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Abstract 

 
The measurement process automation and system health monitoring is essential in remote 

sensing applications. The multiparametric systems, such as diamond quantum magnetic field 

sensors require constant monitoring to ensure reliability of the acquired data. As this system will 

be located onboard the International Space Station (ISS), there is a constant stream of incoming 

data to acquire and process, as well as the need to schedule and handle automated measurement 

routines, and to resolve the situation during the loss of signal (LOS), and provide users with a clear 

GUI. This thesis aims to develop an automated control system capable of receiving telemetry, 

sending telecommands and performing scheduled tasks for the experiment onboard the ISS. 

 

 A user home base (UHB) was created to interface with the embedded system during the mission.  

To meet the requirements, a mission control software (MCS) was selected and configured. After 

this, a GUI was created using PyQt5 which interfaces with the MCS to operate the QUBE. Yamcs 

was selected as the MCS and after the networking and packet structure configuration it was able 

communicate with the embedded system. After which the control layout was developed and the 

supporting Python script for the system automation was written. The UHB was thoroughly tested 

on reliability and user experience during its development and the interface test campaign of the 

system. It was found it fulfilled all the requirements with substantial margins, meaning the system 

will be used during the mission.  
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Abstract in Dutch 

 
Metingen uitvoeren, automatisatie en de gezondheid van het systeem monitoren is essentieel voor 

afstandsbediende meetapplicaties. Een multiparametrisch systeem, zoals diamant gebaseerde 

kwantum magnetometers, hebben permanente monitoring nodig om de betrouwbaarheid van de  
verworven data te verzekeren. Omdat deze magnetometer gelokaliseerd zal zijn aan boord van 

het International Space Station (ISS) is er een constante stroom van verworven data om te 

ontvangen en te verwerken. Ook is er een nood aan geplande en geautomatiseerde meetroutines. 

Daarbij zal het systeem om moeten kunnen gaan met situaties waarbij de connectie met de 
magnetometer wegvalt. Verder is het belangrijk dat er een overzichtelijke GUI wordt aangeleverd 

voor de operator van het systeem. Deze thesis heeft als doel een automatisch controle systeem te 
ontwikkelen dat in staat is om telemetrie te ontvangen, telecommands te verzenden en geplande 

taken uit te voeren voor het experiment dat zich aan boord van het ISS bevindt. 

 

Een user home base (UHB) is gemaakt om te interageren met de magnetometer tijdens zijn missie. 
Om de vereisten te behalen werd een mission control software (MCS) geselecteerd en 

geconfigureerd. Vervolgens werd er een GUI gecreëerd met PyQt5 dat interageert met de MCS om 

de QUBE te kunnen besturen. Yamcs werd gekozen als MCS en na de configuratie, van het netwerk 

en de pakket structuur, kon het systeem met de magnetometer communiceren. Hierna werd de 

lay-out, met het ondersteunende Python script voor de automatisatie, van de UHB gemaakt. De 

UHB werd grondig getest op betrouwbaarheid en gebruiksvriendelijkheid tijdens zijn 

ontwikkeling en vervolgens tijdens de interface test campagne van het algemeen systeem. Het 

systeem slaagde voor deze testen met ruime marge, wat betekent dat de UHB gebruikt gaat 
worden tijdens de missie van de magnetometer.  

  

https://nl.wiktionary.org/wiki/interageert
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Chapter 1: 

Introduction 

 
Nowadays there are a lot of devices on the market to monitor the magnetic field. Each device has 

their specific dynamic range, sensitivity and accuracy, meaning each system has their specific 

requirements and limitations. However, the OSCAR-QUBE team created a diamond-based 

quantum magnetometer that aims to revolutionize this market. This is achieved by using readout 

methods created and studied by the Quantum Photonics research group where the project is 

located. The aim of the project is to fabricate a system that is superior in all three categories when 

compared to the other available technologies by implementing these readout methods. 

 

The system created by the team was selected by the European Space Agency (ESA) to fly onboard 

the International Space Station (ISS). Once activated, it will monitor the magnetic field of the earth 

autonomously for ten months. Scientific data will be collected during the mission. Meanwhile, the 

team shall monitor the system and study its behavior while pushing the boundaries of it in real 

world applications. However, the team wants to be able to command the experiment from the 

ground while the project is running on the ISS. This commanding should be able to be performed 

by scientists that have no technological background on the system. In the meantime, there has to 

be a system that is capable of receiving the captured data directly from space. This data will have 

to be saved in order to postprocess the captured information. Furthermore, certain parameters 

within these telemetry packets will have to be visualized. 

 

In order to fulfil these requirements, a user home base (UHB) has to be created. This is a computer 

assigned and configured to communicate with the system onboard the ISS. On this computer a 

mission control software (MCS) will be running. This software is both responsible for receiving 

the telemetry data gathered by the cube as well as sending the telecommands to reconfigure the 

embedded system. As an addition, most MCS automatically store the telemetry (and 

telecommand) packets as well as provide basic visualization too1.1
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1.1 Aim of the thesis  
 

This thesis aims to develop a system that is capable of the following requirements: 

• The UHB should be able to handle incoming TM. This means the system can receive, 

identify, read and store incoming telemetry packets. 
 

• Provide commanding capabilities. Since the QUBE can change its configuration using TC, 

it is crucial the system is able to execute these tasks.  

 

• Provide a GUI which the operator can use to interface with the QUBE. This GUI should be 

intuitive and provide a clear overview of the system as a whole. Furthermore, a person 
with little to no technological background should be able to operate the QUBE using the 

GUI. 

 

 

1.2 Related work 
 

Since this is a one-of-a-kind project there is no closely related work. However, other small space 

projects were studied in order to extract useful pieces of information. Furthermore, other non-

space related projects and concepts were investigated as they could be applied or used within the 

scope of the thesis. 

 

 

1.3 Outline of the thesis 
 

Chapter 2 will explain the scientific and technological backgrounds of concepts which are used 

during the making of the thesis.  This will provide more insight in the operation of the embedded 

system and the design choices which were made. Chapter 3 will give an overview of all the 

materials and methods which were used during the development of the UHB. In chapter 4 the 

actual steps taken in order to achieve the current UHB can be found. Chapter 5 will show the final 

results. Lastly, in chapter 6 the results will be evaluated, and the conclusion is made in chapter 7.  
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Chapter 2: 

Literature study 

 
2.1 Magnetometers 

 

Monitoring the magnetic field is crucial in a broad range of fields. Therefore, there are various 

different methods that exist to execute this task. Each method has their specific requirements and 

will have their specific properties, meaning the preferred magnetometer for a particular task will 

depend on the requirements of this task and the properties of the sensor. However, the two main 

factors considered when selecting a type of magnetometer are dynamic range and the cost of the 

system.  

 

 

Figure 1: Magnetic sensors with their dynamic range and field of application [1] 

As can be seen in Figure 1, the dynamic ranges of these technologies are spread out over the 

spectrum. The systems available with a high dynamic range are usually complex, costly or of a 

substantial formfactor. Therefore, if an application demands for the monitoring of the magnetic 

field over a larger dynamic range, multiple types of sensors are required to solve this efficiently. 

However, this means more costs and complexity will be added to the application.  
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Furthermore, the vectors of the magnetic field might be desired for certain applications. However, 

not all of the readout methods support this feature. Hence this will also have to be taken into 

consideration when selecting a magnetometer. Common sensors capable of measuring the 

vectorized magnetic field are [1]: 

• fluxgates 

• hall effect sensors  

• Superconducting Quantum Interference Devices (SQUID)  

However, each of these systems have specific benefits and drawbacks. The fluxgate for example is 

rather simple but lacks extreme sensitivity. SQUIDs on the other hand can reach this sensitivity 

but are complex systems which are mostly used in labs and kept away from noise. [2][3] 

 

 

2.2 NV-centers and Magnetic Resonance 
 

To combat the problems that occur when using regular vectorized magnetometers, new readout 

methods are developed which might solve these problems. These systems utilize diamonds 

infused with nitrogen vacancy (NV) centers and use its isolated electronic spin system to monitor 

the magnetic field. This enables the system to detect weak magnetic fields and provides a high 

spatial resolution (in the sub-nm range) while remaining highly sensitive. Currently these systems 

are relatively big in size when compared to the other sensors, but a lot of resources are put to the 

miniaturization of these systems. So far these efforts prove to be successful. [4][5] 

 

At the core of these systems is a diamond infused with NV-centers. These NV-centers are the actual 

sensing part of the system, and they are formed when nitrogen atoms are trapped next to a 

vacancy within the diamond’s structure (Figure 2). These vacancies naturally occur as defects in 

the diamond lattices. To date two different types of NV-centers have been known, namely the 

neutral NV-centers (NV0) and the negatively charged centers (NV-). Only the latter type proves to 

be useful in the detection of the magnetic field due the fact that a triplet spin ground level can be 

initialized, thus further mentions of NV-centers reference to the NV—-centers. [4] 

 

 

Figure 2: NV-center in a diamond structure [4] 
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ODMR is a readout method which utilizes the properties of these NV-centers to optically detect 

the strength of the vectors of the magnetic field. In order to achieve this, a green laser (532 nm) is 

shone onto the diamond. This will excite the electrons from the NV-centers within the diamond to 

a higher energy state. The excited state is temporal and after some period, the electron will relax 

back to its stable state. In this process the electron releases the excess amount of energy in the 

form of red light (637 nm). The intensity of the emitted light is stable, unless the system is under 

the influence of a microwave field. 

 

Exposing this system to a microwave field will alter the behavior of the emitted red-light intensity. 

This is due to the fact that the NV-centers have a single resonant frequency within the microwave 

domain. Under the influence of the resonant frequency, a dip in the red-light intensity will occur 

while the rest of the spectrum remains stable as is shown in Figure 3. This phenomenon is called 

a dark transition. These transitions emit less light because the electron will first go through the 

metastable state before returning to the ground state and therefore emit a smaller amount of 

energy.  

 

 

Figure 3: The energy level scheme of an electron within an NV-center during ODMR [4] 

 

Exposing this system to a magnetic field will cause the regular ground state to split into two 

separate ground states. This phenomenon is called Zeeman splitting. These new ground states are 

further apart from each other based on the strength of the magnetic field. However, these two new 

ground states remain symmetric around the original ground level. This event will produce two 

different resonant frequencies in the microwave domain, meaning the original peak from the 

resonant frequency also splits into two separate peaks. Since these resonant frequencies are 

based on the state of the ground levels, they will remain symmetric around the original resonant 

frequency. Now, the strength of the magnetic field can be calculated based on the separation 

between those peaks, since the resonant frequencies will shift further apart if the magnetic field 

is stronger. Furthermore, upon determining the symmetry point in the frequency spectrum, only 
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one of the two peaks’ position is necessary to calculate the strength of the magnetic field. [4] [5] 

[6] 

 

However, NV-centers have a tetrahedral shape since they are located within a diamond’s 

crystallographic structure. Meaning there are four orientations bound to a single NV-center. 

Therefore, there are four systems producing their own ODMR signal according to the strength of 

the field corresponding to their orientation. Because of this, eight peaks can be detected when 

using NV-centers. Nevertheless, all of the peaks will remain symmetric around a single frequency 

within the microwave spectrum. Using the information of the strength of the field on every 

orientation of the NV-center, the magnetic field can be monitored three dimensionally. 

 

The ODMR principle is rather simple, however technically it creates various inefficiencies. Mainly 

due to the fact that the emission of red light has to be monitored. Therefore, a suiting optical 

sensor has to be employed to detect this signal, adding complexity to the system and possibly 

limiting performances. Since the sensitivity and accuracy of the readout are directly related to 

performance of the sensor. As an addition, the signal is more likely to get interference from other 

(light) sources, thus decreasing the system’s performance and usability. To combat these issues, 

another readout method was created. This readout method is called the Photocurrent Detection 

of Magnetic Resonance (PDMR). This method utilizes the same principles as the ODMR-method, 

however it bases its readout system on the generation of photocurrents. These currents are 

created when the laser excites the electrons to their conduction band, which is of a higher energy 

state than the excited energy level used in ODMR. Upon applying a bias voltage to this system, the 

generated photocurrent can be read out by various sensors such as Analog Digital Converters 

(ADC) which generally perform better than photosensors. This causes the system to be more 

sensitive and accurate while reducing the changes of noise. Additionally, the PDMR readout 

method also aids the miniaturization process of the magnetometer.[4][6] 
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Figure 4: The concept of PDMR based on ODMR [7] 

 

So far only the constant wave mechanisms have been explained. Here, the critical systems such as 

the laser, microwave and readout subsystems are constantly active. This will produce a sensitive 

and accurate system that is able to monitor the magnetic field three dimensionally. However, this 

can be further improved by utilizing pulsed schemes. When using pulsed schemes, the afore 

mentioned subsystems are triggered at a specific time for a specific duration. The benefit of using 

pulse schemes varies. Most pulse sequences are aimed toward increasing the contrast, sensitivity 

and/or improving the S/N ratio. Additionally, some pulse schemes might come with extra 

benefits, such as the Ramsey pulse scheme. This sequence improves the sensitivity of the 

measurements in the same way as Ramsey magnetometry. However, using the pulsed ODMR 

version, substantially less high microwave fields are necessary to achieve these improvements. 

Another well-known pulse scheme is the Hahn echo sequence. This scheme is mainly used to 

restrict sensing to AC signals. [6][7]  
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2.3 Mission Control Software 
 

MCS are commonly used within the army, space sector and aviation sector. This software is 

responsible for the coordination and execution of a mission. It runs on a computer which is 

configured to receive incoming data and send commands to operate the machine executing the 

mission. Although MCS are used in a variety of applications, the core of the software remains the 

same and most packages offer the same general features. These features are: 

 

• identifying different packet types and structures of incoming telemetry 

• formatting of incoming data packets 

• visualization of the data 

• issuing commands 

• data storage 

 

More advanced MCS can also support alarms, automated procedures or have built in planning 

tools. Next to these feature the MCS aims to provide an overview of the mission environment and 

its status. Based on this information, the operator will validate the progression of the mission and 

use it to make rest of the planning.  

 

 

Figure 5: Mission control dashboard [8] 

Within the space sector, these systems are mainly used to control missions of rockets, satellites 

or various other systems in space. Since most instances have their own requirements and 

standards within their missions apart from the general rules, they utilize different MCS. However, 

sometimes an instance chooses to create a custom MSC, such as Open MCT, created by NASA. But 

other instances prefer software from a private company such as the Terma Ground Suite Segment 

(TGSS). Nonetheless, most instances execute various types of mission. Each with their specific 

requirements. Therefore, multiple MCS can be used within the same instance. If none of the 

existing MCS adhere to the demands of a mission, the space entity can choose to create custom 

software.  
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2.4 Communication Protocols and packet structures 
 

In order to enable communication within a network of different entities, some form of 

standardization is required. Rules will be defined to guarantee that each client is able to 

communicate with or over the network. These standard rules are called protocols and can be 

compared with human language. If someone is speaking the same language as another person, 

communication can be achieved, and information can be exchanged. If these people try to interact 

using different languages, the other person will not be able to understand the messages and no 

information will be exchanged. When the analogy is applied to computer networks it can be seen 

why it is crucial for each client to communicate using a protocol the destined client is able to 

translate. As an addition, computer networks need specific information about the intended 

destination to deliver the message correctly. This information is added to the packet, thus it is 

part of the protocol. Meaning the protocol does not only have to be supported by the intended 

client but by the network as well. 

 

The most well-known network is the internet. This network has multiple abstract layers. Each of 

which has their specific contribution to successfully communicate a message to the desired 

destination. The seven-layer OSI model was the first standard model for network 

communications, becoming an international standard in 1984. However, the modern internet is 

based on the TCP/IP model which consists of five layers, which is simpler compared to the OSI 

model. [9] 

 

 

Figure 6: Comparison of the OSI and TCP/IP models [10] 

 

As can be seen in Figure 6 there are only four layers on the TCP/IP side. This is due to the fact that 

occasionally the “Physical” and “Data link” layers are fused together and represented by the 

Network Interface layer. This layer is responsible for the transmission of the packets between two 

devices on the same network. The layer helps to define how data has to be sent using the network 

and will determine how the bits have to be transferred in the hardware responsible for the 

communication. The protocol associated with this layer is the ethernet protocol. [10] 
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Above the network interface layer there is the “Network” layer which is responsible for 

internetworking, meaning the “Network” layer will ensure the packet is transported correctly 

from source to destination. Common protocols from this layer are the IP, ICMP and ARP protocols. 

All of these protocols ensure that the network is constantly updated about the status of the clients 

and aids in the proper routing of the packets. [10][11] 

 

 

Figure 7: Protocols with their associated layer [11] 

 

On top of this “Network” layer, the “Transport” layer can be found. This layer is responsible for 

controlling the flow, sequencing and error checking of the packets. Two protocols are part of this 

layer, namely the TCP and UDP protocols. The crucial differences between TCP and UDP are listed 

below in Table 1. [11] 

Table 1: Crucial differences between TCP and UDP [12] 

TCP UDP 

Live connection is required to transmit data No live connection is required to transmit data 

Requires handshakes to setup a connection No handshakes required  

(connectionless protocol) 

TCP rearranges data packets in the specific 

order 

UDP protocols have no fixed order. Every 

packet is seen as independent 

Does error checking and will resend a packet 

if the original packet returned an error 

message 

Does error checking but disregards a faulty 

packet 

TCP is reliable as it guarantees delivery of data 

to the destination router. 

The delivery of data to the destination can't be 

guaranteed. 

Is slower since it will wait for the 

acknowledgement of the receiver to send the 

next data. 

UDP is faster due to the fire-and-forget 

mechanism 

 

Lastly, the “Application” layer enables applications to access the network. A wide variety of 

protocols belong to this layer. For example, common protocols such as the HTTP protocol, the FTP 

protocol, NTP protocol etc. However, instances can create their own protocol for this layer since 
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the information within is bound to the application and not to the network. This means that 

different applications using the same protocols can both communicate with each other and 

exchange information. [11] 

 

A standardized application protocol used within the space sector is the CCSDS protocol. A CCSDS 

packet exists out of three main components, as can be seen in Figure 8: a primary header, a 

secondary header and a data section. [13] 

 

The primary header contains the general info, which is relevant to the whole system, therefore 

the structure of this header is static. These headers contain information such as: data length, 

packet ID, process ID, secondary header flags etc. The data within the primary header can be 

categorized into two categories. Firstly, the category which gives the system more information 

about the rest of the packet. A process ID, for example, falls under this category since it is used to 

identify the process or subsystem which is targeted to receive the rest of the packet’s information. 

The other category, is in place to verify if the original data within the packet is still intact or if 

there were bitflips during communication procedures. [13][14] 

 

 

Figure 8: CCSDS packet structure[13] 

 

The secondary header, if present, has a more dynamic structure, since it is bound to a specific 

process. Therefore, every process can have a custom secondary header structure. Within this 

header, it is specified which specific part of the process will have to be altered by the data portion 

of the packet.[13][14] 

 

The last section, the data section, is completely customizable, thus there are no rules attached to 

the structure of this part. It is highly dynamic and it contains the data the system wants to 

communicate with the other side. Since there are no rules regarding the data section, it is possible 

to further structure this element by adding auxiliary headers and data parts.[13]  
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Chapter 3: 

Materials and Methods 

 
3.1 OSCAR-QUBE magnetometer 

 

The OSCAR-QUBE magnetometer was developed during the making of this thesis. The 

magnetometer manufactured by the OSCAR-QUBE team is a quantum magnetometer based on 

diamonds infused with NV-centers. This system employs the ODMR and PDMR readout methods 

to monitor the magnetic field. It was created as an iteration on the system created by the OSCAR-

QLITE team. The current iteration of the sensor aims to further improve the performance and 

useability of the system by deploying the PDRM readout method next to the ODRM system. As an 

addition a lot of efforts are made to improve the ODMR’s performance. Furthermore, the system 

was selected by ESA to fly onboard the ISS for four months. Therefore, the system is developed 

around this mission, meaning it was built to fit the requirements laid upon the team by ESA. 

 

At the core of the system is an STM32F76Z microcontroller. This chip runs a FREERTOS which is 

responsible for both the external communications as for managing each individual subsystem 

internally. Since the microcontroller is seen as the control subsystem, the other systems in the 

magnetometer are: 

• the laser subsystem  

• the microwave subsystem  

• the ODMR readout subsystem  

• the PDMR readout subsystem   

• the reference subsystems (magnetometer, thermometer, accelerometer and gyroscope) 

 

These subsystems can also be seen in Figure 9. 

 

The OSCAR-QUBE has built-in internal storage built in the form of a 16GB SD-card. Here the 

gathered data from the system will be stored if the live connection with the UHB is lost. This live 

detection is detected by pinging the QUBE, meaning if the system does not receive a TC for ten 

consecutive seconds, the QUBE will think the live connection is lost and start saving the generated 

data on the SD-card. If the connection gets restored, the system will dump the stored data while 

continuing to perform the measurements. 
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Figure 9: Schematic representation of the internal and external communication of the embedded 

system 

 

The external communication with the QUBE utilizes an ethernet connection. Since it will be active 

within the Ice Cubes Facility (ICF) during its mission, only communication over ethernet is 

available to interface with the system. The lightweight IP (lwIP) stack was used to easily create 

the ethernet connection. It is configured to use a static IP address and use specific ports to send 

the TM and receive TC.  

 

The diamond sample in the QUBE performed poorly for PDRM readouts, therefore the PDRM 

readout systems were disregarded during further development of the system. After which, the 

team fully focused on further optimizing and tailoring the system to fit the ODMR readouts. The 

TM packets were also restructured accordingly.  

 

 

3.2 Mission Control Software  
 

In order to create a UHB that would fit the requirements of the project, two existing mission 

control software were compared, while keeping into account the option of creating our own 

mission control software specifically written for this project. These software were Terma Ground 

Segment Suite (TGSS) and Yamcs. TGSS is an advanced mission control software created by Terma. 

It can be used for all phases of operations and is highly configurable. Terma also supports multiple 

types of pre-existing standards and protocols. The software seemed suited for the project, but 

could be overly complicated since it was designed to operate (multiple) satellites at once. Another 

downside to Terma was the requirement of a license in order to use the mission control software. 
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Yamcs on the other hand, is an open-source mission control software provided by Space 

Applications. This is the same company that will host the embedded system on the ISS. Therefore, 

the software is already more tailored to the requirements of the project. It did not support as 

many protocols as Terma, but it covered the most prominent protocols in the space industry such 

as CCSDS and PUS. Furthermore, it allows the user to define and use their own custom protocols. 

A downside to the Yamcs mission control software is the lack of quality of the documentation, but 

this was disregarded since a direct communication channel was available with Space Applications.  

 

Table 2: Comparison between TGSS and Yamcs 

Terma Ground Suite Segment Yamcs 

Advanced mission control software Simple mission control software 

License required No license required 

Proper documentation Direct line of help to the developers 

Integrated visualization Visualization through Yamcs Studio 

Modern and extensive visualization tools • Yamcs: Graph of value over time 

• Yams Studio: Basic visualization tools 

Focusses on operating (multiple) satellite(s) Aims to support a single and basic external 

system.   

 

Although Yamcs did not support a GUI other than a basic web interface, it did allow the UHB to 

use Yamcs Studio. This program allows the user to interface with the Yamcs mission control 

software and create custom GUI’s which are called displays. Lastly, these two options were 

compared to creating a custom mission control software. This would enable the team to create a 

UHB without restrictions, but proved to be complicated as a proper mission control software has 

various different segments which have to be built into the system. Meaning the base of the system 

would be a bare bones representation of the previously mentioned mission control software. Out 

of these three options, Yamcs was selected due to the basic operation of the system, which leads 

to an easier learning curve of the software, and the direct connection with Space Applications. 

This connection could be useful if any impediments would occur while configuring or operating 

the system.  

 

 

3.3 Utilized Protocols  
 

The transport layer protocol selected to send the custom communication protocol over the 

internet with is the UDP protocol. Since the project is aimed to achieve a high data rate, UDP would 

be the best option. This is mainly due to the fact that UDP utilizes a ‘fire and forget’ methodology, 

meaning it will send the data and move on. The TCP protocol would be slower as it will send a 

packet and wait for an acknowledgement from the receiver upon its arrival. Since the project 

focusses mainly on the speed of data instead of the potential packet loss, UDP proved to be the 

preferred choice. As an addition the system will communicate using a dedicated VPN tunnel, 

meaning the packet loss will be insubstantial. Furthermore, utilizing the UDP protocol will prove 

to be more resilient to the effects during LOS where the connection cannot be guaranteed. 
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Following the selection of the transport layer protocol, the Consultative Committee for Space Data 

Systems (CCSDS) and the Packet Utilization Service version C (PUS C) protocols were investigated 

to serve as the application layer protocol, since these are widely used in the space industry. After 

studying both protocols, it was learned that PUS C was based on the CCSDS protocol. Yet both 

protocols were extensive and contained irrelevant data to the project, therefore it was chosen to 

create a custom protocol. This custom protocol would base its structure on the CCSDS procedures. 

However, it only utilizes the concepts that would be useful for the project, thus leading to a more 

efficient and smaller overall packet, resulting in a system that requires less bandwidth. 

 

In order to create this protocol within the mission database (MDB) of Yamcs, the two methods of 

defining custom protocols were studied. The first method is the Spreadsheet loader. Using this 

method, a spreadsheet using a fixed layout and configuration is used to fabricate containers which 

hold either the telecommand (TC) or telemetry (TM) packet structures. The advantage of this 

method is that it is an accessible method of configuring the system, while the spreadsheet format 

leads to a clear overview of all the elements. The other method supported by Yamcs is the XML 

Telemetric and Command Exchange (XTCE) structure. Using this method, the TC and TM packet 

structures are defined following specific structure using XML. Both methods were studied and 

tested. Although proper documentation of XTCE was bulky and hard to find, XTCE was selected to 

configure the system. It proved to be substantially more efficient when compared to the 

spreadsheet method. The inefficiency of latter method came from the fact that it communicated 

using strings instead of an array of bytes. As an addition to this, the XTCE method enabled the user 

to configure the system and protocols with more detail since the method is a more low level 

version compared to the spreadsheet method.  

 

 

3.4 Graphical User Interface (GUI) 
 

The web interface provided by Yamcs was insufficient. It did not provide a proper overview and 

visualization while sending telecommands was an inefficient process. As an addition, constant 

pinging had to be provided by an external program, since the Yamcs interface did not have the 

capability to execute automated tasks. Therefore, a GUI had to be created meeting these 

requirements.  

 

The first option to create this GUI was to use Yamcs Studio. This is a program provided by Space 

Applications that enables the user to create custom GUIs, called displays. Yamcs Studio has two 

sides: the display builder and the display runner. As the name suggests is one side to create and 

configure the displays. Custom JavaScript and Python scripts can be written and run within these 

displays to achieve the intended result. Here the layout could be created using the widgets 

provided by the program. The display runner is used to run these displays. At first this seemed 

the best option. It could easily connect to the Yamcs instance and was directly compatible with 

the system as is shown in Figure 10. Since it had a direct link with the Yamcs instance, configuring 

the displays was a very fluent process. However, while trying to implement multithreading some 
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problems occurred. When creating these threads using JavaScript, Yamcs Studio did not want to 

compile the code and gave an error message.  

 

Therefore, the Python capabilities of Yamcs Studio were investigated. This would also prove to be 

helpful when integrating more complex algorithms into the system since some of these were 

already (partly) made by team members as tools during the development process of the system. 

Unfortunately, Yamcs studio operated using Jython instead of Python, making the process overly 

complex.  

 

 

Figure 10: Schematic representation of interfacing between the GUI and the embedded system 
when using the Display runner from Yamcs Studio 

 

Thus, the Yamcs API was investigated as an alternative. This API works effortlessly and interfaces 

to the Yamcs instance in a seemingly similar manner as Yamcs Studio as can be seen in Figure 11. 

However, the API only provides the ability to grab data from the instance or send telecommands. 

To create the layout and visualization capabilities, PyQt5 was selected. This is a Python library 

that is a translation of the Qt library which is written in C++. It enables the user to create 

responsive layouts and windows to interface with systems. PyQt allows the user to either 

manually write the code to define the layout or use the Qt Designer which is an external program. 

Using this program, a layout can be created using a drag and drop method. Here widgets can be 

dragged on their desired location and their size can be adjusted. Other settings can be altered in 

the settings window of the designer and even further modified in the code running behind the 

layout. After creating a layout using the designer, it will generate a .ui file. This file can be read by 

a Python program using the PyQt library making the widgets in the layout accessible to the rest of 

the script. Therefore, this method is an efficient way of creating a GUI. As an addition, PyQt comes 

with its own threading system, signal/slot mechanism to communicate between objects, and can 

be used cross-platform. [15] 

 

Because of the high customizability and ease of development this method was selected to create 

the GUI of the UHB. Meaning a Python script would run the Yamcs API to interface with the Yamcs 

instance, perform basic conversions and formatting calculations and visualize the information in 

the appropriate PyQt widget. In the meantime, within the PyQt layout, several input widgets are 

used to trigger methods of the Python script which will properly format and send the TC to the 

Yamcs instance and thus to the QUBE. 
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Figure 11: Schematic representation of interfacing between the GUI and the embedded system 
when using a python script as GUI 

 

3.5 Wireshark 
 

Wireshark is a network protocol analyzer. It enables the user to see all of the data packets with 

their details that are transferred over the network the computer running Wireshark is connected 

to. Various different types of communication channels are supported, such as Ethernet, Wi-Fi, 

Bluetooth etc. The software can give an overview of all the packets that are being sent in real-time, 

but also offers filtering features. Furthermore, a packet can be inspected in detail using Wireshark. 

Information about the specific packet such as destination, source, protocol, content etc. are 

displayed and can be found using the inspect functionalities. [16] 

 

During the development of the UHB, Wireshark was used to validate the communication channels. 

At first it was being used to validate if the system’s properties, such as IP address and ports, were 

configured correctly. Once these settings were set, it was used to create the TM link. It proved to 

be a helpful tool to confirm the packets were actually being received. Furthermore, this was used 

to check if the structure of the packets were altered upon being sent. When configuring the TC, 

Wireshark was used as a validation tool as well. However, the software was most useful during 

the initial stages of the communication channels and for inspecting the TM packets.  

 

 

3.6 Nucleo-F746ZG board 
 

A Nucleo board, seen in Figure 12, is a development board used to easily create prototypes of 

systems that utilize an STM32 microcontroller. The Nucleo- F746ZG board employs the 

STM32F746ZG chip as the brain of the board. It makes the STM32 accessible with all kinds of 

peripherals such as Arduino connector pins, integrated clocks, LEDs, buttons, ethernet port etc. 

Additionally, the Nucleo boards come with an ST-Link debugger/programmer. Therefore, 

separate probes are rendered unnecessary. Using the ST-Link capabilities, the system allows the 

user to easily debug the chip. Furthermore, it provides an integrated serial connection which can 

be used to communicate with the STM32 microcontroller. By adjusting the jumper configuration 

the integrated ST-Link of the Nucleo board can also support external systems and function as one 

of the ST-Links’ probes  itself. [17] 
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Figure 12: A Nucleo-F746ZG board [18] 

 

The board was used to function as a dummy QUBE. It was connected directly over ethernet to the 

computer running the Yamcs instance. It was configured to have a static IP address, thus making 

the IP configuration of the computer simpler. Using this setup, the Nucleo board was able to send 

UDP packets over the ethernet port. The content of these packets could be tailored to the desired 

contents in order to test the connection and the responses of Yamcs on different kinds of inputs. 

This proved to be useful during the exploration part of the packet structures. Later the board was 

used to test the visualization and commanding aspect by sending data from the board to the 

computer to visualize. Commanding was validated by triggering an LED with a specific TC 

command.  



Sam Bammens  Master thesis 
 

~ 34 ~ 
 

  



Sam Bammens  Master thesis 
 

~ 35 ~ 
 

Chapter 4: 

Experimental 

 
Since the UHB is responsible for the communication with the QUBE which is onboard the ISS 

(Figure 13), it has to fulfill requirements of multiple different types. Therefore the UHB was 
designed to be split into two main segments. The first segment is the mission control software. 

After some considerations, Yamcs was selected to execute this role and function as the backbone 
of the UHB. It is designed to receive telemetry and send telecommands while storing the incoming 

packets and formatting the incoming raw values. These values can then be accessed by the second 
segment of the UHB which is the GUI. This GUI was chosen to be created as a Python script and is 

the main tool for the operator to interact with the system. Therefore it has to provide all the 

capabilities necessary to operate the QUBE while remaining intuitive for the operators. In this 

chapter the setup, creation and/or configuration of each part is explained in detail. 

 

 

 
Figure 13: General overview of connection of UHB and QUBE 
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4.1 Installing Yamcs 
 

The base of the system is the Yamcs mission control software. This software can be obtained by 

following the “Getting started” manual on the Yamcs website. The prerequisites mentioned here 

are: 

• Java 11 

• Maven 

• Linux x64 or macOS 

 

However, the last requirement seemed outdated since it was possible to run Yamcs on Windows 

10 as well. For development purposes, Yamcs was also installed on a device running Ubuntu 18.04 

LTS. However, in both cases the same steps were followed to install the software: 

• install Java 11 openJDK  

• install maven 

• add maven to path 

• clone the Yamcs repository from GitHub 

 

Now Yamcs was installed on the computer with a default setup which could be started by 

executing the following command in Yamcs’ base map: 

mvn yamcs:run 

 

After a familiarization process with the both the software and interfaces, the following steps were 

taken in order to receive and format incoming TM packets: 

• Instance renamed to OscarQube in the yamcs.yaml file 

• Communication settings reconfigured to UDP communication in the 

yamcs.OscarQube.yaml file (Figure 14) 

 

 

Figure 14: Communication and IP configuration 
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• IP settings changed to match the QUBE’s settings 

• Add spreadsheet loader method to MDB in de mdb.yaml file (Figure 15) 

 

 

Figure 15: MDB configuration 

 

Using these settings, Yamcs was able to receive TM packets from the QUBE. However, on the setup 
running on Windows, the firewall had to be disabled first as it blocked the packets. 

 

 

4.2 Packet configuration 
 

As Yamcs was properly configured to set up a communication link with the QUBE, the packet 

structures were created. This was critical since Yamcs required a standardized way of reading, 

interpreting and assigning incoming data to specific variables. Additionally, TC also required 

specific structuring in order to operate the commanding aspect of the system. 

 

 

4.2.1 Telecommanding packets 
 

The QUBE’s commands are of the string type. Therefore, only one telecommand was created that 

could send any given string to the embedded system. For this, the spreadsheet loader was utilized 
as it provided the best overview of the structures. First the datatype had to be fabricated, this was 

done on the “Datatypes” tab as seen in Table 3. 
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Table 3: Fabrication of sendStringCmd datatype 

Type name Eng 

type 

Raw type Encoding Eng 

unit 

Calibration 

sendStringCmd string TerminatedString(0x0D)    

 

 

Now the datatype could be used to structure the TC packet on the “Commands” tab. This was 

achieved with the configuration seen in Table 4. 

 

Table 4: TC "Commands" tab spreadsheet configuration 

Command name Argument 

assignment 

Argument 

name 

Data type Default 

value 

TC_CODE_SEND_STRING packet_type=0xF6 Send String sendStringCmd 0 

 

 

4.2.2 Telemetry packets 
 

XTCE was selected as the preferred method to structure the packets. This is due to the fact that 

the structure of the TM data is more complex when compared to the TC packets. Additionally, 
these datatypes required more custom tailoring then the datatype used for the commanding. 

XTCE requires three steps to be taken before a packet is composed as seen in Figure 16. 

 

 

 

Figure 16: The correlation between the three stages within the XTCE structure 

 

First the datatypes had to be defined in the ParametertypeSet. These could then be used to create 

parameters in the ParameterSet. In the ContainerSet, a SequenceContainer can be composed out 
of these parameters to structure the packets. Thus, each sequence container represented a 

different packet type. 

 

In the ParameterTypeSet the types seen in Table 5 are defined. As can be seen, the byte order of 
the integer types had to be inverted. This was due to the fact that the system utilized the little-

endian method to send these values to the UHB. 
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Table 5: Parametertypes and the appropriate configurations to support TM of the QUBE 

Parametertype  encoding Byte order  

byte Unsigned / 

uint16_t  Unsigned Least significant byte first 

int16_t Twos complement Least significant byte first 

uint32_t Unsigned Least significant byte first 

string Termination character = ‘/n’ Unaltered 

 

Additionally, the arrays had to be defined in the ParameterTypeSet. Since the QUBE did send 

different kinds of arrays, each had to be defined with their specific parametertype. Here it was 

opted to define every array parameter as their own datatype to mitigate the risks of causing mix 

ups. 

 

Table 6: Defined arrays and their corresponding parametertypes  

Array Parametertype within the array 

Measurement data uint16_t 

MW registers uint32_t 

Laser temperatures uint16_t 

Accelerometer and gyroscope settings byte 

Magnetometer settings byte  

 

With all of the required parametertypes defined, the parameters themselves were created in the 

ParameterSet. After this, two sequence containers, which describe the packet structure, were 

composed. These containers are: 

• the measurement container, containing all the measurement and config data of the QUBE 

• the debug container, which consisted only out of a single string 

 

In order to differentiate between these two packets, a header packet was defined containing an 
APID. This header would be at the start of every sequence container and will aid Yamcs into 

selecting the correct sequence container to format the rest of the data with. The three different 

packet types and their corresponding APIDs are shown in Table 7. 

 

Table 7: APID with corresponding packet type 

APID Packet type 

0 Measurement + config data  

1 Debug messages 

Not applicable Telecommands 

 

The ID would serve as the first value read by the system. Based on this value, Yamcs will be able 

to identify the packet type and what sequence container it has to deploy to extract the rest of the 

data out of the of the packet. The full process is displayed in Figure 17. 

 



Sam Bammens  Master thesis 
 

~ 40 ~ 
 

 
Figure 17: Packet differentiation process based on APID 

 

Lastly padding bytes were added to the measurement sequence container as the QUBE aligned the 

structs when the data is sent the UHB. 

 

 

4.3 User Interface 
 

With Yamcs configured and able to receive data from the QUBE while commanding it through the 

web interface of Yamcs, a different more user-friendly option was explored to interface with the 
embedded system. Most of the people operating the system and performing experiment were 

scientists with little to no technological background. Therefore, a GUI was created which enabled 
the user to easily and efficiently command the QUBE while providing a clear overview of the 

incoming data. 

 

 

4.3.1 PyQt5 and Designer 
 

At the base of the GUI PyQt5 is located. This Python library was installed using the following pip 

command: 

pip install PyQt5 

 

To aid the designing process of the layout, the PyQt Designer software was installed as well. The 

following command were used to get the software: 

sudo apt-get install qttools5-dev-tools 

sudo apt-get intstall qttools-dev 
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4.3.2 Layout 
 

The layout of the GUI was split into three tabs, each with their specific purpose. These tabs are: 

• Control tab 

• Monitor tab 

• Peak & Pulsed tab 

 

Control tab 
The Control tab is responsible for: 

• the general controls of the QUBE 

• visualization of the live ODMR data 

• visualization of the ODMR average over time 

• visualization of the debug responses 

• visualization of the link information 

 

The layout of these items can be seen in Figure 18. 

 

 

Figure 18: General layout Control tab 

The control section was subdivided into: 

• system controls 

• laser controls 

• microwave controls 

• FPGA controls 

 

These control groups follow the layout seen in Figure 19. 
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Figure 19: General layout controls 

Monitor tab 
On the Monitor tab the environment monitors and export capabilities can be found. Here the 

parameters gathered by the reference sensors will be displayed. The parameters which are 

displayed are: 

• laser temperature 

• board temperature 

• X-, Y-, Z-axis of the magnetometer 

• X-, Y-, Z-axis of the gyroscope 

• X-, Y-, Z-axis of the accelerometer 

 

The general layout of this tab is shown in Figure 20Figure 20.Figure 20 

 

 

Figure 20: General layout Monitor tab 

 

Peak & Pulsed 
The Peak & Pulsed tab is reserved for the configuration of the Peak and Pulsed commanding. These 

commands are not located on the “Control” tab since they are more complex and require extra 

support to properly integrate in the GUI. The tab is horizontally split into a peak commanding part 

and a pulsed commanding part as can be seen in Figure 21. 

 



Sam Bammens  Master thesis 
 

~ 43 ~ 
 

 

Figure 21: General layout Peak and Pulsed tab 

 

The top part, the peak part, holds an ODMR graph which is the same as the ODMR graph found on 

the Control tab. It is used to find the parameters necessary to configure the peak configuration. 

Since constantly switching tabs would be detrimental to the operator’s user experience, it was 

chosen to add the ODMR graph to this tab as well. 

 

 

4.3.3 Yamcs-client API 
 

To interface with the Yamcs instance, which functions as the MSC, the Yamcs-client API of Python 

is used in the script. The command to install the library is: 

pip install –upgrade yamcs-client 

 

Using this library in the Python script of the GUI, the credentials of the Yamcs instance have to be 

given to enable the connection between the Yamcs-client API and the Yamcs instance. Upon its 

initialization the processor and archive are taken and saved as variables so they can be used later 

by the rest of the script. 

 

Commanding 
All of the commanding in the GUI is performed by clicking the corresponding button. These 

buttons internally will trigger the appropriate responses which send the correct telecommand. 

There are two types of buttons within the layout of the UHB: 

 

• Action buttons 

This type of button can be split into two different types of their own. The first type does not require 

input data and therefore the system can directly send the telecommand. The second type requires 

an input. Hence this input will first require to be read and formatted by the algorithm before this 

can be sent. These processes are visualized in Figure 22 
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Figure 22: Action button telecommanding flow  

 

• Radio-buttons 

Radio-buttons are bound to the other radio-buttons in the group. These are used for commanding 

the modes since only one can be active at once. Furthermore, each button holds a “command” 

variable which can be used to easily send the appropriate command specific to each radio-button. 

The processes concerning these buttons are shown in Figure 23 

 

 

Figure 23: Radio button telecommanding flow 

 

Since all of the telecommands are of the same command type, namely the “Send string” command, 

all of the functions eventually end up triggering the same method. This method is responsible for 
interfacing with Yamcs using the client API. Furthermore, all of the commands sent by this 

function (except for the ping command) will be printed on the GUI’s console. This way a history 

of the commands is kept. Additionally, this can be used by the operator to validate the formatted 

command string. 

 

4.3.4 Threading 
 

The GUI uses multithreading to perform all of its tasks. This is mainly due to the fact that the main 

thread, called the GUI thread which is run by PyQt, will render the application “unresponding” if 

it is not able to read all of the input widgets within a spefic timeframe. Therefore this thread 

should only be used to interface with the widgets of the layout. The thread is able to support minor 

calculations, however more substantial processes should be executed somewhere else.  

 

The GUI utilizes four threads, which are: 

• the GUI thread 

• the Iinterface thread 

• the TC thread 

• the Ping thread 
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How these threads correlate to eachother can be seen in Figure 24. 

 

 

Figure 24: Threading scheme 

 

Ping thread 
The ping thread is responsible for the constant pinging of the QUBE. It is crucial that this task gets 

executed in time and unrelated to other processes. This is due to the fact that the system will 

decide if it should save its data on the SD-card or send the data directly to the UHB based on these 

pings. Using a thread therefore meets all these requirements. Additionally, if the GUI thread 

becomes unresponsive the Ping thread will continue operating, thus the QUBE will not lose the 

constant pinging from the UHB in this case. The process executed by the thread is rather simple 

as can be seen in Figure 25. 

 

 

Figure 25: Process of Ping thread 

 

This process runs once every four seconds. Due to the fact that the QUBE will only start saving 

data to the SD-card if there was no ping detected within a timeframe of 10 seconds, losing one 

ping packet does not pose a problem. 
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Telecommand thread 
Unlike the other threads, this one does not loop. It is responsible of sending the TCs and functions 

as a buffer between the Yamcs client API and the GUI thread. If the client API takes longer than 

expected it will not freeze the GUI thread since it is running independently. Once the command is 

sent the thread will stop its execution automatically. 

 

Interface thread 
This thread constantly uses the Yamcs client API to get the incoming TM. Upon receiving a new 

packet, the packet will be checked to see if it was sent live or came from the internal SD-card of 

the QUBE. After which all of the desired parameters are extracted. These parameters are: 

• time of receival of the packet 

• ODMR data 

• board temperature 

• laser temperature 

• X-, Y-, Z-axis data of the magnetometer 

• X-, Y-, Z-axis data of the gyroscope 

• X-, Y-, Z-axis data of the accelerometer 

 

Furthermore, the thread computes the average of the ODMR array and utilizes the Yamcs client 

API to calculate the packet speed at which the UHB receives the TM. 

 

Upon extracting the data from the packet, it is formatted and sent to the GUI thread using 

pyqtSignals. Here these signals trigger a method bound to their specific signal, which will make 

sure the value gets displayed. The complete process executed by the Interface thread can be seen 

in Figure 26. 

 

 

Figure 26: Process flow interface thread 
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4.3.5 TM data visualization 
 

Most of the TM data is visualized using a PyQtGraph widget. This widget is not installed by default, 

therefore it has to be downloaded separately. This was achieved by using the following command: 

pip install pyqtgraph 

 

To use the PyQtGraph in the Designer a blank widget has to be promoted to a PyQtGraph. This can 

easily be done following the next steps: 

• Drag a QWidget in the layout 

• Right click and select “Promote to …” 

• In the pop-up screen specify the class name and header file as shown in Figure 27. 

 

 
Figure 27: Convert QWidget to PyQtGraph 

• Now the widget can be promoted 

 

 After these steps the widget can be used as a graph in the Python script. Upon initialization of the 

GUI an empty array will be plotted on the graphs to initialize the widget and grab the dataline of 

each graph. This data-line is necessary to update the plot later in the process. Once the Interface 

thread starts running the signals will be received by the GUI thread and trigger the methods that 

will update the corresponding graphs. Here two types can be differentiated:  

• the graphs that show the evolution over time 

• the graphs that show an array of live data 

 

The graphs displaying live data will visualize an array containing the data for the whole graph 

with each update. To visualize the parameters over time a more complex approach was taken. 

Each parameter falling under this category will be appended to an array. However, to prevent loss 

of performance over time, these arrays will eventually stop at a specific length. The process of this 

can be seen in Figure 28. 
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Figure 28: Visualization process of monitor parameters 

 

Since these plots show the datetime on their X-axis the same process applies to this as well. Upon 

receiving the timestamp of the packet, it will be added to array. When another parameter wants 

to visualize their data, they grab the timestamp array as their X-axis. However, some arrays 

visualize less datapoints at once. In this case, only the last n points of the timestamp array will be 

used, where n is the length of the parameter array. 

 

 

4.3.6 Pulsed visualization 
 

The pulsed visualization plot is the only PyQtGraph that does not follow the same processes as the 

other graphs. This is mainly due to the fact that this plot does not display live data, but visualizes 

the operators current configuration disregarding the fact if this is active on the QUBE or not. 

Therefore, the operator can validate his configuration by going through all of the 100 pulsed steps. 

 

This is achieved by reading the two rows of the table and compare the values of each column with 

each other. These two rows represent the first two steps of the 100-step pulsed operation. To 

visualize the other steps the difference is taken between the values in each column. The current 

setting is then calculated following the next formula: 

Current value = first row value + difference * selected step 

 

The visualization arrays are fabricated based on a custom unit step function. This function uses 

the delay and width parameters of each subsystem as a base for their calculations. The step 

function will only output 1 after the specified delay and for the given length of the width. All of the 

other values are set to 0 as can be seen in Figure 29. 

 

 

Figure 29: Unit step function 

 

The complete process of visualization is shown in Figure 30. 
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Figure 30: Visualization process of pulsed data 

 

 

4.3.7 Graph Zeroing 
 

Since the base values of every axis is substantially spread out on the graphs not a lot of detail can 

be seen in the data. Therefore, a zeroing capability was added for the graphs of the magnetometer, 

gyroscope, and magnetometer. With this capability, all of the base values are reduced to zero. 

Thus, the range of the Y-axis is more condensed. This leads to more visual details in the data of 

every axis. The procedure is shown in Figure 31. 

 

 

Figure 31: Zeroing procedure 

 

The base values are then used to adjust new values coming in live from the QUBE. Therefore, the 

array does not continuously need to loop through this procedure. This will render the program 

more efficiently, which will benefit the performance of the GUI thread in which these procedures 

are located. 

 

 

4.3.8 Exporting 
 

Since is critical for the scientific goals of the project to analyze the data, it is essential that the UHB 

is capable of exporting the data for further analysis. To solve this problem, the Yamcs client API 

was utilized. Using the archive element of the API, stored data can be accessed. Additionally, the 

intended packet type was set to measurement data in order to automatically filter out debug 

packets. Furthermore, the timeframe of the exported packets can be set.  
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The layout, seen in Figure 32, of the export group was designed in such a way that exporting large 

timeframes was as easy as performing small and quick measurements.  

 

 

Figure 32: Layout export group 

 

The time inputs are datetime input boxes which allow an easy way of manually selecting the 

datetimes. On the other hand, the operator can choose to use the start/stop button. Upon clicking 
the button, the appropriate datetime input box will be set to the current time. This allows to easily 

set the timeframe of the measurement while performing measurements. Upon clicking the export 

button, the export thread will start. 
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Chapter 5: 

Results 

 
5.1 Back end 

 

The final UHB was run on a Windows PC. Here the MCS was Yamcs, which was configured to 

communicate with the QUBE over ethernet using UDP packets. The TC packet structure was 

defined using the spreadsheet method while the TM packet structures were created using the 

XTCE method. Here the custom datatypes and arrays were defined in the “ParameterTypeSet”, 

which can be seen in Figure 33. 

 

 
Figure 33: Final ParameterTypeSet definition 

Additionally, the byte order of the integer values were defined here as well. Furthermore, a string 

datatype was created to support incoming strings. These are used by the QUBE as debug 
messages. Here the end character is defined as “0A” which represents the hexadecimal value of 

0x0A. This value stands for the “new line” character or “\n”. Once Yamcs detects this value for a 
parameter using this parametertype, it is at the end of the parameter. 

 

In the ParameterTypeSet the arrays are defined as well. All of the arrays are one dimensional and 
their corresponding datatypes are assigned at this points as well. 
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Using these parametertypes, the parameters themselves were defined. The final definitions can 

be seen in detail in Appendix A. These parameters were then used to compose the packet 
structures. Only two packet structures were created: 

• a debug packet 

• a measurement packet 

 

However, to differentiate between the packets, a header was made in the form of an abstract 

Sequencecontainer as is shown in Figure 34 and only consisted out of an APID parameter. It 

functions as a packet identifier as this header is used in the other sequence container as the base 

container. For this the restriction criteria were utilized as a way of assigning packet structures to 
specific APID values. 

 

 
Figure 34: Header container definition 

 

The simplest sequence container, which is seen in Figure 35, was the debug packet’s container. 
This only consists of the header and a string datatype. This was due to the fact that the QUBE will 

send these packets as a response to being commanded. Therefore, not much complexity was 

necessary in this packet. 

 

 
Figure 35: Debug packet structure definition 

 

The measurement container was a more substantial packet as can be seen in Appendix B. 

However, the general structure is as follows: 

<Application ID><Measurement data><Reference data><Laser info><Microwave info><Qube info> 

 

Both “Laser info” and “Microwave info” contained certain configuration settings of the subsystems 

which would be useful for postprocessing of the data. Furthermore, “Qube info” holds more 

information specific to the operations and state of the general system. 
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5.2 Front end 
 

The frontend of the UHB is started by executing the UHB.py python script. This script will launch 

the PyQt layout based on the .ui file and initiate all the processes and variables required for 

operation of the GUI. The layout created for the UHB consist out of three tabs:  

• the Control tab 

• the Monitor tab 

• the Peaks and Pulses tab 

These tabs provide a clear overview and controls of the tabs’ main purpose.  

 

 

5.2.1 Control tab results 
 

The first tab’s, the “Control” tab houses the main controls of the system, a can be seen in Figure 

36. Here, the main configurations can be altered and essential information is displayed. This tab 

is subdivided into groups, each group stands for a specific task or subsystem.  

 

 

Figure 36: Control tab 

System group 
The first group, in the top left corner, is the System group. The tasks it is able to perform are: 

• connecting the GUI with the Yamcs instance 

• toggle pinging of the QUBE 

• controlling the averaging of the data before the QUBE sends the packet 

• selecting the measurement operational modes 

 

The system group can be seen in detail on Figure 37. 
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Figure 37: Detail of system group 

 

Upon connecting the GUI to the UHB, it will automatically match the layout to the settings of the 

QUBE based on the information coming from the TM. Therefore, no mismatch will exist between 

the displayed data and the actual settings on the embedded system, thus mitigating the risks of 

causing confusion and potential errors.  

 

Laser group 
The laser group is split into two different group boxes as this fit the layout much better. The first 

box (Figure 38) is a smaller box containing the on/off button and houses the button to set the laser 

strength. 

 

 

Figure 38: Commanding box of laser group 

 

As all of the colored buttons, the state shown in text is the current state. Upon toggling the buttons 

to the OFF state, both the text and the background color will change. These toggle buttons display 

an OFF state by showing a red background as an addition to the text. 

 

The other box containing a part of the laser group is called the “sliders” group. Here a slider can 

be found with an input box next to it, as can be seen in Figure 39. 

 

 

Figure 39: Laser strength selector group 

Both widgets are linked with each other, meaning if the value of one is altered, the other widget 

will copy this value. By linking the input box to the slider, the boundaries of the input value are 

automatically enforced. 
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Microwave group 
The microwave settings can be adjusted with the controls in this group. The group contains the 
following commanding possibilities: 

• toggle Microwave on and off 

• set start frequency of the microwave sweeps 

• set stop frequency of the microwave sweeps 

• set attenuation of the microwave generator 

• reset sweep start and stop frequencies to default values 

• set static frequency (static frequency operational mode) 

 

As can be seen in Figure 40, the “Set Frequency” button is disabled. This is due to the fact that the 

system is not set to the Static Frequency operational mode. Once the mode is activated in the 

system group, the button will be enabled and the command can be sent. 

 

 

Figure 40: Detail of microwave group 

 

FPGA group 
The FPGA group (Figure 41) seems rather simple, however it is critical for the pulsed operation 

of the QUBE. This is due to the fact that the group houses the radio buttons to control this type of 

operational modes. Additionally, the averaging for these modes can be controlled as well since 

this setting is independent from the averaging of the “System” group. 

 

 
Figure 41: Detail of FPGA group 

Debug group 
This group (Figure 42) displays both the live packet speed and the last debug message received. 
However, the GUI filters out the responses from ping commands as they do not provide any 

relevant information. Therefore, only the last debug message stemming from an actual 
telecommand is shown as a way of confirming the TC’s proper arrival. 
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Figure 42: Detail of Debug group 

Additionally, manual commands can be sent using the “Send command” input box and the 

corresponding “Send cmd” button. However, it is mainly reserved for admin level commands. 

These commands have a significant impact on the system and are not to be used lightly, therefore 

only a person knowing the exact format of these commands is able to send it using this attribute. 

The other commands which are integrated in the GUI can be sent as well using this feature, but 

the layout will not update accordingly. Thus, it is preferred to only use the (radio)buttons to send 
telecommands to the QUBE. 

 

ODMR readout graph 
The ODMR readout graph, seen in Figure 43, displays the live formatted ODMR data collected by 

the system. This graph is essential to validate if the system is in the correct configuration. On the 
X-axis the frequency range is displayed. Upon sending the “Set start frequency” or “Set stop 

frequency” commands using the buttons in the “Microwave” group, the frequency array is 
recalculated as the system will always send 200 ODMR datapoints to the UHB. Therefore, to 

properly be able to visually interpret the data, the X-axis is adjusted.  

 

 
Figure 43: Detail of ODMR readout graph 

 

ODMR average graph 
Below the ODRM readout graph is the ODMR average plot. This graph, shown in Figure 44, 
displays the average value of the ODMR datapoints over time. Upon receiving a new ODMR 

measurement array, the average is calculated and added to the graph with the corresponding 

timestamp. This graph is mainly used to monitor the operation of the QUBE and validate settings, 
but can also be used scientifically. 
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Next to the graph, a button is placed. This button will clear the plot and reinitialize the arrays. 

Therefore, if any configuration changes are executed the transition can be seen in the plot. 
Nevertheless, if the operator would like to study the average within the new configuration, he can 

reset the graph to directly see only the data regarding the new settings in detail. 

 

 
Figure 44: Detail of ODMR average graph + clear button 

 

5.2.2 Monitor tab results 
 

The monitor tab, seen in Figure 45, houses the export functionality and all of the plots concerning 

the monitoring of the environment of QUBE. It displays:  

• laser temperature 

• board temperature 

• X-, Y-, Z-axis of the magnetometer 

• X-, Y-, Z-axis of the gyroscope 

• X-, Y-, Z-axis of the accelerometer 

 

Each readout type is grouped and is shown in the same graph. Therefore, only five plots are found 

on the tab. These plots are: 

• the temperature graph 

• the magnetometer graph 

• the gyroscope graph 

• the accelerometer graph 

 

Since there are only five plots, each graph could take up more space, leading to having a better 
overview and more detail in the graphs. 

 

 
Figure 45: Monitor tab with zeroing activated on all plots 
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Each plot shows the timestamp of its values on the X-axis. However, not all graphs cover the same 

period. The temperature plot displays the last 500 points, while the other graphs only show 100 
points. This is due to the fact that the changes in temperature appear slower over time then the 

others. The other plots put more emphasis on displaying abrupt changes to the QUBE’s 
environment. Furthermore, the magnetometer, gyroscope and accelerometer plots each have 

their own zeroing feature. This was not created for the temperature plots as the detail seen in this 
graph was sufficient for its purpose.  

 

 
Figure 46: Monitor tab with zeroing disabled on all plots 

 

Export group 
This group, seen in Figure 47, enables the operator to export the packets collected between the 
start and stop time. This time can be set manually by typing it into the designated date-time box. 

However, when performing shorter experiments, the start and stop buttons can also be utilized. 
These buttons will set the corresponding date-time box to the time of clicking the button. This 

enables the scientists to easily define a start and stop time when manually performing 
experiments. Exporting this data will produce two different formats. The first is the pickle format 

which is mainly used to read the data with other Python based scripts. The second format is a csv 
format, in which each (type) of data will be stored in a separate csv file. This data will mainly be 

used in post processing algorithms which are not Python based, such as MATLAB. 

 

 

Figure 47: Detail of export group 
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5.2.3 Peak and Pulsed tab results 
 

The last tab (Figure 48) enables the operator to configure the advanced operation modes. These 

operation modes are the peak detection operational mode and the pulsed operational mode.  

 

 

Figure 48: Peak and Pulsed tab 

 

Peak detection 
The upper half of the tab, shown in Figure 49, is assigned to the peak detection. Here another 

”ODMR readout” plot is displayed because the intended configuration parameters can be derived 

from this graph. Under the graph, a table consisting of one row contains the configuration data. 

Next to this table, the button is placed to send the formatted pulsed command to the cube.  

 

 

Figure 49: Detail of peak detection half 
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Pulsed operation 
The bottom half of the tab, as seen in Figure 50, is devoted to the configuration of the pulsed 

operational mode. On the top there is a table consisting out of two rows. The first row of 

parameters stands for the first step of the pulsed mode, the second row represents the second 

step. Based on these two rows the next 98 steps are calculated and can be displayed in the graph 

below the table. The operator can step through these steps using three different methods: 

• manually input the desired value into the input box 

• step through using the arrow buttons on the right side of the input box 

• use the slider to slide through all of the steps 

 

 

Figure 50: Detail of pulsed operation half 

 

On each step the graph below will update and visualize the pulsed scheme the system onboard 

the ISS will perform on this specific iteration. Lastly, on the bottom right of the “Pulsed” group, a 

button is placed to send the two commands necessary to correctly configure the cube to operate 

as intended. Upon clicking this button, the GUI will first validate if the system is set in constant 

wave (CW) mode. If this is not the case, it will first change the QUBE’s operation mode to this 

mode. This is due to the fact that the embedded system might freeze upon receiving these 

commands and when the system is in CW mode, there is a watchdog running in order to make 

sure the system keeps operating. If the system would freeze while in CW mode, the watchdog will 

detect this and automatically restart the system. 

 

5.2.4 Threads 
 

All of the threads perform well. The GUI thread is not suffering from any unresponsiveness, even 

when the most demanding tasks are being executed. The telecommanding and export threads 

form a proper buffer here. Furthermore, the interface thread performs nicely. Except for the fact 

that when the system is receiving data coming from the onboard SD-card of the QUBE, the graphs 

seem to lag. However, this is not the case. The perceived update speed of the monitoring widgets 

is decreased to roughly half of its update speed when receiving only live packets. This is due to 
the fact that the UHB has to filter out the packets coming from the SD-card in order to visualize 

the live data. 

 

The ping threads operation is outstanding. During the development of the QUBE, the GUI thread 

froze on a couple of occasions. Nevertheless, the UHB kept sending pings at a constant rate to the 

embedded system. This proves the ping thread is reliable and it will keep pinging the QUBE 

regardless of the other tasks to be performed by the UHB. 
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5.2.5 Functionality  
 

The UHB has a wide variety of functionalities to ensure the operator is able to execute tasks, 

interpret data etc. This chapter will show these results more into detail based on exported TM 

data which was gathered by the QUBE. This data was exported for postprocessing using the export 

feature of the GUI described in chapter 4.3.8. 

 

Telemetry visualization 
One of the main abilities the UHB should have is to receive, format, store and visualize incoming 
TM from the QUBE. The QUBE’s operation is autonomous and therefore will just gather the data 

automatically and send it to the UHB. Upon receiving this data, Yamcs (of which configuration can 

be seen chapter 5.1) will read the incoming packet and assign each piece of the packet to the 
corresponding value. Once this step is completed, the data is automatically stored in Yamcs’ 

database.  

 

To then visualize this data the UHB utilizes a Python script. One of the key parameters of the TM 

which has to be shown, is the ODMR readout graph, which is described under chapter 5.2. This ah 

yeahdata displays the live ODMR readout data coming from the QUBE and can be seen in Figure 

51. The graph shown here has plotted all of the graphs within the captured timeframe in the same 
plot. However in reality, the GUI will only plot one of these graphs at once. 

 

 
Figure 51: ODMR readout display in sweep mode 

 

Furthermore, the average of each ODMR readout array (Figure 52) is calculated and displayed on 

the same tab below the ODMR readout graph. This data can be used during scientific experiments 

or when searching for the optimal configuration settings of the QUBE.   
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Figure 52: ODMR average over time display 

 

Additionally, on the Monitor tab, described in chapter 5.2.2, other parameters that can help to 
understand the environment of the QUBE are visualized over time as well. These visualizations 

are demonstrated in Figure 53 in their “zeroed” form. However, as can be read in chapter 4.3.7 
only the accelerometer, magnetometer and gyroscope data have this feature, meaning the 

temperature plot is not zeroed. 

 

 
Figure 53: Reference subsystem displays in their zeroed state 
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Pulse visualization 
The visualization of the pulsed operation, described in chapter 5.2.3, aids in properly configuring 
this operational mode. For this to work, the two rows of the corresponding table have to be filled 
in to fit the intended configuration. Based on these values the GUI calculates the pulse scheme 
which will be executed on the QUBE when utilizing this configuration. Since the embedded system 
executes 100 iterations of the pulsed operation to get a result, the GUI enables the user to step 
through each step. This is demonstrated in Fout! Verwijzingsbron niet gevonden.. 
 
 

 

 

 

Figure 54: Stepping through pulse steps 

 
Here the operator stepped through the configuration from step 0 to step 100. It can be seen that 
the readout pulse (yellow) moves forward. This should be the case as the delay in the table for 
step two is higher than step one. This also is the case for the reference pulse (red), but this pulse 
moves substantially more as there is a bigger difference between the delay in the first two steps.  
 
Not only the delay can be adjusted. The pulse width can be altered as well over the iterations. The 
microwave pulse combines this pulse width altering with the difference in delay configuration to 
expand its pulse forward.  
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Chapter 6: 

Evaluation 

 
The evaluation of the UHB was performed during the development of the QUBE. The UHB was 

used both for testing purposes and numerous measurements were performed using the system. 
Furthermore, the UHB was utilized during the interface test at Space Applications which validated 

the proper configuration of the VPN. In the meantime, simulation runs were performed with the 
QUBE using the actual networking system the project will use during its mission. Additionally, 

multiple tests were performed in order to see how the QUBE and UHB would react during times 
where the connection would be non-optimal or even lost. The boundaries were tested with these 

tests going substantially further then the nominal conditions the system will be exposed to.  

 

 

6.1 Reliability 
 

The tests performed at Space Applications proved that the system is reliable, even during non-
optimal conditions. During these extreme conditions, both TM and TC packets might get lost, but 

losing TM packets does not pose any threat to the operations of the UHB. However, if a TC packet 

does not arrive at the QUBE, the state shown in the GUI might get mismatched when compared to 

the actual state of the embedded system. The debug responses in the debug group can be used to 

combat this. Since the QUBE will always respond to a TC, its arrival can be validated using this 

feature. Leading to an extra fail safe to confirm the TC properly arrived. If a packet did not arrive, 

the command can be sent again. 

 

 

6.2 Ease of use 
 

The ease of use was mainly evaluated by the scientific department of the team, as they had to 

perform most of the measurements during the development. Since they were able to give their 

preferences before the creation of the GUI, it was made with this in mind. Furthermore, during the 

development of the UHB, this could be further adjusted to their liking. As a result, the GUI provides 

a nice and intuitive interface with the embedded system.  

 

 

6.3 Future work 
 

In the future several points will be added. These points are: 

• highlighting LOS in the GUI 

• exporting over a serial connection 

• automatic operational mode configuration 

• advanced visualizations of the data 
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The LOS has to be highlighted in the GUI because no TC will arrive at the QUBE during these 

periods. Thus, to mitigate the risks of mismatching the displays with the actual state of the 
embedded system, a visual cue will be created. This will base itself on the calculated packet speed 

and can be cross validated using the data received from Space Applications. Furthermore, TC can 
be blocked dur LOS to ensure no mismatch will be created by the operator. 

 

The export over serial connection will be implemented since the VPN blocks all of the internet 

connections unrelated to the experiment. Therefore, a serial connection bridge shall be created 
between the UHB and a Raspberry PI. The UHB shall run a python script which sends all of the 

incoming packets to the PI using a USB cable. This Raspberry will then receive these commands 
and distribute them to other servers by sending the serial data over the internet. On these servers, 

the data can be stored, processed, visualized etc. 

 

In the future the system will be expanded with an automation feature in which the incoming data 

will be analyzed directly by the GUI and the parameter for certain operational modes, such as the 
six-point method, will be extracted from this data. Based on these parameters, the system will 

automatically reconfigure the QUBE to fit these values and switch to the corresponding 

operational mode. The GUI shall return to the first operational mode once the incoming data 

proves the current settings are outdated. Upon returning to the base operational mode, the 

incoming data shall be investigated once again, in order to extract the new parameters that would 
be most suited for the other operational mode. This will continue until the feature is disabled. The 

method would be useful since it will automatically find the best configuration for some of the most 
advanced operational modes. Furthermore, these modes are scientifically more valuable and this 

feature will ensure an automatic operation of them, meaning they can be used more often and do 

not require regular supervision and validation. 

 

Advanced visualization of the data will also be added to the system. However, it holds the lowest 
priority out of all the other tasks. This is due to the fact that this feature is not mission critical or 

would bring significant benefits to the project.  
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Chapter 7: 

Conclusion 

 
 

The main goal of the thesis was to develop a system which could interface with the OSCAR-QUBE 

magnetometer over ethernet. Furthermore, operators from the scientific department of the team, 

should be able to operate the experiment with little technological knowledge. A UHB was created 

with Yamcs as the MCS. The software was configured to be able to communicate over ethernet 

using UDP packets. Additionally, three custom packet structures were created and defined in the 

MDB. Two TM structured were defined using the XTCE structure. The TC was created using the 

spreadsheet method. Yamcs is able to differentiate between the packets based on the APID.  

 

To allow operators to interface with Yamcs and control the QUBE, a GUI was created using PyQt5 

and the corresponding Python script. Here a clear overview is given on three different tabs. Using 

the layout, the GUI can be commanded by using buttons. All of the inputs, such as the input boxes, 

buttons, radio-buttons and slider, of the layout are tailored for a better user experience based on 

the feedback given by  several team members. Furthermore, the GUI contains all of the features 

necessary to properly operate the embedded system. Additionally, the GUI is responsible for the 

pinging of the QUBE, which it performs perfectly. The UHB was thoroughly tested on reliability 

and user experience during its development and the interface test campaign of the system.  

 

During the interface test, the requirements of system stability were simulated with a data loss of  

5% and the system recovered automatically from simulated LOS periods. Furthermore, the UHB 

is able to receive the TM data coming from the SD-card of the QUBE while maintaining a solid 

connection to receive live commands during the stress-test. This confirmed the system is robust 

and will reliably support the student project OSCAR-QUBE during its ten month mission onboard 

the ISS.  
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Appendix A 

 
<ParameterSet> 

   

              <Parameter name="apid" parameterTypeRef="uint16_t"/>  

               <Parameter name="Debug_String" parameterTypeRef="string"/> 

            

              <Parameter name="AccelX" parameterTypeRef="int16_t"/> 

  <Parameter name="AccelY" parameterTypeRef="int16_t"/> 

  <Parameter name="AccelZ" parameterTypeRef="int16_t"/> 

    

  <Parameter name="GyroX" parameterTypeRef="int16_t"/> 

  <Parameter name="GyroY" parameterTypeRef="int16_t"/> 

  <Parameter name="GyroZ" parameterTypeRef="int16_t"/> 

    

  <Parameter name="MagnetoX" parameterTypeRef="int16_t"/> 

  <Parameter name="MagnetoY" parameterTypeRef="int16_t"/> 

  <Parameter name="MagnetoZ" parameterTypeRef="int16_t"/> 

    

  <Parameter name="Temp" parameterTypeRef="int16_t"/> 

    

              <Parameter name="DataODMR_Array" parameterTypeRef="array"/> 

  <Parameter name="DataPDMR_Array" parameterTypeRef="array"/> 

    

  <Parameter name="Filler_Array" parameterTypeRef="array"/> 

    

              <Parameter name="Freq_Array" parameterTypeRef="array"/> 

    

  <Parameter name="MW_minFreq" parameterTypeRef="uint16_t"/> 

  <Parameter name="MW_maxFreq" parameterTypeRef="uint16_t"/> 

  <Parameter name="MW_attenuation" parameterTypeRef="byte"/> 

  <Parameter name="MW_steps" parameterTypeRef="byte"/> 

  <Parameter name="MW_registers" parameterTypeRef="MW_reg_array"/> 

    

  <Parameter name="Laser_temps" parameterTypeRef="Laser_temp_array"/> 

  <Parameter name="Laser_status" parameterTypeRef="byte"/> 

  <Parameter name="Laser_error" parameterTypeRef="byte"/> 

  <Parameter name="Potentio_value" parameterTypeRef="uint16_t"/> 

    

  <Parameter name="Tick_count" parameterTypeRef="uint32_t"/> 

  <Parameter name="Block_index" parameterTypeRef="uint32_t"/> 
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  <Parameter name="MW_broad_steps" parameterTypeRef="byte"/> 

    

  <Parameter name="Freq_skip" parameterTypeRef="uint16_t"/> 

  <Parameter name="Broad_sweep_steps" parameterTypeRef="byte"/> 

       

  <Parameter name="Op_mode" parameterTypeRef="byte"/>  

  <Parameter name="FPGA_mode" parameterTypeRef="byte"/> 

  <Parameter name="Measure_flag" parameterTypeRef="byte"/> 

  <Parameter name="LastPingTick" parameterTypeRef="uint32_t"/> 

  <Parameter name="HasConnection" parameterTypeRef="byte"/> 

  <Parameter name="ADC_settings" parameterTypeRef="byte"/> 

    

  <Parameter name="AccelGyroSettings" parameterTypeRef="AccelGyroSettings_array"/> 

  <Parameter name="MagnetoSettings" parameterTypeRef="MagnetoSettings_array"/> 

    

  <Parameter name="DevicesInit" parameterTypeRef="byte"/> 

    

  <Parameter name="Average_Optical" parameterTypeRef="uint16_t"/> 

  <Parameter name="Average_FPGA" parameterTypeRef="uint16_t"/> 

    

  <Parameter name="Padding" parameterTypeRef="byte"/> 

    

        </ParameterSet> 
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Appendix B 

 
<SequenceContainer name="Measurements"> 

  <EntryList> 

   <ArrayParameterRefEntry parameterRef="DataODMR_Array"> 

    <DimensionList > 

    <Dimension> 

      <StartingIndex> 

       <FixedValue>0</FixedValue> 

      </StartingIndex> 

      <EndingIndex> 

       <FixedValue>199</FixedValue> 

      </EndingIndex> 

     </Dimension> 

    </DimensionList> 

   </ArrayParameterRefEntry> 

         

   <ParameterRefEntry parameterRef="Temp"/> 

     

   <ParameterRefEntry parameterRef="GyroX"/> 

   <ParameterRefEntry parameterRef="GyroY"/> 

   <ParameterRefEntry parameterRef="GyroZ"/> 

     

   <ParameterRefEntry parameterRef="AccelX"/> 

   <ParameterRefEntry parameterRef="AccelY"/> 

   <ParameterRefEntry parameterRef="AccelZ"/> 

     

   <ParameterRefEntry parameterRef="MagnetoX"/> 

   <ParameterRefEntry parameterRef="MagnetoY"/> 

   <ParameterRefEntry parameterRef="MagnetoZ"/> 

     

   <ArrayParameterRefEntry parameterRef="Laser_temps"> 

    <DimensionList > 

     <Dimension> 

      <StartingIndex> 

       <FixedValue>0</FixedValue> 

      </StartingIndex> 

      <EndingIndex> 

       <FixedValue>7</FixedValue> 

      </EndingIndex> 

     </Dimension> 
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    </DimensionList> 

   </ArrayParameterRefEntry> 

     

   <ParameterRefEntry parameterRef="Padding"/> 

   <ParameterRefEntry parameterRef="Padding"/> 

     

   <ParameterRefEntry parameterRef="Laser_status"/> 

   <ParameterRefEntry parameterRef="Laser_error"/> 

   <ParameterRefEntry parameterRef="Potentio_value"/> 

     

   <ParameterRefEntry parameterRef="MW_minFreq"/> 

   <ParameterRefEntry parameterRef="MW_maxFreq"/> 

   <ParameterRefEntry parameterRef="MW_attenuation"/> 

   <ParameterRefEntry parameterRef="MW_steps"/> 

     

   <ParameterRefEntry parameterRef="MW_broad_steps"/> 

 

   <ParameterRefEntry parameterRef="Padding"/> 

     

   <ArrayParameterRefEntry parameterRef="MW_registers"> 

    <DimensionList > 

     <Dimension> 

      <StartingIndex> 

       <FixedValue>0</FixedValue> 

      </StartingIndex> 

      <EndingIndex> 

       <FixedValue>5</FixedValue> 

      </EndingIndex> 

     </Dimension> 

    </DimensionList> 

   </ArrayParameterRefEntry> 

     

   <ParameterRefEntry parameterRef="Freq_skip"/>  

   <ParameterRefEntry parameterRef="Broad_sweep_steps"/> 

     

   <ParameterRefEntry parameterRef="Padding"/> 

   <ParameterRefEntry parameterRef="Padding"/> 

     

   <ParameterRefEntry parameterRef="Op_mode"/>  

   <ParameterRefEntry parameterRef="FPGA_mode"/>  

   <ParameterRefEntry parameterRef="Measure_flag"/>  

   <ParameterRefEntry parameterRef="LastPingTick"/> 

   <ParameterRefEntry parameterRef="HasConnection"/> 
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   <ParameterRefEntry parameterRef="Padding"/> 

     

   <ParameterRefEntry parameterRef="Average_Optical"/> 

   <ParameterRefEntry parameterRef="Average_FPGA"/> 

     

   <ParameterRefEntry parameterRef="Padding"/> 

   <ParameterRefEntry parameterRef="Padding"/> 

     

   <ParameterRefEntry parameterRef="Tick_count"/> 

   <ParameterRefEntry parameterRef="Block_index"/> 

   <ParameterRefEntry parameterRef="ADC_settings"/> 

     

   <ArrayParameterRefEntry parameterRef="AccelGyroSettings"> 

    <DimensionList > 

     <Dimension> 

      <StartingIndex> 

       <FixedValue>0</FixedValue> 

      </StartingIndex> 

      <EndingIndex> 

       <FixedValue>2</FixedValue> 

      </EndingIndex> 

     </Dimension> 

    </DimensionList> 

   </ArrayParameterRefEntry> 

     

   <ArrayParameterRefEntry parameterRef="MagnetoSettings"> 

    <DimensionList > 

     <Dimension> 

      <StartingIndex> 

       <FixedValue>0</FixedValue> 

      </StartingIndex> 

      <EndingIndex> 

       <FixedValue>1</FixedValue> 

      </EndingIndex> 

     </Dimension> 

    </DimensionList> 

   </ArrayParameterRefEntry> 

   <ParameterRefEntry parameterRef="DevicesInit"/>  

     

  </EntryList> 

  <BaseContainer containerRef="Header"> 

   <RestrictionCriteria> 
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       <ComparisonList> 

     <Comparison parameterRef="apid" value="0"/> 

       </ComparisonList> 

   </RestrictionCriteria> 

  </BaseContainer> 

 </SequenceContainer> 


