The physical rehabilitation of muscle weakness and lost quality of movement in patients with multiple sclerosis

Daniel Martinez Bello

promotor : Prof. dr. Herbert THIJS

Eindverhandeling voorgedragen tot het bekomen van de graad Master of science in Applied Statistics

The physical rehabilitation of muscle weakness and lost quality of movements in patients with multiple sclerosis

By

Daniel Martinez Bello

Accepted by:

Internal Supervisor: Prof. Dr.Herbert Thijs
Signature
Date

External Supervisor: Prof. Dr.Raf Meesen Signature Date

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Applied Statistics

2006-2007

ABSTRACT

The objective of this study was to evaluate the effects of five physical therapy intervention protocols (control, micro current electrical therapy, resistance, resistance plus electro stimulation, whole body vibration) on strength and coordination in the inferior extremities in 41 patients with multiple sclerosis in a 10-week intervention period. For the analysis were created 10 groups of variables with similar characteristics corresponding to variables of coordination and strength. For each group was fitted a repeated measures marginal model considering the different variables for each group as a within-subject factor. Based in the models proposed it was found the Isometric outcomes present significant differences between the control and the treatment Micro current Electrical Stimulation and whole body vibration. The models fitted for each group of outcome variables could be used for physical therapy researcher to design future studies in physical rehabilitation of multiple sclerosis patients involving measures in strength and coordination in the inferior extremities.

ACKNOWLEDGEMENTS

I want to give my special acknowlegement to my Professor Dr. Herbert Thijs for his ideas and support to my project.

To the people from PHL, the students and Professor Dr. Meessen for their collaboration in the material for the project and the ideas to develope it.

To my family Jose, Zorayda, Vladimir and Tatiana, for their spiritual and practical support to this life project.

To my wife Olga and my kid Sara, this is for you and with you, we are building the future, the sacrifice shall be rewarded on time.

For all only I can say "Gracias".

TABLE OF CONTENTS

1. INTRODUCTION , OBJECTIVES, METHODS AND MATERIALS	1
1. INTRODUCTION	1
1.2 OBJECTIVE OF THE STUDY	1
1.3 METHODS AND MATERIALS	2
2. DATA DESCRIPTION	3
2.1. PATIENT SELECTION AND TREATMENT	
GROUP CONFORMATION	3
2.2. INDEPENDENT VARIABLES	4
2.3. DEPENDENT VARIABLES	4
2.3.1 GENERAL OVERVIEW OF THE DEPENDENT VARIABLES	4
2.3.2. STRENGTH EVALUATION VARIABLES	4
2.3.3. COORDINATION EVALUATION VARIABLES	6
3. METHODOLOGY	7
3.1. INTRODUCTION	7
3.2. BASIC CONCEPTS OF REPEATED MEASURES	7
3.3. STATISTICAL MODELLING	8
3.4. RESIDUAL DIAGNOSTICS FOR REPEATED MEASURES	8
3. 5. APPLICATION TO THE DATASET	9
3.6. DATA MODELING	10
3.6.1. Model For Group Stability In Phase	10
3.6.2. Model For Group Stability In Antiphase Group	10
3.6.3. Model For Accuracy In Phase	11
3.6.4. Model For Accuracy In Antiphase	11
3.6.5. Model for Group Isokinetic Peak Velocity Right Leg	11
3.6.6. Model For Group Isokinetic Peak Velocity Left Leg	12
3.6.7. Model For Group Isotonic Peak Torque Right Leg	12
3.6.8. Model For Group Isotonic Peak Torque Left Leg	12
3.6.9. Model For Group Isometric Peak Torque Right Leg	13
3.6.10. Model For Group Isometric Peak Torque Left Leg	14

4. RESULTS	14
4.1 EXPLORATORY DATA ANALYSIS	14
4.1.1. MEAN STRUCTURE PER GROUP OF VARIABLES	14
4.1.1.1. Group Stability in Phase	14
4.1.1.2. Group Stability in Antiphase	14
4.1.1.3. Group Accuracy in phase	14
4.1.1.4. Group Accuracy in antiphase	14
4.1.1.5. Group Isokinetic Peak Torque right leg	14
4.1.1.6. Group Isokinetic Peak Torque left leg	14
4.1.1.7. Group Isotonic Peak Velocity right leg	15
4.1.1.8. Group Isotonic Peak Velocity Left leg	15
4.1.1.9. Group Isometric Peak torque Right Leg	15
4.1.1.10. Group Isometric Peak torque Left Leg	15
41.2. VARIANCE STRUCTURE PER GROUP OF VARIABLES	15
41.2.1. Group Stability in Phase	15
41.2.2. Group Stability in Anti Phase	15
4.1.2.3. Group Accuracy in phase	15
4.1.2.4. Group Accuracy in antiphase	16
4.1.2.5. Group Isokinetic Peak Torque right leg	16
4.1.2.6. Group Isokinetic Peak Torque left leg	16
4.1.2.7. Group Isotonic Peak Velocity right leg	16
4.1.2.8. Group Isotonic Peak Velocity Left leg	16
4.1.2.9. Group Isometric Peak Torque Right Leg	16
4.1.2.10. Group Isometric Peak Torque Left Leg	17
41.3. CORRELATION STRUCTURE PER GROUP OF VARIABLES .	17
41.3.1. Group Stability in Phase	17
41.3.2. Group Stability in Anti Phase	17
4.1.3.3. Group Accuracy in phase	17
4.1.3.4. Group Accuracy in antiphase	17
4.1.3.5. Group Isokinetic Peak Torque right leg	17
4.1.3.6. Group Isokinetic Peak Torque left leg	17

4.1.3.7. Group Isotonic Peak Velocity right leg	17
4.1.3.8. Group Isotonic Peak Velocity Left leg	18
4.1.3.9. Group Isometric Peak Torque Right Leg	18
4.1.3.10. Group Isometric Peak Torque Left Leg	18
4.2. SELECTION OF COVARIANCE STRUCTURE	18
42.1. Group Stability in Phase	18
4.2.2. Group Stability in antiphase	18
4.2.3. Group Accuracy in phase	19
4.2.4. Group Accuracy in antiphase	19
4.2.5. Group Isokinetic Peak Torque right leg	19
4.2.6. Group Isokinetic Peak Torque left leg	20
4.2.7. Group Isotonic Peak Velocity right leg	20
4.2.8. Group Isotonic Peak Velocity Left leg	20
4.2.9. Group Isometric Peak torque Right Leg	21
4.2.10. Group Isometric Peak torque Left Leg	21
4.3. TEST OF FIXED EFFECTS	21
43.1. Group Stability in Phase	21
4.3.2. Group Stability in antiphase	22
4.3.3. Group Accuracy in Phase	22
4.3.4. Group Accuracy in antiphase	22
4.3.5. Group Isokinetic Peak Torque Right Leg	23
4.3.6. Group Isokinetic Peak Torque left leg	23
4.3.7. Group Isotonic Peak Velocity right leg	23
4.3.8. Group Isotonic Peak Velocity Left leg	24
4.3.9. Group Isometric Peak torque Right Leg	24
4.3.10. Group Isometric Peak torque Left Leg	24
4.4. INFERENCES	24
4.5. RESIDUAL DIAGNOSTICS	25
5. DISCUSSION AND CONCLUSION	27
6. REFERENCES	28
7.APPENDIX	30

LIST OF TABLES

Table 1 Patient Characteristics in the study	3
Table 2 Independent variables (Treatment groups)	4
Table 3 Strength evaluation variables.	5
Table 4 Coordination evaluation variables.	6
Table 5 Information Criteria Stability in Phase	18
Table 6 Information Criteria Stability in Anti Phase	19
Table 7 Information Criteria Accuracy in Phase	19
Table 8 Information Criteria Accuracy in Anti Phase (REML)	19
Table 9 Information Criteria Isokinetic Right leg Peak Torque	20
Table 10 Information Criteria Isokinetic Right leg Peak Torque	20
Table 11 Information Criteria Isotonic Right leg Peak Velocity	20
Table 12 Information Criteria Isotonic Left leg Peak Velocity	21
Table 13 Information Criteria Isometric Right leg Peak Torque	21
Table 14 Information Criteria Isometric Left leg Peak Torque (REML)	21
Table 15 Test of Fixed Effects Stability in Phase (Method REML)	22
Table 16 Test of Fixed Effects Stability in Anti Phase (Method REML)	22
Table 17 Test of Fixed Effects Accuracy in Phase	
(Method REML) Covariance Structure (Unstructured)	22
Table 18 Test of Fixed Effects Accuracy in Anti Phase (Method REML)	23
Table 19 Test of Fixed Effects Isokinetic Right leg Peak	
Torque (Method REML)	23
Table 20 Test of Fixed Effects Isokinetic Right leg Peak	
Torque (Method REML)	23
Table 21 Test of Fixed Effects Isotonic Left leg Peak	
Velocity (Method REML)	23
Table 22 Test of Fixed Effects Isotonic Left leg Peak	
Velocity (Method REML)	22
Table 23 Test of Fixed Effects Isometric Right leg Peak	
Torque (Method REML)	24

Table 24 Test of Fixed Effects Isometric Left leg Peak	
Torque (Method REML)	24
Table 25 Significant Contrast in Group Isometric Peak	
torque left leg	25
Table 26 Significant estimates in Group Isometric Peak	25
torque left leg	

LIST OF FIGURES IN APPENDIX

Figure 7.1. Group Stability in Phase	30
Figure 7.2. Group Stability in Antiphase	30
Figure 7.3. Group Accuracy in phase	30
Figure 7.4. Group Accuracy in antiphase	31
Figure 7.5. Group Isokinetic Peak Torque right leg	31
Figure 7.6. Group Isokinetic Peak Torque left leg	31
Figure 7.7. Group Isotonic Peak Velocity right leg	32
Figure 7.8. Group Isotonic Peak Velocity Left leg	32
Figure 7.9. Group Isometric Peak torque Right Leg	32
Figure 7.10. Group Isometric Peak torque Left Leg	33
Figure 7.11. Group Stability in Phase	33
Figure 7.12. Group Stability in Anti Phase	33
Figure 7.13. Group Accuracy in phase	34
Figure 7.14. Group Accuracy in antiphase	34
Figure 7.15. Group Isokinetic Peak Torque right leg	34
Figure 7.16. Group Isokinetic Peak Torque left leg	34
Figure 7.17. Group Isotonic Peak Velocity right leg	35
Figure 7.18. Group Isotonic Peak Velocity Left leg	35
Figure 7.19. Group Isometric Peak Torque Right Leg	35
Figure 7.20. Group Isometric Peak Torque Left Leg	36
Figure 7.21. Diagnostic Residual Group Stability in Phase	36
Figure 7.22. Diagnostic Residal Group Stability in antiphase	37
Figure 7.23. Diagnostic Residual Group Accuracy in phase	37
Figure 7.24. Diagnostic Residual Group Accuracy in antiphase	38
Figure 7.25. Diagnostic Residual Group Isokinetic	
Peak Torque right leg	38
Figure 7.26. Diagnostic Residual Group Isokinetic	
Peak Torque left leg	39
Figure 7.27. Diagnostic Residual Group Isotonic Peak	

Velocity right leg	39
Figure 7.28. Diagnostic Residual Group Isotonic	
Peak Velocity Left Leg	40
Figure 7.29. Diagnostic Residual Group Isometric	
Peak torque Right Leg	40
Figure 7.30. Diagnostic Residual Group Isometric	
Peak torque Left Leg	41

LIST OF TABLES IN APPENDIX

Table 7.1. Correlation structure Group Stability In Anti Phase	41
Table 7.2. Correlation structure Group Stability in Phase	41
Table 7.3. Correlation structure Group Accuracy Antiphase	42
Table 7.4. Correlation structure Group Accuracy In phase	42
Table 7.5. Correlation structure Group Isokinetic Peak Torque right leg	42
Table 7.6. Correlation structure Group Isokinetic Peak Torque left leg	43
Table 7.7. Correlation structure Group Isotonic Peak Velocity right leg	43
Table 7.8. Correlation structure Group Isotonic Peak Velocity Left leg	43
Table 7.9. Correlation structure Group Isometric Peak torque Right Leg	44
Table 7.10. Correlation structure Group Isometric Peak torque Left Leg	44
Table 7.11. Shapiro Wilk Normality Test For Studentized Residuals	44

1. INTRODUCTION, OBJECTIVE, METHODS AND MATERIALS 1.1. INTRODUCTION

"Multiple sclerosis (MS) is a disease that affects the central nervous system, which includes the brain, spinal cord, and optic nerves.

The clinical symptoms and deficits are quite varied among persons with MS, and they typically change (and worsen) as the disease evolves. The most frequent include : Fatigue, Motor involvement (weakness in an affected limb, progressing to spasticity, hyper-reflexia, clonus, extensor plantar responses, and muscle contractures) Visual involvement(blurring or haziness, which can progress to vision loss. Periorbital pain often occurs, and optic neuritis is a common presenting symptom), Sensory symptoms (squeezing and burning sensations, or numbness and paresthesias), Tonic spasms (increases in flexor tone in one or more limbs), Brainstem symptoms (ophthalmoplegia and nystagmus, Vertigo weakness and pain), Cerebellar involvement (intention tremor, truncal ataxia and ataxia of gait, dysarthria and "scanning speech.") Genitourinary symptoms (urinary urgency, frequency, incontinence, hesitancy and retention, and urinary tract infections) Bowel dysfunction, (constipation), Cognitive deficits (short-term memory dysfunction, difficulty managing complex tasks, and confusion), and Depression". (Holland N. J.,2006)

"The role of the physical therapy in the rehabilitation and treatment of the multiple sclerosis patient consist in the evaluation and intervention in ambulation, mobility, posture, trunk control, balance transfers, range of motion, motor function and neurological function.

Particularly for the motor function and neurological function, The therapist should assess gross strength, with emphasis on *function*, in the extremities and trunk as well as the coordination (gross, fine, rapid alternating)" (Provance P. 2006).

1.2. OBJECTIVE OF THE STUDY

The objective of this study was to evaluate the effects of Five physical therapy intervention protocols (control, micro current electrical therapy, resistance, resistance plus electro stimulation, whole body vibration) on strength and coordination in the inferior extremities in 41 patients with multiple sclerosis in a 10-week intervention period.

1.3. MATERIAL AND METHODS

41 multiple sclerosis patients with mild to moderate disability (Kurtzke Expanded Disability Status Scale 1.5 to 6.5) were allocated either to an intervention group or to the control group .

At the beginning of the study the patients underwent several test (pre-test) for strength using a Biodex System 3 dynamometer (which register measures of isokinetic, isotonic, isometric variables) and test for coordination (using a technique described in Meesen R. et al ,2002).

Then, patients were divided into 5 groups. The strength group undergoes a traditional strength training program for the arms and legs (alternating 2,3 times a week during 10 weeks).

The strength plus electrostimulation group receives a traditional strength program for the arms and legs in combination with electrostimulation ((alternating 2,3 times a week during 10 weeks).

The whole body vibration group receives a traditional strength training program for the arms and whole body vibration exercises for the legs (alternating 2, 3 times a week during 10 weeks)

The micro electrostimulation group receives micro electro stimulation at home (5 times a week during 10 weeks).

The control group was advised to avoid any great change in their physical activity habits during the next 10 weeks.

After 10 weeks the patients underwent all of the test again.

2. DATA DESCRIPTION

2.1. PATIENT SELECTION AND TREATMENT GROUP CONFORMATION

The study included 41 patients multiple sclerosis female and male, with mild to moderate disability (Kurtzke's expanded disability status scale 1.5-6.5) (Rehabilitation Assessment Measures in Multiple Sclerosis. 2003).

The patients were allocated in five therapeutical groups . The patient selection to each group was done using the following method:

The 43 patients were ranked according to the EDSS SCALE in three groups: Group 1, patients with EDSS score between 1,5 to 3; group 2, patients with EDSS score between 3 to 4,5; group 3, patients with EDSS score between 4,5 to 6. Finally, each group was randomly sampled taking three or four individual to conform each of the five treatment groups . The main characteristics for the patients involved in the study are shown in table 1.

	Control	Resistance	Resistance	Whole	Micro
			Electric	Body	Current
			Stimulation	Vibration	Stimulation
Number of					
Patients	8	9	8	8	8
Age (Years)					
Mean	47.25	42.7	48.75	44.37	46.5
Std Dev	7.12	11.05	9.49	7.45	11.36
Min	39	24	38	35	25
Max	56	60	66	55	58
Sex					
Male	2	4	3	3	0
Female	6	4	5	5	8
Type of					
Multiple					
Sclerosis					
1	4	4	2	3	3
2	3	3	2	4	2
3	1	2	4	1	3
EDSS					
Mean	4.25	4.38	4.5	4.68	4.25
Std Dev	1.16	1.36	1.03	1.65	1.33
Min	3	2	3	1.5	2
Max	6.5	6.5	6.5	6.5	6.5

 Table 1 Patient Characteristics in the study

2.2. INDEPENDENT VARIABLES

The different treatment considered are presented in table 2.

GROUP	NAME	DESCRIPTION
1	STRENGTH	This group undergoes a traditional strength training program for the arms and legs (alternating 2,3 times a week during 10 weeks)
2	STRENGTH PLUS ELECTROSTIMULATION	This group receives a traditional strength program for the arms and legs in combination with electrostimulation (alternating 2,3 times a week during 10 weeks)
3	WHOLE BODY VIBRATION	This group receives a traditional strength training program for the arms and whole body vibration exercises for the legs (alternating 2,3 times a week during 10 weeks)
4	MICRO ELECTRO STIMULATION	This group receives micro electro stimulation at home (5 times a week during 10 weeks)
5	CONTROL	This group was advised to avoid any great change in their physical activity habits during the next 10 weeks

Table 2 Independent variables (Treatment groups)

2.3. DEPENDENT VARIABLES

2.3.1 GENERAL OVERVIEW OF THE DEPENDENT VARIABLES.

Each of the variables were recorded for each of the patients beginning the

therapeutical intervention (preintervention) and finalizing (10 weeks after) the

therapeutical intervention (postintervention).

The variables analyzed in this study corresponded to the difference between

post intervention and preintervention for each of the variables recorded.

2.3.2. STRENGTH EVALUATION VARIABLES

The strength variables are displayed in Table .3

Table 3 Strength evaluation variables.

ID	VARIABLE	DESCRIPTION	UNIT	VARIABLE	
1	ISOM90rQ	Isometric test at 90° angle of the right knee of Quadriceps - Peak torque	(Nm)	Continuous	
2	ISOM90rH	Isometric test at 90° angle of the rigth knee of the Hamstring - Peak torque	(Nm)	Continuous	
3	ISOM45rQ:	Isometric test at 45° angle of the Right knee of the Quadriceps (=muscle) - Peak torque	(Nm)	Continuous	
4	ISOM45rH	Isometric test at 45° angle of the Right knee of the Hamstring - Peak torque	(Nm)	Continuous	
5	ISOM90IQ	Isometric test at 90° angle of the Left knee of the Quadriceps - Peak torque	(Nm)	Continuous	
6	ISOM90IH:	Isometric test at 90° angle of the Left knee of the Hamstring - Peak torque	(Nm)	Continuous	
7	ISOM45IQ	Isometric test at 45° angle of the left knee of the Quadriceps (=muscle) - Peak torque	(Nm)	Continuous	
8	ISOM45IH	Isometric test at 45° angle of the Left knee of the Hamstring (=muscle) - Peak torque	(Nm)	Continuous	
9	ISOTr1%Pv:	Isotonic test of 1% of the maximal strength of the Right knee - Peak Velocity	(Deg/Sec)	Continuous	
13	ISOTr20%PV	Isotonic test of 20% of the maximal strength of the Right knee - Peak Velocity	(Deg/Sec)	Continuous	
17	ISOTr40%PV	Isotonic test of 40% of the maximal strength of the Right knee – Peak Velocity	(Deg/Sec)	Continuous	
21	ISOTr60%PV	Isotonic test of 40% of the maximal strength of the Right knee – Peak Velocity	(Deg/Sec)	Continuous	
25	ISOTI1%Pv:	Isotonic test of 1% of the maximal strength of the left knee - Peak Velocity	(Deg/Sec)	Continuous	
29	ISOTI20%PV	Isotonic test of 20% of the maximal strength of the left knee - Peak Velocity	(Deg/Sec)	Continuous	
33	ISOTI40%PV	Isotonic test of 40% of the	(Deg/Sec)	Continuous	

		maximal strength of the left knee – Peak Velocity		
37	ISOTI60%PV	Isotonic test of 40% of the maximal strength of the left knee – Peak Velocity	(Deg/Sec)	Continuous
41	ISOKr60PT:	Isokinetic test of the Right knee at 60°/Sec – Peak Torque	(Nm)	Continuous
46	ISOKr180PT:	Isokinetic test of the Right knee at 180°/Sec - Peak Torque	(Nm)	Continuous
50	ISOKr240PT:	Isokinetic test of the Right knee at 240°/Sec - Peak Torque	(Nm)	Continuous
54	ISOKI60PT:	Isokinetic test of the left knee at 60°/Sec – Peak Torque	(Nm)	Continuous
58	ISOKI180PT:	Isokinetic test of the left knee at 180°/Sec - Peak Torque	(Nm)	Continuous
62	ISOKI240PT:	Isokinetic test of the Left knee at 240°/Sec - Peak Torque	(Nm)	Continuous

2.3.3. COORDINATION EVALUATION VARIABLES

The Coordination evaluation is a set of test (Table 4) which measure the

coordination of leg movements evaluated in phase and in antiphase movements.

Table 4 Coordination evaluation variables.

VARIABLE	DESCRIPTION	UNIT	TYPE
ACCURACY IN PHASE	Evaluation of the accuracy of leg movements in phase at different frequencies (75, 100, 125, 150 MHZ)	Degree	Continuous Quantitative
ACCURACY IN ANTI – PHASE	Evaluation of the accuracy of leg movements in phase at different frequencies (75, 100, 125, 150 MHZ)	Degree	Continuous Quantitative
STABILITY IN PHASE	Evaluation of the stability of leg movements in phase at different frequencies (75, 100, 125, 150 MHZ)	Degree	Continuous Quantitative
STABILITY IN ANTI – PHASE	Evaluation of the stability of leg movements in phase at different frequencies (75, 100, 125, 150 MHZ)	Degree	Continuous Quantitative

3. METHODOLOGY

3.1. INTRODUCTION

Repeated measures refers to data sets with multiple measurements of a response variable on the same experimental unit. In most application, the multiple measurements are made over a period of time.(Litell et al, 2006) or other experimental or observational conditions, and are often referred to as within-subject factors. (West et al, 2007)

In a general sense, any data that are measured repeatedly over time or space are repeated measures data.

3.2. BASIC CONCEPTS OF REPEATED MEASURES

"A commonly occurring repeated measures study of completely randomized experimental design with data collected in a sequence of equally spaced time points from each experimental unit. In the basic setup of a completely randomized design with repeated measures, there are two factors, treatments and time. In this sense, all repeated measures experiments are factorial experiments. Treatment is called the between – subjects factor because levels of treatment can change only between subjects; all measurements on the same subject will represent the same. Time is called a within – subjects factor because different measurements on the same how treatment means differ, (2) how treatment means change over time, and (3) how differences between treatment means change over time. In other words, is there a treatment main effect, is there a time main effect, and is there a treatment-by-time interaction". (Litell et al, 2006)

For the analysis of the dataset were applied mixed methods with special parametric structure on the covariance matrices.

Mixed model analysis involves two stages: first, estimate the covariance structure. Second, asses treatment and time effects using generalized least squares with the estimated covariance. (Littell et al 2000) break these stages further into a four step procedure for mixed model analyisis:

Step1: Model the mean structure, usually by specification of the fixed effects.

Step 2: Specify the covariance structure, between subjects as well as within subjects.

Step 3: Fit the model accounting for the covariance structure.

Step 4: Make statistical inference based on the results of step3.

3.3. STATISTICAL MODELLING

A statistical model for repeated measures data is

$$Y_{ijk} = \mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik} + e_{ijk}$$

Where

 $\mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik}$ is the mean for treatment *i* at time *k*, containing effects for treatment, time, and treatment x time interaction

 e_{ijk} is the random error associated with the measurement at time k on the jth subject that is assigned to treatment i. It is assumed that errors for different subjects are independent, giving

Cov[e_{ijk} , $e_{i'j'i}$]=0 if either $i \neq i$ or $j \neq j'$

Also, since measurement on the same subject are over a time course, they may have different variances, and correlations between pairs of measurements may depend on the length of the time interval between the measurements. In the most general setting the assumption is

 $Var[e_{ijk}] = \sigma_k^2$ and $Var[e_{ijk}, e_{eijk'}] = \sigma_{kk'}$

3.4. RESIDUAL DIAGNOSTICS FOR REPEATED MEASURES

"Informal techniques are commonly used to check residual diagnostics; these technique rely on the human mind and eye, and are used to decide whether or not a specific pattern exists in the residuals. In the context of the standard linear model, the simples example us to decide whether a given set of residuals plotted against predicted values represents a random pattern or not. These residuals versus fitted values plots are used to verify model assumptions and to detect outliers and potentially influential observations" (Welsh et al , 2007)

3. 5. APPLICATION TO THE DATASET

The dataset analysis was done adapting repeated measures methodology. The factor time in a repeated measures setting was replaced by a set of variables with similar characteristics measured in each subject.

For the coordination variables werecreated the following groups:

Group Stability in Phase , this group consist of the variables registering stability in phase at the differet frequencies, 75 MHz, 100Mhz, 125 MHz and 150 Mhz. Group Stability in Antiphase , this group consist of the variables registering stability in antiphase at different frequencies, 75 MHz, 100Mhz, 125 MHz and 150 Mhz.

Group Accuracy in Phase, this group consist of the variables registering accuracy in phase at different frequencies, 75 MHz, 100Mhz, 125 MHz and 150 Mhz.

Group Accuracy in Antiphase, this group consist of the variables registering accuracy in antiphase at different frequencies, 75 MHz, 100Mhz, 125 MHz and 150 Mhz.

For the analysis of the groups Stability in Phase, Stability in Antiphase, Accuracy in Phase and Accuracy in Antiphase the independent variables analyzed correspond only to the following: control, resistance plus electrostimulation, resistance and whole body vibration.

For the resistance/strength group the following groups of analysis were created: Group Isokinetic Peak torque right leg, this group consist of the variables recording isokinetic peak torque at 60 Degrees, 180 degrees and 240 degrees in the right leg.

Group Isokinetic Peak torque left leg, this group consist of the variables recording isokinetic peak torque at 60 Degrees, 180 degrees and 240 degrees in the left leg.

Group Isotonic Peak torque Right Leg, this group consist of the variables

recording isotonic peak velocity at 1%, 20%, 40% and 60% in the right leg. Group Isotonic Peak velocity Left Leg, this group consist of the variables recording isotonic peak torque at 1%, 20%, 40% and 60% in the left leg. Group Isometric Peak torque Right Leg, this group consist of the variables recording isometric peak torque at 45 degrees and 90 degrees in the Hamstring and 45 degrees and 90 degrees in the Quadriceps in the right leg. Group Isometric Peak torque Left Leg, this group consist of the variables recording isometric peak torque at 45 degrees and 90 degrees in the Hamstring and 45 degrees and 90 degrees in the Quadriceps in the right leg. Group Isometric Peak torque at 45 degrees and 90 degrees in the Hamstring and 45 degrees and 90 degrees in the Quadriceps in the left leg. For the analysis of the groups Isokinetic Peak torque right leg, Isokinetic Peak torque left leg, Isotonic Peak torque Right Leg, Isotonic Peak velocity Left Leg, Isometric Peak torque Right Leg, and Isometric Peak torque Left Leg the independent variables analyzed correspond only to the following: control, resistance plus electrostimulation, resistance, microelectrostimulation and whole body vibration.

3.6. DATA MODELING

For each group of variables the model used is presented

3.6.1. Model For Group Stability In Phase

$$Y_{ijk} = \mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik} + e_{ijk}$$

 $\mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik}$ is the mean for treatment *i* at variable stability in phase at different frequencies *k* containing effects for treatment, stability in phase variable at different frequencies , and the interaction between the frequency level and treatment .

 e_{ijk} is the random error associated with the measurement at stability in phase variable *k* on the *j*th subject that is assigned to treatment *i*.

3.6.2. Model For Group Stability In Antiphase Group

$$Y_{ijk} = \mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik} + e_{ijk}$$

 $\mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik}$ is the mean for treatment *i* at stability in anti phase variable at different frequencies *k*, containing effects for treatment, stability in antiphase variable at different frequencies , and treatment by stability in antiphase variable at different frequencies interaction.

 e_{ijk} is the random error associated with the measurement at stability in antiphase variable *k* on the *j*th subject that is assigned to treatment *i*.

3.6.3. Model For Accuracy In Phase

$$Y_{ijk} = \mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik} + e_{ijk}$$

 $\mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik}$ is the mean for treatment *i* at variable accuracy in phase at different frequencies *k*, containing effects for treatment, accuracy in phase variable at different frequencies , and treatment by accuracy in phase variable at different frequencies interaction.

 e_{ijk} is the random error associated with the measurement at accuracy in phase variable *k* on the *j*th subject that is assigned to treatment *i*.

3.6.4. Model For Accuracy In Antiphase

$$Y_{ijk} = \mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik} + e_{ijk}$$

 $\mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik}$ is the mean for treatment *i* at accuracy in anti phase at different frequencies *k*, containing effects for treatment, accuracy in antiphase at different frequencies , and treatment by accuracy in antiphase variable at different frequencies interaction.

 e_{ijk} is the random error associated with the measurement at accuracy in antiphase variable *k* on the *j*th subject that is assigned to treatment *i*.

3.6.5. Model for Group Isokinetic Peak Velocity Right Leg,

$$Y_{ijk} = \mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik} + e_{ijk}$$

 $\mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik}$ is the mean for treatment *i* at isokinetic peak velocity in right leg at different degrees *k*, containing effects for treatment, isokinetic peak velocity in

right leg at different degrees, and treatment by isokinetic peak velocity in right leg at different degrees interaction.

 e_{ijk} is the random error associated with the measurement at isokinetic peak velocity in right leg *k* on the *j*th subject that is assigned to treatment *i*.

3.6.6. Model For Group Isokinetic Peak Velocity Left Leg

$$Y_{ijk} = \mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik} + e_{ijk}$$

 $\mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik}$ is the mean for treatment *i* at isokinetic peak velocity in left leg at different degrees *k*, containing effects for treatment, isokinetic peak velocity in left leg at different degrees , and treatment by isokinetic peak velocity in left leg at different degrees interaction.

 e_{ijk} is the random error associated with the measurement at isokinetic peak velocity in left leg *k* on the *j*th subject that is assigned to treatment *i*.

3.6.7. Model For Group Isotonic Peak Torque Right Leg

$$Y_{ijk} = \mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik} + e_{ijk}$$

 $\mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik}$ is the mean for treatment *i* at isotonic peak torque in right leg at different percentage *k*, containing effects for treatment, isotonic peak torque in right leg at different percentage , and treatment by isotonic peak torque in right leg at different percentage interaction.

 e_{ijk} is the random error associated with the measurement at isotonic peak torque in right leg *k* on the *j*th subject that is assigned to treatment *i*.

3.6.8. Model For Group Isotonic Peak Torque Left Leg,

$$Y_{ijk} = \mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik} + e_{ijk}$$

 $\mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik}$ is the mean for treatment *i* at isotonic peak torque in Left leg at different percentage *k*, containing effects for treatment, isotonic peak torque in Left leg at different percentage , and treatment by isotonic peak torque in Left leg at different percentage interaction.

 e_{ijk} is the random error associated with the measurement at isotonic peak torque in Left leg *k* on the *j*th subject that is assigned to treatment *i*.

3.6.9. Model For Group Isometric Peak Torque Right Leg,

$$Y_{ijk} = \mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik} + e_{ijk}$$

 $\mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik}$ is the mean for treatment *i* at isometric peak torque in Right leg at different degree and position *k*, containing effects for treatment, isometric peak torque in Right leg at different degree and position , and treatment by isometric peak torque in Right leg at different degree and position interaction.

 e_{ijk} is the random error associated with the measurement at isometric peak torque in Right leg *k* on the *i*th subject that is assigned to treatment *i*.

3.6.10. Model For Group Isometric Peak Torque Left Leg

$$Y_{ijk} = \mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik} + e_{ijk}$$

 $\mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik}$ is the mean for treatment *i* at isometric peak torque in Left leg at different degree and position *k*, containing effects for treatment, isometric peak torque in Left leg at different degree and position , and treatment by isometric peak torque in Left leg at different degree and position interaction.

 e_{ijk} is the random error associated with the measurement at isometric peak torque in Right leg *k* on the *j*th subject that is assigned to treatment *i*.

4. RESULTS

4.1 EXPLORATORY DATA ANALYSIS

4.1.1. MEAN STRUCTURE PER GROUP OF VARIABLES

4.1.1.1. Group Stability in Phase

The mean for the outcome (degree) profile for present a peak in the outcome at the frequency 125 MHz and the mean profiles remain constant until the 125 MHz frequency and in the 150 MHz present different behavior (Appendix Figure 7.1.)

4.1.1.2. Group Stability in Antiphase

The mean profile for the outcome (degree) present a peak at the frequency 100 MHz and the profiles by treatment not show any particular trend between the first and the last frequency. (Appendix Figure 7.2.)

4.1.1.3. Group Accuracy in phase

The mean profile for the outcome (degree) present a peak at the frequency 100MHz, and the profiles by treatment for control, resistance and whole body vibration present the same behavior through the different frequencies and the resistance plus electroestimulation decreases through the frequencies.

(Appendix Figure 7.3.)

4.1.1.4. Group Accuracy in antiphase

The mean profile for the outcome (degree) present a peak at the frequency 100MHz, and the profiles by treatment for control and whole body vibration increases slightly and the resistance plus electroestimulation and resistance decreases through the frequencies. (Appendix Figure 7.4.)

4.1.1.5. Group Isokinetic Peak Torque right leg

The mean profile for the outcome (Torque in Newton metre) present a lower peak at 180 degrees, and the profiles by treatment for micro electro stimulation, resistance plus electroestimulation, resistance and whole body vibration remain without change through the different degrees and the control increases through the frequencies (Appendix Figure 7.5.)

4.1.1.6. Group Isokinetic Peak Torque left leg

The mean profile for the outcome (Torque in Newton metre) present an upper peak at 180 degrees, and the profiles by treatment have the same behavior through the different degrees(Appendix Figure 7.6.)

4.1.1.7. Group Isotonic Peak Velocity right leg

The mean profile for the outcome (Peak Velocity in Degree/second) present an two upper peak at 1 and 60 percentage, and the profiles by treatment doesn't change through the different percentage (Appendix Figure 7.7.)

4.1.1.8. Group Isotonic Peak Velocity Left leg

The mean profile for the outcome (Peak Velocity in Degree/second) present an increasing trend and the profiles by treatment increases slightly through the percentages (Appendix Figure 7.8.)

4.1.1.9. Group Isometric Peak torque Right Leg

The mean profile for the outcome (Torque in Newton metre) present an increasing trend with a peak in the ISOM45RQ variable and the profiles by treatment increases slightly through the different variables (Appendix Figure 7.9.)

4.1.1.10. Group Isometric Peak torque Left Leg

The mean profile for the outcome (Torque in Newton metre) present an increasing trend with a peak in the ISOM90RQ variable and the profiles by treatment show the treatment whole body vibration increases slightly through the different variables (Appendix Figure 7.10.)

4..1.2. VARIANCE STRUCTURE PER GROUP OF VARIABLES

4..1.2.1. Group Stability in Phase

The variance profile for the outcome (degree) present a upper peaks in the outcome at the frequencies 100 and 150 MHz and the variance profiles by treatment appear slightly constant in each frequency (Appendix Figure 7.11.)

4..1.2.2. Group Stability in Anti Phase

The variance profile for the outcome (degree) present a decreasing trend through the variables and the variance profiles by treatment show a decreasing trend between with constant variance in each frequency. (Appendix Figure 7.12.)

4.1.2.3. Group Accuracy in phase

The variance profile for the outcome (degree) present two upper peaks at 100 and 150 MHz and the variance profiles by treatment show not change through the frequencies with the exception of resistance which present a peak at the frequency 100. (Appendix Figure 7.13.)

4.1.2.4. Group Accuracy in antiphase

The variance profile for the outcome (degree) present a decreasing trend through the variables and the variance profiles by treatment show a decreasing trend between with constant variance in each frequency. (Appendix Figure 7.14.)

4.1.2.5. Group Isokinetic Peak Torque right leg

The variance profile for the outcome (Torque in Newton metre) present a lower peak at 180 degrees, and the variance profiles by treatment for micro electro stimulation, resistance plus electroestimulation, resistance and whole body vibration show a decreasing pattern through the different degrees and the control increases through the frequencies (Appendix Figure 7.15.)

4.1.2.6. Group Isokinetic Peak Torque left leg

The variance profile for the outcome (Torque in Newton metre) present an upper peak at 180 degrees, and the profiles by treatment show a decreasing pattern through the different degrees (Appendix Figure 7.16.)

4.1.2.7. Group Isotonic Peak Velocity right leg

The variance profile for the outcome (Peak Velocity in Degree/second) present a lower peak at 40 percentage, and the profiles by treatment show a slight decreasing pattern through the different percentage (Appendix Figure 7.17.)

4.1.2.8. Group Isotonic Peak Velocity Left leg

The variance profile for the outcome (Peak Velocity in Degree/second) present an upper peak at 40 percentage and the profiles by treatment increases for the control and the rest of the treatment show a decreasing trend (Appendix Figure 7.18.)

4.1.2.9. Group Isometric Peak Torque Right Leg

The variance profile for the outcome (Torque in Newton metre) present an increasing trend with a peak in the ISOM45RQ variable and the profiles by

treatment show the variance are closer in the ISOM90RH variable and spread at the ISOM45RQ variable (Appendix Figure 7.19.)

4.1.2.10. Group Isometric Peak Torque Left Leg

The variance profile for the outcome (Torque in Newton metre) present an increasing trend with a peak in the ISOM45LQ variable and the profiles by treatment show the treatments whole body vibration and control present higher variances in the ISOM90LH and ISOM45RQ variables (Appendix Figure 7.20.)

4..1.3. CORRELATION STRUCTURE PER GROUP OF VARIABLES

4..1.3.1. Group Stability in Phase

The pearson correlation coefficients shows the correlation between the variables are different. (Appendix Table 7.1.)

4..1.3.2. Group Stability in Anti Phase

The pearson correlation coefficients shows the correlation between the variables Stability in phase at 75, 100 and 125 MHz are closer but not with the 150 MHz frequency. (Appendix Table 7.2.)

4.1.3.3. Group Accuracy in phase

The pearson correlation coefficients shows the correlation between the variables are different. (Appendix Table 7.3.)

4.1.3.4. Group Accuracy in antiphase

The pearson correlation coefficients shows the correlation between the variables are different. (Appendix Table 7.4.)

4.1.3.5. Group Isokinetic Peak Torque right leg

The pearson correlation coefficients shows the correlation between the variables Isokinetic Peak Torque at 60, 180 and 240 degrees are closer. (Appendix Table 7.5.)

4.1.3.6. Group Isokinetic Peak Torque left leg

The pearson correlation coefficients shows the correlation between the variables Isokinetic Peak Torque at 60, 180 and 240 degrees are closer. (Appendix Table 7.6.)

4.1.3.7. Group Isotonic Peak Velocity right leg,

The pearson correlation coefficients shows the correlation between the variables are different. (Appendix Table 7.7.)

4.1.3.8. Group Isotonic Peak Velocity Left leg,

The pearson correlation coefficients shows the correlation between the variables are different. (Appendix Table 7.8.)

4.1.3.9. Group Isometric Peak Torque Right Leg,

The pearson correlation coefficients shows the correlation between the variable

ISOM90RH and ISOM90RQ are closer than the other variables. (Appendix

Table 7.9.)

4.1.3.10. Group Isometric Peak Torque Left Leg,

The pearson correlation coefficients shows the correlation between the different variables are closer. (Appendix Table 7.10.)

4.2. SELECTION OF COVARIANCE STRUCTURE

Based in the analysis of the exploratory Data analysis and in the fit statistics for

the proposed model for each group of variables the covariace structure was

selected. For each group are presented the fit statistics and the covariance

structure selected.

4..2.1. Group Stability in Phase

Table 5 Information Criteria Stability in Phase

	Compound Simmetry	Unstructured
-2 Res Log Likelihood	723.7	636.1
AIC (smaller is better)	727.7	656.1
AICC (smaller is better)	727.8	658.2
BIC (smaller is better)	730.7	671.0

A likelihood ratio test for compound symmetry compared to unstructured is:

	-2 Res Log Likelihood
Compound Symmetry	723.7
Unstructured	636.1
	87.6, 8 degrees of freedom (p<0.0005)

The selected covariance structure is unstructured.

4.2.2. Group Stability in antiphase

Table 6 Information Criteria Stability in Anti Phase

	Compound Simmetry	Unstructured
-2 Res Log Likelihood	827.9	760.4
AIC (smaller is better)	831.9	780.4
AICC (smaller is better)	832.0	782.5
BIC (smaller is better)	834.9	795.3

A likelihood ratio test for compound symmetry compared to unstructured is:

	-2 Res Log Likelihood
Compound Symmetry	827.9
Unstructured	760.4
	67.5, 8 degrees of freedom (p<0.005)

The selected covariance structure selected is unstructured.

4.2.3. Group Accuracy in phase

 Table 7 Information Criteria Accuracy in Phase

	Compound Simmetry	Unstructured
-2 Res Log Likelihood	618.7	593.4
AIC (smaller is better)	622.7	613.4
AICC (smaller is better)	622.8	615.5
BIC (smaller is better)	625.7	628.4

A likelihood ratio test for compound symmetry compared to unstructured is:

	-2 Res Log Likelihood
Compound Symmetry	618.7
Unstructured	593.4
	25.3, 8 degrees of freedom (p<0.005)

The selected covariance structure is unstructured.

4.2.4. Group Accuracy in antiphase

Table 8 Information Criteria Accuracy in Anti Phase (REML)

	Compound Symmetry	Unstructured
-2 Res Log Likelihood	743.5	691.7
AIC (smaller is better)	747.5	711.7
AICC (smaller is better)	747.6	713.8
BIC (smaller is better)	750.4	726.7

A likelihood ratio test for compound symmetry compared to unstructured is:

	-2 Res Log Likelihood
Compound Symmetry	743.5
Unstructured	691.7
	51.8, 8 degrees of freedom (p<0.0005)

The covariance structure selected is unstructured.

4.2.5. Group Isokinetic Peak Torque right leg,

FIT STATISTICS	COMPOUND SIMMETRY	UNSTRUCTURED
-2 Res Log Likelihood	871.5	854.1
AIC (smaller is better)	875.5	866.1
AICC (smaller is better)	875.6	866.9
BIC (smaller is better)	878.9	876.4

 Table 9 Information Criteria Isokinetic Right leg Peak Torque

A likelihood ratio test for compound symmetry compared to unstructured is:

	-2 Res Log Likelihood
Compound Symmetry	871.5
Unstructured	854.1
	17.4, 8 degrees of freedom
	(p<0.05)

The selected covariance structure is unstructured.

4.2.6. Group Isokinetic Peak Torque left leg,

 Table 10 Information Criteria Isokinetic Right leg Peak Torque

FIT STATISTICS	COMPOUND SIMMETRY	UNSTRUCTURED
-2 Res Log Likelihood	862.5	851.6
AIC (smaller is better)	866.5	863.6
AICC (smaller is better)	866.7	864.5
BIC (smaller is better)	870.0	873.9

A likelihood ratio test for compound symmetry compared to unstructured is:

	-2 Res Log Likelihood		
Compound Symmetry	862.5		
Unstructured	851.6		
	10.9, 8 degrees of freedom (p<0.5)		

The selected covariance structure is compound simmetry.

4.2.7. Group Isotonic Peak Velocity right leg,

Table 11 Information Criteria Isotonic Right leg Peak Velocity

FIT STATISTICS	COMPOUND SIMMETRY	UNSTRUCTURED
-2 Res Log Likelihood	1423.2	1378.6
AIC (smaller is better)	1427.2	1398.6
AICC (smaller is better)	1427.3	1400.2
BIC (smaller is better)	1430.7	1415.7

A likelihood ratio test for compound symmetry compared to unstructured is:

	-2 Res Log Likelihood		
Compound Symmetry	1423.2		
Unstructured	1378.6		
	44.6, 8 degrees of freedom (p<0.005)		

The selected covariance structure is unstructured.

4.2.8. Group Isotonic Peak Velocity Left leg,

FIT STATISTICS	COMPOUND SIMMETRY	UNSTRUCTURE			
-2 Res Log Likelihood	1442.8	1395.8			
AIC (smaller is better)	1446.8	1415.8			
AICC (smaller is better)	1446.8	1417.5			
BIC (smaller is better)	1450.2	1433.0			

 Table 12 Information Criteria Isotonic Left leg Peak Velocity

A likelihood ratio test for compound symmetry compared to unstructured is:

	-2 Res Log Likelihood
Compound Symmetry	1442.8
Unstructured	1395.8
	47, 8 degrees of freedom (p<0.005)

The selected covariance structure is unstructured.

4.2.9. Group Isometric Peak torque Right Leg,

Table 13 Information Criteria Isometric Right leg Peak Torque

FIT STATISTICS	COMPOUND SIMMETRY	UNSTRUCTURED
-2 Res Log Likelihood	1083.4	1055.8
AIC (smaller is better)	1087.4	1075.8
AICC (smaller is better)	1087.4	1077.5
BIC (smaller is better)	1090.7	1092.7

A likelihood ratio test for compound symmetry compared to unstructured is:

	-2 Res Log Likelihood		
Compound Symmetry	1083.4		
Unstructured	1055.8		
	27.6, 8 degrees of freedom (p<0.005)		

The selected covariance structure is unstructured.

4.2.10. Group Isometric Peak torque Left Leg,

 Table 14 Information Criteria Isometric Left leg Peak Torque (REML)

FIT STATISTICS	COMPOUND SIMMETRY	UNSTRUCTURED
-2 Res Log Likelihood	1224.8	1139.3
AIC (smaller is better)	1228.8	1159.3
AICC (smaller is better)	1228.9	1161.0
BIC (smaller is better)	1232.2	1176.2

A likelihood ratio test for compound symmetry compared to unstructured is:

	-2 Res Log Likelihood			
Compound Symmetry	1224.8			
Unstructured	1139.3			
	85.5 8 degrees of freedom (p<0.0005)			

85.5, 8 degrees of freedom (p<0.0005)

The selected covariance structure is unstructured.

4.3. TEST OF FIXED EFFECTS

The test of fixed effects provides Chi Square Statistics and F statistics based on

Generalized Least Squares for testing the statistical significance of the treatment,

the variable at each different level and the treatment by variable interaction.

4..3.1. Group Stability in Phase

Effect	Num	Den DF	Chi-	F Value	Pr > ChiSq	Pr > F
	DF		Square			
TREATMENT	3	29	1.14	0.38	0.7666	0.7673
FREQUENCY	3	29	4.33	1.44	0.2277	0.2502
TREATMENT *	9	29	10.69	1.19	0.2978	0.3396
FREQUENCY						

Table 15 Test of Fixed Effects Stability in Phase (Method REML)

The test of fixed effects show no significant differences at any of the factors

under evaluation in the Stability in Phase group

4.3.2. Group Stability in antiphase

		stability in				
Effect	Num	Den DF	Chi-	F Value	Pr > ChiSq	Pr > F
	DF		Square			
TREATMENT	3	29	1.98	0.66	0.5764	0.5832
FREQUENCY	3	29	7.23	2.41	0.0648	0.0871
TREATMENT * FREQUENCY	9	29	10.30	1.14	0.3270	0.3654

Table 16 Test of Fixed Effects Stability in Anti Phase (Method REML)

The test of fixed effects show no significant differences at any of the factors under evaluation in the Stability in Anti Phase group

4.3.3. Group Accuracy in Phase

Table 17 Test of Fixed Effects Accuracy in Phase (Method REML) Covariance Structure (Unstructured)

Effect	Num	Den DF	Chi-	F Value	Pr > ChiSq	Pr > F
	DF		Square			
TREATMENT	3	29	2.74	0.91	0.4334	0.4466
FREQUENCY	3	29	1.57	0.52	0.6673	0.6707
TREATMENT * FREQUENCY	9	29	9.98	1.11	0.3521	0.3875

The test of fixed effects show no significant differences at any of the factors

under evaluation in the Accuracy in Phase group

4.3.4. Group Accuracy in antiphase

Effect	Num	Den DF	Chi-	F Value	Pr > ChiSq	Pr > F
	DF		Square			
TREATMENT	3	29	2.64	0.88	0.4498	0.4622
FREQUENCY	3	29	4.85	1.62	0.1832	0.2071
TREATMENT * FREQUENCY	9	29	11.94	1.33	0.2165	0.2662

Table 18 Test of Fixed Effects Accuracy in Anti Phase (Method REML)

The test of fixed effects show no significant differences at any of the factors

under evaluation in the Accuracy in Anti Phase group

4.3.5. Group Isokinetic Peak Torque Right Leg

Table 19 Test of Fixed Effects Isokinetic Right leg Peak Torque (Method REML)

			<u> </u>			,
Effect	Num	Den DF	Chi-	F Value	Pr > ChiSq	Pr > F
	DF		Square			
TREATMENT	4	36	6.19	1.55	0.1852	0.2092
DEGREE	2	36	0.15	0.08	0.9271	0.9272
TREATMENT *	8	36	11.32	1.42	0.1842	0.2237
DEGREE						

The test of fixed effects show no significant differences at any of the factors

under evaluation in the Isokinetic Peak Torque Right Leg group.

4.3.6. Group Isokinetic Peak Torque left leg

Table 20 Test of Fixed Effects Isokinetic Right leg Peak Torque (Method REML)

Effect	Num	Den DF	Chi-	F Value	Pr > ChiSq	Pr > F
	DF		Square			
TREATMENT	4	36	1.89	0.47	0.7561	0.7557
DEGREE	2	36	0.03	0.01	0.9870	0.9870
TREATMENT * DEGREE	8	36	8.69	1.09	0.3693	0.3949

The test of fixed effects show no significant differences at any of the factors

under evaluation in the Isokinetic Peak Torque Left Leg group.

4.3.7. Group Isotonic Peak Velocity right leg

Table 21 Test of Fixed Effects isotonic Left leg Feak velocity (Method REME)							
Effect	Num	Den DF	Chi-	F Value	Pr > ChiSq	Pr > F	
	DF		Square				
TREATMENT	4	36	3.73	0.93	0.4435	0.4559	
PERCENTAGE	3	36	3.43	1.14	0.3298	0.3446	
TREATMENT * PERCENTAGE	12	36	14.08	1.17	0.2955	0.3377	

Table 21 Test of Fixed Effects Isotonic Left leg Peak Velocity (Method REML)

The test of fixed effects show no significant differences at any of the factors under evaluation in the Isotonic Peak Velocity Right Leg group.

4.3.8. Group Isotonic Peak Velocity Left leg,

Table 22 Test of Fixed Effects Isotonic Left leg Peak Velocity (Method REML)

Effect	Num	Den DF	Chi-	F Value	Pr > ChiSq	Pr > F
	DF		Square			
TREATMENT	4	35	2.32	0.58	0.6769	0.6788
PERCENTAGE	3	35	2.47	0.82	0.4813	0.4902
TREATMENT * PERCENTAGE	12	35	18.43	1.54	0.1033	0.1566

The test of fixed effects show no significant differences at any of the factors under evaluation in the Isotonic Peak Velocity Right Leg group.

4.3.9. Group Isometric Peak torque Right Leg,

Table 23 Test of Fixed Effects Isometric Right leg Peak Torque (Method REML)

Effect	Num	Den DF	Chi-	F Value	Pr > ChiSq	Pr > F
	DF		Square			
TREATMENT	4	35	6.45	1.61	0.1683	0.1932
DEGREE	3	35	17.27	5.76	0.0006	0.0026
TREATMENT * DEGREE	12	35	10.64	0.89	0.5601	0.5680

The test of fixed effects show significant differences (Pvalue< 0.05) at the factor degree in the Isotonic Peak Velocity Right Leg group.

4.3.10. Group Isometric Peak torque Left Leg,

Table 24 Test of Fixed Effects Isometric Left leg Peak Torque (Method REML)

			<u> </u>			
Effect	Num	Den DF	Chi-	F Value	Pr > ChiSq	Pr > F
	DF		Square			
TREATMENT	4	36	9.59	2.40	0.0480	0.0689
DEGREE	3	36	5.61	1.87	0.1319	0.1524
TREATMENT *	12	36	17.05	1.42	0.1477	0.2029
DEGREE						

The test of fixed effects show significant differences (Pvalue< 0.1) at the factor Degree in the Isotonic Peak Velocity Left Leg group.

4.4. INFERENCES

Significant differences at (Pvalue< 0.1) were shown in the group Isometric Peak Torque Left Leg. The inferences based in least square means for this significance and contrast were obtained. (Table 24)

	Contras	ts		
Label	Num	Den DF	F	Pr > F
	DF		Value	
CONTROL VS MET AT	1	36	3.67	0.0632
VARIABLE ISOM45IH				
CONTROL VS WBV AT	1	36	2.93	0.0956
VARIABLE ISOM45IH				
CONTROL VS WBV AT	1	36	5.13	0.0296
VARIABLE ISOM90IH				

Table 25 Significant Contrast in Group Isometric Peak torque left leg

There are significant differences at (P> 0.1) (Table 24) for the contrast control versus microcurrent electrical stimulation in the variable isometric 45 degrees in Hamstring and significant differences (P>0.05) for the contrast control versus whole body vibration in the variable Isometric 90 degrees in the Hamstring. The estimates for this contrast are 6.4125 with standard error 3.3451 and 19.42 with standard error 8.57 respectively, and this estimates show that the control behaves better than the treatments. Although the contrast control versus whole body vibration is not significant at p> 0.1 the information is given to the researchers. The estimates for each contrast are shown in table 25 Table 26 Significant estimates in Group Isometric Peak torque left leg

Estimates					
Label	Estimate	Standard Error	DF	t Value	Pr > t
CONTROL VS MET AT VARIABLE ISOM45IH	6.4125	3.3451	36	1.92	0.0632
CONTROL VS WBV AT ISOM45IH	5.9250	3.4625	36	1.71	0.0956
CONTROL VS WBV AT VARIABLE ISOM90IH	19.4250	8.5759	36	2.27	0.0296

4.5. RESIDUAL DIAGNOSTICS

For this dataset the residual diagnostic consist of scatter plots of the predicted values versus the studentized residual, the Normal Probability Plot of Predicted Values versus the studentized residual, and histogram of the studentized residual (Appendix figures 7.21 to 7.22), and Shapiro Wilk Normality Test for the studentized residuals (Appendix. Table 7.11)

In general for all of the models the graphical setting shows that the assumption of normality and randomness in the residual is not fulfilled and also show the presence of outliers.

The Test for Normality shows in the variable isokinetic the normality assumption is close to be accepted the normality hypotesis (near to P<0.05).

5. DISCUSSION AND CONCLUSION

For the analysis of the dataset were created 10 groups of variables with similar characteristics corresponding to variables of coordination and strength. These groups were: Group Stability in Phase, Group Stability in Antiphase, Group Accuracy in Phase, Group Accuracy in Antiphase, Group Isokinetic Peak torque right leg, Group Isokinetic Peak torque left leg, Group Isotonic Peak Velocity Right Leg, Group Isotonic Peak velocity Left Leg, Group Isometric Peak torque Right Leg, Group Isometric Peak torque Left Leg,

For each group was fitted a repeated measures marginal model considering the different variables for each group as a within-subject factor. Using mixed models technique the covariance and correlation within the variables in each group of variables per subject was considered.

Based in the models proposed it was found the group Isometric Peak torque left leg present significant differences between the control and the treatment Microcurrent Electrical Stimulation in the variable ISOM45IH and the Control and the treatment whole body vibration in the variable ISOM90IH with superior responses in the control group for both of the variables considered.

The residual normality was checked using graphical techniques and was not fulfilled in most of the cases meaning the inferences could not be valid, and also the graphical exploration showed outlier observations, and these outliers can be the responsible for the failure in the normality assumption.

Although, the residual diagnostics for the different models showed the conclusions could not be valid, the conclusions of this report added information for the researchers in the field of rehabilitation therapy for multiple sclerosis patient.

Also, the models fitted for each group of variables (not shown in this report) could be used for physical therapy researcher to design future studies in physical rehabilitation of multiple sclerosis patients involving measures in strength and coordination in the lower limbs.

6. REFERENCES

Fitzmaurice, G.M., Laird, N.M. and Ware, J.H. (2004). Applied Longitudinal Analysis. New Jersey: Wiley.

Holland N. J.,2006, Overview of Multiple Sclerosis, Clinical Bulletin
Information for Health Professionals, National Multiple Sclerosis Society.
In: <u>www.nationalmssociety.org/PRC.asp</u>, Accesed 29/05/2007

Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and Schabenberger, O. (2006) SAS[®] for Mixed Models, 2nd edition. SAS Institute.

Meesen R., Levin O., Wenderoth N., and Swinnen S.P. 2002.Head movements destabilize cyclical inphase but not in antiphase homologous limb coordination in humans. Neuroscience Letters, 340 :229 - 233

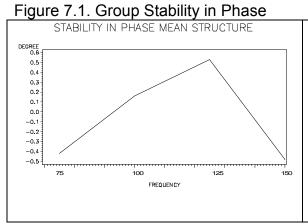
Molenberghs G. and Verbeke, G (2006) Models for Discrete Longitudinal Data. Springer Series in Statistics. New York: Springer Verlag.

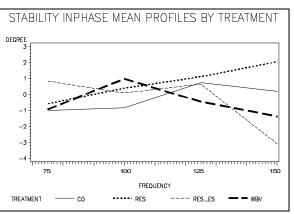
Littlell R.C., Pendergast J. and Natarajan R. (2000) Modelling Covariance Structure in the analysis of Repeated Measures Data. Statistics in Medicine, 19:1793 – 1819.

Provance P. G. 2006 Physical Therapy in Multiple Sclerosis Rehabilitation, Clinical Bulletin Information for Health Professionals, National Multiple Sclerosis Society. In: <u>www.nationalmssociety.org/PRC.asp</u>, Accesed 29/05/2007

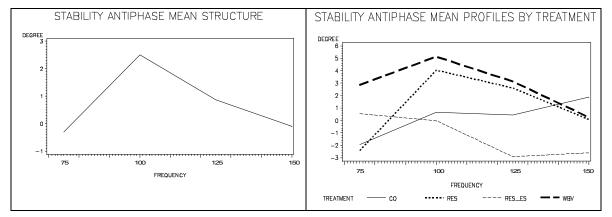
Rehabilitation Assesment Measures in Multiple Sclerosis. 2003. Clinical Bulletin for Health Professionals. National Multiple Sclerosis Society.

ln:

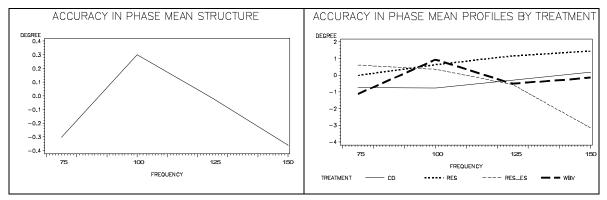

<u>http://www.nationalmssociety.org/site/PageServer?pagename=HOM_PRO_resou</u> <u>rces_for_clinicians</u>, Accesed 29/05/2007

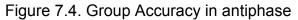

Verbeke, G and Molenberghs G. (2000) Linear Mixed Models for Longitudinal Data. Springer Series in Statistics. New York: Springer Verlag.

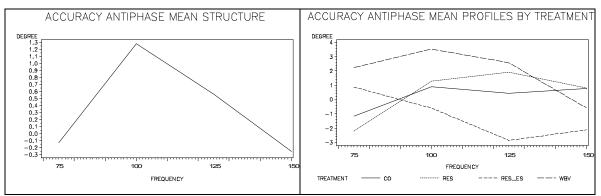
Verbeke, G and Molenberghs G. (2007) Correlated and Multivariate Data. Universiteit Hasselt.

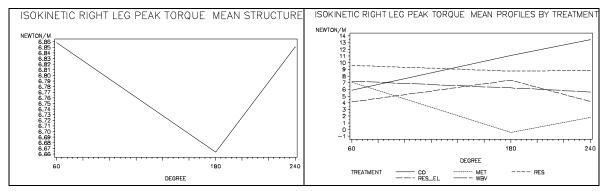

West B., Welch K. Galecki A. (2007) Linear Mixed Models: A Practical Guide Using Statistical Software. Chapman & Hall/CRC

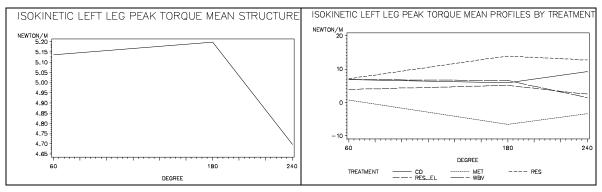
7. APPENDIX






Figure 7.2. Group Stability in Antiphase


Figure 7.3. Group Accuracy in phase



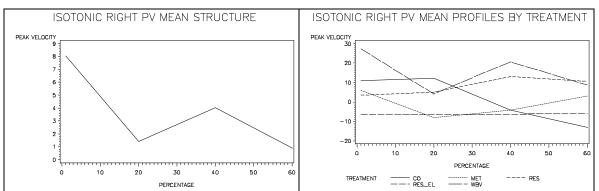
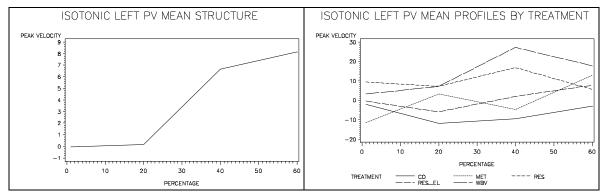


Figure 7.5. Group Isokinetic Peak Torque right leg,


Figure 7.6. Group Isokinetic Peak Torque left leg,

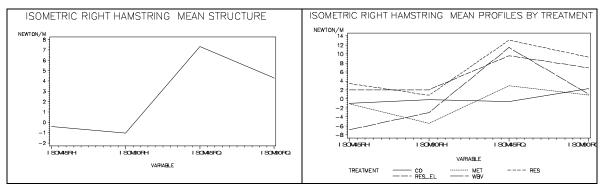
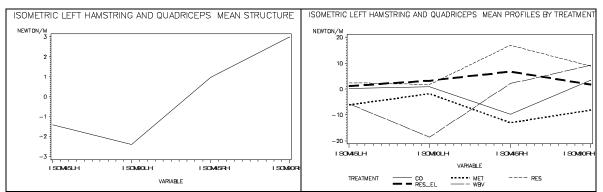
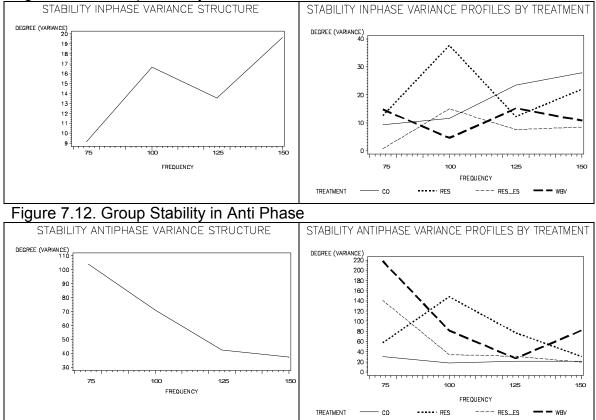
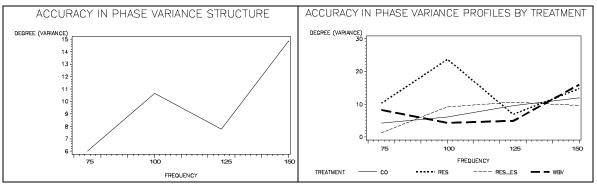
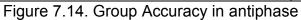


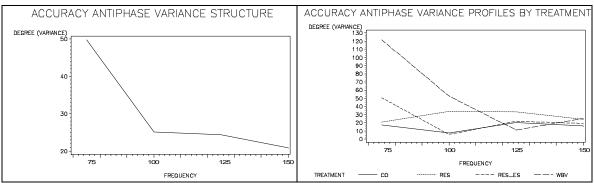
Figure 7.7. Group Isotonic Peak Velocity right leg

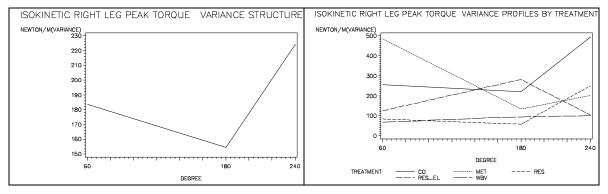

Figure 7.8. Group Isotonic Peak Velocity Left leg

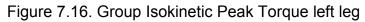

Figure 7.9. Group Isometric Peak torque Right Leg

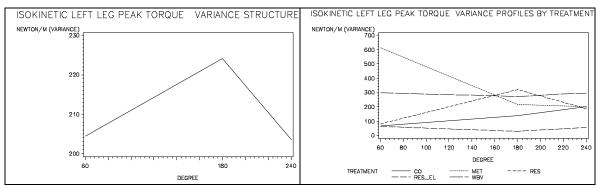


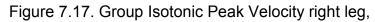


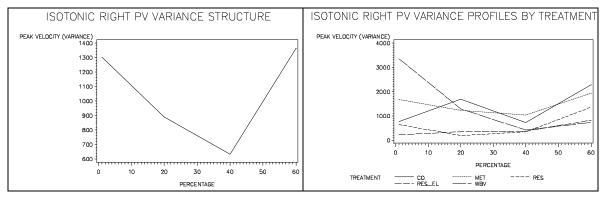

Figure 7.11. Group Stability in Phase

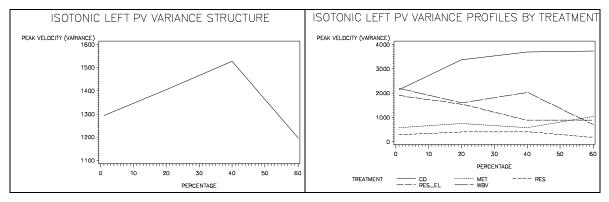









Figure 7.15. Group Isokinetic Peak Torque right leg



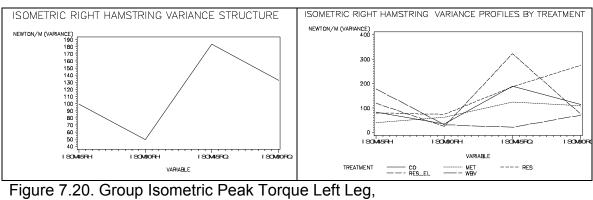


Figure 7.18. Group Isotonic Peak Velocity Left leg,

ISOMETRIC LEFT HAMSTRING AND QUADRICEPS VARIANCE PROFILES BY TREATMENT ISOMETRIC LEFT HAMSTRING AND QUADRICEPS VARIANCE STRUCTURE NEWTON/M (VARIANCE) 1500 1400 1200 1100 1000 800 800 800 600 500 600 500 300 200 100 100 100 NEWTON/M (VARIANCE) 700 600 500 400 300 200

I SOMPOF

I SOMISLH

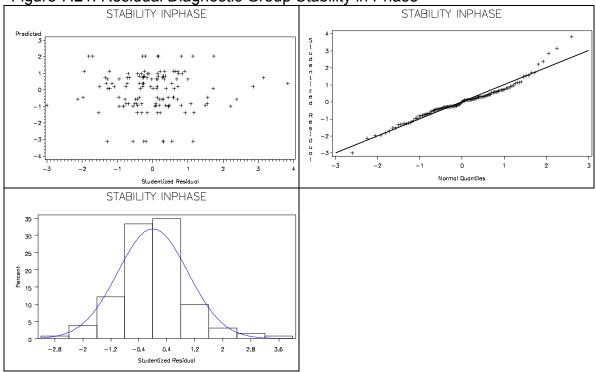
TREATMENT

ISONGOLH

- CO RES_EL

VARIABLE

ISOM45RH

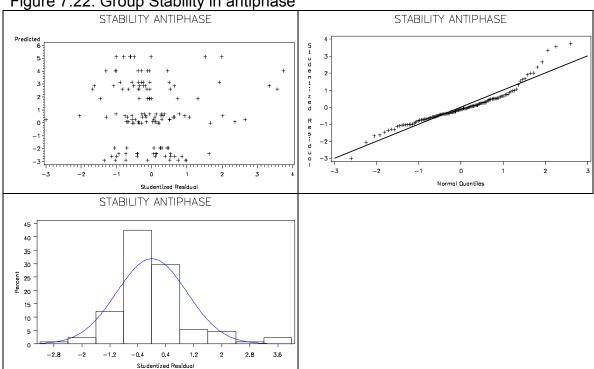

100

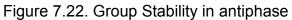
٥

I SOMISLH

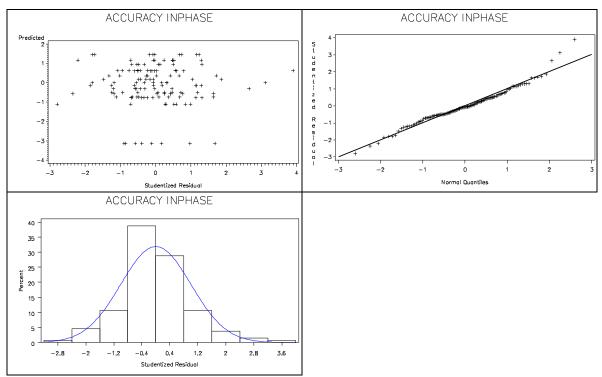
I SOMPOLH

VARIABLE




Figure 7.19. Group Isometric Peak Torque Right Leg,

1 5045LQ


---- Res

1 50 490

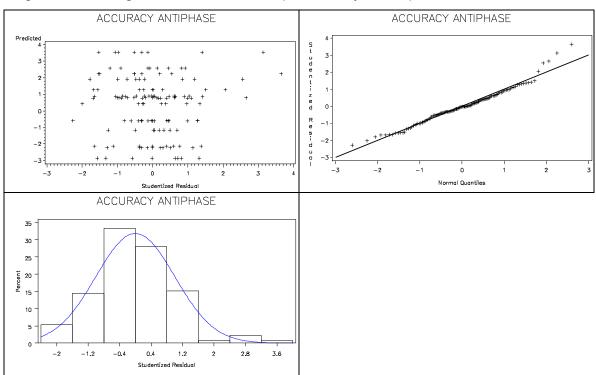
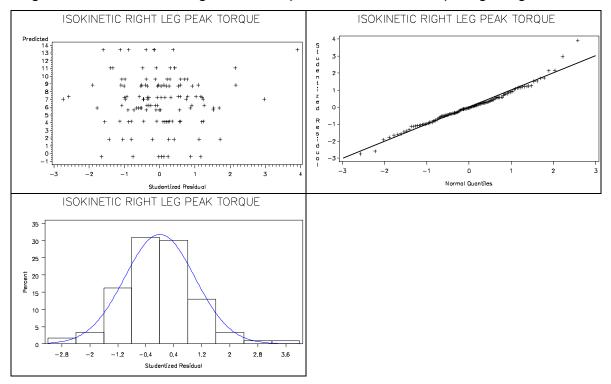
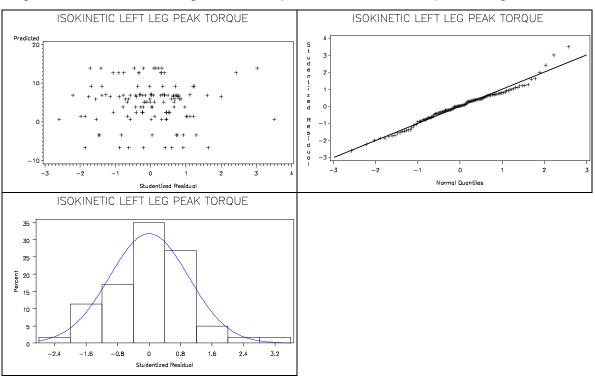




Figure 7.24. Diagnostic Residual Group Accuracy in antiphase

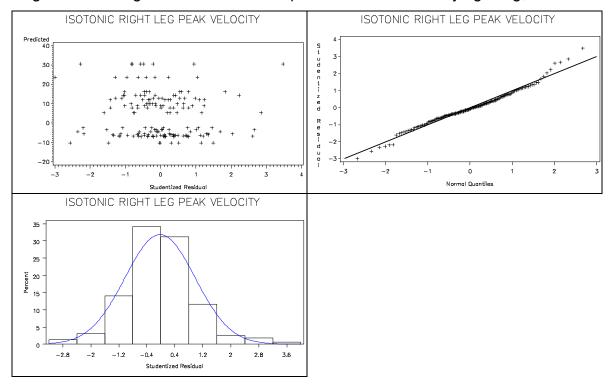


Figure 7.27. Diagnostic Residual Group Isotonic Peak Velocity right leg,

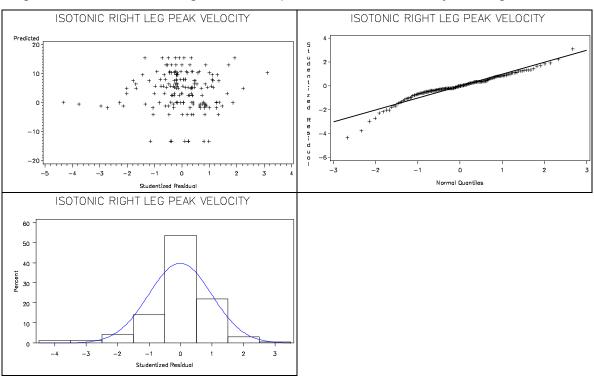
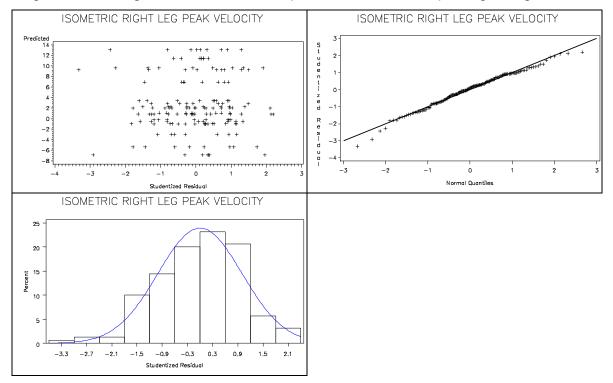
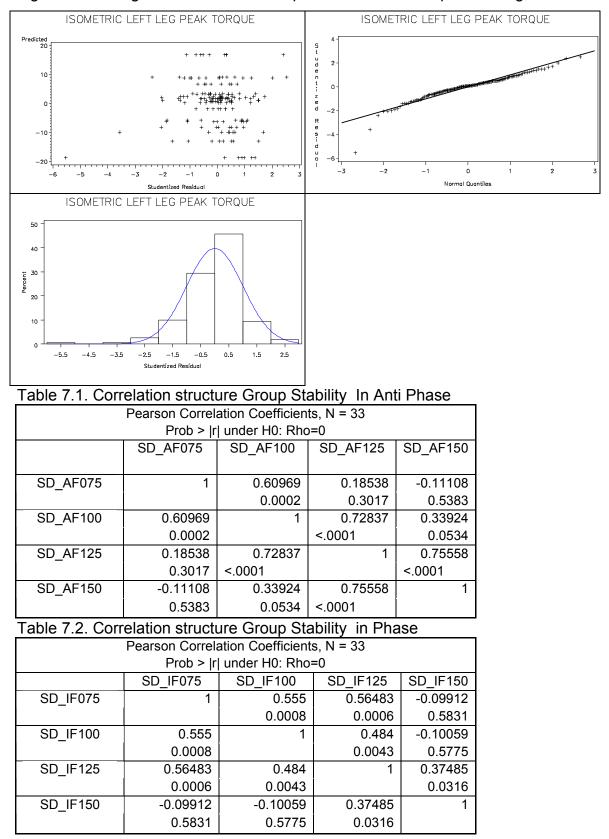




Figure 7.28. Residual Diagnostic Group Isotonic Peak Velocity Left leg,

Figure 7.29. Diagnostic Residual Group Isometric Peak torque Right Leg,

Pearson Correlation Coefficients, N = 33						
	Prob > r under H0: Rho=0					
	AF_AF075	AF_AF100	AF_AF125	AF_AF150		
AF_AF075	1	0.58951	0.10893	-0.14315		
		0.0003	0.5462	0.4268		
AF_AF100	0.58951	1	0.59947	0.22885		
	0.0003		0.0002	0.2002		
AF_AF125	0.10893	0.59947	1	0.74323		
	0.5462	0.0002		<.0001		
AF_AF150	-0.14315	0.22885	0.74323	1		
	0.4268	0.2002	<.0001			

Table 7.3. Correlation structure Group Accuracy Antiphase

oup Accuracy In phase
l

Pearson Correlation Coefficients, N = 33						
	Prob > r under H0: Rho=0					
	AF_IF075 AF_IF100 AF_IF125 AF_IF150					
AF_IF075	1	0.48876	0.29423	-0.19287		
		0.0039	0.0965	0.2822		
AF_IF100	0.48876	1	0.40311	-0.06195		
	0.0039		0.02	0.732		
AF_IF125	0.29423	0.40311	1	0.49682		
	0.0965	0.02		0.0033		
AF_IF150	-0.19287	-0.06195	0.49682	1		
	0.2822	0.732	0.0033			

Table 7.5. Correlation structure Group Isokinetic Peak Torque	right leg
---	-----------

Pearson Correlation Coefficients, N = 41					
Prob > r under H0: Rho=0					
ISOKr60PT ISOKr180PT ISOKr240PT					
ISOKr60PT	1	0.6626	0.50757		
		<.0001	0.0007		
ISOKr180PT	0.6626	1	0.75999		
	<.0001		<.0001		
ISOKr240PT	0.50757	0.75999	1		
	0.0007	<.0001			

Pearson Correlation Coefficients, N = 41				
Prob > r under H0: Rho=0				
ISOKI60PT ISOKI180PT ISOKI240PT				
ISOKI60PT	1	0.57955	0.46066	
		<.0001	0.0024	
ISOKI180PT	0.57955	1	0.83702	
	<.0001		<.0001	
ISOKI240PT	0.46066	0.83702	1	
	0.0024	<.0001		

Table 7.6 Correlation structure	Group Isokinetic Peak Torque left leg,
	Croup isokinetio r cak rorque iertreg,

Table 77 Convalation	at we at the Creation	lestenia Deale	Valaaitu viedat laa
Table 7.7. Correlation	structure Group	Isotonic Peak	velocity right leg,

Pearson Correlation Coefficients, N = 41 Prob > r under H0: Rho=0				
ISOTr1_Pv ISOTr20_Pv ISOTr40_PV ISOTr60_Pv				
ISOTr1_Pv	1	0.69263	0.33515	0.19045
		<.0001	0.0322	0.233
ISOTr20_Pv	0.69263	1	0.42031	0.31773
	<.0001		0.0062	0.0429
ISOTr40_PV	0.33515	0.42031	1	0.75588
	0.0322	0.0062		<.0001
ISOTr60_Pv	0.19045	0.31773	0.75588	1
	0.233	0.0429	<.0001	

Pearson Correlation Coefficients, N = 41					
Prob > r under H0: Rho=0					
	ISOTI1_Pv	ISOTI20_Pv	ISOTI40_PV	ISOTI60_Pv	
ISOTI1_Pv	1	0.69324	0.41298	0.13313	
		<.0001	0.0073	0.4066	
ISOTI20_Pv	0.69324	1	0.75053	0.50899	
	<.0001		<.0001	0.0007	
ISOTI40_PV	0.41298	0.75053	1	0.76969	
	0.0073	<.0001		<.0001	
ISOTI60_Pv	0.13313	0.50899	0.76969	1	
	0.4066	0.0007	<.0001		

-					
Pearson Correlation Coefficients, N = 40					
Prob > r under H0: Rho=0					
	ISOM45rH	ISOM90rH	ISOM45rQ	ISOM90rQ	
ISOM45rH	1	0.54654	0.11241	0.40438	
		0.0003	0.4898	0.0097	
ISOM90rH	0.54654	1	0.25288	0.42752	
	0.0003		0.1154	0.0059	
ISOM45rQ	0.11241	0.25288	1	0.52292	
	0.4898	0.1154		0.0005	
ISOM90rQ	0.40438	0.42752	0.52292	1	
	0.0097	0.0059	0.0005		

Table 7.9. Correlation structure Group Isometric Peak torque Right Leg,

Table 7.10.	Correlation	structure	Group	Isometric	Peak torqu	ie Left Leg

Pearson Correlation Coefficients, N = 40					
Prob > r under H0: Rho=0					
	100101-0011			loomoolo	
ISOM45Lh	1	0.54789	0.47805	0.39048	
13010143L11	1				
		0.0003	0.0018	0.0127	
ISOM90IH	0.54789	1	0.35583	-0.27253	
	0.0003		0.0242	0.0889	
ISOM45IQ	0.47805	0.35583	1	0.28703	
	0.0018	0.0242		0.0725	
ISOM90IQ	0.39048	-0.27253	0.28703	1	
	0.0127	0.0889	0.0725		

Table 7.11. Shapiro Wilk Normality Test For Studentized Residuals

	W	Pr< W
Stability in Phase	0.960644	0.0007
Stability antiphase	0.919669	<0.0001
Accuracy inphase	0.971349	0.0068
Accuracy antiphase	0.97173	0.0074
Isokinetic right Peak Torque	976536	0.0305
Isokinetic left Peak Torque	0.976988	0.0336
Isotonic right Peak Velocity	0.979797	0.0169
Isotonic Left Peak Velocity	0.939933	<0.0001
Isometric rigth Peak Torque	0.985924	0.106
Isometric left Peak Torque	0.922723	<0.0001

Auteursrechterlijke overeenkomst

Opdat de Universiteit Hasselt uw eindverhandeling wereldwijd kan reproduceren, vertalen en distribueren is uw akkoord voor deze overeenkomst noodzakelijk. Gelieve de tijd te nemen om deze overeenkomst door te nemen, de gevraagde informatie in te vullen (en de overeenkomst te ondertekenen en af te geven).

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:The physical rehabilitation of muscle weakness and lost quality of movement inpatients with multiple sclerosisRichting: Master of science in Applied StatisticsJaar: 2007

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -, vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze overeenkomst.

Ik ga akkoord,

Daniel Martinez Bello

Datum: 27.08.2007