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process control.

Reinforcement Learning
structure [1]:

1. Agent takes an action

2. Action changes environment
3. Agent receives state and
reward

Updating agent’s policy
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Figure 1: RL structure
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INTRODUCTION

A new state-of-the-art algorithm, Soft Actor-Critic (SAQC),
proved to outperform other algorithms. It is hypothesized that
SAC also outperforms the current used algorithms in chemical
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The environment - CSTR
with Van de Vusse
reaction [2]:

a=2>b=2>cC
a=>d
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Figure 2: CSTR

process control

TROUBLESHOOTING

Reward function: specific for each custom environment

Amount of training steps used by SAC for learning
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Trained results
(concentration goal= 1.10

RESULTS

+ 0.05 kmol/m3)

Controlling concentration product B

Controlling cooling jacket temperature (Tc)
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Figure 3: Gaussian Distribution

Two Critic networks:
Neural Networks = collection
of connected nodes

Neural Network [4] =
approximate Q-function

= Q-value

=» action was good or bad

= update policy (Actor)

Off-policy model-free:

next state and current action

METHODS

Soft Actor-Critic is used for temperature and concentration
control of the reactor by using the heat removal (Q.) or
cooling jacket temperature (Tc) value as action

The advantages of Soft Actor-Critic [3]:
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Maximum Entropy
Framework (red line):

Policy = Gaussian Distribution
Broad range of actions in state
= more action exploration

= better adapted policy
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Figure 4: Neural Network

No pre-defined model of environment needed
Q-value estimation is based on next state and action instead of
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Figure 5: Trained results
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Figure 6: influence of training steps

concentration of product b
Best performance:

Future work:
= Making reward

of temperature

CONCLUSION & FUTURE WORK

SAC can control the temperature at 375+0.05 K or

at 1.10+0.05 kmol/m?3

100 000 training steps, 0.2 minutes time step.

function time dependable

= Extensive analysis of used training steps
=» possible better performance
= Use efficiency or energy consumption instead

and concentration
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