Master's Thesis Engineering Technology

2020-2021

Application of Reinforcement Learning for Continuous Stirred Tank Reactor (CSTR) temperature control

3

4

Hendrikx Jelco

Master of Chemical Engineering Technology

INTRODUCTION

A new state-of-the-art algorithm, **Soft Actor-Critic** (SAC), proved to outperform other algorithms. It is hypothesized that SAC also outperforms the current used algorithms in chemical process control.

Reinforcement Learning

- structure [1]:
- 1. Agent takes an action
- 2. Action changes **environment**
- 3. Agent receives **state** and reward
- 4. Updating agent's **policy**

The environment - CSTR with Van de Vusse reaction [2]:

 $a \rightarrow b \rightarrow c$ $a \rightarrow d$

TROUBLESHOOTING

Reward function: specific for each custom environment

RESULTS

440

420

te 400

380

360

25

30

Figure 5: Trained results

20

 (\mathbf{Y})

Controlling cooling jacket temperature (Tc)

Worst performance

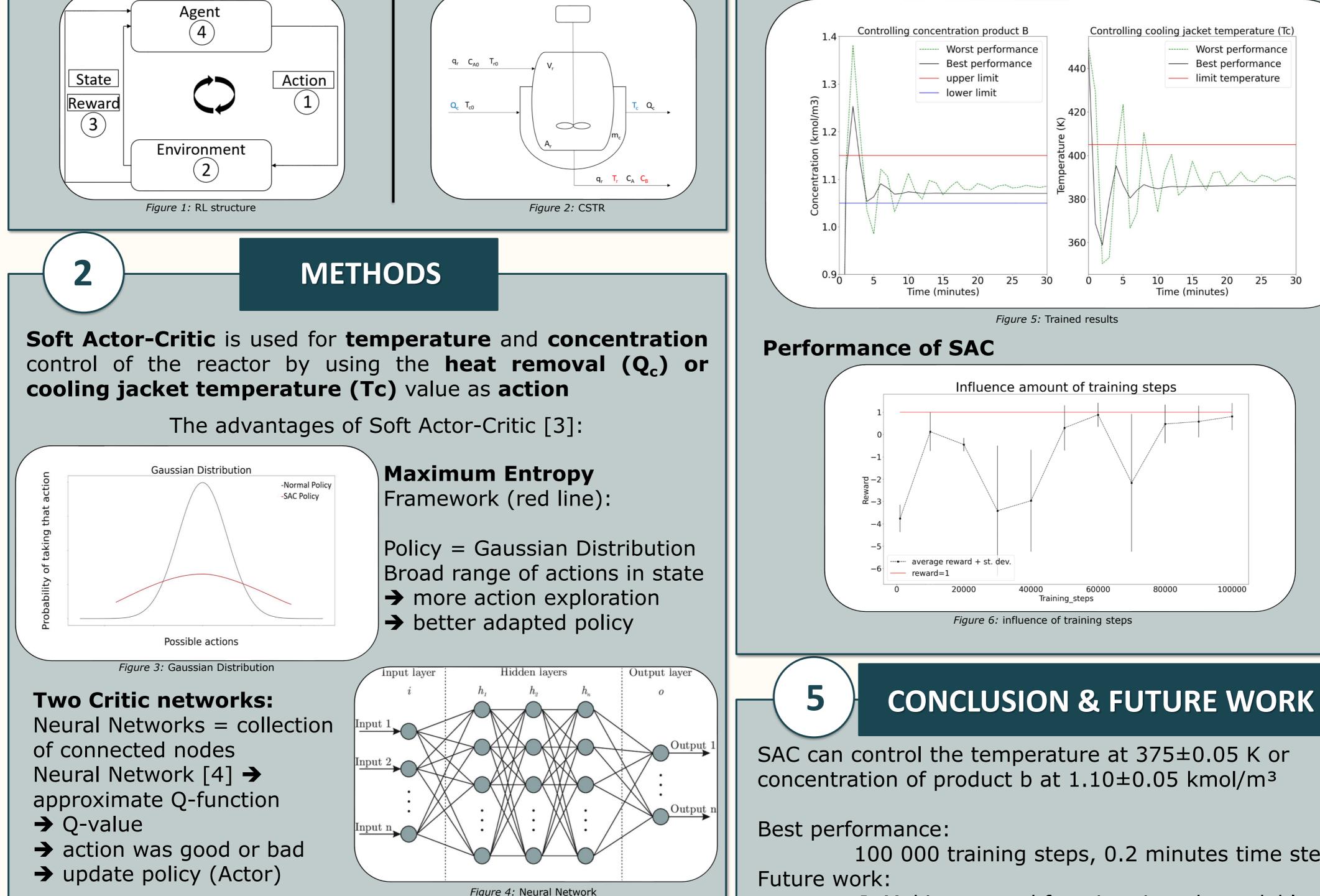
Best performance

limit temperature

20

100000

15


Time (minutes)

25

30

Amount of training steps used by SAC for learning process control

Trained results (concentration goal = $1.10 \pm 0.05 \text{ kmol/m}^3$)

Off-policy model-free:

No pre-defined model of environment needed Q-value estimation is based on next state and action instead of next state and current action

SAC can control the temperature at 375±0.05 K or concentration of product b at 1.10±0.05 kmol/m³

40000

60000

Training steps

80000

100 000 training steps, 0.2 minutes time step.

- → Making reward function time dependable
- → Extensive analysis of used training steps
 - ➔ possible better performance
- → Use efficiency or energy consumption instead of temperature and concentration

Prof. dr. ir. Leblebici Mumin Enis (KU Leuven) Supervisors ir. Wu Min (KU Leuven)

[1] M. Sewak, Deep Reinforcement Learning. Singapore: Springer Nature Singapore Pte Ltd., 2019. [2] J. Vojtesek, P. Dostal, and V. Bobal, Control of nonlinear system - Adaptive and predictive control, vol. 7, no. PART 1. IFAC, 2009. [3] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor," 35th Int. Conf. Mach. Learn. ICML 2018, vol. 5, pp. 2976–2989, 2018. [4] F. Bre, J. M. Gimenez, and V. D. Fachinotti, "Prediction of wind pressure coefficients on building surfaces using artificial neural networks," Energy Build., vol. 158, no. November, pp. 1429-1441, 2018, doi: 10.1016/j.enbuild.2017.11.045.

