2020-2021

A materials and methods study for the production process of thermal actuator microelectromechanical systems

Bjarne Nilis

Master of Energy Engineering Technology

Printing and coating techniques

The **print** for the MEMS consists of the following **layers**: a **substrate** upon which a sacrificial layer is applied. On top of the sacrificial layer **the structural material** is deposited. Lastly the sacrificial material is removed to create a **freestanding** structure.

> Screen and ink-jet printing allow irregular shapes to be printed. Since **blade coating** does not allow the

produced process of the filling and			
select a structural and sacrificial	Cold arm	1100*4000*100	
material which are compatible. A	Hot arm	100*5000*100	
reference design was used as a target.	Connector	100*200*100	
0	Dimensions of Reference design		

Screen printed

Measuremens of screen printed PVA samples

deposition of complex features it can only be used [1] to apply the **sacrificial layer**.

3,0±6,6nm

0,7±0,2nm

Flir images

Blade coating process

Results of the Sacrificial layer

PROFILE OF PVA SAMPLES

Blade coated

150

200

1.00	AND		and the second se	
	Blade coated PEC	Blade coated PVA		
	Wet layer (µm)	ASH PVA (µm)	Ra PVA (nm)	
	100	11,1200±2,0822	112,87±27,3	
	200	29,9722±3,2878	73,43±10,7	
	300	38,8937±0,7301	45,79±15,1	
	400	47,5777±0,3767	66,17±23,9	
Blade coated PVA 25m% foil ink				
	Wet layer (µm)	ASH (μm)	Ra (nm)	
	100	12 176+0 166	2 1+2 0	

Blade coated PVA 20m% 27 000mw ink

32,094±1,817

21,502±0,368

Discoloured PVA sample after 200°C in over

Top view of screen printed PVA

165 TPC 31 3014,1

Ra (nm)

100 TPC 40 5069,5± 1129,7 nm

RA (nm

1916,3

1666,8±338,8

#Printed layers Mesh

Temp, and Time

180°C 10 min

200°C 10 min

10 10

23,6716

26,8616

Results of the Structural layer Slump in function of mesh opening

Curing temp	ECI1011	ME602	ECI1011	ME602	ECI1011	ME602
120°C	2,76±0,09	150,45±1,56	33,089	31,434	9,13E-08	4,73E-06
150°C	2,03±0,03	28,4±1,35	39,410	41,081	8,00E-08	1,17E-06
180°C	2,20±0,01	11,7±25,98	37,565	41,081	8,26E-08	4,82E-07

Thermal conductivity (W/mK)			
Curing temp	ECI1011	ME602	
120°C	83,42	101,37	
180°C	95,18	135,80	
T (°C) Hot arm length (um)		Deflection of MEMS (um)	

Temperature in function of current

sintering (3A)

1000	And in the local division of the local divis		
		- Minister	

Curled ECI1011 beam

00	5005,0	55,524
120	5009,0	149,52
170	5013,5	223,94

Conclusion

Deflection at 3A after the in deformation

A process and selection was made for the sacrificial layer. **PVA** has all of the desired properties: it is easily **applied** to the substrate by **blade** coating, dissolves under 15 minutes in hot water and provides a smooth surface to print upon. For the structural layer both inks show promising results. Both can be used to screen print a free standing structure, and both inks generate enough heat to realise a simulated deflection in the reference design of up to 224µm. Due to the slump seen in both inks, it is proposed to raise the minimum feature width to **300µm**. A **proof of concept** was made which achieved **deflections of 100µm**. Further research regarding the dimensions of the MEMS and curing techiques are needed to optimise the devices strength and deflection.

[1] B. A., M. M. and H. Schmidt, "Doctor Blade," in Sol-Gel Technologies for Glass Producers and Users, Boston, MA, Springer, 2004, pp. 89-92.

Prof. Dr. Ir. Wim Deferme, Ing. Dieter Reenaers Supervisors / Co-supervisors / Advisors

