
Faculteit Industriële Ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Software development for the operations and external
communications of the OSCAR-QUBE project

2020•2021

PROMOTOR :

Prof. dr. ir. Ronald THOELEN

Prof. dr. Milos NESLADEK

BEGELEIDER :

De heer Jaroslav HRUBY

Sam Bammens
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

Gezamenlijke opleiding UHasselt en KU Leuven

Faculteit Industriële Ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Software development for the operations and external
communications of the OSCAR-QUBE project

2020•2021

PROMOTOR :

Prof. dr. ir. Ronald THOELEN

Prof. dr. Milos NESLADEK

BEGELEIDER :

De heer Jaroslav HRUBY

Sam Bammens
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

Sam Bammens Master thesis

Acknowledgement

In this chapter I would like to express my gratitude towards everyone who helped in the

realization of this master’s thesis. First of all I would like to thank my supervisor Ir. Jaroslav Hruby

for support and guidance. Furthermore I would like to thank the OSCAR-QUBE team for all of the

effort and support they brought to the table. Finally I would like to thank the people from “Orbit

Your Thesis!” for the opportunity and guidance they have provided the team with.

Sam Bammens Master thesis

Sam Bammens Master thesis

Contents

Acknowledgement ... 1

Table of figures .. 5

Table of tables .. 7

Table of abbreviations.. 9

Abstract ... 11

Abstract in Dutch ... 13

Chapter 1: Introduction .. 15

1.1 Aim of the thesis ... 16

1.2 Related work.. 16

1.3 Outline of the thesis .. 16

Chapter 2: Literature study ... 17

2.1 Magnetometers ... 17

2.2 NV-centers and Magnetic Resonance .. 18

2.3 Mission Control Software ... 22

2.4 Communication Protocols and packet structures .. 23

Chapter 3: Materials and Methods ... 27

3.1 OSCAR-QUBE magnetometer .. 27

3.2 Mission Control Software ... 28

3.3 Utilized Protocols... 29

3.4 Graphical User Interface (GUI) ... 30

3.5 Wireshark ... 32

3.6 Nucleo-F746ZG board .. 32

Chapter 4: Experimental .. 35

4.1 Installing Yamcs ... 36

4.2 Packet configuration .. 37

4.2.1 Telecommanding packets ... 37

4.2.2 Telemetry packets ... 38

4.3 User Interface .. 40

4.3.1 PyQt5 and Designer ... 40

4.3.2 Layout ... 41

4.3.3 Yamcs-client API ... 43

4.3.4 Threading .. 44

4.3.5 TM data visualization ... 47

4.3.6 Pulsed visualization .. 48

Sam Bammens Master thesis

4.3.7 Graph Zeroing .. 49

4.3.8 Exporting ... 49

Chapter 5: Results ... 51

5.1 Back end .. 51

5.2 Front end ... 53

5.2.1 Control tab results ... 53

5.2.2 Monitor tab results .. 57

5.2.3 Peak and Pulsed tab results ... 59

5.2.4 Threads .. 60

5.2.5 Functionality .. 61

Chapter 6: Evaluation .. 65

6.1 Reliability .. 65

6.2 Ease of use .. 65

6.3 Future work ... 65

Chapter 7: Conclusion ... 67

Literature .. 68

Appendix A ... 69

Appendix B ... 71

Sam Bammens Master thesis

Table of figures

Figure 1: Magnetic sensors with their dynamic range and field of application [1] 17

Figure 2: NV-center in a diamond structure [4] .. 18

Figure 3: The energy level scheme of an electron within an NV-center during ODMR [4] 19

Figure 4: The concept of PDMR based on ODMR [7] ... 21

Figure 5: Mission control dashboard [8] .. 22

Figure 6: Comparison of the OSI and TCP/IP models [10] ... 23

Figure 7: Protocols with their associated layer [11] ... 24

Figure 8: CCSDS packet structure[13] .. 25

Figure 9: Schematic representation of the internal and external communication of the embedded

system ... 28

Figure 10: Schematic representation of interfacing between the GUI and the embedded system

when using the Display runner from Yamcs Studio .. 31

Figure 11: Schematic representation of interfacing between the GUI and the embedded system

when using a python script as GUI ... 32

Figure 12: A Nucleo-F746ZG board [18] .. 33

Figure 13: General overview of connection of UHB and QUBE .. 35

Figure 14: Communication and IP configuration .. 36

Figure 15: MDB configuration ... 37

Figure 16: The correlation between the three stages within the XTCE structure 38

Figure 17: Packet differentiation process based on APID .. 40

Figure 18: General layout Control tab .. 41

Figure 19: General layout controls ... 42

Figure 20: General layout Monitor tab ... 42

Figure 21: General layout Peak and Pulsed tab ... 43

Figure 22: Action button telecommanding flow .. 44

Figure 23: Radio button telecommanding flow ... 44

Figure 24: Threading scheme ... 45

Figure 25: Process of Ping thread ... 45

Figure 26: Process flow interface thread ... 46

Figure 27: Convert QWidget to PyQtGraph .. 47

Figure 28: Visualization process of monitor parameters ... 48

Figure 29: Unit step function .. 48

Figure 30: Visualization process of pulsed data .. 49

Sam Bammens Master thesis

Figure 31: Zeroing procedure ... 49

Figure 32: Layout export group .. 50

Figure 33: Final ParameterTypeSet definition .. 51

Figure 34: Header container definition .. 52

Figure 35: Debug packet structure definition ... 52

Figure 36: Control tab .. 53

Figure 37: Detail of system group ... 54

Figure 38: Commanding box of laser group ... 54

Figure 39: Laser strength selector group ... 54

Figure 40: Detail of microwave group .. 55

Figure 41: Detail of FPGA group ... 55

Figure 42: Detail of Debug group .. 56

Figure 43: Detail of ODMR readout graph.. 56

Figure 44: Detail of ODMR average graph + clear button ... 57

Figure 45: Monitor tab with zeroing activated on all plots .. 57

Figure 46: Monitor tab with zeroing disabled on all plots ... 58

Figure 47: Detail of export group ... 58

Figure 48: Peak and Pulsed tab ... 59

Figure 49: Detail of peak detection half ... 59

Figure 50: Detail of pulsed operation half ... 60

Figure 51: ODMR readout display in sweep mode .. 61

Figure 52: ODMR average over time display ... 62

Figure 53: Reference subsystem displays in their zeroed state ... 62

Figure 54: Stepping through pulse steps ... 63

Sam Bammens Master thesis

Table of tables

Table 1: Crucial differences between TCP and UDP [12] .. 24

Table 2: Comparison between TGSS and Yamcs .. 29

Table 3: Fabrication of sendStringCmd datatype .. 38

Table 4: TC "Commands" tab spreadsheet configuration ... 38

Table 5: Parametertypes and the appropriate configurations to support TM of the QUBE 39

Table 6: Defined arrays and their corresponding parametertypes .. 39

Table 7: APID with corresponding packet type .. 39

Sam Bammens Master thesis

Sam Bammens Master thesis

Table of abbreviations

AC Alternating Current

ASCII American Standard Code for Information Interexchange

ADC Analog Digital Converter

APID Application ID

CCSDS Consultative Committee for Space Data Systems

ESA European Space Agency

GB Gigabyte

GUI Graphical User Interface

ICF Ice Cube Facility

IP Internet Protocol

ISS International Space Station

lwIP Lightweight IP

LED Light Emitting Diode

MCS Mission Control Software

MDB Mission Database

MEMS Microelectromechanical system

NASA National Aeronautics and Space Administration

NV-centers Nitrogen Vacancy centers

ODMR Optical Detection of Magnetic Resonance

OSI Open Systems Interconnection

PDMR Photocurrent Detection of Magnetic Resonance

PUS Packet Utilization Service

S/N Signal to Noise

SQUID Superconducting Quantum Interference Device

TC Telecommand

TCP Transmission Control Protocol

TGSS Terma Ground Segment Suite

TM Telemetry

UDP User Datagram Protocol

UHB User Home Base

VPN Virtual Private Network

XML Extensible Markup Language

XTCE XML Telemetric and Command Exchange

Sam Bammens Master thesis

Sam Bammens Master thesis

Abstract

The measurement process automation and system health monitoring is essential in remote

sensing applications. The multiparametric systems, such as diamond quantum magnetic field

sensors require constant monitoring to ensure reliability of the acquired data. As this system will

be located onboard the International Space Station (ISS), there is a constant stream of incoming

data to acquire and process, as well as the need to schedule and handle automated measurement

routines, and to resolve the situation during the loss of signal (LOS), and provide users with a clear

GUI. This thesis aims to develop an automated control system capable of receiving telemetry,

sending telecommands and performing scheduled tasks for the experiment onboard the ISS.

 A user home base (UHB) was created to interface with the embedded system during the mission.

To meet the requirements, a mission control software (MCS) was selected and configured. After

this, a GUI was created using PyQt5 which interfaces with the MCS to operate the QUBE. Yamcs

was selected as the MCS and after the networking and packet structure configuration it was able

communicate with the embedded system. After which the control layout was developed and the

supporting Python script for the system automation was written. The UHB was thoroughly tested

on reliability and user experience during its development and the interface test campaign of the

system. It was found it fulfilled all the requirements with substantial margins, meaning the system

will be used during the mission.

Sam Bammens Master thesis

Sam Bammens Master thesis

Abstract in Dutch

Metingen uitvoeren, automatisatie en de gezondheid van het systeem monitoren is essentieel voor

afstandsbediende meetapplicaties. Een multiparametrisch systeem, zoals diamant gebaseerde

kwantum magnetometers, hebben permanente monitoring nodig om de betrouwbaarheid van de
verworven data te verzekeren. Omdat deze magnetometer gelokaliseerd zal zijn aan boord van

het International Space Station (ISS) is er een constante stroom van verworven data om te

ontvangen en te verwerken. Ook is er een nood aan geplande en geautomatiseerde meetroutines.

Daarbij zal het systeem om moeten kunnen gaan met situaties waarbij de connectie met de
magnetometer wegvalt. Verder is het belangrijk dat er een overzichtelijke GUI wordt aangeleverd

voor de operator van het systeem. Deze thesis heeft als doel een automatisch controle systeem te
ontwikkelen dat in staat is om telemetrie te ontvangen, telecommands te verzenden en geplande

taken uit te voeren voor het experiment dat zich aan boord van het ISS bevindt.

Een user home base (UHB) is gemaakt om te interageren met de magnetometer tijdens zijn missie.
Om de vereisten te behalen werd een mission control software (MCS) geselecteerd en

geconfigureerd. Vervolgens werd er een GUI gecreëerd met PyQt5 dat interageert met de MCS om

de QUBE te kunnen besturen. Yamcs werd gekozen als MCS en na de configuratie, van het netwerk

en de pakket structuur, kon het systeem met de magnetometer communiceren. Hierna werd de

lay-out, met het ondersteunende Python script voor de automatisatie, van de UHB gemaakt. De

UHB werd grondig getest op betrouwbaarheid en gebruiksvriendelijkheid tijdens zijn

ontwikkeling en vervolgens tijdens de interface test campagne van het algemeen systeem. Het

systeem slaagde voor deze testen met ruime marge, wat betekent dat de UHB gebruikt gaat
worden tijdens de missie van de magnetometer.

https://nl.wiktionary.org/wiki/interageert

Sam Bammens Master thesis

Sam Bammens Master thesis

Chapter 1:

Introduction

Nowadays there are a lot of devices on the market to monitor the magnetic field. Each device has

their specific dynamic range, sensitivity and accuracy, meaning each system has their specific

requirements and limitations. However, the OSCAR-QUBE team created a diamond-based

quantum magnetometer that aims to revolutionize this market. This is achieved by using readout

methods created and studied by the Quantum Photonics research group where the project is

located. The aim of the project is to fabricate a system that is superior in all three categories when

compared to the other available technologies by implementing these readout methods.

The system created by the team was selected by the European Space Agency (ESA) to fly onboard

the International Space Station (ISS). Once activated, it will monitor the magnetic field of the earth

autonomously for ten months. Scientific data will be collected during the mission. Meanwhile, the

team shall monitor the system and study its behavior while pushing the boundaries of it in real

world applications. However, the team wants to be able to command the experiment from the

ground while the project is running on the ISS. This commanding should be able to be performed

by scientists that have no technological background on the system. In the meantime, there has to

be a system that is capable of receiving the captured data directly from space. This data will have

to be saved in order to postprocess the captured information. Furthermore, certain parameters

within these telemetry packets will have to be visualized.

In order to fulfil these requirements, a user home base (UHB) has to be created. This is a computer

assigned and configured to communicate with the system onboard the ISS. On this computer a

mission control software (MCS) will be running. This software is both responsible for receiving

the telemetry data gathered by the cube as well as sending the telecommands to reconfigure the

embedded system. As an addition, most MCS automatically store the telemetry (and

telecommand) packets as well as provide basic visualization too1.1

Sam Bammens Master thesis

~ 16 ~

1.1 Aim of the thesis

This thesis aims to develop a system that is capable of the following requirements:

• The UHB should be able to handle incoming TM. This means the system can receive,

identify, read and store incoming telemetry packets.

• Provide commanding capabilities. Since the QUBE can change its configuration using TC,

it is crucial the system is able to execute these tasks.

• Provide a GUI which the operator can use to interface with the QUBE. This GUI should be

intuitive and provide a clear overview of the system as a whole. Furthermore, a person
with little to no technological background should be able to operate the QUBE using the

GUI.

1.2 Related work

Since this is a one-of-a-kind project there is no closely related work. However, other small space

projects were studied in order to extract useful pieces of information. Furthermore, other non-

space related projects and concepts were investigated as they could be applied or used within the

scope of the thesis.

1.3 Outline of the thesis

Chapter 2 will explain the scientific and technological backgrounds of concepts which are used

during the making of the thesis. This will provide more insight in the operation of the embedded

system and the design choices which were made. Chapter 3 will give an overview of all the

materials and methods which were used during the development of the UHB. In chapter 4 the

actual steps taken in order to achieve the current UHB can be found. Chapter 5 will show the final

results. Lastly, in chapter 6 the results will be evaluated, and the conclusion is made in chapter 7.

Sam Bammens Master thesis

~ 17 ~

Chapter 2:

Literature study

2.1 Magnetometers

Monitoring the magnetic field is crucial in a broad range of fields. Therefore, there are various

different methods that exist to execute this task. Each method has their specific requirements and

will have their specific properties, meaning the preferred magnetometer for a particular task will

depend on the requirements of this task and the properties of the sensor. However, the two main

factors considered when selecting a type of magnetometer are dynamic range and the cost of the

system.

Figure 1: Magnetic sensors with their dynamic range and field of application [1]

As can be seen in Figure 1, the dynamic ranges of these technologies are spread out over the

spectrum. The systems available with a high dynamic range are usually complex, costly or of a

substantial formfactor. Therefore, if an application demands for the monitoring of the magnetic

field over a larger dynamic range, multiple types of sensors are required to solve this efficiently.

However, this means more costs and complexity will be added to the application.

Sam Bammens Master thesis

~ 18 ~

Furthermore, the vectors of the magnetic field might be desired for certain applications. However,

not all of the readout methods support this feature. Hence this will also have to be taken into

consideration when selecting a magnetometer. Common sensors capable of measuring the

vectorized magnetic field are [1]:

• fluxgates

• hall effect sensors

• Superconducting Quantum Interference Devices (SQUID)

However, each of these systems have specific benefits and drawbacks. The fluxgate for example is

rather simple but lacks extreme sensitivity. SQUIDs on the other hand can reach this sensitivity

but are complex systems which are mostly used in labs and kept away from noise. [2][3]

2.2 NV-centers and Magnetic Resonance

To combat the problems that occur when using regular vectorized magnetometers, new readout

methods are developed which might solve these problems. These systems utilize diamonds

infused with nitrogen vacancy (NV) centers and use its isolated electronic spin system to monitor

the magnetic field. This enables the system to detect weak magnetic fields and provides a high

spatial resolution (in the sub-nm range) while remaining highly sensitive. Currently these systems

are relatively big in size when compared to the other sensors, but a lot of resources are put to the

miniaturization of these systems. So far these efforts prove to be successful. [4][5]

At the core of these systems is a diamond infused with NV-centers. These NV-centers are the actual

sensing part of the system, and they are formed when nitrogen atoms are trapped next to a

vacancy within the diamond’s structure (Figure 2). These vacancies naturally occur as defects in

the diamond lattices. To date two different types of NV-centers have been known, namely the

neutral NV-centers (NV0) and the negatively charged centers (NV-). Only the latter type proves to

be useful in the detection of the magnetic field due the fact that a triplet spin ground level can be

initialized, thus further mentions of NV-centers reference to the NV—-centers. [4]

Figure 2: NV-center in a diamond structure [4]

Sam Bammens Master thesis

~ 19 ~

ODMR is a readout method which utilizes the properties of these NV-centers to optically detect

the strength of the vectors of the magnetic field. In order to achieve this, a green laser (532 nm) is

shone onto the diamond. This will excite the electrons from the NV-centers within the diamond to

a higher energy state. The excited state is temporal and after some period, the electron will relax

back to its stable state. In this process the electron releases the excess amount of energy in the

form of red light (637 nm). The intensity of the emitted light is stable, unless the system is under

the influence of a microwave field.

Exposing this system to a microwave field will alter the behavior of the emitted red-light intensity.

This is due to the fact that the NV-centers have a single resonant frequency within the microwave

domain. Under the influence of the resonant frequency, a dip in the red-light intensity will occur

while the rest of the spectrum remains stable as is shown in Figure 3. This phenomenon is called

a dark transition. These transitions emit less light because the electron will first go through the

metastable state before returning to the ground state and therefore emit a smaller amount of

energy.

Figure 3: The energy level scheme of an electron within an NV-center during ODMR [4]

Exposing this system to a magnetic field will cause the regular ground state to split into two

separate ground states. This phenomenon is called Zeeman splitting. These new ground states are

further apart from each other based on the strength of the magnetic field. However, these two new

ground states remain symmetric around the original ground level. This event will produce two

different resonant frequencies in the microwave domain, meaning the original peak from the

resonant frequency also splits into two separate peaks. Since these resonant frequencies are

based on the state of the ground levels, they will remain symmetric around the original resonant

frequency. Now, the strength of the magnetic field can be calculated based on the separation

between those peaks, since the resonant frequencies will shift further apart if the magnetic field

is stronger. Furthermore, upon determining the symmetry point in the frequency spectrum, only

Sam Bammens Master thesis

~ 20 ~

one of the two peaks’ position is necessary to calculate the strength of the magnetic field. [4] [5]

[6]

However, NV-centers have a tetrahedral shape since they are located within a diamond’s

crystallographic structure. Meaning there are four orientations bound to a single NV-center.

Therefore, there are four systems producing their own ODMR signal according to the strength of

the field corresponding to their orientation. Because of this, eight peaks can be detected when

using NV-centers. Nevertheless, all of the peaks will remain symmetric around a single frequency

within the microwave spectrum. Using the information of the strength of the field on every

orientation of the NV-center, the magnetic field can be monitored three dimensionally.

The ODMR principle is rather simple, however technically it creates various inefficiencies. Mainly

due to the fact that the emission of red light has to be monitored. Therefore, a suiting optical

sensor has to be employed to detect this signal, adding complexity to the system and possibly

limiting performances. Since the sensitivity and accuracy of the readout are directly related to

performance of the sensor. As an addition, the signal is more likely to get interference from other

(light) sources, thus decreasing the system’s performance and usability. To combat these issues,

another readout method was created. This readout method is called the Photocurrent Detection

of Magnetic Resonance (PDMR). This method utilizes the same principles as the ODMR-method,

however it bases its readout system on the generation of photocurrents. These currents are

created when the laser excites the electrons to their conduction band, which is of a higher energy

state than the excited energy level used in ODMR. Upon applying a bias voltage to this system, the

generated photocurrent can be read out by various sensors such as Analog Digital Converters

(ADC) which generally perform better than photosensors. This causes the system to be more

sensitive and accurate while reducing the changes of noise. Additionally, the PDMR readout

method also aids the miniaturization process of the magnetometer.[4][6]

Sam Bammens Master thesis

~ 21 ~

Figure 4: The concept of PDMR based on ODMR [7]

So far only the constant wave mechanisms have been explained. Here, the critical systems such as

the laser, microwave and readout subsystems are constantly active. This will produce a sensitive

and accurate system that is able to monitor the magnetic field three dimensionally. However, this

can be further improved by utilizing pulsed schemes. When using pulsed schemes, the afore

mentioned subsystems are triggered at a specific time for a specific duration. The benefit of using

pulse schemes varies. Most pulse sequences are aimed toward increasing the contrast, sensitivity

and/or improving the S/N ratio. Additionally, some pulse schemes might come with extra

benefits, such as the Ramsey pulse scheme. This sequence improves the sensitivity of the

measurements in the same way as Ramsey magnetometry. However, using the pulsed ODMR

version, substantially less high microwave fields are necessary to achieve these improvements.

Another well-known pulse scheme is the Hahn echo sequence. This scheme is mainly used to

restrict sensing to AC signals. [6][7]

Sam Bammens Master thesis

~ 22 ~

2.3 Mission Control Software

MCS are commonly used within the army, space sector and aviation sector. This software is

responsible for the coordination and execution of a mission. It runs on a computer which is

configured to receive incoming data and send commands to operate the machine executing the

mission. Although MCS are used in a variety of applications, the core of the software remains the

same and most packages offer the same general features. These features are:

• identifying different packet types and structures of incoming telemetry

• formatting of incoming data packets

• visualization of the data

• issuing commands

• data storage

More advanced MCS can also support alarms, automated procedures or have built in planning

tools. Next to these feature the MCS aims to provide an overview of the mission environment and

its status. Based on this information, the operator will validate the progression of the mission and

use it to make rest of the planning.

Figure 5: Mission control dashboard [8]

Within the space sector, these systems are mainly used to control missions of rockets, satellites

or various other systems in space. Since most instances have their own requirements and

standards within their missions apart from the general rules, they utilize different MCS. However,

sometimes an instance chooses to create a custom MSC, such as Open MCT, created by NASA. But

other instances prefer software from a private company such as the Terma Ground Suite Segment

(TGSS). Nonetheless, most instances execute various types of mission. Each with their specific

requirements. Therefore, multiple MCS can be used within the same instance. If none of the

existing MCS adhere to the demands of a mission, the space entity can choose to create custom

software.

Sam Bammens Master thesis

~ 23 ~

2.4 Communication Protocols and packet structures

In order to enable communication within a network of different entities, some form of

standardization is required. Rules will be defined to guarantee that each client is able to

communicate with or over the network. These standard rules are called protocols and can be

compared with human language. If someone is speaking the same language as another person,

communication can be achieved, and information can be exchanged. If these people try to interact

using different languages, the other person will not be able to understand the messages and no

information will be exchanged. When the analogy is applied to computer networks it can be seen

why it is crucial for each client to communicate using a protocol the destined client is able to

translate. As an addition, computer networks need specific information about the intended

destination to deliver the message correctly. This information is added to the packet, thus it is

part of the protocol. Meaning the protocol does not only have to be supported by the intended

client but by the network as well.

The most well-known network is the internet. This network has multiple abstract layers. Each of

which has their specific contribution to successfully communicate a message to the desired

destination. The seven-layer OSI model was the first standard model for network

communications, becoming an international standard in 1984. However, the modern internet is

based on the TCP/IP model which consists of five layers, which is simpler compared to the OSI

model. [9]

Figure 6: Comparison of the OSI and TCP/IP models [10]

As can be seen in Figure 6 there are only four layers on the TCP/IP side. This is due to the fact that

occasionally the “Physical” and “Data link” layers are fused together and represented by the

Network Interface layer. This layer is responsible for the transmission of the packets between two

devices on the same network. The layer helps to define how data has to be sent using the network

and will determine how the bits have to be transferred in the hardware responsible for the

communication. The protocol associated with this layer is the ethernet protocol. [10]

Sam Bammens Master thesis

~ 24 ~

Above the network interface layer there is the “Network” layer which is responsible for

internetworking, meaning the “Network” layer will ensure the packet is transported correctly

from source to destination. Common protocols from this layer are the IP, ICMP and ARP protocols.

All of these protocols ensure that the network is constantly updated about the status of the clients

and aids in the proper routing of the packets. [10][11]

Figure 7: Protocols with their associated layer [11]

On top of this “Network” layer, the “Transport” layer can be found. This layer is responsible for

controlling the flow, sequencing and error checking of the packets. Two protocols are part of this

layer, namely the TCP and UDP protocols. The crucial differences between TCP and UDP are listed

below in Table 1. [11]

Table 1: Crucial differences between TCP and UDP [12]

TCP UDP

Live connection is required to transmit data No live connection is required to transmit data

Requires handshakes to setup a connection No handshakes required

(connectionless protocol)

TCP rearranges data packets in the specific

order

UDP protocols have no fixed order. Every

packet is seen as independent

Does error checking and will resend a packet

if the original packet returned an error

message

Does error checking but disregards a faulty

packet

TCP is reliable as it guarantees delivery of data

to the destination router.

The delivery of data to the destination can't be

guaranteed.

Is slower since it will wait for the

acknowledgement of the receiver to send the

next data.

UDP is faster due to the fire-and-forget

mechanism

Lastly, the “Application” layer enables applications to access the network. A wide variety of

protocols belong to this layer. For example, common protocols such as the HTTP protocol, the FTP

protocol, NTP protocol etc. However, instances can create their own protocol for this layer since

Sam Bammens Master thesis

~ 25 ~

the information within is bound to the application and not to the network. This means that

different applications using the same protocols can both communicate with each other and

exchange information. [11]

A standardized application protocol used within the space sector is the CCSDS protocol. A CCSDS

packet exists out of three main components, as can be seen in Figure 8: a primary header, a

secondary header and a data section. [13]

The primary header contains the general info, which is relevant to the whole system, therefore

the structure of this header is static. These headers contain information such as: data length,

packet ID, process ID, secondary header flags etc. The data within the primary header can be

categorized into two categories. Firstly, the category which gives the system more information

about the rest of the packet. A process ID, for example, falls under this category since it is used to

identify the process or subsystem which is targeted to receive the rest of the packet’s information.

The other category, is in place to verify if the original data within the packet is still intact or if

there were bitflips during communication procedures. [13][14]

Figure 8: CCSDS packet structure[13]

The secondary header, if present, has a more dynamic structure, since it is bound to a specific

process. Therefore, every process can have a custom secondary header structure. Within this

header, it is specified which specific part of the process will have to be altered by the data portion

of the packet.[13][14]

The last section, the data section, is completely customizable, thus there are no rules attached to

the structure of this part. It is highly dynamic and it contains the data the system wants to

communicate with the other side. Since there are no rules regarding the data section, it is possible

to further structure this element by adding auxiliary headers and data parts.[13]

Sam Bammens Master thesis

~ 26 ~

Sam Bammens Master thesis

~ 27 ~

Chapter 3:

Materials and Methods

3.1 OSCAR-QUBE magnetometer

The OSCAR-QUBE magnetometer was developed during the making of this thesis. The

magnetometer manufactured by the OSCAR-QUBE team is a quantum magnetometer based on

diamonds infused with NV-centers. This system employs the ODMR and PDMR readout methods

to monitor the magnetic field. It was created as an iteration on the system created by the OSCAR-

QLITE team. The current iteration of the sensor aims to further improve the performance and

useability of the system by deploying the PDRM readout method next to the ODRM system. As an

addition a lot of efforts are made to improve the ODMR’s performance. Furthermore, the system

was selected by ESA to fly onboard the ISS for four months. Therefore, the system is developed

around this mission, meaning it was built to fit the requirements laid upon the team by ESA.

At the core of the system is an STM32F76Z microcontroller. This chip runs a FREERTOS which is

responsible for both the external communications as for managing each individual subsystem

internally. Since the microcontroller is seen as the control subsystem, the other systems in the

magnetometer are:

• the laser subsystem

• the microwave subsystem

• the ODMR readout subsystem

• the PDMR readout subsystem

• the reference subsystems (magnetometer, thermometer, accelerometer and gyroscope)

These subsystems can also be seen in Figure 9.

The OSCAR-QUBE has built-in internal storage built in the form of a 16GB SD-card. Here the

gathered data from the system will be stored if the live connection with the UHB is lost. This live

detection is detected by pinging the QUBE, meaning if the system does not receive a TC for ten

consecutive seconds, the QUBE will think the live connection is lost and start saving the generated

data on the SD-card. If the connection gets restored, the system will dump the stored data while

continuing to perform the measurements.

Sam Bammens Master thesis

~ 28 ~

Figure 9: Schematic representation of the internal and external communication of the embedded

system

The external communication with the QUBE utilizes an ethernet connection. Since it will be active

within the Ice Cubes Facility (ICF) during its mission, only communication over ethernet is

available to interface with the system. The lightweight IP (lwIP) stack was used to easily create

the ethernet connection. It is configured to use a static IP address and use specific ports to send

the TM and receive TC.

The diamond sample in the QUBE performed poorly for PDRM readouts, therefore the PDRM

readout systems were disregarded during further development of the system. After which, the

team fully focused on further optimizing and tailoring the system to fit the ODMR readouts. The

TM packets were also restructured accordingly.

3.2 Mission Control Software

In order to create a UHB that would fit the requirements of the project, two existing mission

control software were compared, while keeping into account the option of creating our own

mission control software specifically written for this project. These software were Terma Ground

Segment Suite (TGSS) and Yamcs. TGSS is an advanced mission control software created by Terma.

It can be used for all phases of operations and is highly configurable. Terma also supports multiple

types of pre-existing standards and protocols. The software seemed suited for the project, but

could be overly complicated since it was designed to operate (multiple) satellites at once. Another

downside to Terma was the requirement of a license in order to use the mission control software.

Sam Bammens Master thesis

~ 29 ~

Yamcs on the other hand, is an open-source mission control software provided by Space

Applications. This is the same company that will host the embedded system on the ISS. Therefore,

the software is already more tailored to the requirements of the project. It did not support as

many protocols as Terma, but it covered the most prominent protocols in the space industry such

as CCSDS and PUS. Furthermore, it allows the user to define and use their own custom protocols.

A downside to the Yamcs mission control software is the lack of quality of the documentation, but

this was disregarded since a direct communication channel was available with Space Applications.

Table 2: Comparison between TGSS and Yamcs

Terma Ground Suite Segment Yamcs

Advanced mission control software Simple mission control software

License required No license required

Proper documentation Direct line of help to the developers

Integrated visualization Visualization through Yamcs Studio

Modern and extensive visualization tools • Yamcs: Graph of value over time

• Yams Studio: Basic visualization tools

Focusses on operating (multiple) satellite(s) Aims to support a single and basic external

system.

Although Yamcs did not support a GUI other than a basic web interface, it did allow the UHB to

use Yamcs Studio. This program allows the user to interface with the Yamcs mission control

software and create custom GUI’s which are called displays. Lastly, these two options were

compared to creating a custom mission control software. This would enable the team to create a

UHB without restrictions, but proved to be complicated as a proper mission control software has

various different segments which have to be built into the system. Meaning the base of the system

would be a bare bones representation of the previously mentioned mission control software. Out

of these three options, Yamcs was selected due to the basic operation of the system, which leads

to an easier learning curve of the software, and the direct connection with Space Applications.

This connection could be useful if any impediments would occur while configuring or operating

the system.

3.3 Utilized Protocols

The transport layer protocol selected to send the custom communication protocol over the

internet with is the UDP protocol. Since the project is aimed to achieve a high data rate, UDP would

be the best option. This is mainly due to the fact that UDP utilizes a ‘fire and forget’ methodology,

meaning it will send the data and move on. The TCP protocol would be slower as it will send a

packet and wait for an acknowledgement from the receiver upon its arrival. Since the project

focusses mainly on the speed of data instead of the potential packet loss, UDP proved to be the

preferred choice. As an addition the system will communicate using a dedicated VPN tunnel,

meaning the packet loss will be insubstantial. Furthermore, utilizing the UDP protocol will prove

to be more resilient to the effects during LOS where the connection cannot be guaranteed.

Sam Bammens Master thesis

~ 30 ~

Following the selection of the transport layer protocol, the Consultative Committee for Space Data

Systems (CCSDS) and the Packet Utilization Service version C (PUS C) protocols were investigated

to serve as the application layer protocol, since these are widely used in the space industry. After

studying both protocols, it was learned that PUS C was based on the CCSDS protocol. Yet both

protocols were extensive and contained irrelevant data to the project, therefore it was chosen to

create a custom protocol. This custom protocol would base its structure on the CCSDS procedures.

However, it only utilizes the concepts that would be useful for the project, thus leading to a more

efficient and smaller overall packet, resulting in a system that requires less bandwidth.

In order to create this protocol within the mission database (MDB) of Yamcs, the two methods of

defining custom protocols were studied. The first method is the Spreadsheet loader. Using this

method, a spreadsheet using a fixed layout and configuration is used to fabricate containers which

hold either the telecommand (TC) or telemetry (TM) packet structures. The advantage of this

method is that it is an accessible method of configuring the system, while the spreadsheet format

leads to a clear overview of all the elements. The other method supported by Yamcs is the XML

Telemetric and Command Exchange (XTCE) structure. Using this method, the TC and TM packet

structures are defined following specific structure using XML. Both methods were studied and

tested. Although proper documentation of XTCE was bulky and hard to find, XTCE was selected to

configure the system. It proved to be substantially more efficient when compared to the

spreadsheet method. The inefficiency of latter method came from the fact that it communicated

using strings instead of an array of bytes. As an addition to this, the XTCE method enabled the user

to configure the system and protocols with more detail since the method is a more low level

version compared to the spreadsheet method.

3.4 Graphical User Interface (GUI)

The web interface provided by Yamcs was insufficient. It did not provide a proper overview and

visualization while sending telecommands was an inefficient process. As an addition, constant

pinging had to be provided by an external program, since the Yamcs interface did not have the

capability to execute automated tasks. Therefore, a GUI had to be created meeting these

requirements.

The first option to create this GUI was to use Yamcs Studio. This is a program provided by Space

Applications that enables the user to create custom GUIs, called displays. Yamcs Studio has two

sides: the display builder and the display runner. As the name suggests is one side to create and

configure the displays. Custom JavaScript and Python scripts can be written and run within these

displays to achieve the intended result. Here the layout could be created using the widgets

provided by the program. The display runner is used to run these displays. At first this seemed

the best option. It could easily connect to the Yamcs instance and was directly compatible with

the system as is shown in Figure 10. Since it had a direct link with the Yamcs instance, configuring

the displays was a very fluent process. However, while trying to implement multithreading some

Sam Bammens Master thesis

~ 31 ~

problems occurred. When creating these threads using JavaScript, Yamcs Studio did not want to

compile the code and gave an error message.

Therefore, the Python capabilities of Yamcs Studio were investigated. This would also prove to be

helpful when integrating more complex algorithms into the system since some of these were

already (partly) made by team members as tools during the development process of the system.

Unfortunately, Yamcs studio operated using Jython instead of Python, making the process overly

complex.

Figure 10: Schematic representation of interfacing between the GUI and the embedded system
when using the Display runner from Yamcs Studio

Thus, the Yamcs API was investigated as an alternative. This API works effortlessly and interfaces

to the Yamcs instance in a seemingly similar manner as Yamcs Studio as can be seen in Figure 11.

However, the API only provides the ability to grab data from the instance or send telecommands.

To create the layout and visualization capabilities, PyQt5 was selected. This is a Python library

that is a translation of the Qt library which is written in C++. It enables the user to create

responsive layouts and windows to interface with systems. PyQt allows the user to either

manually write the code to define the layout or use the Qt Designer which is an external program.

Using this program, a layout can be created using a drag and drop method. Here widgets can be

dragged on their desired location and their size can be adjusted. Other settings can be altered in

the settings window of the designer and even further modified in the code running behind the

layout. After creating a layout using the designer, it will generate a .ui file. This file can be read by

a Python program using the PyQt library making the widgets in the layout accessible to the rest of

the script. Therefore, this method is an efficient way of creating a GUI. As an addition, PyQt comes

with its own threading system, signal/slot mechanism to communicate between objects, and can

be used cross-platform. [15]

Because of the high customizability and ease of development this method was selected to create

the GUI of the UHB. Meaning a Python script would run the Yamcs API to interface with the Yamcs

instance, perform basic conversions and formatting calculations and visualize the information in

the appropriate PyQt widget. In the meantime, within the PyQt layout, several input widgets are

used to trigger methods of the Python script which will properly format and send the TC to the

Yamcs instance and thus to the QUBE.

Sam Bammens Master thesis

~ 32 ~

Figure 11: Schematic representation of interfacing between the GUI and the embedded system
when using a python script as GUI

3.5 Wireshark

Wireshark is a network protocol analyzer. It enables the user to see all of the data packets with

their details that are transferred over the network the computer running Wireshark is connected

to. Various different types of communication channels are supported, such as Ethernet, Wi-Fi,

Bluetooth etc. The software can give an overview of all the packets that are being sent in real-time,

but also offers filtering features. Furthermore, a packet can be inspected in detail using Wireshark.

Information about the specific packet such as destination, source, protocol, content etc. are

displayed and can be found using the inspect functionalities. [16]

During the development of the UHB, Wireshark was used to validate the communication channels.

At first it was being used to validate if the system’s properties, such as IP address and ports, were

configured correctly. Once these settings were set, it was used to create the TM link. It proved to

be a helpful tool to confirm the packets were actually being received. Furthermore, this was used

to check if the structure of the packets were altered upon being sent. When configuring the TC,

Wireshark was used as a validation tool as well. However, the software was most useful during

the initial stages of the communication channels and for inspecting the TM packets.

3.6 Nucleo-F746ZG board

A Nucleo board, seen in Figure 12, is a development board used to easily create prototypes of

systems that utilize an STM32 microcontroller. The Nucleo- F746ZG board employs the

STM32F746ZG chip as the brain of the board. It makes the STM32 accessible with all kinds of

peripherals such as Arduino connector pins, integrated clocks, LEDs, buttons, ethernet port etc.

Additionally, the Nucleo boards come with an ST-Link debugger/programmer. Therefore,

separate probes are rendered unnecessary. Using the ST-Link capabilities, the system allows the

user to easily debug the chip. Furthermore, it provides an integrated serial connection which can

be used to communicate with the STM32 microcontroller. By adjusting the jumper configuration

the integrated ST-Link of the Nucleo board can also support external systems and function as one

of the ST-Links’ probes itself. [17]

Sam Bammens Master thesis

~ 33 ~

Figure 12: A Nucleo-F746ZG board [18]

The board was used to function as a dummy QUBE. It was connected directly over ethernet to the

computer running the Yamcs instance. It was configured to have a static IP address, thus making

the IP configuration of the computer simpler. Using this setup, the Nucleo board was able to send

UDP packets over the ethernet port. The content of these packets could be tailored to the desired

contents in order to test the connection and the responses of Yamcs on different kinds of inputs.

This proved to be useful during the exploration part of the packet structures. Later the board was

used to test the visualization and commanding aspect by sending data from the board to the

computer to visualize. Commanding was validated by triggering an LED with a specific TC

command.

Sam Bammens Master thesis

~ 34 ~

Sam Bammens Master thesis

~ 35 ~

Chapter 4:

Experimental

Since the UHB is responsible for the communication with the QUBE which is onboard the ISS

(Figure 13), it has to fulfill requirements of multiple different types. Therefore the UHB was
designed to be split into two main segments. The first segment is the mission control software.

After some considerations, Yamcs was selected to execute this role and function as the backbone
of the UHB. It is designed to receive telemetry and send telecommands while storing the incoming

packets and formatting the incoming raw values. These values can then be accessed by the second
segment of the UHB which is the GUI. This GUI was chosen to be created as a Python script and is

the main tool for the operator to interact with the system. Therefore it has to provide all the

capabilities necessary to operate the QUBE while remaining intuitive for the operators. In this

chapter the setup, creation and/or configuration of each part is explained in detail.

Figure 13: General overview of connection of UHB and QUBE

Sam Bammens Master thesis

~ 36 ~

4.1 Installing Yamcs

The base of the system is the Yamcs mission control software. This software can be obtained by

following the “Getting started” manual on the Yamcs website. The prerequisites mentioned here

are:

• Java 11

• Maven

• Linux x64 or macOS

However, the last requirement seemed outdated since it was possible to run Yamcs on Windows

10 as well. For development purposes, Yamcs was also installed on a device running Ubuntu 18.04

LTS. However, in both cases the same steps were followed to install the software:

• install Java 11 openJDK

• install maven

• add maven to path

• clone the Yamcs repository from GitHub

Now Yamcs was installed on the computer with a default setup which could be started by

executing the following command in Yamcs’ base map:

mvn yamcs:run

After a familiarization process with the both the software and interfaces, the following steps were

taken in order to receive and format incoming TM packets:

• Instance renamed to OscarQube in the yamcs.yaml file

• Communication settings reconfigured to UDP communication in the

yamcs.OscarQube.yaml file (Figure 14)

Figure 14: Communication and IP configuration

Sam Bammens Master thesis

~ 37 ~

• IP settings changed to match the QUBE’s settings

• Add spreadsheet loader method to MDB in de mdb.yaml file (Figure 15)

Figure 15: MDB configuration

Using these settings, Yamcs was able to receive TM packets from the QUBE. However, on the setup
running on Windows, the firewall had to be disabled first as it blocked the packets.

4.2 Packet configuration

As Yamcs was properly configured to set up a communication link with the QUBE, the packet

structures were created. This was critical since Yamcs required a standardized way of reading,

interpreting and assigning incoming data to specific variables. Additionally, TC also required

specific structuring in order to operate the commanding aspect of the system.

4.2.1 Telecommanding packets

The QUBE’s commands are of the string type. Therefore, only one telecommand was created that

could send any given string to the embedded system. For this, the spreadsheet loader was utilized
as it provided the best overview of the structures. First the datatype had to be fabricated, this was

done on the “Datatypes” tab as seen in Table 3.

Sam Bammens Master thesis

~ 38 ~

Table 3: Fabrication of sendStringCmd datatype

Type name Eng

type

Raw type Encoding Eng

unit

Calibration

sendStringCmd string TerminatedString(0x0D)

Now the datatype could be used to structure the TC packet on the “Commands” tab. This was

achieved with the configuration seen in Table 4.

Table 4: TC "Commands" tab spreadsheet configuration

Command name Argument

assignment

Argument

name

Data type Default

value

TC_CODE_SEND_STRING packet_type=0xF6 Send String sendStringCmd 0

4.2.2 Telemetry packets

XTCE was selected as the preferred method to structure the packets. This is due to the fact that

the structure of the TM data is more complex when compared to the TC packets. Additionally,
these datatypes required more custom tailoring then the datatype used for the commanding.

XTCE requires three steps to be taken before a packet is composed as seen in Figure 16.

Figure 16: The correlation between the three stages within the XTCE structure

First the datatypes had to be defined in the ParametertypeSet. These could then be used to create

parameters in the ParameterSet. In the ContainerSet, a SequenceContainer can be composed out
of these parameters to structure the packets. Thus, each sequence container represented a

different packet type.

In the ParameterTypeSet the types seen in Table 5 are defined. As can be seen, the byte order of
the integer types had to be inverted. This was due to the fact that the system utilized the little-

endian method to send these values to the UHB.

Sam Bammens Master thesis

~ 39 ~

Table 5: Parametertypes and the appropriate configurations to support TM of the QUBE

Parametertype encoding Byte order

byte Unsigned /

uint16_t Unsigned Least significant byte first

int16_t Twos complement Least significant byte first

uint32_t Unsigned Least significant byte first

string Termination character = ‘/n’ Unaltered

Additionally, the arrays had to be defined in the ParameterTypeSet. Since the QUBE did send

different kinds of arrays, each had to be defined with their specific parametertype. Here it was

opted to define every array parameter as their own datatype to mitigate the risks of causing mix

ups.

Table 6: Defined arrays and their corresponding parametertypes

Array Parametertype within the array

Measurement data uint16_t

MW registers uint32_t

Laser temperatures uint16_t

Accelerometer and gyroscope settings byte

Magnetometer settings byte

With all of the required parametertypes defined, the parameters themselves were created in the

ParameterSet. After this, two sequence containers, which describe the packet structure, were

composed. These containers are:

• the measurement container, containing all the measurement and config data of the QUBE

• the debug container, which consisted only out of a single string

In order to differentiate between these two packets, a header packet was defined containing an
APID. This header would be at the start of every sequence container and will aid Yamcs into

selecting the correct sequence container to format the rest of the data with. The three different

packet types and their corresponding APIDs are shown in Table 7.

Table 7: APID with corresponding packet type

APID Packet type

0 Measurement + config data

1 Debug messages

Not applicable Telecommands

The ID would serve as the first value read by the system. Based on this value, Yamcs will be able

to identify the packet type and what sequence container it has to deploy to extract the rest of the

data out of the of the packet. The full process is displayed in Figure 17.

Sam Bammens Master thesis

~ 40 ~

Figure 17: Packet differentiation process based on APID

Lastly padding bytes were added to the measurement sequence container as the QUBE aligned the

structs when the data is sent the UHB.

4.3 User Interface

With Yamcs configured and able to receive data from the QUBE while commanding it through the

web interface of Yamcs, a different more user-friendly option was explored to interface with the
embedded system. Most of the people operating the system and performing experiment were

scientists with little to no technological background. Therefore, a GUI was created which enabled
the user to easily and efficiently command the QUBE while providing a clear overview of the

incoming data.

4.3.1 PyQt5 and Designer

At the base of the GUI PyQt5 is located. This Python library was installed using the following pip

command:

pip install PyQt5

To aid the designing process of the layout, the PyQt Designer software was installed as well. The

following command were used to get the software:

sudo apt-get install qttools5-dev-tools

sudo apt-get intstall qttools-dev

Sam Bammens Master thesis

~ 41 ~

4.3.2 Layout

The layout of the GUI was split into three tabs, each with their specific purpose. These tabs are:

• Control tab

• Monitor tab

• Peak & Pulsed tab

Control tab
The Control tab is responsible for:

• the general controls of the QUBE

• visualization of the live ODMR data

• visualization of the ODMR average over time

• visualization of the debug responses

• visualization of the link information

The layout of these items can be seen in Figure 18.

Figure 18: General layout Control tab

The control section was subdivided into:

• system controls

• laser controls

• microwave controls

• FPGA controls

These control groups follow the layout seen in Figure 19.

Sam Bammens Master thesis

~ 42 ~

Figure 19: General layout controls

Monitor tab
On the Monitor tab the environment monitors and export capabilities can be found. Here the

parameters gathered by the reference sensors will be displayed. The parameters which are

displayed are:

• laser temperature

• board temperature

• X-, Y-, Z-axis of the magnetometer

• X-, Y-, Z-axis of the gyroscope

• X-, Y-, Z-axis of the accelerometer

The general layout of this tab is shown in Figure 20Figure 20.Figure 20

Figure 20: General layout Monitor tab

Peak & Pulsed
The Peak & Pulsed tab is reserved for the configuration of the Peak and Pulsed commanding. These

commands are not located on the “Control” tab since they are more complex and require extra

support to properly integrate in the GUI. The tab is horizontally split into a peak commanding part

and a pulsed commanding part as can be seen in Figure 21.

Sam Bammens Master thesis

~ 43 ~

Figure 21: General layout Peak and Pulsed tab

The top part, the peak part, holds an ODMR graph which is the same as the ODMR graph found on

the Control tab. It is used to find the parameters necessary to configure the peak configuration.

Since constantly switching tabs would be detrimental to the operator’s user experience, it was

chosen to add the ODMR graph to this tab as well.

4.3.3 Yamcs-client API

To interface with the Yamcs instance, which functions as the MSC, the Yamcs-client API of Python

is used in the script. The command to install the library is:

pip install –upgrade yamcs-client

Using this library in the Python script of the GUI, the credentials of the Yamcs instance have to be

given to enable the connection between the Yamcs-client API and the Yamcs instance. Upon its

initialization the processor and archive are taken and saved as variables so they can be used later

by the rest of the script.

Commanding
All of the commanding in the GUI is performed by clicking the corresponding button. These

buttons internally will trigger the appropriate responses which send the correct telecommand.

There are two types of buttons within the layout of the UHB:

• Action buttons

This type of button can be split into two different types of their own. The first type does not require

input data and therefore the system can directly send the telecommand. The second type requires

an input. Hence this input will first require to be read and formatted by the algorithm before this

can be sent. These processes are visualized in Figure 22

Sam Bammens Master thesis

~ 44 ~

Figure 22: Action button telecommanding flow

• Radio-buttons

Radio-buttons are bound to the other radio-buttons in the group. These are used for commanding

the modes since only one can be active at once. Furthermore, each button holds a “command”

variable which can be used to easily send the appropriate command specific to each radio-button.

The processes concerning these buttons are shown in Figure 23

Figure 23: Radio button telecommanding flow

Since all of the telecommands are of the same command type, namely the “Send string” command,

all of the functions eventually end up triggering the same method. This method is responsible for
interfacing with Yamcs using the client API. Furthermore, all of the commands sent by this

function (except for the ping command) will be printed on the GUI’s console. This way a history

of the commands is kept. Additionally, this can be used by the operator to validate the formatted

command string.

4.3.4 Threading

The GUI uses multithreading to perform all of its tasks. This is mainly due to the fact that the main

thread, called the GUI thread which is run by PyQt, will render the application “unresponding” if

it is not able to read all of the input widgets within a spefic timeframe. Therefore this thread

should only be used to interface with the widgets of the layout. The thread is able to support minor

calculations, however more substantial processes should be executed somewhere else.

The GUI utilizes four threads, which are:

• the GUI thread

• the Iinterface thread

• the TC thread

• the Ping thread

Sam Bammens Master thesis

~ 45 ~

How these threads correlate to eachother can be seen in Figure 24.

Figure 24: Threading scheme

Ping thread
The ping thread is responsible for the constant pinging of the QUBE. It is crucial that this task gets

executed in time and unrelated to other processes. This is due to the fact that the system will

decide if it should save its data on the SD-card or send the data directly to the UHB based on these

pings. Using a thread therefore meets all these requirements. Additionally, if the GUI thread

becomes unresponsive the Ping thread will continue operating, thus the QUBE will not lose the

constant pinging from the UHB in this case. The process executed by the thread is rather simple

as can be seen in Figure 25.

Figure 25: Process of Ping thread

This process runs once every four seconds. Due to the fact that the QUBE will only start saving

data to the SD-card if there was no ping detected within a timeframe of 10 seconds, losing one

ping packet does not pose a problem.

Sam Bammens Master thesis

~ 46 ~

Telecommand thread
Unlike the other threads, this one does not loop. It is responsible of sending the TCs and functions

as a buffer between the Yamcs client API and the GUI thread. If the client API takes longer than

expected it will not freeze the GUI thread since it is running independently. Once the command is

sent the thread will stop its execution automatically.

Interface thread
This thread constantly uses the Yamcs client API to get the incoming TM. Upon receiving a new

packet, the packet will be checked to see if it was sent live or came from the internal SD-card of

the QUBE. After which all of the desired parameters are extracted. These parameters are:

• time of receival of the packet

• ODMR data

• board temperature

• laser temperature

• X-, Y-, Z-axis data of the magnetometer

• X-, Y-, Z-axis data of the gyroscope

• X-, Y-, Z-axis data of the accelerometer

Furthermore, the thread computes the average of the ODMR array and utilizes the Yamcs client

API to calculate the packet speed at which the UHB receives the TM.

Upon extracting the data from the packet, it is formatted and sent to the GUI thread using

pyqtSignals. Here these signals trigger a method bound to their specific signal, which will make

sure the value gets displayed. The complete process executed by the Interface thread can be seen

in Figure 26.

Figure 26: Process flow interface thread

Sam Bammens Master thesis

~ 47 ~

4.3.5 TM data visualization

Most of the TM data is visualized using a PyQtGraph widget. This widget is not installed by default,

therefore it has to be downloaded separately. This was achieved by using the following command:

pip install pyqtgraph

To use the PyQtGraph in the Designer a blank widget has to be promoted to a PyQtGraph. This can

easily be done following the next steps:

• Drag a QWidget in the layout

• Right click and select “Promote to …”

• In the pop-up screen specify the class name and header file as shown in Figure 27.

Figure 27: Convert QWidget to PyQtGraph

• Now the widget can be promoted

 After these steps the widget can be used as a graph in the Python script. Upon initialization of the

GUI an empty array will be plotted on the graphs to initialize the widget and grab the dataline of

each graph. This data-line is necessary to update the plot later in the process. Once the Interface

thread starts running the signals will be received by the GUI thread and trigger the methods that

will update the corresponding graphs. Here two types can be differentiated:

• the graphs that show the evolution over time

• the graphs that show an array of live data

The graphs displaying live data will visualize an array containing the data for the whole graph

with each update. To visualize the parameters over time a more complex approach was taken.

Each parameter falling under this category will be appended to an array. However, to prevent loss

of performance over time, these arrays will eventually stop at a specific length. The process of this

can be seen in Figure 28.

Sam Bammens Master thesis

~ 48 ~

Figure 28: Visualization process of monitor parameters

Since these plots show the datetime on their X-axis the same process applies to this as well. Upon

receiving the timestamp of the packet, it will be added to array. When another parameter wants

to visualize their data, they grab the timestamp array as their X-axis. However, some arrays

visualize less datapoints at once. In this case, only the last n points of the timestamp array will be

used, where n is the length of the parameter array.

4.3.6 Pulsed visualization

The pulsed visualization plot is the only PyQtGraph that does not follow the same processes as the

other graphs. This is mainly due to the fact that this plot does not display live data, but visualizes

the operators current configuration disregarding the fact if this is active on the QUBE or not.

Therefore, the operator can validate his configuration by going through all of the 100 pulsed steps.

This is achieved by reading the two rows of the table and compare the values of each column with

each other. These two rows represent the first two steps of the 100-step pulsed operation. To

visualize the other steps the difference is taken between the values in each column. The current

setting is then calculated following the next formula:

Current value = first row value + difference * selected step

The visualization arrays are fabricated based on a custom unit step function. This function uses

the delay and width parameters of each subsystem as a base for their calculations. The step

function will only output 1 after the specified delay and for the given length of the width. All of the

other values are set to 0 as can be seen in Figure 29.

Figure 29: Unit step function

The complete process of visualization is shown in Figure 30.

Sam Bammens Master thesis

~ 49 ~

Figure 30: Visualization process of pulsed data

4.3.7 Graph Zeroing

Since the base values of every axis is substantially spread out on the graphs not a lot of detail can

be seen in the data. Therefore, a zeroing capability was added for the graphs of the magnetometer,

gyroscope, and magnetometer. With this capability, all of the base values are reduced to zero.

Thus, the range of the Y-axis is more condensed. This leads to more visual details in the data of

every axis. The procedure is shown in Figure 31.

Figure 31: Zeroing procedure

The base values are then used to adjust new values coming in live from the QUBE. Therefore, the

array does not continuously need to loop through this procedure. This will render the program

more efficiently, which will benefit the performance of the GUI thread in which these procedures

are located.

4.3.8 Exporting

Since is critical for the scientific goals of the project to analyze the data, it is essential that the UHB

is capable of exporting the data for further analysis. To solve this problem, the Yamcs client API

was utilized. Using the archive element of the API, stored data can be accessed. Additionally, the

intended packet type was set to measurement data in order to automatically filter out debug

packets. Furthermore, the timeframe of the exported packets can be set.

Sam Bammens Master thesis

~ 50 ~

The layout, seen in Figure 32, of the export group was designed in such a way that exporting large

timeframes was as easy as performing small and quick measurements.

Figure 32: Layout export group

The time inputs are datetime input boxes which allow an easy way of manually selecting the

datetimes. On the other hand, the operator can choose to use the start/stop button. Upon clicking
the button, the appropriate datetime input box will be set to the current time. This allows to easily

set the timeframe of the measurement while performing measurements. Upon clicking the export

button, the export thread will start.

Sam Bammens Master thesis

~ 51 ~

Chapter 5:

Results

5.1 Back end

The final UHB was run on a Windows PC. Here the MCS was Yamcs, which was configured to

communicate with the QUBE over ethernet using UDP packets. The TC packet structure was

defined using the spreadsheet method while the TM packet structures were created using the

XTCE method. Here the custom datatypes and arrays were defined in the “ParameterTypeSet”,

which can be seen in Figure 33.

Figure 33: Final ParameterTypeSet definition

Additionally, the byte order of the integer values were defined here as well. Furthermore, a string

datatype was created to support incoming strings. These are used by the QUBE as debug
messages. Here the end character is defined as “0A” which represents the hexadecimal value of

0x0A. This value stands for the “new line” character or “\n”. Once Yamcs detects this value for a
parameter using this parametertype, it is at the end of the parameter.

In the ParameterTypeSet the arrays are defined as well. All of the arrays are one dimensional and
their corresponding datatypes are assigned at this points as well.

Sam Bammens Master thesis

~ 52 ~

Using these parametertypes, the parameters themselves were defined. The final definitions can

be seen in detail in Appendix A. These parameters were then used to compose the packet
structures. Only two packet structures were created:

• a debug packet

• a measurement packet

However, to differentiate between the packets, a header was made in the form of an abstract

Sequencecontainer as is shown in Figure 34 and only consisted out of an APID parameter. It

functions as a packet identifier as this header is used in the other sequence container as the base

container. For this the restriction criteria were utilized as a way of assigning packet structures to
specific APID values.

Figure 34: Header container definition

The simplest sequence container, which is seen in Figure 35, was the debug packet’s container.
This only consists of the header and a string datatype. This was due to the fact that the QUBE will

send these packets as a response to being commanded. Therefore, not much complexity was

necessary in this packet.

Figure 35: Debug packet structure definition

The measurement container was a more substantial packet as can be seen in Appendix B.

However, the general structure is as follows:

<Application ID><Measurement data><Reference data><Laser info><Microwave info><Qube info>

Both “Laser info” and “Microwave info” contained certain configuration settings of the subsystems

which would be useful for postprocessing of the data. Furthermore, “Qube info” holds more

information specific to the operations and state of the general system.

Sam Bammens Master thesis

~ 53 ~

5.2 Front end

The frontend of the UHB is started by executing the UHB.py python script. This script will launch

the PyQt layout based on the .ui file and initiate all the processes and variables required for

operation of the GUI. The layout created for the UHB consist out of three tabs:

• the Control tab

• the Monitor tab

• the Peaks and Pulses tab

These tabs provide a clear overview and controls of the tabs’ main purpose.

5.2.1 Control tab results

The first tab’s, the “Control” tab houses the main controls of the system, a can be seen in Figure

36. Here, the main configurations can be altered and essential information is displayed. This tab

is subdivided into groups, each group stands for a specific task or subsystem.

Figure 36: Control tab

System group
The first group, in the top left corner, is the System group. The tasks it is able to perform are:

• connecting the GUI with the Yamcs instance

• toggle pinging of the QUBE

• controlling the averaging of the data before the QUBE sends the packet

• selecting the measurement operational modes

The system group can be seen in detail on Figure 37.

Sam Bammens Master thesis

~ 54 ~

Figure 37: Detail of system group

Upon connecting the GUI to the UHB, it will automatically match the layout to the settings of the

QUBE based on the information coming from the TM. Therefore, no mismatch will exist between

the displayed data and the actual settings on the embedded system, thus mitigating the risks of

causing confusion and potential errors.

Laser group
The laser group is split into two different group boxes as this fit the layout much better. The first

box (Figure 38) is a smaller box containing the on/off button and houses the button to set the laser

strength.

Figure 38: Commanding box of laser group

As all of the colored buttons, the state shown in text is the current state. Upon toggling the buttons

to the OFF state, both the text and the background color will change. These toggle buttons display

an OFF state by showing a red background as an addition to the text.

The other box containing a part of the laser group is called the “sliders” group. Here a slider can

be found with an input box next to it, as can be seen in Figure 39.

Figure 39: Laser strength selector group

Both widgets are linked with each other, meaning if the value of one is altered, the other widget

will copy this value. By linking the input box to the slider, the boundaries of the input value are

automatically enforced.

Sam Bammens Master thesis

~ 55 ~

Microwave group
The microwave settings can be adjusted with the controls in this group. The group contains the
following commanding possibilities:

• toggle Microwave on and off

• set start frequency of the microwave sweeps

• set stop frequency of the microwave sweeps

• set attenuation of the microwave generator

• reset sweep start and stop frequencies to default values

• set static frequency (static frequency operational mode)

As can be seen in Figure 40, the “Set Frequency” button is disabled. This is due to the fact that the

system is not set to the Static Frequency operational mode. Once the mode is activated in the

system group, the button will be enabled and the command can be sent.

Figure 40: Detail of microwave group

FPGA group
The FPGA group (Figure 41) seems rather simple, however it is critical for the pulsed operation

of the QUBE. This is due to the fact that the group houses the radio buttons to control this type of

operational modes. Additionally, the averaging for these modes can be controlled as well since

this setting is independent from the averaging of the “System” group.

Figure 41: Detail of FPGA group

Debug group
This group (Figure 42) displays both the live packet speed and the last debug message received.
However, the GUI filters out the responses from ping commands as they do not provide any

relevant information. Therefore, only the last debug message stemming from an actual
telecommand is shown as a way of confirming the TC’s proper arrival.

Sam Bammens Master thesis

~ 56 ~

Figure 42: Detail of Debug group

Additionally, manual commands can be sent using the “Send command” input box and the

corresponding “Send cmd” button. However, it is mainly reserved for admin level commands.

These commands have a significant impact on the system and are not to be used lightly, therefore

only a person knowing the exact format of these commands is able to send it using this attribute.

The other commands which are integrated in the GUI can be sent as well using this feature, but

the layout will not update accordingly. Thus, it is preferred to only use the (radio)buttons to send
telecommands to the QUBE.

ODMR readout graph
The ODMR readout graph, seen in Figure 43, displays the live formatted ODMR data collected by

the system. This graph is essential to validate if the system is in the correct configuration. On the
X-axis the frequency range is displayed. Upon sending the “Set start frequency” or “Set stop

frequency” commands using the buttons in the “Microwave” group, the frequency array is
recalculated as the system will always send 200 ODMR datapoints to the UHB. Therefore, to

properly be able to visually interpret the data, the X-axis is adjusted.

Figure 43: Detail of ODMR readout graph

ODMR average graph
Below the ODRM readout graph is the ODMR average plot. This graph, shown in Figure 44,
displays the average value of the ODMR datapoints over time. Upon receiving a new ODMR

measurement array, the average is calculated and added to the graph with the corresponding

timestamp. This graph is mainly used to monitor the operation of the QUBE and validate settings,
but can also be used scientifically.

Sam Bammens Master thesis

~ 57 ~

Next to the graph, a button is placed. This button will clear the plot and reinitialize the arrays.

Therefore, if any configuration changes are executed the transition can be seen in the plot.
Nevertheless, if the operator would like to study the average within the new configuration, he can

reset the graph to directly see only the data regarding the new settings in detail.

Figure 44: Detail of ODMR average graph + clear button

5.2.2 Monitor tab results

The monitor tab, seen in Figure 45, houses the export functionality and all of the plots concerning

the monitoring of the environment of QUBE. It displays:

• laser temperature

• board temperature

• X-, Y-, Z-axis of the magnetometer

• X-, Y-, Z-axis of the gyroscope

• X-, Y-, Z-axis of the accelerometer

Each readout type is grouped and is shown in the same graph. Therefore, only five plots are found

on the tab. These plots are:

• the temperature graph

• the magnetometer graph

• the gyroscope graph

• the accelerometer graph

Since there are only five plots, each graph could take up more space, leading to having a better
overview and more detail in the graphs.

Figure 45: Monitor tab with zeroing activated on all plots

Sam Bammens Master thesis

~ 58 ~

Each plot shows the timestamp of its values on the X-axis. However, not all graphs cover the same

period. The temperature plot displays the last 500 points, while the other graphs only show 100
points. This is due to the fact that the changes in temperature appear slower over time then the

others. The other plots put more emphasis on displaying abrupt changes to the QUBE’s
environment. Furthermore, the magnetometer, gyroscope and accelerometer plots each have

their own zeroing feature. This was not created for the temperature plots as the detail seen in this
graph was sufficient for its purpose.

Figure 46: Monitor tab with zeroing disabled on all plots

Export group
This group, seen in Figure 47, enables the operator to export the packets collected between the
start and stop time. This time can be set manually by typing it into the designated date-time box.

However, when performing shorter experiments, the start and stop buttons can also be utilized.
These buttons will set the corresponding date-time box to the time of clicking the button. This

enables the scientists to easily define a start and stop time when manually performing
experiments. Exporting this data will produce two different formats. The first is the pickle format

which is mainly used to read the data with other Python based scripts. The second format is a csv
format, in which each (type) of data will be stored in a separate csv file. This data will mainly be

used in post processing algorithms which are not Python based, such as MATLAB.

Figure 47: Detail of export group

Sam Bammens Master thesis

~ 59 ~

5.2.3 Peak and Pulsed tab results

The last tab (Figure 48) enables the operator to configure the advanced operation modes. These

operation modes are the peak detection operational mode and the pulsed operational mode.

Figure 48: Peak and Pulsed tab

Peak detection
The upper half of the tab, shown in Figure 49, is assigned to the peak detection. Here another

”ODMR readout” plot is displayed because the intended configuration parameters can be derived

from this graph. Under the graph, a table consisting of one row contains the configuration data.

Next to this table, the button is placed to send the formatted pulsed command to the cube.

Figure 49: Detail of peak detection half

Sam Bammens Master thesis

~ 60 ~

Pulsed operation
The bottom half of the tab, as seen in Figure 50, is devoted to the configuration of the pulsed

operational mode. On the top there is a table consisting out of two rows. The first row of

parameters stands for the first step of the pulsed mode, the second row represents the second

step. Based on these two rows the next 98 steps are calculated and can be displayed in the graph

below the table. The operator can step through these steps using three different methods:

• manually input the desired value into the input box

• step through using the arrow buttons on the right side of the input box

• use the slider to slide through all of the steps

Figure 50: Detail of pulsed operation half

On each step the graph below will update and visualize the pulsed scheme the system onboard

the ISS will perform on this specific iteration. Lastly, on the bottom right of the “Pulsed” group, a

button is placed to send the two commands necessary to correctly configure the cube to operate

as intended. Upon clicking this button, the GUI will first validate if the system is set in constant

wave (CW) mode. If this is not the case, it will first change the QUBE’s operation mode to this

mode. This is due to the fact that the embedded system might freeze upon receiving these

commands and when the system is in CW mode, there is a watchdog running in order to make

sure the system keeps operating. If the system would freeze while in CW mode, the watchdog will

detect this and automatically restart the system.

5.2.4 Threads

All of the threads perform well. The GUI thread is not suffering from any unresponsiveness, even

when the most demanding tasks are being executed. The telecommanding and export threads

form a proper buffer here. Furthermore, the interface thread performs nicely. Except for the fact

that when the system is receiving data coming from the onboard SD-card of the QUBE, the graphs

seem to lag. However, this is not the case. The perceived update speed of the monitoring widgets

is decreased to roughly half of its update speed when receiving only live packets. This is due to
the fact that the UHB has to filter out the packets coming from the SD-card in order to visualize

the live data.

The ping threads operation is outstanding. During the development of the QUBE, the GUI thread

froze on a couple of occasions. Nevertheless, the UHB kept sending pings at a constant rate to the

embedded system. This proves the ping thread is reliable and it will keep pinging the QUBE

regardless of the other tasks to be performed by the UHB.

Sam Bammens Master thesis

~ 61 ~

5.2.5 Functionality

The UHB has a wide variety of functionalities to ensure the operator is able to execute tasks,

interpret data etc. This chapter will show these results more into detail based on exported TM

data which was gathered by the QUBE. This data was exported for postprocessing using the export

feature of the GUI described in chapter 4.3.8.

Telemetry visualization
One of the main abilities the UHB should have is to receive, format, store and visualize incoming
TM from the QUBE. The QUBE’s operation is autonomous and therefore will just gather the data

automatically and send it to the UHB. Upon receiving this data, Yamcs (of which configuration can

be seen chapter 5.1) will read the incoming packet and assign each piece of the packet to the
corresponding value. Once this step is completed, the data is automatically stored in Yamcs’

database.

To then visualize this data the UHB utilizes a Python script. One of the key parameters of the TM

which has to be shown, is the ODMR readout graph, which is described under chapter 5.2. This ah

yeahdata displays the live ODMR readout data coming from the QUBE and can be seen in Figure

51. The graph shown here has plotted all of the graphs within the captured timeframe in the same
plot. However in reality, the GUI will only plot one of these graphs at once.

Figure 51: ODMR readout display in sweep mode

Furthermore, the average of each ODMR readout array (Figure 52) is calculated and displayed on

the same tab below the ODMR readout graph. This data can be used during scientific experiments

or when searching for the optimal configuration settings of the QUBE.

Sam Bammens Master thesis

~ 62 ~

Figure 52: ODMR average over time display

Additionally, on the Monitor tab, described in chapter 5.2.2, other parameters that can help to
understand the environment of the QUBE are visualized over time as well. These visualizations

are demonstrated in Figure 53 in their “zeroed” form. However, as can be read in chapter 4.3.7
only the accelerometer, magnetometer and gyroscope data have this feature, meaning the

temperature plot is not zeroed.

Figure 53: Reference subsystem displays in their zeroed state

Sam Bammens Master thesis

~ 63 ~

Pulse visualization
The visualization of the pulsed operation, described in chapter 5.2.3, aids in properly configuring
this operational mode. For this to work, the two rows of the corresponding table have to be filled
in to fit the intended configuration. Based on these values the GUI calculates the pulse scheme
which will be executed on the QUBE when utilizing this configuration. Since the embedded system
executes 100 iterations of the pulsed operation to get a result, the GUI enables the user to step
through each step. This is demonstrated in Fout! Verwijzingsbron niet gevonden..

Figure 54: Stepping through pulse steps

Here the operator stepped through the configuration from step 0 to step 100. It can be seen that
the readout pulse (yellow) moves forward. This should be the case as the delay in the table for
step two is higher than step one. This also is the case for the reference pulse (red), but this pulse
moves substantially more as there is a bigger difference between the delay in the first two steps.

Not only the delay can be adjusted. The pulse width can be altered as well over the iterations. The
microwave pulse combines this pulse width altering with the difference in delay configuration to
expand its pulse forward.

Sam Bammens Master thesis

~ 64 ~

Sam Bammens Master thesis

~ 65 ~

Chapter 6:

Evaluation

The evaluation of the UHB was performed during the development of the QUBE. The UHB was

used both for testing purposes and numerous measurements were performed using the system.
Furthermore, the UHB was utilized during the interface test at Space Applications which validated

the proper configuration of the VPN. In the meantime, simulation runs were performed with the
QUBE using the actual networking system the project will use during its mission. Additionally,

multiple tests were performed in order to see how the QUBE and UHB would react during times
where the connection would be non-optimal or even lost. The boundaries were tested with these

tests going substantially further then the nominal conditions the system will be exposed to.

6.1 Reliability

The tests performed at Space Applications proved that the system is reliable, even during non-
optimal conditions. During these extreme conditions, both TM and TC packets might get lost, but

losing TM packets does not pose any threat to the operations of the UHB. However, if a TC packet

does not arrive at the QUBE, the state shown in the GUI might get mismatched when compared to

the actual state of the embedded system. The debug responses in the debug group can be used to

combat this. Since the QUBE will always respond to a TC, its arrival can be validated using this

feature. Leading to an extra fail safe to confirm the TC properly arrived. If a packet did not arrive,

the command can be sent again.

6.2 Ease of use

The ease of use was mainly evaluated by the scientific department of the team, as they had to

perform most of the measurements during the development. Since they were able to give their

preferences before the creation of the GUI, it was made with this in mind. Furthermore, during the

development of the UHB, this could be further adjusted to their liking. As a result, the GUI provides

a nice and intuitive interface with the embedded system.

6.3 Future work

In the future several points will be added. These points are:

• highlighting LOS in the GUI

• exporting over a serial connection

• automatic operational mode configuration

• advanced visualizations of the data

Sam Bammens Master thesis

~ 66 ~

The LOS has to be highlighted in the GUI because no TC will arrive at the QUBE during these

periods. Thus, to mitigate the risks of mismatching the displays with the actual state of the
embedded system, a visual cue will be created. This will base itself on the calculated packet speed

and can be cross validated using the data received from Space Applications. Furthermore, TC can
be blocked dur LOS to ensure no mismatch will be created by the operator.

The export over serial connection will be implemented since the VPN blocks all of the internet

connections unrelated to the experiment. Therefore, a serial connection bridge shall be created
between the UHB and a Raspberry PI. The UHB shall run a python script which sends all of the

incoming packets to the PI using a USB cable. This Raspberry will then receive these commands
and distribute them to other servers by sending the serial data over the internet. On these servers,

the data can be stored, processed, visualized etc.

In the future the system will be expanded with an automation feature in which the incoming data

will be analyzed directly by the GUI and the parameter for certain operational modes, such as the
six-point method, will be extracted from this data. Based on these parameters, the system will

automatically reconfigure the QUBE to fit these values and switch to the corresponding

operational mode. The GUI shall return to the first operational mode once the incoming data

proves the current settings are outdated. Upon returning to the base operational mode, the

incoming data shall be investigated once again, in order to extract the new parameters that would
be most suited for the other operational mode. This will continue until the feature is disabled. The

method would be useful since it will automatically find the best configuration for some of the most
advanced operational modes. Furthermore, these modes are scientifically more valuable and this

feature will ensure an automatic operation of them, meaning they can be used more often and do

not require regular supervision and validation.

Advanced visualization of the data will also be added to the system. However, it holds the lowest
priority out of all the other tasks. This is due to the fact that this feature is not mission critical or

would bring significant benefits to the project.

Sam Bammens Master thesis

~ 67 ~

Chapter 7:

Conclusion

The main goal of the thesis was to develop a system which could interface with the OSCAR-QUBE

magnetometer over ethernet. Furthermore, operators from the scientific department of the team,

should be able to operate the experiment with little technological knowledge. A UHB was created

with Yamcs as the MCS. The software was configured to be able to communicate over ethernet

using UDP packets. Additionally, three custom packet structures were created and defined in the

MDB. Two TM structured were defined using the XTCE structure. The TC was created using the

spreadsheet method. Yamcs is able to differentiate between the packets based on the APID.

To allow operators to interface with Yamcs and control the QUBE, a GUI was created using PyQt5

and the corresponding Python script. Here a clear overview is given on three different tabs. Using

the layout, the GUI can be commanded by using buttons. All of the inputs, such as the input boxes,

buttons, radio-buttons and slider, of the layout are tailored for a better user experience based on

the feedback given by several team members. Furthermore, the GUI contains all of the features

necessary to properly operate the embedded system. Additionally, the GUI is responsible for the

pinging of the QUBE, which it performs perfectly. The UHB was thoroughly tested on reliability

and user experience during its development and the interface test campaign of the system.

During the interface test, the requirements of system stability were simulated with a data loss of

5% and the system recovered automatically from simulated LOS periods. Furthermore, the UHB

is able to receive the TM data coming from the SD-card of the QUBE while maintaining a solid

connection to receive live commands during the stress-test. This confirmed the system is robust

and will reliably support the student project OSCAR-QUBE during its ten month mission onboard

the ISS.

Sam Bammens Master thesis

~ 68 ~

Literature

[1] M. Díaz-Michelena, “Small magnetic sensors for space applications,” Sensors, vol. 9, no. 4,

pp. 2271–2288, 2009, doi: 10.3390/s90402271.
[2] M. Buchner, K. Höfler, B. Henne, V. Ney, and A. Ney, “Tutorial: Basic principles, limits of

detection, and pitfalls of highly sensitive SQUID magnetometry for nanomagnetism and
spintronics ARTICLES YOU MAY BE INTERESTED IN,” J. Appl. Phys, vol. 124, p. 161101,
2018, doi: 10.1063/1.5045299.

[3] A. Cerman, A. Kuna, P. Ripka, and J. M. G. Merayo, “Digitalization of highly precise fluxgate
magnetometers,” Sensors Actuators A, vol. 121, pp. 421–429, 2005, doi:
10.1016/j.sna.2005.03.053.

[4] L. Rondin, J. P. Tetienne, T. Hingant, J. F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry
with nitrogen-vacancy defects in diamond,” Reports Prog. Phys., vol. 77, no. 5, 2014, doi:
10.1088/0034-4885/77/5/056503.

[5] F. M. Stürner et al., “Compact integrated magnetometer based on nitrogen-vacancy centres
in diamond,” Diam. Relat. Mater., vol. 93, no. January, pp. 59–65, 2019, doi:
10.1016/j.diamond.2019.01.008.

[6] J. F. Barry et al., “Sensitivity optimization for NV-diamond magnetometry,” Rev. Mod. Phys.,
vol. 92, no. 1, 2020, doi: 10.1103/RevModPhys.92.015004.

[7] M. Gulka et al., “Pulsed Photoelectric Coherent Manipulation and Detection of N-V Center
Spins in Diamond,” Phys. Rev. Appl., vol. 7, no. 4, 2017, doi:
10.1103/PhysRevApplied.7.044032.

[8] “Major Tom - Satellite Mission Control.” https://azuremarketplace.microsoft.com/en-
us/marketplace/apps/kuboscorporation1595969685746.majortomsaas?tab=overview
(accessed May 27, 2021).

[9] “What is OSI Model | 7 Layers Explained | Imperva.”
https://www.imperva.com/learn/application-security/osi-model/ (accessed May 07,
2021).

[10] “TCP/IP Model: Layers & Protocol | What is TCP IP Stack?” https://www.guru99.com/tcp-
ip-model.html (accessed May 07, 2021).

[11] “TCP/IP model vs OSI model |.” https://fiberbit.com.tw/tcpip-model-vs-osi-model/
(accessed May 08, 2021).

[12] “TCP vs UDP: What’s the Difference?” https://www.guru99.com/tcp-vs-udp-
understanding-the-difference.html (accessed May 08, 2021).

[13] “PicSat.” https://picsat.obspm.fr/communication/ccsds-packets?locale=en (accessed May
07, 2021).

[14] “CCSDS.org - The Consultative Committee for Space Data Systems (CCSDS).”
https://public.ccsds.org/default.aspx (accessed May 07, 2021).

[15] “Riverbank Computing | Introduction.” https://riverbankcomputing.com/software/pyqt
(accessed May 12, 2021).

[16] “Wireshark · Go Deep.” https://www.wireshark.org/ (accessed May 10, 2021).

[17] “STM32 Nucleo Boards.” https://www.st.com/en/evaluation-tools/stm32-nucleo-
boards.html#overview (accessed May 11, 2021).

[18] “NUCLEO-F746ZG STMicroelectronics | STMicroelectronics STM32 Nucleo-144 MCU
Development Board NUCLEO-F746ZG | 917-3772 | RS Components.”
https://bh.rsdelivers.com/product/stmicroelectronics/nucleo-
f746zg/stmicroelectronics-stm32-nucleo-144-mcu/9173772 (accessed May 11, 2021).

Sam Bammens Master thesis

~ 69 ~

Appendix A

<ParameterSet>

 <Parameter name="apid" parameterTypeRef="uint16_t"/>

 <Parameter name="Debug_String" parameterTypeRef="string"/>

 <Parameter name="AccelX" parameterTypeRef="int16_t"/>

 <Parameter name="AccelY" parameterTypeRef="int16_t"/>

 <Parameter name="AccelZ" parameterTypeRef="int16_t"/>

 <Parameter name="GyroX" parameterTypeRef="int16_t"/>

 <Parameter name="GyroY" parameterTypeRef="int16_t"/>

 <Parameter name="GyroZ" parameterTypeRef="int16_t"/>

 <Parameter name="MagnetoX" parameterTypeRef="int16_t"/>

 <Parameter name="MagnetoY" parameterTypeRef="int16_t"/>

 <Parameter name="MagnetoZ" parameterTypeRef="int16_t"/>

 <Parameter name="Temp" parameterTypeRef="int16_t"/>

 <Parameter name="DataODMR_Array" parameterTypeRef="array"/>

 <Parameter name="DataPDMR_Array" parameterTypeRef="array"/>

 <Parameter name="Filler_Array" parameterTypeRef="array"/>

 <Parameter name="Freq_Array" parameterTypeRef="array"/>

 <Parameter name="MW_minFreq" parameterTypeRef="uint16_t"/>

 <Parameter name="MW_maxFreq" parameterTypeRef="uint16_t"/>

 <Parameter name="MW_attenuation" parameterTypeRef="byte"/>

 <Parameter name="MW_steps" parameterTypeRef="byte"/>

 <Parameter name="MW_registers" parameterTypeRef="MW_reg_array"/>

 <Parameter name="Laser_temps" parameterTypeRef="Laser_temp_array"/>

 <Parameter name="Laser_status" parameterTypeRef="byte"/>

 <Parameter name="Laser_error" parameterTypeRef="byte"/>

 <Parameter name="Potentio_value" parameterTypeRef="uint16_t"/>

 <Parameter name="Tick_count" parameterTypeRef="uint32_t"/>

 <Parameter name="Block_index" parameterTypeRef="uint32_t"/>

Sam Bammens Master thesis

~ 70 ~

 <Parameter name="MW_broad_steps" parameterTypeRef="byte"/>

 <Parameter name="Freq_skip" parameterTypeRef="uint16_t"/>

 <Parameter name="Broad_sweep_steps" parameterTypeRef="byte"/>

 <Parameter name="Op_mode" parameterTypeRef="byte"/>

 <Parameter name="FPGA_mode" parameterTypeRef="byte"/>

 <Parameter name="Measure_flag" parameterTypeRef="byte"/>

 <Parameter name="LastPingTick" parameterTypeRef="uint32_t"/>

 <Parameter name="HasConnection" parameterTypeRef="byte"/>

 <Parameter name="ADC_settings" parameterTypeRef="byte"/>

 <Parameter name="AccelGyroSettings" parameterTypeRef="AccelGyroSettings_array"/>

 <Parameter name="MagnetoSettings" parameterTypeRef="MagnetoSettings_array"/>

 <Parameter name="DevicesInit" parameterTypeRef="byte"/>

 <Parameter name="Average_Optical" parameterTypeRef="uint16_t"/>

 <Parameter name="Average_FPGA" parameterTypeRef="uint16_t"/>

 <Parameter name="Padding" parameterTypeRef="byte"/>

 </ParameterSet>

Sam Bammens Master thesis

~ 71 ~

Appendix B

<SequenceContainer name="Measurements">

 <EntryList>

 <ArrayParameterRefEntry parameterRef="DataODMR_Array">

 <DimensionList >

 <Dimension>

 <StartingIndex>

 <FixedValue>0</FixedValue>

 </StartingIndex>

 <EndingIndex>

 <FixedValue>199</FixedValue>

 </EndingIndex>

 </Dimension>

 </DimensionList>

 </ArrayParameterRefEntry>

 <ParameterRefEntry parameterRef="Temp"/>

 <ParameterRefEntry parameterRef="GyroX"/>

 <ParameterRefEntry parameterRef="GyroY"/>

 <ParameterRefEntry parameterRef="GyroZ"/>

 <ParameterRefEntry parameterRef="AccelX"/>

 <ParameterRefEntry parameterRef="AccelY"/>

 <ParameterRefEntry parameterRef="AccelZ"/>

 <ParameterRefEntry parameterRef="MagnetoX"/>

 <ParameterRefEntry parameterRef="MagnetoY"/>

 <ParameterRefEntry parameterRef="MagnetoZ"/>

 <ArrayParameterRefEntry parameterRef="Laser_temps">

 <DimensionList >

 <Dimension>

 <StartingIndex>

 <FixedValue>0</FixedValue>

 </StartingIndex>

 <EndingIndex>

 <FixedValue>7</FixedValue>

 </EndingIndex>

 </Dimension>

Sam Bammens Master thesis

~ 72 ~

 </DimensionList>

 </ArrayParameterRefEntry>

 <ParameterRefEntry parameterRef="Padding"/>

 <ParameterRefEntry parameterRef="Padding"/>

 <ParameterRefEntry parameterRef="Laser_status"/>

 <ParameterRefEntry parameterRef="Laser_error"/>

 <ParameterRefEntry parameterRef="Potentio_value"/>

 <ParameterRefEntry parameterRef="MW_minFreq"/>

 <ParameterRefEntry parameterRef="MW_maxFreq"/>

 <ParameterRefEntry parameterRef="MW_attenuation"/>

 <ParameterRefEntry parameterRef="MW_steps"/>

 <ParameterRefEntry parameterRef="MW_broad_steps"/>

 <ParameterRefEntry parameterRef="Padding"/>

 <ArrayParameterRefEntry parameterRef="MW_registers">

 <DimensionList >

 <Dimension>

 <StartingIndex>

 <FixedValue>0</FixedValue>

 </StartingIndex>

 <EndingIndex>

 <FixedValue>5</FixedValue>

 </EndingIndex>

 </Dimension>

 </DimensionList>

 </ArrayParameterRefEntry>

 <ParameterRefEntry parameterRef="Freq_skip"/>

 <ParameterRefEntry parameterRef="Broad_sweep_steps"/>

 <ParameterRefEntry parameterRef="Padding"/>

 <ParameterRefEntry parameterRef="Padding"/>

 <ParameterRefEntry parameterRef="Op_mode"/>

 <ParameterRefEntry parameterRef="FPGA_mode"/>

 <ParameterRefEntry parameterRef="Measure_flag"/>

 <ParameterRefEntry parameterRef="LastPingTick"/>

 <ParameterRefEntry parameterRef="HasConnection"/>

Sam Bammens Master thesis

~ 73 ~

 <ParameterRefEntry parameterRef="Padding"/>

 <ParameterRefEntry parameterRef="Average_Optical"/>

 <ParameterRefEntry parameterRef="Average_FPGA"/>

 <ParameterRefEntry parameterRef="Padding"/>

 <ParameterRefEntry parameterRef="Padding"/>

 <ParameterRefEntry parameterRef="Tick_count"/>

 <ParameterRefEntry parameterRef="Block_index"/>

 <ParameterRefEntry parameterRef="ADC_settings"/>

 <ArrayParameterRefEntry parameterRef="AccelGyroSettings">

 <DimensionList >

 <Dimension>

 <StartingIndex>

 <FixedValue>0</FixedValue>

 </StartingIndex>

 <EndingIndex>

 <FixedValue>2</FixedValue>

 </EndingIndex>

 </Dimension>

 </DimensionList>

 </ArrayParameterRefEntry>

 <ArrayParameterRefEntry parameterRef="MagnetoSettings">

 <DimensionList >

 <Dimension>

 <StartingIndex>

 <FixedValue>0</FixedValue>

 </StartingIndex>

 <EndingIndex>

 <FixedValue>1</FixedValue>

 </EndingIndex>

 </Dimension>

 </DimensionList>

 </ArrayParameterRefEntry>

 <ParameterRefEntry parameterRef="DevicesInit"/>

 </EntryList>

 <BaseContainer containerRef="Header">

 <RestrictionCriteria>

Sam Bammens Master thesis

~ 74 ~

 <ComparisonList>

 <Comparison parameterRef="apid" value="0"/>

 </ComparisonList>

 </RestrictionCriteria>

 </BaseContainer>

 </SequenceContainer>

