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INTRODUCTION

CONCLUSION & FUTURE WORK

Reinforcement Learning 
structure [1]:
1. Agent takes an action
2. Action changes environment
3. Agent receives state and 

reward
4. Updating agent’s policy

The environment  - CSTR 
with Van de Vusse 
reaction [2]:

A new state-of-the-art algorithm, Soft Actor-Critic (SAC),
proved to outperform other algorithms. It is hypothesized that
SAC also outperforms the current used algorithms in chemical
process control.
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SAC can control the temperature at 375±0.05 K or 
concentration of product b at 1.10±0.05 kmol/m³

Best performance: 
100 000 training steps, 0.2 minutes time step.

Future work:
➔ Making reward function time dependable
➔ Extensive analysis of used training steps 

➔ possible better performance
➔ Use efficiency or energy consumption instead 

of temperature and concentration
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METHODS

Soft Actor-Critic is used for temperature and concentration
control of the reactor by using the heat removal (Qc) or
cooling jacket temperature (Tc) value as action

Maximum Entropy 
Framework (red line):

Policy = Gaussian Distribution
Broad range of actions in state 
➔ more action exploration    
➔ better adapted policy 

Off-policy model-free:
No pre-defined model of environment needed
Q-value estimation is based on next state and action instead of 
next state and current action

Two Critic networks:
Neural Networks = collection 
of connected nodes
Neural Network [4] ➔

approximate Q-function     
➔ Q-value 

➔ action was good or bad
➔ update policy (Actor)

Figure 3: Gaussian Distribution 

2

TROUBLESHOOTING

Reward function: specific for each custom environment

Amount of training steps used by SAC for learning  
process control
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RESULTS

Performance of SAC

Trained results 
(concentration goal= 1.10 ± 0.05 kmol/m³)
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Supervisors

a ➔ b ➔ c
a ➔ d

Figure 1: RL structure Figure 2: CSTR

Figure 6: influence of training steps

Figure 5: Trained results

Figure 4: Neural Network

The advantages of Soft Actor-Critic [3]:


