Master's Thesis Engineering Technology

2020-2021

Effects of decelerated moving load of automated vehicles on the pavement stress-strain responses using 3-D finite element modelling

Domenic Daniels

Master of Civil Engineering Technology

Problem Definition

Automated (driverless) vehicles, or AVs, will become

Method and Material

Specification of the setting of the study

HMA (hot mix asphalt) was characterized as a viscoelastic material.

The pavement examined is part of the Virginia Smart road – section B [1].

Deceleration behaviour

Hypothesis

Harsher deceleration will result in more damage to the pavement.

Harsher Deceleration => Higher peak stress/strain.

AV causes less damage to HMA-pavement.

ABAQUS Modelling

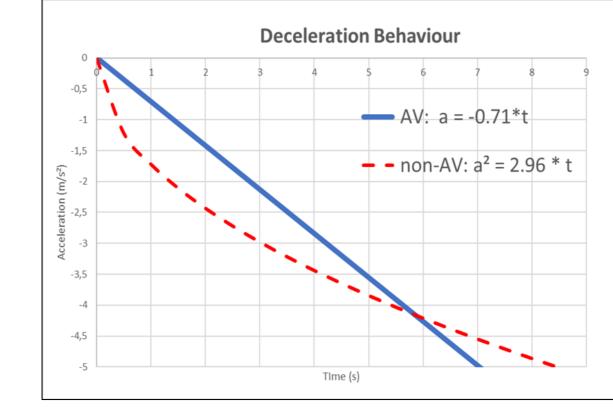
Figure 1: Tesla Cyber Truck

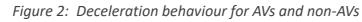
How will these new types of vehicles affect the road pavements?

Main research question:

What are the potential impacts of the deceleration behaviour of AVs on stress-strain response of HMA pavements?

sub research questions:


- Difference in deceleration behaviour between AVs and non-AVs?
- What stress-strain forces do the different deceleration models produce?
- What are the characteristics of an HMA-pavement?
- How does an HMA-pavement react to the stressstrain produced by decelerating moving loads?
- How should the information acquired be put into an ABAQUS-model?


Determination of the difference between the deceleration behaviour of AVs and Non-AVs.

Proposed behaviour based on assumptions and hypothesis that AVs are more efficient and eliminate driver error.

Non-AV (human) deceleration behaviour can be characterized as parabolic deceleration [2].

Linear deceleration model proposed for AVs.

Bibliography:

[1] O. E. Gungor, I. L. Al-gadi, and A. Gamez, "In-Situ Validation of Three-Dimensional Pavement Finite Element Models In-Situ Validation of Three-Dimensional Pavement Finite Element Models," no. September, 2016, doi: 10.1007/978-3-319-42797-3.

[2] S. P. Deligianni, M. Quddus, A. Morris, A. Anvuur, and S. Reed, "Analyzing and Modeling Drivers' Deceleration Behavior from Normal Driving," doi: 10.3141/2663-17..

Model based on previously designed models. Studies by Al-Qadi et al. [3].

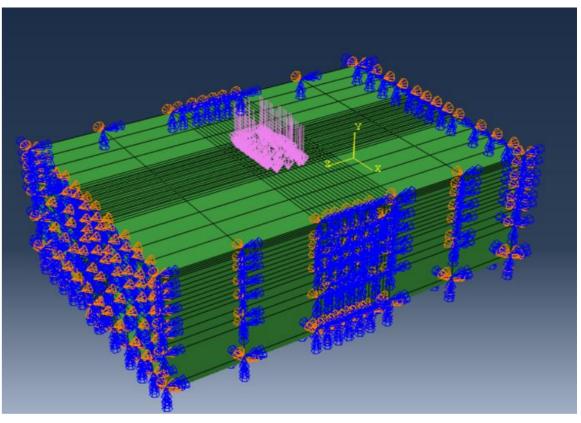


Figure 3: ABAQUS Pavement Model

Validation

Validation was done by mimicking a model from a study by Yoo and Al-Qadi [3].

Remaining Inaccuracies

Several inaccuracies remain in the model:

- No transversal loading. •
- Loading area length.
- Fully bonded layers.

[3] P. J. Yoo, I. L. Al-Qadi, M. A. Elseifi, and I. Janajreh, "Flexible pavement responses to different loading amplitudes considering layer interface condition and lateral shear forces," Int. J. Pavement Eng., vol. 7, no. 1, pp. 73-86, 2006, doi: 10.1080/10298430500516074

Results and Conclusions

Figure 4: Longitudinal strain results for the different tyre ribs

Results:

longitudinal strain		Max Value (µm/m)	Mean Value (μm/m)	Diff Max Value (%)
Non-AV	Outer rib	-28,7574	-21,30083758	0,007302468
AV		-28,7595	-21,30107091	
Non-AV	Centre rib	-36,754	-24,62845333	0,02475921
AV		-36,7631	-24,62442848	

Figure 5: Longitudinal strain for outer tyre rib

No difference in peak stress/strain.

Possible Explanations:

- Lack of difference in speed and loading time.
- Only one vehicle pass simulated.
- Limited method of simulating braking.

Conclusion:

No difference in effects on pavement between AV and non-AV deceleration.

More research required.

Supervisors / Co-supervisors / Advisors Prof. dr. ir. Ali Pirdavani, ir. Ali Yeganeh

