σb0 0.53 0.06 0.49 0.07 0.52 0.06 0.48 0.07 0.52 0.06 0.48 0.07
σu 0.36 0.04 0.35 0.04 0.35 0.04
DIC� 1328.4 1151.9 1271.9 1159.3 1272.3 1158.2

2 2 β0 1.62 0.08 1.57 0.08 1.62 0.08 1.57 0.08 1.62 0.08 1.57 0.08
β1 0.88 0.14 0.88 0.14 0.88 0.15 0.88 0.14 0.88 0.14 0.88 0.14
β2 −0.34 0.16 −0.33 0.16 −0.34 0.16 −0.33 0.16 −0.34 0.16 −0.33 0.16
β3 0.34 0.22 0.35 0.21 0.35 0.22 0.36 0.21 0.34 0.22 0.35 0.21
β4 0.47 0.37 0.48 0.37 0.47 0.38 0.48 0.37 0.47 0.37 0.48 0.36
β5 −0.16 0.05 −0.10 0.09 −0.16 0.05 −0.10 0.09 −0.16 0.05 −0.10 0.09
σb0 0.54 0.07 0.50 0.07 0.54 0.07 0.50 0.07 0.54 0.06 0.50 0.07
σu 0.36 0.04 0.36 0.04 0.36 0.04
DIC� 1328.9 1149.1 1271.75 1159.0 1272.1 1157.8

33 β0 1.62 0.08 1.57 0.08 1.62 0.08 1.57 0.08 1.62 0.08 1.57 0.08
β1 0.88 0.14 0.88 0.14 0.88 0.13 0.89 0.14 0.88 0.14 0.88 0.14
β2 −0.34 0.16 −0.33 0.15 −0.33 0.16 −0.34 0.16 −0.34 0.16 −0.33 0.15
β3 0.34 0.21 0.35 0.21 0.35 0.21 0.33 0.21 0.34 0.21 0.35 0.21
β4 0.48 0.37 0.49 0.36 0.49 0.37 0.46 0.36 0.48 0.37 0.48 0.36
β5 −0.16 0.05 −0.10 0.09 −0.16 0.05 −0.10 0.09 −0.16 0.05 −0.10 0.09
σb0 0.54 0.07 0.49 0.07 0.53 0.06 0.49 0.07 0.53 0.06 0.49 0.07
σu 0.36 0.04 0.36 0.04 0.36 0.04
DIC� 1326.7 1148.4 1271.5 1159.1 1272.2 1157.9

4 4 β0 1.62 0.08 1.57 0.08 1.62 0.08 1.57 0.08 1.62 0.08 1.58 0.08
β1 0.88 0.14 0.88 0.14 0.90 0.15 0.87 0.14 0.88 0.14 0.88 0.13
β2 −0.33 0.16 −0.33 0.16 −0.34 0.16 −0.33 0.16 −0.34 0.15 −0.33 0.15
β3 0.34 0.22 0.35 0.22 0.31 0.22 0.36 0.22 0.34 0.21 0.35 0.21
β4 0.47 0.37 0.48 0.37 0.45 0.38 0.48 0.36 0.48 0.36 0.48 0.35
β5 −0.16 0.05 −0.10 0.09 −0.16 0.05 −0.10 0.09 −0.16 0.05 −0.10 0.09
σb0 0.55 0.07 0.51 0.07 0.54 0.07 0.50 0.07 0.52 0.06 0.48 0.07
σu 0.37 0.04 0.37 0.04 0.35 0.04
DIC� 1326.5 1147.2 1271.7 1159.0 1272.3 1158.1
Time�� 5.80 5.44 3.23 5.06 4.30 12.78

* The WAIC (Vehtari et al., 2017) is reported rather than DIC for Stan. 
** The computational time for INLA is in seconds whereas the computational time for JAGS and Stan is in minutes.
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which the first 10,000 iterations were considered as 
burn-in period. For each parameter of interest θ, the 
relative bias was calculated by 

1
500

�500
i¼1 θ̂i � θ
� �

=θ;

and the mean squared error (MSE) by 

1
500

�500
i¼1 Varðθ̂iÞ þ θ̂i � θ

� �2
� �

;

where θ̂i is the parameter estimate for θ obtained for the 
ith simulation. A simulation study for unbalanced long-
itudinal data was conducted as well. The simulation 
setting and result are discussed in detail in Section 5 of 
the supplementary appendix.
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Figure 5. Epilepsy data: Posterior density for the precision of the random intercept (σ� 2
b0

) obtained for the HPNOD model.
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Figure 6. Epilepsy data: posterior density for the precision of the overdispersion parameter (σ� 2
u ) obtained for the HPNOD model.
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5.2 Simulation results

5.2.1 Estimation of σb0

Figure 7 (upper left panel) presents the simulation 
results obtained for the datasets generated without over-
dispersion. For all prior specifications, and for all soft-
ware, differences were observed for σb0 ¼ 0:1. For INLA 
and JAGS, prior 1 led to an underestimation of σb0 while 
prior 2 � 4 led to an over estimation. For Stan, prior 4 
led to over estimation, while priors 1–3 led to an under-
estimation of σb0 . Note that this pattern was observed 
for both HPN and HPNOD, which in this case, mis- 
specified the mean structure (by including the over 
dispersion parameter).

The upper right and the lower panels in Figure 7 
present the simulation results obtained for the datasets 
generated with varying levels of overdispersion 
(σu ¼ 0:2, σu ¼ 1, and σu ¼ 2). In this case, the HPN 

model mis-specified the mean structure of the under-
lying model used to generate the data (by omitting the 
overdispersion parameter). For datasets generated with 
low levels of overdispersion (σu ¼ 0:2), we observe 
a similar pattern to that of no overdispersion. When 
the data are generated with a moderate to high level of 
overdispersion, for the HPN model, all prior specifica-
tions and software have a tendency to overestimate the 
value of σb0 with the magnitude of overestimation 
decreasing as the value of σb0 increases. For the 
HPNOD model (which specified the mean structure 
correctly), for σb0 ¼ 0:1, prior 1 consistently led to an 
under estimation of σb0 across all software but with the 
smallest magnitude compared to the overestimation 
observed for the other priors.

Similar patterns were observed for the second simu-
lation study of unbalanced longitudinal data (see 
Section 5 of the supplementary material). When the 
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Figure 7. Relative bias for the random intercept σb0 (y-axis) as a function of the true value of σb0 (x-axis); panels by level of 
overdispersion σu. Red lines for prior 1 (Γð1; 0:0005Þ), green for prior 2 (Γð0:001; 0:001Þ), light blue for prior 3 (Γð0:5; 0:0164Þ) and 
purple for prior 4 (half-Cauchyð0; 25Þ). N ¼ 20 and J ¼ 5.
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true values for σb are small, substantial variation is 
observed among software and prior specifications and 
this variation vanishes when the true values are rela-
tively large.

5.2.2 Estimation of σu
Figure 8 shows the results for the estimation of σu across 
the levels of σb0 for the HPNOD model. Differences 
between the priors can be observed for σu ¼ 0:2. For 
INLA and Stan, all priors led to an underestimation of 
σu (prior 1 with the highest magnitude). For JAGS, prior 
4 led to an overestimation of σu while the other priors to 
an underestimation.

5.2.3 Estimation of β‘s
The relative biases for the regression coefficients for 
given values of σb0 and σu are shown in Figure 9. For 
INLA and Stan, all priors lead to similar relative bias for 

all regression coefficients under all settings. For JAGS, 
we observed a different pattern for β10 when the data are 
generated with a high level of overdispersion (σu ¼ 2) 
and the HPNOD model used to fit the data. The relative 
bias for this parameter increases in a linear fashion with 
the value of the standard deviation of the random 
intercept.

5.2.4 Effect of cluster size
A simulation study also investigated the effect of 
a small number of observations per cluster on the 
estimation. Two and five observations per cluster 
were considered. Figure 10, presents the relative 
bias for all the parameters of the HPNOD model. 
The results obtained for N ¼ 20, σb0 ¼ 1, and σu ¼ 1 
indicate that, as expected, the relative bias decreases 
as the sample size increases. Note that this pattern 
was observed for all software and priors considered. 
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Figure 8. Relative bias for the overdispersion parameter σu (y-axis) as a function of the true value for σu (x-axis). Red lines for prior 1 
(Γð1; 0:0005Þ), green for prior 2 (Γð0:001; 0:001Þ), light blue for prior 3 (Γð0:5; 0:0164Þ) and purple for prior 4 (half-Cauchyð0; 25Þ). 
N ¼ 20 and J ¼ 5.
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The results obtained for the HPN model are similar 
and presented in Section 3 of the supplementary 
appendix.

5.3 Random intercept and slope model

We extend the simulation setting in Section 5.1 to 
a random intercept and slope model. For i ¼ 1; . . . ;N 
clusters (subjects), j ¼ 1; . . . ; J observations per cluster 
observed at equally spaced sampling times 
tij ¼ ðti1; . . . ; tiJÞ

0, we generate Yij,PoissonðλijÞ where 

ηij ¼ logðλijÞ

¼ β00xi þ β01ð1 � xiÞ þ β10xitij þ β11ð1 � xiÞtij þ b0i
þ b1itij þ uij;

(8) 

with b0i,Nð0; σ2
b0
Þ, b1i,Nð0; σ2

b1
Þ, uij,Nð0; σ2

uÞ, and xi 

is an indicator variable such that xi ¼ 0 for i � N=2 and 

xi ¼ 1 otherwise. We considered four set of values for 

σb0 and σb1 , i.e σb0 0
0 σb1

� �

¼
0:1 0
0 0:1

� �

;

0:1 0
0 1:5

� �

;
1:5 0
0 0:1

� �

; and 1:5 0
0 1:5

� �

. Further, 

low, moderate, and high levels of overdispersion were 
considered corresponding to σu ¼ 0:2; 1 and 2, respec-
tively. A model without overdispersion (HPN) was for-
mulated by omitting uij from the mean structure in (8). 
The true values of the fixed effect parameters are 
β ¼ ðβ00; β01; β10; β11Þ

0 ¼ ð2; � 2; 0:05; 0:2Þ0. For each 
setting, we made 100 simulated data sets consisting of 20 
subjects with 5 measurements per subject and fit the HPN 
and HPNOD models with INLA, JAGS, and Stan using 
the four prior distributions listed in Section 3.2 for σ2

b0
, σ2

b1 

and σ2
u. For JAGS and Stan, we run 3 chains with 20,000 

iterations per chain from which the first 10,000 iterations 
were considered as burn-in period. Then, we computed 
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Figure 9. Relative bias for regression coefficients: β00 (top left panel), β01 (top right panel), β10 (bottom left panel), and β11 (bottom 
right panel). Red lines for prior 1 (Γð1; 0:0005Þ), green for prior 2 (Γð0:001; 0:001Þ), light blue for prior 3 (Γð0:5; 0:0164Þ) and purple for 
prior 4 (half-Cauchyð0; 25Þ). N ¼ 20 and J ¼ 5.
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the relative bias and mean squared for each parameter (see 
Section 5.1).

5.3.1 Estimation of σb0 and σb1

The relative bias for σb0 obtained for the datasets gener-
ated with varying level of overdispersion 
(σ2

u ¼ 0; 0:2; 1; and 2) and different values of σb1 

(σb1 ¼ 0:1 and σb1 ¼ 1:5) are presented in Figure 11. 
We observe substantial variation among priors and soft-
ware when σb0 ¼ 0:1. When σb0 ¼ 0:1 and the data gen-
erated without overdispersion, Prior 1 (Γð1; 0:0005Þ) 
leads to underestimation while prior 2–4 leads to over-
estimation for all software. The relative bias decreases as 
the true value for σb0 increases. We also observed the 
influence of the level of variation in the random slope 
(σb1 ) on the estimate of σb0 especially for JAGS.

Figure 12 presents the relative bias for σb1 

obtained for the datasets generated with varying 

levels of overdispersion (σ2
u ¼ 0; 0:2; 1; and 2) and 

different values of σb0 (σb0 ¼ 0:1 and σb0 ¼ 1:5). As 
before, variation among priors and software is 
observed when the true value for σb1 is small 
(σb1 ¼ 0:1) and the true value for σb0 is large 
(σb1 ¼ 1:5). Overall, INLA performs better than 
JAGS and Stan under all scenarios.

5.3.2 Estimation of σu
Figure 13 presents the relative bias for σu obtained for 
the datasets generated with varying levels of overdisper-
sion. The variation among priors decreases as the true 
value of overdispersion (σu) increases. However, 
a substantial difference is observed among software. 
INLA performs better than JAGS and Stan under all 
scenarios. JAGS and Stan consistently underestimate 

σu when σb0 0
0 σb1
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Figure 10. Relative bias for HPNOD model parameters (y-axis) as a function number of observation per cluster J (x-axis). Red lines for 
prior 1 (Γð1; 0:0005Þ), green for prior 2 (Γð0:001; 0:001Þ), light blue for prior 3 (Γð0:5; 0:0164Þ) and purple for prior 4 (half- 
Cauchyð0; 25Þ). N ¼ 20, σb0 ¼ 1, and σu ¼ 1.
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0:1 0
0 1:5

� �

. Further, when the data are generated with 

σb0 0
0 σb1

� �

¼
0:1 0
0 1:5

� �

or 1:5 0
0 1:5

� �

, JAGS 

and Stan overestimate σu when σu ¼ 0:2 and under-
estimate σu when σu ¼ 1 or σu ¼ 2.

6 Concluding remarks

In this paper, we performed a Monte Carlo simula-
tion study in order to simultaneously evaluate the 

performance of the Bayesian estimation methods 
and prior specifications for variance components 
in the context of longitudinal count data. We com-
pared the results obtained with INLA to the results 
obtained with JAGS which uses Gibbs sampling and 
Stan which uses Hamiltonian Monte Carlo while 
assuming a variety of prior specifications for var-
iance components. We analysed the influence of 
different factors such as small number of observa-
tions per cluster, different values of the random 
effect variance and estimation from a misspecified 
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Figure 11. Relative bias for σb0 as a function of the it’s true value (x-axis); panels by level of overdispersion (σu) and true values of σb1 . 
Red lines for prior 1 (Γð1; 0:0005Þ), green for prior 2 (Γð0:001; 0:001Þ), light blue for prior 3 (Γð0:5; 0:0164Þ) and purple for prior 4 (half- 
Cauchyð0; 25Þ). N ¼ 20 and J ¼ 5.
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Figure 12. Relative bias for σb1 as a function of the it’s true value (x-axis); panels by level of overdispersion (σu) and true values of σb0 . 
Red lines for prior 1 (Γð1; 0:0005Þ), green for prior 2 (Γð0:001; 0:001Þ), light blue for prior 3 (Γð0:5; 0:0164Þ) and purple for prior 4 (half- 
Cauchyð0; 25Þ). N ¼ 20 and J ¼ 5.
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model on the bias and mean squared errors of the 
parameter estimates.

A simulation study has shown that the approxi-
mation strategy employed by INLA is accurate in 
general and all software leads to similar results for 
most of the cases considered. Estimation of the var-
iance components, however, is difficult when their 
true value is small for all estimation methods and 
prior specifications. The estimates obtained for all 
software tend to be biased downward or upward 
depending on the prior. The results of the simulation 
study also show that there is an effect of cluster size. 
For all software and prior specifications, the relative 
bias for all parameters decrease as cluster size 
increases. For the random intercept and slope 
model, INLA performs better than JAGS and Stan 
under all scenarios. In our simulation study of the 
random intercept and slope model, we only 

considered independent prior for the random inter-
cept and slope. Future research should focus on the 
comparison of different software assuming general 
priors for variance-covariance.
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Longitudinal count data are now an integral part of experi-
mental and empirical studies across a range of disciplines 
from the medical to the social and business sciences. Special 
models for longitudinal data are required when there are 
repeated measurements of the count outcome from the same 
individual over time, which leads to a dependence structure in 
the data. Generalized linear mixed models (GLMM) are one of 
the most used models for modeling longitudinal count data. 
Bayesian inference for generalized linear mixed effect models 
(GLMM) is appealing, but its widespread use has been ham-
pered by the lack of a fast implementation tool and the 
difficulty in specifying prior distributions. In this paper, we 
conduct an extensive simulation study to evaluate the perfor-
mance of INLA for estimation of the hierarchical Poisson 
regression models with overdispersion in comparison with 
JAGS and Stan while assuming a variety of prior specifications 
for variance components.
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