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Abstract 
 
Introduction: Missingness has become an inevitable scenario in longitudinal data and 
this often complicates the proposed analyses. Different methods have been proposed, 
among which are likelihood-based methods where analysts rest assured that the 
missingness is taken care of, when, for instance, Linear, Generalized Linear, or Non-
Linear Models are considered due to their validity under the missing at random 
assumption. Statistical methods which take no notice of the mechanism for dropout will 
show the way to biased inference. Likelihood-based methods have computational 
complexity when taking into consideration longitudinal binary data. Weighted 
Generalized Estimating Equations (WGEE) is one of the common methods for handling 
dropouts that is MAR and is more usually used in marginal models for discrete 
longitudinal data. Alternatively, multiple imputations can be used to pre-process 
incomplete data, after which standard GEE is applied (MI-GEE).  
 
Objective: The objective of this thesis was to compare weighted estimating equations 
with multiple imputation based estimating equations for longitudinal binary data. 
 
Method: In this study, both approaches WGEE and MI-GEE were compared for 
incomplete binary data, through so-called asymptotic simulation study as well as small-
sample simulation. Bias, variances and mean square error (MSE) were the bases for the 
comparison between those two approaches.  
. 
Results and conclusion: - The results provide evidence for the fact that MI-GEE is less 
biased and more accurate in small and moderate samples sizes, while WGEE is 
asymptotically unbiased and has only shown better performance for data having more 
percentage of dropout. 
 
  
Key words: Multiple-Imputation, Inverse Probability Weighting, asymptotic simulation, 
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1. Introduction 
 
Missing or incomplete data are a common scenario occurring in many studies. It is very 
common for sets of quantitative data to be incomplete, in the sense that not all planned 
observations are actually made. This is especially true when studies are conducted on 
human subjects. An observation is considered an incomplete case if the value of any of the 
variables is missing. Even with the best design and monitoring, the observations can be 
incomplete usually due to the following possible reasons: missing by design, censoring and 
drop-out, or non-response, etc.  
 
Mostly in longitudinal studies, there is a large amount of missingness either due to patient 
dropout or intermittent missed visits. The first one is monotone missingness, in which a 
study subject completely drops out of the study once they become missing for the first time. 
A second type is an intermittent missing pattern, in which a study subject can drop out of 
the study one time and then resume in the study at a later visit. This study will focus on the 
first type of missingness. 
 
Most statistical packages exclude incomplete cases from analysis by default. This approach 
is easy to implement but has serious problems. Firstly, the loss of any information on 
incomplete cases may lower the desired efficiency in the study. Secondly, such exclusions 
may lead to substantial biases in analyses. Thus, missing data are important to consider in 
the analyses. 
 
Rubin (1976) provided a recognized frame for the field of incomplete data by introducing 
the important categorization of missing data mechanisms, consisting of missing completely 
at random (MCAR), missing at random (MAR), and missing not at random (MNAR). A 
non-response process is said to be missing completely at random (MCAR) if the 
missingness is independent of both unobserved and observed data. A non-response process 
is said to be missing at random (MAR) if, conditional on the observed data, the missingness 
is independent of the unobserved measurements. Thus, MAR mechanism depends on the 
observed outcomes and perhaps also on the covariates, but not further on unobserved 
measurements. A process that is neither MCAR nor MAR is termed nonrandom 
(MNAR).When an MNAR mechanism is operating, missingness depends on the 
unobserved measurements, perhaps in addition to dependencies on covariates and/or on 
observed outcomes. Thus, there is no simplification of the joint distribution. 
 
Missingness frequently complicates the analysis of longitudinal data. In many clinical trials 
and other settings, the standard methodology used to analyze incomplete longitudinal data 
is based on such methods as complete case analysis (CC), last observation carried forward 
method (LOCF) or simple form of imputation. This is often done without questioning the 
possible influence of these assumptions on the final results (Molenberghs and Verbeke 
2005). 
 
Sophisticated and theoretically robust methods for handling missing data in statistical 
analysis have existed for many years. A popular solution for dealing with incomplete 
longitudinal data is the use of likelihood-based methods like linear, generalized linear, or 
non-linear mixed models due to their validity under the assumption of missing at random 
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(MAR). Similarly, non-likelihood methods like generalized estimating equations (GEE) 
require the assumption of missing completely at random (MCAR). Thus, Weighted GEE 
(WGEE) has been proposed as a way to make certain validity under MAR. This method 
takes into account the missingness by using inverse probability weighting for the analysis 
of the incomplete sequences under the MAR assumption. An alternative to the WGEE 
approach uses Multiple Imputation (MI). In multiple imputations, several augmented data 
sets are generated by random replacement of missing values with samples from appropriate 
distributions in order to obtain more stable estimates of the parameters of interest. The 
combination of MAR-based MI together with a final GEE is called MI-GEE. 
 
Although, Inverse probability weighting and imputation based estimating equations are 
valid under MAR assumption, the ways of dealing missingness in the data for these two 
methods are pretty dissimilar. Thus, one of the concentrations would be the strength of 
these methods under various circumstances. In other words, the pros and cons of these 
methods would be the primary interest of the researcher. Several researchers have started 
work towards this end in various ways. A most recent work was done by Beunckens et al 
(2007) involving a simulation study comparing weighted estimating equations with multiple 
imputations based estimating equations for longitudinal binary data. They compared both 
approaches, inverse probability weighting and MI-based, GEE through the use of so-called 
asymptotic, as well as small-sample simulations, in a variety of correctly specified as well 
as incorrectly specified models. They carried out the study based on a sample of size 100. 
The results from their study provides striking evidence that MI-GEE is both less biased and 
more accurate in small to moderate sample, in spite of asymptotic unbiasedness property of 
WGEE. 
 
The present study aims to provide extensions to the study carried out by Beunckens et al 
(2007). In this study, the sample size was allowed to vary from N=50 to 500 under the same 
settings of study of Beunckens et al (2007). Further an additional setting with more missing 
data was also explored. 
 
1.1 Objectives of the study 
 
The objective of this thesis is to compare weighted estimating equations with multiple 
imputation based estimating equations for longitudinal binary data. In this study, both 
approaches WGEE and MI-GEE will be compared for the incomplete binary data, through 
so-called asymptotic as well as small-sample simulations. Bias, variances and mean square 
error (MSE) will be the bases of the comparison of these two approaches. Misspecification 
of either dropout model, measurement model or imputation model will be investigated 
throughout the process, in line with and using the same settings of the study of Beunckens 
et al (2007). 
 
1.2  Structure of the report 
 
This report is set up in five Sections. Section one gives some background information about 
missing data in the longitudinal setting and the objectives of this study. In Section two, a 
brief descriptions of the methods used to analyze incomplete longitudinal binary data is 
presented. In Section three, brief description of asymptotic and small-sample simulation 
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methods are given. Section four describes the result of the asymptotic and small-sample 
simulations, Section five describes the results of same study with some modifications, and 
finally, discussion and conclusion is placed in Section six. 
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2. Methods handling Non-Gaussian Longitudinal Data 
2.1 Model Families  
 
In non-Gaussian longitudinal studies, multiple assessments of the same subject at different 
time points are used and the within-subject responses are then correlated. This correlation 
must be accounted for by analysis methods appropriate to the data. Several models have 
been proposed for the analysis of such data. Most of them are extensions of the well-known 
logistic regression that is a particular case of generalized linear models with a logit link 
function. In general, in the non-Gaussian data setting, there are three model families to 
analyze the data and these are marginal, random effects and conditional models. In a 
marginal model, the entire response vector is modeled marginally on a set of covariates, the 
association structure is then typically captured via a set of association parameters, such as 
correlations, odds ratios, etc. 
 
Marginal models, also called population-averaged models, represent a situation in which 
the parameters characterize the marginal probabilities of the entire set of outcomes, without 
conditioning on the other outcomes. In the full-likelihood marginal approach, the Bahadur 
model which has been proposed by Bahadur (1961), accounts for the association via 
marginal correlations. Molenberghs and Lesaffre (1994) and Lang and Agresti (1994) have 
proposed models that parameterize the association in terms of marginal odds ratios. Dale 
(1986) defined the bivariate global odds ratio model based on a bivariate Plackett 
distribution (Plackett 1965). Molenberghs and Lesaffre (1994, 1999) extended this model to 
multivariate ordinal outcomes. However, the main issue for full likelihood approaches is 
computational complexity, especially when a high-dimensional vector of correlated data 
arises.  
  

As an alternative method, Liang and Zeger(1986) proposed generalized estimating 
equations (GEE),which require only the correct specification of the univariate marginal 
distributions provided one is willing to adopt “working” assumptions about the association 
structure. Second-order GEE, which extends the GEE approach by correct specification of 
the association structure in addition to correct specification of the univariate marginal 
distribution, have been proposed also. An alternative to GEE is given by alternating logistic 
regressions (Carey, Zeger, and Diggle 1993). Le Cessie and van Houseline (1994) 
suggested approximating the true likelihood by means of a pseudo-likelihood (PL) function 
that is easier to evaluate and to maximize. Both GEE and PL yield consistent and 
asymptotically normal estimators, with an empirically-corrected variance estimator. 
 
In conditionally specified models, any response within the sequence of repeated 
measurements is modeled conditional upon (subsets of) the other outcomes .This could be 
the set of all past measurements or a subset thereof, in so-called transition models .The third 
type of model is subject-specific models, in which the responses are assumed independent, 
given a collection of subject-specific parameters. 
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2.2 Some Marginal Models for Longitudinal Binary Data 
 
I.Bahadur Model 

As explained above, Bahadur (1961) has proposed this model for binary data and can be 
introduced using the simpler regression notation. Let us assume a sequence of binary 
measurements ijY   designed to be measured at occasions j  for individual i under 
investigation. Let ijπ  be the marginal probability, i.e., ijijij YPYE π=== )1()( . To describe 
the association, the pairwise probabilities 

212121
)2,1()( jijijijijij YYPYYE π==== need to be 

characterized. The success probability of the measurements taken in the same subject can 
be modeled in terms of the two marginal probabilities 

1ijπ  and
2ijπ , as well as an 

association parameter, this being the marginal coefficient of Bahadur‘s model. 
 
The marginal correlation coefficient assumes the form 

[ ] 2/1)1()1(
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Based on this expression, the joint probability can be calculated from the marginal 
correlation coefficient and the univariate probabilities and can be defined as  
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The likelihood-based approach requires complete representation of the joint probabilities of 
the vector of binary responses in each unit. Thus, Bahadur used, apart from conventional 
two-way correlation coefficient, third and higher-order correlation coefficients to 
completely specify the joint distribution. For this, let us define standardized deviations 
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where ijy  is an actual value of the binary response variable ijY . 
Let us define 
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where the parameters ijkρ  are classical Pearson type correlation coefficients. 
 
In Bahadur’s model, the probability mass function is split into two components: the 
independence model and the correction factor. Thus, the general Bahadur model can be 
represented by the expression ),()()( 1 iii cff yyy =     (1) 
where 
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It can be seen that the Bahadur model has closed form but its use for non-Gaussian 
outcomes can be problematic due to prohibitive computational requirements. 
 
II.Generalized Estimating Equations (GEEs) 
As discussed in Section 2.1, the use of full likelihood methods for marginal models can be 
problematic due to prohibitive computational requirements. Therefore, GEE is a viable 
alternative within this family. For clustered and repeated data, Liang and Zeger (1986) 
proposed the Generalized Estimating Equations (GEEs). GEE is a marginal or population-
averaged model for clustered and repeated data. It is a non-likelihood method, correcting 
for the clustering effect, using correlation to capture the association within the clusters. It 
focuses on modeling the mean structure:  
 

βπ ijij Xit ′=)(log  where β is the vector of model parameters. 
 
For the classical form of GEE, the score equations to be solved when computing maximum 
likelihood estimates under a marginal non-Gaussian outcome are  

,)()()( 12/12/1 0μyμ
=−

′∂
∂

= −∑ iiiii
i ACAS

β
β      (2) 

where Ai is the matrix with the marginal variances on the main diagonal and zeros 
elsewhere, and Ci is equal to the marginal correlation matrix. Typically, the correlation 
matrix Ci contains a vector α of unknown parameters that is replaced for practical purposes 
by a consistent estimate. 
 
Assuming that the marginal mean µi has been correctly specified as βiXh ′=)( iμ , it can be 

shown that, under mild regularity conditions, the estimator β̂ , obtained by solving the 
estimating equations, is asymptotically normally distributed with mean β  and with 
covariance matrix (Molenberghs and Verbeke, 2005): 

,III)ˆVar( -1
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To investigate the effect of clustering, different working assumptions can be specified in the 
GEE model. GEE is interested in getting good estimates of the main effect. Based on Liang 
and Zeger (1986)’s results, GEE yields consistent main effect estimators even when the 
working correlation structure is misspecified. In this case, correlation parameters are treated 
as nuisance parameters.  
 
However, severe misspecification may affect the efficiency of the estimators. Hence, 
distances between empirically-corrected and model-based standard errors are compared to 
choose a working assumption that is close to the true correlation structure. Since GEE 
allows for the misspecification of the correlation structure, the association obtained in terms 
of correlation cannot be trusted and is considered a nuisance, though the main effect 
estimates are consistent. As such, if the association is of scientific interest, GEE is less 
adequate.  
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2.3 Conditional Models for Longitudinal Binary Data 
 
As explained in Section 2.1, in conditionally specified models, any response within the 
sequence of repeated measurements is modeled conditional upon the other outcomes on the 
same unit. A transition model is a well-known example of a conditionally specified model 
for longitudinal data. 
 
In a transition model, a measurement Yij in the longitudinal series can be explained as the 
function of the previous outcome or history. In other words, a regression model for the 
outcome Yij can be written in terms of the previous outcome or history. Alternately, error 
terms can also be written as functions of previous error terms. 
 
A form of a transition model for binary longitudinal outcomes is a stationary first-order 
autoregressive model and can be written as  

.)],,,|1([log 1,1,1, −−− +′=== jiijjijiijij yxyYxYPit αα ββ     (3) 
Second or higher-order extensions can be possible. 
 

2.4 Missing Data Frameworks 
 

In a longitudinal data setting, there are usually two types of missing patterns involved. The 
first one is monotone missingness, in which a study subject completely drops out of the 
study once they become missing for the first time. A second type is an intermittent missing 
pattern, in which a study subject can drop out of the study one time and then resume in the 
study at a later visit. This study only focuses on the first type of missingness pattern. 
 
Let us assume a sequence of measurements ijY  is designed to be measured on subject 
where .....N1,2,......i =  at occasions ,.....n1,2,......j i= which gives the outcome vector 

)´.Y,Y(Y
iini2i1i ……=Y  

 
Let us define ijR , the missing data indicator, as: 
 

⎩
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=
otherwise0,
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Yi is referred to as the complete data which is made up of the observed )( o
iY and the 

missing data )( m
iY  components. The full data ),( ii RY  consists of the complete data, 

together with the missing data indicators, in which the complete data refers to the vector iY  

of planned measurements. For the dropout pattern of the missingness, the vector iR vector 
can be replaced by a scalar variable ,iD called the dropout indicator. In this case each vector  

iR  is of the form (1,…0,…0) and we can write this scalar dropout indicator by the 

expression ,1
1

∑
=

+=
in

j
iji RD and for a complete sequence 1+= ii nD . In both the situations, iD  
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is equal to 1 plus the length of the observed measurement sequences. For the dropout 
pattern, a balanced design which indicates the common set of measurement occasions is 
more relevant to provide meaningful definitions. 
 
The joint model of the full data fall into three categories: the selection model, pattern-
mixture model and the shared-parameter model. The selection model (Rubin, 1976; Little 
and Rubin, 1987) factorizes the joint distribution into two factors. The first factor is the 
marginal density of the measurement process and second factor is the density of the dropout 
process, conditional on the measurement process. The term originates from the econometric 
literature (Heckman 1976) and it can be thought of in terms of a subject’s missing values 
being ‘selected’ through the probability model, given the measurements, whether observed 
or not( Molenberghs and Kenward,2007).The reverse factorization yields a pattern-mixture 
model(Little,1993,1994). The pattern-mixture model allows for a different response model 
for each pattern of missing values, the observed data being a mixture of these weighted by 
the probability of each missing value or dropout pattern. The third family is called shared-
parameter models (Wu and Carrol, 1988; Wu and Bailey, 1989), where the measurement 
and dropout processes are assumed to be independent, given a certain set of shared 
parameters. The natural parameters of these three models have different interpretations, and 
transforming one statistical model from one of the frameworks to another is generally not 
straightforward (Molenberghs and Kenward, 2007). In this report, the common approach, 
the selection model, is taken into account.  
 

2.5 Issues of Missingness in Non-Gaussian Data Setting   
 
Missing data occur regularly in longitudinal studies. Subjects may drop out before the study 
terminates, or be lost to follow-up in such a way that no further measurements are provided 
after the time of dropout. Statistical methods which ignore the mechanism for dropout will 
lead to biased inference. Generally, which method is to be considered for handling 
incomplete data depends on which type of dropout mechanism it is. The focus in this report 
is on dropouts that are missing at random, i.e., the probability of dropout is related to the 
observed responses. As discussed in the previous Sections, the full-likelihood approaches 
are attractive due to their ignorability properties. Such approaches are valid under missing 
at random (MAR). But, the use of such approaches in the non-Gaussian setting leads to 
computational complexity, especially when a high-dimensional vector of correlated data 
arises. Thus, GEE has been proposed to overcome such complexity. However, as Liang and 
Zeger (1986) pointed out, inferences obtained using GEE are valid only under the strong 
assumption that the data are missing completely at random (MCAR) (Molenberghs and 
Verbeke, 2005). To allow the data to be MAR, Robins et al (1995) developed a class of 
weighted estimating equations which can seen as the extension of the GEE. Another 
alternative approach can be to combine multiple imputations, where the MAR assumption 
is deemed plausible, with GEE, resulting in MI-GEE. In the next Section, brief explanations 
of these two approaches are provided. 
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2.6 Methods for Incomplete Non-Gaussian Longitudinal Data 
 
I.Weighted Generalized Estimating Equations (WGEE) 

The generalized estimating equations (GEE) approach is commonly used to model 
incomplete longitudinal binary data. When dropouts are missing at random (MAR) through 
dependence on observed responses, GEE may give biased parameter estimates in the model 
for the marginal means. A weighted estimating equations approach (Robins, Rotnitzky, and 
Zhao, 1994), gives consistent estimation under MAR when the drop out mechanism is 
correctly specified. This can be viewed as an extension of GEE. The idea of weighted GEE 
is to weight each subject’s measurements in the GEE by the inverse probability that subject 
drops out at that particular measurement occasion (Molenberghs and Verbeke, 2005). Such 
assigned weight can be calculated as 
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The underlying idea behind this inverse probability weights (IPW) methodology is that each 
available observation at a particular occasion is given a weight that is inversely proportional 
to the cumulative probability of being observed at that time. In other words, the application 
of the inverse probability weights in a marginal model is to correct the bias that is caused 
by dropouts that are MAR. 
 
Based on the above probability, the estimating equations are adjusted by adding the inverse 
of the weighted term to the score equations of standard GEE, which can now be written as: 
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where  )(diy  and )(diμ  are the first d-1 elements of iy  and iμ  respectively. The )(di

β ′∂
∂μ

 

and )()( 12/12/1 dACA iii
−  terms are defined analogously, in line with the definitions in Robins 

et al (1995). 
 
  
II.Multiple Imputation Techniques 
Among the series of criticism on simple imputation techniques such as LOCF, at best, is 
that they ignore random variation by imputing fixed values. Multiple imputation methods 
proposed by Rubin (1987) is a technique to replace missing values with a set of M plausible 
values, that is, values generated from the distribution of one’s data. This, combined with 
GEE on the computed data, is an alternative technique to direct likelihood and weighted 
GEE and, at least in its basic form, requires the missingness mechanism to be MAR. In 
multiple imputations, the analyst creates several different versions of a data set, replacing 
missing values with plausible random values, or imputations. The imputed data sets are 
analyzed separately, and the results are combined in a way that accounts for variation in the 
imputed values. More precisely, the multiple imputation technique has three basic phases: 
 

o the missing values are filled in M times to obtained M complete data sets; 
o the M complete data sets are analyzed by using standard procedures; and, 
o the results from M analyses are combined into a single inference. 

 



 10

The process of multiple imputations is as follows. Suppose the interest is on the inferences 
about the 1×k  parameter vector β  from the substantial model and that one is able to make 
appropriate Bayesian posterior draws from the imputation model. Replacing the missing 
data by their corresponding imputation samples, M imputed data sets are constructed. Let 

mβ̂  and mV̂  be the estimate of β  and its covariance matrix from thm completed dataset 
.M),1,2,(m ………= respectively. Then, the MI estimate of β  is the mean of the estimates 

.ˆ1ˆ
1

* ∑
=

=
M

m

m

M
ββ  

The estimates of the covariance matrix of *β̂  are calculated from the within and between 
imputation variability, i.e. , 
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1  is the within-imputation variability, and  
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B  is the between-imputation variability. 

 
Researchers often wish to know how many imputations are needed for each missing value. 
The established advice, however, is that 2 to 10 imputations suffice under the most realistic 
circumstances (Rubin, 1987). In many applications, as few as 3-5 imputations are sufficient 
to obtain excellent results (Molenberghs and Kenwards, 2007). 
 



 11

3. Design of Simulation Study  
 
As explained in Section 2, many standard analyses, including maximum likelihood 
estimation and the GEE approach, can result in biased estimation when there is missingness 
in the dataset. In such situations, WGEE is a useful tool to analyze incomplete longitudinal 
non-Gaussian data under MAR.WGEE is unbiased for correctly specified dropout and mean 
structure of the measurement model. An alternative approach to WGEE is to combine 
MAR-based multiple imputation techniques together with final GEE analysis for the model 
and such combination is termed as MI-GEE. In this case, a correctly specified imputation 
model and estimation model is required. The main focus of this report is to compare these 
approaches: WGEE and MI-GEE. For such comparison, the interest can be the magnitude 
of bias incurred under these mechanisms and various types of misspecification can play a 
vital role. The comparison is done through the use of an asymptotic simulation study and 
small-sample simulations on various underlying data generating models. This process is 
split into two stages, namely the data generation stage and the analysis stage. 
 

3.1    Data Generation  
    
In this stage, data generating models are introduced. As described in Section 2.4, the 
selection model framework is considered, thus the generating model has two components a 
measurement model and a dropout model given the measurement model. Since the two 
methods WGEE and MI-GEE are based on a GEE analysis, it is required to generate data 
from a fully-specified model for the measurement and dropout mechanisms. In this 
simulation study, a binary outcome with three time points was considered. Also, a grouping 
variable with two levels, say treatment versus placebo, represented by a binary indicator, 
was also considered. For the outcomes, a binary outcome at three time points was generated 
from a Bahadur measurement model and also from a second-order autoregressive AR (2), 
transition model. In addition, continuous outcomes were also generated from the trivariate 
Gaussian distribution and then later dichotomized. In this situation, three sets of the data 
were generated using different measurement models. For the dropout, MAR mechanisms 
were considered. Thus, the results are three data-generating models, which will afterward 
be called GMI (Bahadur Measurement and MAR dropout model), GMII (AR (2) 
measurement model and MAR dropout model) and GMIII (Gaussian Measurement Model 
and MAR dropout model). The procedures used are explained in the following Sections. 
 
I.   GMI (Bahadur Measurement and MAR Dropout Model) 

Let us define Yij to be the measurement of individual i at time point tj. Let ix be the 
treatment indicator having two factor levels, say 0 and 1. Since GMI is based on the 
Bahadur measurement model, the measurement model for GMI can be written as: 

,)]|1([log)(log 0, jixtjtixjiijij txtxtxYPitit ββββπ +++===    (4) 
 
For this model the following parameters were chosen: 

,2.0,5.0,25.00 ==−= tx βββ and ,8.0−=xtβ  with two-way and three-way correlation 
coefficients  2.0

21
=jijρ  and ,0

321
=jjijρ  respectively. In this case, the missingness process is 
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assumed to be MAR, thus the probability of dropout at time point tj given ix  and the 
measurement at the previous time point is modeled by a logistic regression and written as:  

,)]|1([log 1,01,, −− ++== jiprevixjiii yxyxDPit ψψψ      (5) 
where j=2, 3, 4 with parameters 6.0,5.00 −=−= xψψ  and 5.3−=prevψ . 
 
Combining these two models, Bahadur measurement and MAR dropout model, yields GMI. 
For GMI, the missingness proportions are 68% for completers, 18 % with only first 
outcome observed (10% for x=0 and 8% for x=1), and 15 % of the cases the last 
observation missing (7% for x=0 and 8% for x=1).  
 
II.   GMII (AR (2) Transition Model and MAR Dropout Model) 
In GMII, a second-order auto-regressive transition model was considered. In line with the 
terminology used above, the AR (2) transition model is written as 
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    (6) 

 
For this model the following parameters were chosen 

 and  4.0,35.0,35.0,25.0,7.0,5.0,1.0,3.0,2.0,5.0 110100 ===−===−==−== γγγγφφφααμ xxxx

6.02=γ . The same MAR dropout model from equation (5), which was applied to GMI, was 
considered in this case also. Combining these two models, AR (2) transition and MAR 
dropout model, yields GMII. For GMII, the missingness proportions are 73% for 
completers, 17 % with only first outcome observed (11% for x=0 and 6% for x=1), and 11 
% of the cases the last observation missing (7% for x=0 and 4% for x=1).  
 
Since, AR (2) model is conditional rather than marginal, and the area of interest in this 
report is comparison of WGEE and MI-GEE, both marginal, the conditional model in (6) 
requires marginalization. This marginalization assumes that the corresponding underlying 
marginal model is of the form (4). Inasmuch as the underlying measurement model is in 
fact conditional, rather than marginal, there is no way to verify whether this assumed 
underlying marginal model is “true”. For this, the marginalization has been done based on 
the AR (2) model from equation (6) to get marginal probabilities as follows 

).()|1(),|1(),,|1(),,,( 112213321 iiiiiiiiiiiiii xPxyPyxyPyyxyPxyyyP ====    (7) 
 
On a hypothetical data set consisting of all 16 possible combinations of the 
form ),,,( 321 iiii xyyy , with corresponding probability weights ),,,( 321 iiii xyyyP , a GEE model 
was fitted of form (4), the resulting marginalized “true” parameters for GMII were found to 
be 2265.0,2673.0,3658.00 ==−= xx βββ  and 0790.0=xtβ . 
     

III.GMIII (Gaussian Measurement Model and MAR Dropout Model) 
For GMIII, the Gaussian measurement model is considered. A longitudinal Gaussian 
outcome with three time points and a two level covariate was generated from  
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,),|( 0 jixtjtixjiijij txtxtxWE ηηηημ +++==      (8) 
where i=0, 1 and j=1, 2, 3 with the parameters ,75.1,0,5.30 === tx ηηη and 5.0=xtη . 
In other words, the mean vectors for each level of the treatment indicator ix , say placebo 
and treatment, are, respectively, )75.8,00.7,25.5(0 ′=μ and )75.10,00.8,75.5(1 ′=μ , with 
assumption of an unstructured covariance matrix: 
 
 
Σ  =                                                                           . 
 
 
 In this case the missingness process is also assumed to be MAR, thus the probability of 
dropout is modeled by the following logistic regression  
 .)]|1([log 1,01,, −− ++== jiprevixjiii wxwxDPit δδδ     (9)  
   
For this model the following parameters were chosen as: 

35.0,8.0,15.0 10 −==−= γδδ x . 
Combining these two models, Gaussian measurement model and MAR dropout model, 
yields GMIII. For GMIII, on average, over all the 500 samples, the missingness proportions 
are 76% for completers, 17 % with only first outcome observed (7% for x=0 and 10% for 
x=1), and 7 % of the cases the last observation missing (3% for x=0 and 4% for x=1).  
 

3.2    Simulation Study 
 
A simulation is an imitation of some real thing, or a process. The act of simulating 
something generally entails representing certain key characteristics or behaviors of a 
selected physical or abstract system. In this study, asymptotic and small-sample simulations 
were considered. 
 
I.   Asymptotic Simulation  

In an asymptotic simulation, first of all, a hypothetical dataset was created, which consists 
of all possible outcome sequences at each level of the covariates. As explained above, the 
focus here is on a binary outcome ),,( 321 ′= iii yyyiy at three time points and a two-level 
covariate ix . The hypothetical data set for one level of the covariate )0( =ix  is presented in 
Table 1. 
 

Table 1: Hypothetical Dataset. 
Obs y1 y2 y3 xi 
1 0 0 0 0 
2 0 0 1 0 
3 0 1 0 0 
4 1 0 0 0 
5 0 1 1 0 
6 1 0 1 0 
7 1 1 0 0 
8 1 1 1 0 

 

1 0.8 0.35 
0.8 1 0.5 
0.35 0.5 1 
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From Table 1, each level of the covariate has 8 possible sequences of the outcomes, which 
provide total of 16 possibilities in the setting. The probability mass ),( ii xP y  for each of the 
sequences can be computed from the assumed measurement model. It is assumed that the 
dropout occurs after the first time point only. This indicates that the dropout can be in the 
second time point or in the third time point or no dropout (all complete). Thus, for each 
subject there are three possibilities to drop out which provides 48316 =×  possibilities. In 
other words, the probabilities ),( ii xP y  are thus further split among the three missingness 
patterns according to the dropout probabilities. In particular, denoting 
by )2|2( ≥= ii DDP , )3|3( ≥= ii DDP  and )4|4( ≥= ii DDP  the dropout probabilities at time 
points 2, 3 and 4 respectively, the probabilities for each of the 48 possible combinations are 
given as follows: 
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Asymptotic simulation was conducted on GMI and GMII based on these 48 possibilities, 
each weighted by the corresponding probabilities obtained from either from GMI or GMII. 
In this regard, the model is fitted to this hypothetical dataset with the application of 
probability weighting and the resulting inferences obtained are the asymptotic solutions. 
 
II.    Small-Sample Simulations 
The second approach, which is called small-sample simulations, was considered. In this 
regard, S=500 samples of different sizes, N=50,100,200 and 500 subjects, were considered. 
A balanced design was chosen, which implies that equal numbers of subjects were taken for 
the two treatment groups. Three sets of data were simulated based on GMI, GMII, and 
GMIII, respectively. Samples generated from GMI and GMII are based on the underlying 
probabilities. In addition, for GMIII, S=500 samples were generated from trivariate 
Gaussian ),( 03 ΣμN  and ),( 13 ΣμN  for the two treatment groups, with equal size, and later 
dichotomized for analysis purposes. In this case, the underlying distribution for the outcome 
is continuous, which implies that the asymptotic simulation study is not possible. Thus, 
asymptotic simulations were conducted only for GMI and GMII, small-sample simulations 
were done for all three generation models. 
  

3.3    Data Analysis and Model Misspecification 
 
In the data analysis stage, MI-GEE and WGEE were applied on the data from the data 
generation stage. WGEE requires the specification of the marginal measurement model and 
a dropout model. For MI-Transition, specification of a conditional mean measurement 
model and a dropout model is required. In MI-GEE and MI-Transition case, the predictors 
of dropout are included in the imputation model. Based on the asymptotic simulation and 
small-sample simulations, in comparing MI-GEE and WGEE, different properties can be 
taken into account. One of the properties is bias, which is the difference between an 
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estimator's expected value and the true value of the parameter being estimated. i.e., 
βββ −= )ˆ()ˆ( EBias . An estimator having nonzero bias is said to be biased.  

 
In the asymptotic approach, as described above, the probability weights, which are 
computed from the respective generating model, are used to solve the estimating equations. 
The resulting inferences are asymptotic and the asymptotic bias ( ∞Bias ) and the asymptotic 
variances ( ∞Var ) for the parameter estimators can be computed based on that. 
 
In the small-sample simulation approach, where all GMI GMII and GMIII can be 
considered, the parameter estimates, their estimated and true variances for a sample of size 
N, and their MSE are calculated as: 

).EST(arV̂)(Bias)EST(MSEError(MSE) SquareMean 
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Based on these properties, MI-GEE and WGEE can be compared under the different data 
generating models GMI, GMII and GMIII. The behaviors of both methods in terms of bias 
and MSE can be studied under correctly specified and misspecified models. Due to this 
process, robustness of both models under misspecification of either the imputation model or 
dropout model or measurement model can be investigated. 
 
In WGEE, all subjects are given weights, which are calculated based on the hypothesized 
dropout model. Thus any misspecification of this dropout model will affect all subjects and 
also the final result. In MI-GEE or MI-Transition, any misspecification in the imputation 
model affects only on the unobserved part of the data, not the observed part of the data. In 
addition, misspecification of the measurement model can also be assumed.  
 
GMI is derived from the Bahadur measurement model associated with MAR dropout 
model, which is based on a logistic regression model where dropout depends on the 
previous outcome, as well as the treatment indicator. In addition, GEE methods are 
moment-based version of Bahadur model, thus, a GEE-based version with the same 
structure as that of the underlying measurement model would be suitable. To deal with the 
MAR nature of missingness, the GEE-based approach is supplemented with a weighting 
format, achieved from a model of the same form as that of the underlying dropout model, 
resulting now in WGEE. WGEE, using weights from a logistic dropout model with 
previous outcome and treatment indicator as covariates, would therefore yield a correctly-
specified analysis for GMI. The important note is, under WGEE, the imputation model is 
not necessary, since the missingness is tackled, not by imputation, but, by means of a 
dropout model. 
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As explained in the previous Section, GMII is based on the AR (2) transition model for the 
mean structure and a conditional logistic model from the dropout. In this situation, fitting an 
AR (2) analysis model after multiple imputations, called MI-Transition, is consistent with 
the underlying data generating model. In other words, both measurement and the imputation 
model are correctly specified. In this situation, a dropout model is not relevant since the 
missingness is tackled, not by dropout weights, but, by means of imputation. In another 
scenario, a comparison of the two methods is done under the marginalized version of GMII. 
It can be recalled that marginalization was done based on (7), and afterward, MI-GEE and 
WGEE can be fitted and compared. In this case, the conditional model is forced to 
marginalize, thus, the measurement model is incorrectly specified. 
 
In addition, GMIII based on the Gaussian measurement model and a logistic dropout model 
i.e., based on the treatment indicator and previous Gaussian outcome. In this situation, the 
generated outcomes are continuous in nature. Thus, the correct analysis model based on this 
generating model is MI-GEE, which needs a measurement model and imputation model, 
not a dropout model. For GMIII, imputing the missing observation using a Gaussian 
imputation model and afterward fitting standard GEE to the dichotomized outcome of the 
completed sets of data, results in MI-GEE with everything correctly specified. In this case, 
multiple imputations are based on the continuous outcome and the dichotomization is done 
afterward, which indicates the imputation model as well as measurement models are 
correctly specified. To compare with WGEE using an incorrectly specified dropout model, 
the weights are taken from a logistic dropout model with the treatment indicator and the 
binary version of the previous outcome as covariates. This is an apparent misspecification, 
since the underlying dropout model utilizes the continuous form of the previous outcome as 
covariate. 
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4. Results of Simulation Study  

In this Section, both approaches, inverse probability weighting GEE and MI-based GEE, 
are compared through the use of so-called asymptotic simulation and small-sample 
simulations. The behaviors of both methods in terms of bias and mean square error, under 
various correctly and misspecified models, has been studied and the strength of each 
method under various types of misspecification has been examined. 
 

4.1    Everything Correctly Specified 
 
In this Section, all models which are correctly specified are considered. All three data 
generating models are taken into account. Since GMI consists of a Bahadur measurement 
model and logistic dropout model, as explained in Section 3, the correct analysis model for 
GMI would be WGEE, where GEE is modified by application of weighing scheme which is 
valid under MAR. In this regard, WGEE was applied to GMI with weights from a logistic 
dropout model with the treatment indicator and the previous outcome as covariates. Both 
asymptotic and small-sample simulations were considered and results are placed in Table 2. 
 

 Table 2: Asymptotic and small- sample simulation results for WGEE, with everything correctly specified, 
under GM1. 

Asymtotic Small-sample 
Parameter Bias∞ Var∞ BiasN Est(VarN) VarN MSE 
   N=50    

0β  0.0000 0.4409 -0.4824 1.2750 0.0088 1.5077 

xβ  0.0000 1.1097 0.0234 2.4501 0.0222 2.4507 

tβ  0.0000 0.1194 0.0952 0.2634 0.0024 0.2725 

xtβ  0.0000 0.2782 -0.1124 0.5590 0.0056 0.5716 

   N=100    

0β  - - -0.3957 1.0779 0.0044 1.2345 

xβ  - - 0.1225 2.1108 0.0111 2.1258 

tβ  - - 0.1018 0.2388 0.0012 0.2492 

xtβ  - - -0.1355 0.4441 0.0028 0.4625 

   N=200    

0β  - - -0.1313 0.7634 0.0022 0.7807 

xβ  - - 0.0035 1.7076 0.0055 1.7076 

tβ  - - 0.0398 0.1673 0.0006 0.1689 

xtβ  - - -0.1019 0.3107 0.0014 0.3211 

   N=500    

0β  - - -0.0225 0.3031 0.0009 0.3036 

xβ  - - 0.0407 0.8947 0.0022 0.8963 

tβ  - - 0.0002 0.0662 0.0002 0.0662 

xtβ  - - -0.0557 0.1785 0.0006 0.1816 
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In Table 2, asymptotic results include the asymptotic bias (Bias∞) and the asymptotic 
variance (Var∞), while small-sample results include bias (BiasN), estimated variance(EST 
(VarN)), true variance (VarN) and mean square error (MSE) of the parameter estimators. It 
can be seen that there is asymptotic unbiasedness of the WGEE parameters under correctly 
specified mean structure. In the small-sample simulation case, considerable quantity of bias 
was seen. For samples of size 50 and 100, large amounts of bias, as well as estimated 
variances of the parameter estimates, was observed. The amount of bias decreased when the 
sample of size N is increased and bias was very small when a sample of size 500 is taken. 
The estimated variances and MSE are also in line with the bias, in the sense that the 
estimated variance and MSE of the corresponding parameter estimates declined 
considerably as the sample size was increased. In addition, it was noted that the estimated 
variances are much larger than the true variances, which can be indicative of the 
inefficiency of WGEE. However, estimated variances seem to improve with larger sample 
sizes.  
 
GMII is based on a second-order autoregressive transition model for the mean structure and 
a logistic model for dropout. In this situation, missing values are first imputed using an 
imputation model consistent with the underlying dropout model. That is, the predictors of 
dropout are taken into account into the imputation model. For analysis, an AR (2) transition 
model is fitted to the complete data resulting in MI-Transition. This ensures an analysis 
model that is consistent with the underlying GM. In other words, both measurement and the 
imputation model are correctly specified. For this GM, for the small-sample simulations 
M=5 imputations were considered and for asymptotic simulations, 500 imputations were 
considered. The results are displayed in Tables 3 and 4. 
 
Table 3: Asymptotic simulation result for MI-Transition, with everything correctly specified, under GMII. 

Parameter Bias∞ Var∞ 
   

0α  
0.0000 8.0803 

xα  
0.0000 16.1003 

   

0φ  -0.0096 12.0925 

xφ  -0.0666 18.0150 

1φ  0.0343 18.1481 
   

0γ  0.0274 17.3872 

xγ  -0.0534 18.5088 

1γ  0.0130 18.8832 

2γ  -0.0749 19.7294 
 

In Table 3, asymptotic results include the asymptotic bias (Bias∞) and asymptotic variance 
(Var∞) of the parameter estimators. It can be seen that in the first segment, the parameter 
estimates are asymptotically unbiased. In the second and the third segments, some amount 
of bias was observed.  
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For the small-sample simulation case in Table 4, the results include bias (BiasN), estimated 
variance(EST (VarN)), true variance (VarN) and MSE, of the parameter estimators. It can be 
seen that some amount of bias was observed. For samples of size N=50, some amount of 
bias was observed in the entire three segments but considerable amount of estimated 
variances, as well as MSE, were observed, and estimated variances were much larger in the 
third segment and quite far from the true variances. As the size N increases, it was found 
that the bias as well as estimated variances reduced sharply. For a sample of size N=500, it 
was found that the estimated variances are closer to the true variances and also the bias in 
all the three segments were very small, which indicates the effect of the sample size N on 
the bias and precision of the estimates. 
 
Table 4: Small-sample simulation results for MI-Transition with everything correctly specified under GMII. 

Parameter BiasN Est(VarN) VarN MSE BiasN Est(VarN) VarN MSE 
N=50     N=100    

0α  
0.0184 0.1841 0.1616 0.1845 -0.0313 0.0925 0.0808 0.0935 

xα  
-0.0137 0.3456 0.3220 0.3458 0.0369 0.1791 0.1610 0.1805 

         

0φ  
0.0129 0.5168 0.2386 0.5170 0.0293 0.2140 0.1193 0.2148 

tφ  
0.0703 1.9120 0.3581 1.9169 0.0061 0.2724 0.1791 0.2724 

1φ  
0.0707 0.6210 0.3607 0.6260 0.0271 0.2768 0.1804 0.2775 

         

0γ  
0.1746 13.3809 0.3453 13.4114 0.0768 0.3362 0.1727 0.3421 

xγ  
-0.0315 2.4890 0.3693 2.4900 0.0183 0.3014 0.1846 0.3018 

1γ  
-0.0134 2.5032 0.3759 2.5034 0.0496 0.3427 0.1880 0.3452 

2γ  
-0.0470 9.3754 0.3918 9.3776 -0.1024 0.2495 0.1959 0.2600 

N=200     N=500    

0α  
-0.0004 0.0449 0.0404 0.0449 -0.0009 0.0179 0.0162 0.0179 

xα  
-0.0028 0.0893 0.0805 0.0893 -0.0017 0.0304 0.0322 0.0304 

         

0φ  
-0.0024 0.1029 0.0597 0.1029 -0.0018 0.0401 0.0239 0.0401 

tφ  
-0.0040 0.1362 0.0895 0.1362 -0.0030 0.0458 0.0358 0.0458 

1φ  
0.0261 0.1283 0.0902 0.1290 0.0121 0.0507 0.0361 0.0509 

         

0γ  
0.0641 0.1690 0.0863 0.1731 0.0499 0.0676 0.0345 0.0701 

xγ  
0.0161 0.1545 0.0923 0.1547 0.0055 0.0603 0.0369 0.0603 

1γ  
0.0415 0.1364 0.0940 0.1381 0.0132 0.0531 0.0376 0.0533 

2γ  
-0.1243 0.1175 0.0979 0.1329 -0.1011 0.0459 0.0392 0.0561 

 
As explained in Section 3.3, GMIII is based on a Gaussian measurement model and a 
logistic dropout model. In this situation, the generated outcomes are of a continuous nature 
but the main focus is on the binary outcome Yij. Thus, the binary outcome was taken based 
on a cut-off value of 6.5 for the continuous outcome Wij (if Wij>=6.5 then Yij=1, and Yij=0 
otherwise). The true parameters corresponding to this binary outcome was calculated by 
applying a GEE model to the complete data. True parameters are placed in the Appendix 
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(Table 1). The analysis model for this GM with everything correctly specified consists of an 
imputation model that uses the predictors of dropout and a measurement model of the same 
form fitted to the dichotomized outcome. Thus, multiple imputations based on the 
continuous outcome were considered and later dichotomized based on the aforementioned 
cut-off value. Afterward, standard GEE method was applied and the results are placed in 
Table 5. 
 
Table 5: Small-sample simulation result for MI-GEE, with everything correctly specified, under GMIII. 

 Parameter BiasN Est(VarN) MSE BiasN Est(VarN) MSE 

N=50    N=100   
 
  

-0.0012 0.3664 0.3664 0.0017 0.1973 0.1973 

 0.0125 0.7577 0.7579 0.0043 0.3966 0.3966 
 0.001 0.1044 0.1044 -0.0003 0.0599 0.0599 
 -0.013 0.2407 0.2408 -0.0047 0.1472 0.1472 
N=200    N=500   
 
  

0.0059 0.094 0.094 0.0033 0.0361 0.0361 

 -0.0091 0.1946 0.1947 0.0007 0.0742 0.0742 
 -0.0051 0.0258 0.0258 -0.0024 0.0101 0.0101 
 0.0089 0.074 0.0741 -0.0015 0.028 0.028 

 
In this case, only small-sample simulation is possible and results include bias (BiasN), 
estimated variance(EST (VarN)) and mean square error (MSE) of the parameter estimators. 
In applying MI-GEE to the different samples, it was discovered that for N=50, in total 177 
samples didn’t converge. Similarly for N=100 and 200, in total 51 and 2 samples 
respectively, were not convergent. It was noticed that for the small sample sizes, more 
samples weren’t convergent but for N=500, all samples were convergent. The main reason 
noticed was the inestimability of the treatment-by-time interaction in the model. Thus, only 
convergent samples were taken for the final analysis. 
 
From Table 5, it can be seen that in all cases, bias of the estimates are quite small, which 
can be viewed as the measure of the strength of multiple imputation. But for N=50 and 100, 
since the number of non-convergent samples is quite large, parameter estimates, and also 
the estimated variances, may not be very reliable. From Table 5, it can also be noticed that 
the estimated variances are decreasing considerably when the sample size increases. 
Similarly, the bias of the estimates were found to get smaller as sample size increases, as 
expected. 
 
4.2    Measurement Model and Dropout Models Correct but Incorrect 

Imputation Model 
 
In this Section, correct measurement and dropout models are considered, but an incorrect 
imputation model in order to compare WGEE and MI-GEE. For WGEE, correct 
measurement model and dropout model is considered, while for MI-GEE, a correct 
measurement model but incorrect imputation model is considered. For this purpose, as 
discussed in Section 3.3, GMI can be taken. Using GMI, the measurement model and 
dropout model for WGEE are correct, but the imputation model of MI-GEE is incorrect. 

0β
xβ
tβ
xtβ

0β
xβ
tβ
xtβ
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The results of the both approaches are placed in Table 6. Results include bias (BiasN), 
estimated variance(EST (VarN)), true variance (VarN) and MSE of the parameter estimators. 
 
From Table 6, it can be seen that for each sample sizes, the amount of bias of the parameter 
estimates obtained from WGEE are larger than that of MI-GEE. Similarly, the estimates 
have large estimated variances in WGEE indicating less precise estimates than MI-GEE. As 
the sample size increases, the estimated variances decrease sharply for the WGEE 
approach, but even for a sample of a size 500, true variances and the estimated variances 
are not close to each other. For MI-GEE, for a sample of size N=500, the estimated 
variance is quite small. 
 
Table 6: Small-sample simulation results for WGEE with correctly specified dropout model and measurement 
model, and MI-GEE with incorrectly specified imputation model, under GMI. 
 WGEE MI-GEE 
Parameter BiasN Est(VarN) VarN MSE BiasN Est(VarN) VarN MSE 
N=50         

0β  -0.4824 1.2750 0.0088 1.5077 0.0465 0.4916 0.0143 0.4937 

xβ  0.0234 2.4501 0.0222 2.4507 -0.0142 0.9206 0.0368 0.9208 

tβ  0.0952 0.2634 0.0024 0.2725 -0.0123 0.1221 0.0025 0.1223 

xtβ  -0.1124 0.5590 0.0056 0.5716 -0.0182 0.2465 0.0072 0.2468 

N=100         

0β  -0.3957 1.0779 0.0044 1.2345 -0.0143 0.2302 0.0072 0.2304 

xβ  0.1225 2.1108 0.0111 2.1258 0.0137 0.4729 0.0184 0.4731 

tβ  0.1018 0.2388 0.0012 0.2492 0.0059 0.0538 0.0013 0.0538 

xtβ  -0.1355 0.4441 0.0028 0.4625 -0.00197 0.1141 0.0026 0.11405 

N=200         

0β  -0.1313 0.7634 0.0022 0.7807 0.0105 0.1039 0.0036 0.1040 

xβ  0.0035 1.7076 0.0055 1.7076 -0.0174 0.2200 0.0092 0.2203 

tβ  0.0398 0.1673 0.0006 0.1689 -0.0046 0.0248 0.0006 0.0248 

xtβ  -0.1019 0.3107 0.0014 0.3211 0.0054 0.0575 0.0018 0.0575 

N=500         

0β  -0.0225 0.3031 0.0009 0.3036 0.0127 0.0428 0.0014 0.0430 

xβ  0.0407 0.8947 0.0022 0.8963 -0.0342 0.0747 0.0037 0.0759 

tβ  0.0002 0.0662 0.0002 0.0662 -0.0096 0.0107 0.0003 0.0108 

xtβ  -0.0557 0.1785 0.0006 0.1816 0.0227 0.0190 0.0007 0.0196 

 
Based on the results obtained in Table 6, MI-GEE seemed more robust than WGEE, even 
though the former consists of a misspecification in the imputation model. 
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4.3    Measurement Model and Imputation Models Correct But Incorrect 
Dropout Model 

 
In this Section, correct imputation and measurement models but a misspecified dropout 
model are considered. For this purpose GMIII is chosen. Since, GMIII is based on a 
Gaussian measurement model and a logistic dropout model, the correct analysis model for 
this generating model is MI-GEE which needs a measurement model and an imputation 
model, but not a dropout model.  
 
In the MI-GEE, multiple imputations were carried on the continuous outcome first, which 
was later dichotomized, and then standard GEE was fitted on this imputed dataset. For the 
WGEE, weights were chosen based on the logistic dropout model with treatment indicator 
and the binary version of the previous measurement as covariates. In this case, dropout 
model is misspecified in the sense that the underlying dropout model uses the continuous 
version of the previous measurement as covariates. The results are placed in Table 7. 
 
Table 7: Small-sample simulation results for WGEE with incorrectly specified dropout model, and for MI-
GEE with correctly specified imputation model, under GMIII. 

WGEE MI-GEE 
Parameter BiasN Est(VarN)    MSE BiasN Est(VarN)     MSE 
N=50       

0β  -0.1807 0.4825 0.5151 -0.0012 0.3664 0.3664 

xβ  -0.0755 1.0028 1.0085 0.0125 0.7577 0.7579 

tβ  0.2793 0.2095 0.2875 0.0010 0.1044 0.1044 

xtβ  -0.0023 0.4001 0.4001 -0.0130 0.2407 0.2408 

N=100       

0β  -0.1855 0.3113 0.3457 0.0017 0.1973 0.1973 

xβ  -0.1380 0.5644 0.5834 0.0043 0.3966 0.3966 

tβ  0.3099 0.1376 0.2336 -0.0003 0.0599 0.0599 

xtβ  0.0367 0.2312 0.2325 -0.0047 0.1472 0.1472 

N=200       

0β  -0.2450 0.4816 0.5416 0.0059 0.0940 0.0940 

xβ  0.0959 0.7105 0.7197 -0.0091 0.1946 0.1947 

tβ  0.1645 0.1379 0.1650 -0.0051 0.0258 0.0258 

xtβ  -0.0339 0.2501 0.2513 0.0089 0.0740 0.0741 

N=500       

0β  -0.1323 0.1754 0.1929 0.0033 0.0361 0.0361 

xβ  0.0189 0.2453 0.2457 0.0007 0.0742 0.0742 

tβ  0.1029 0.0510 0.0616 -0.0024 0.0101 0.0101 

xtβ  -0.0035 0.0867 0.0867 -0.0015 0.0280 0.0280 

 
 The results include the bias (BiasN), estimated variance(EST (VarN)) and mean square error 
(MSE) of the parameter estimators. It can be seen that the bias and estimated variance of 
the parameter estimates under MI-GEE are smaller compared to those under the WGEE 



 23

approach. Bias in MI-GEE is very small even for a sample of size N=50. In WGEE, not 
only is bias larger, the estimated variance is also larger than that of MI-GEE, and the ratio 
of increase of the variances between two approaches increases as sample size N increases. 
In other words, for sample of size 100, the estimated variance for WGEE is almost 1.5 
times that of MI-GEE, but for a sample of size N=500, estimated variance for WGEE is 
almost 5 times higher than that of  MI-GEE. In both approaches, the amount of bias as well 
as estimated variances decreased as sample size increases. But in all the sample sizes 
considered, MI-GEE is superior to WGEE. This can be also being viewed as the effect of a 
correctly specified imputation model against the effect of a misspecification in the WGEE 
approach. 
 

4.4    Dropout Model and Imputation Models Correct but Incorrect 
Measurement Model 

 

In this Section, correct imputation and dropout model but misspecified measurement model 
are considered. For this purpose GMII is chosen. Since GMII is based on the AR(2) 
transition model for the mean structure and a logistic dropout model, in this case, in 
comparing WGEE and MI-GEE, the marginalized version of MI-transition was considered. 
Hence, the conditional model is forced to marginalize, and in this situation, the 
measurement model is incorrectly specified. 
 
Table 8: Asymptotic and small-sample simulation results for marginalized MI-Transition, under GMII. 

Asymptotic Small-sample 
 Bias∞ Var∞ BiasN Est(VarN) VarN MSE 
N=50       

0β  -0.0035 1.1160 -0.0592 1.1703 0.0223 1.1738 

xβ  
0.0469 2.3885 0.0159 2.5898 0.0478 2.5901 

tβ  
0.0041 0.2039 0.0648 0.2124 0.0041 0.2166 

xtβ  
-0.0493 0.4363 -0.0040 0.4746 0.0087 0.4746 

N=100       

0β  
- - -0.0591 1.1200 0.0112 1.1235 

xβ  
- - 0.0404 2.4671 0.0239 2.4687 

tβ  
- - 0.0373 0.2048 0.0020 0.2061 

xtβ  
- - -0.0094 0.4505 0.0044 0.4506 

N=200       

0β  
- - -0.0086 1.1162 0.0056 1.1163 

xβ  
- - -0.0082 2.4398 0.0119 2.4399 

tβ  
- - 0.0083 0.2027 0.0010 0.2027 

xtβ  
- - 0.0038 0.4436 0.0022 0.4436 

N=500       

0β  
- - -0.0014 1.1168 0.0022 1.1168 

xβ  
- - -0.0001 2.4373 0.0048 2.4373 

tβ  
- - 0.0013 0.2046 0.0004 0.2046 

xtβ  
- - -0.0015 0.4472 0.0009 0.4472 
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Before comparing these two approaches, firstly asymptotic and small-sample simulation 
results for marginalized MI-transition were fitted. Based on the correctly specified MI-
transition model from Table 3 and 4, three distinct conditional probabilities were generated. 
In addition, based on those probabilities, marginal probabilities were derived in line with 
(7). These probabilities were used as weight for standard GEE on the hypothetical data 
having all possible outcome sequences including the treatment indicator; the results provide 
the marginalized MI-Transition. The results are placed in Table 8. These results are 
compared to a fitted GEE model of the form (4) on a hypothetical dataset which consists of 
all 16 possible combinations with corresponding probability weights obtained from (7) 
based on the true parameters defined in(6). The resulting marginalized true parameters for 
GMII were found to be 2265.0,2673.0,3658.00 ==−= xx βββ  and 0790.0=xtβ .  
 
From Table 8, it can be seen that asymptotic bias for the parameter estimates is generally 
small. For small-sample case, for samples of size 50 and 100, the bias for the parameter 
estimates is large, while for sample sizes 200 and 500, the bias for the parameter estimates 
is pretty small, close to zero.  The difference between the true and estimated variance is 
quite noticeable, indicating some sort of inefficiency under the sample sizes considered. 
 
Table 9: Small-sample simulation results for WGEE, with correctly specified dropout model and misspecified 
measurement model, and for MI-GEE, with correctly specified imputation model and misspecified 
measurement model under GMII. 

WGEE MI-GEE 
Parameters BiasN Est(VarN) VarN MSE BiasN Est(VarN) VarN MSE 

N=50          

0β  -0.5802 1.2779 0.0094 1.6145 0.0058 0.4934 0.0152 0.4934 

xβ  
-0.1681 2.9703 0.0208 2.9986 -0.0087 0.8994 0.0345 0.8995 

tβ  
0.1374 0.2513 0.0027 0.2701 0.0122 0.1279 0.003 0.128 

xtβ  
0.0931 0.5878 0.0059 0.5964 -0.0042 0.225 0.0063 0.225 

N=100         

0β  -0.4229 1.131 0.0047 1.3098 -0.0552 0.2381 0.0076 0.2412 

xβ  
-0.1451 2.9804 0.0104 3.0014 0.048 0.4779 0.0173 0.4802 

tβ  
0.1241 0.2149 0.0014 0.2303 0.0334 0.057 0.0015 0.0581 

xtβ  
0.0792 0.5877 0.003 0.594 -0.019 0.1149 0.0031 0.1152 

N=200         

0β  -0.1887 0.7674 0.0024 0.803 -0.008 0.1185 0.0038 0.1186 

xβ  
-0.1904 2.3738 0.0052 2.41 -0.0045 0.2349 0.0086 0.2349 

tβ  
0.0684 0.1571 0.0007 0.1618 0.0075 0.0279 0.0007 0.028 

xtβ  
0.0842 0.4333 0.0015 0.4404 -0.0011 0.0581 0.0016 0.0581 

N=500         

0β  -0.0600 0.3064 0.0009 0.3099 -0.0013 0.048 0.0015 0.048 

xβ  
-0.1795 0.9594 0.0021 0.9916 0.0023 0.0832 0.0035 0.0832 

tβ  
0.0253 0.0636 0.0003 0.0642 0.0011 0.0119 0.0003 0.0119 

xtβ  
0.0913 0.1813 0.0006 0.1897 -0.0039 0.0203 0.0006 0.0203 
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As explained earlier, using the marginalized parameters to define the marginal model for 
GMII, both model WGEE and MI-GEE were fitted and the results are placed in Table 9. 
 
As discussed in Section 3.3, for GMII, the marginalized parameters are used to define the 
measurement model, indicating that the outcomes are modeled marginally. From Table 9, it 
can be seen that bias and estimated variance of the parameter estimates in MI-GEE are 
quite smaller than that of WGEE. As sample size increases, the estimated variances 
decrease sharply in both approaches, but with high variability in WGEE, which indicates 
that MI-GEE performs better than WGEE. However, larger samples provide less bias and 
more precise results, as expected. 
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5.  Effects of More Dropout on MI-GEE and WGEE  
 
The results that were presented in Section 4 had about 68-76 % completer, with about 24-
32% incomplete data and fairly equally distributed across the treatment arms. In this 
Section, exploration of other parameter values for the dropout models to generate more 
missingness (40-50% completers) using the same data setting, has been assessed. The main 
focus in this Section is to distinguish the effect of the amount of missingness on the 
performance of the methods. For this rationale, the same measurement models that were 
used in the previous Sections were chosen but the dropout models were altered and the 
analyses were conducted for N=100 only.  
 
For GMI and GMII, the following parameters were selected for dropout model (5) with the 
same measurement models as those used in Section 4: 2.1,1.00 −=−= xψψ  and 29.0−=prevψ . 
Combining this dropout model with the measurement model in equation (4) yields, for 
GMI,   45 % completers, 33 % with only the first outcome observed (18% for x=0 and 15% 
for x=1) and 22 % with last observation missing (11% for x=0 and 11% for x=1). Likewise, 
combining this dropout model with the measurement model in equation (6) yields, for 
GMII,  49 % completers, 31% with only the first outcome observed (22% for x=0 and 9% 
for x=1) and 20 % with last observation missing (12% for x=0 and 8% for x=1). 
 
 In GMIII, the following parameters were chosen for the dropout model (9) with same 
Gaussian measurement model (8) used in Section 4: ,8.0,15.00 =−= xδδ and 15.01 −=γ . 
After combining this dropout model to the measurement model (8), on an average over 500 
samples yields, for GMIII, 45 % completers, 37 % with only the first outcome observed 
(15% for x=0 and 22% for x=1) and 18 % with last observation is missing (8% for x=0 and 
10%for x=1). 
 
In this Section, both approaches, inverse probability weighting and MI-based GEE were 
considered and compared through the use of asymptotic and small-sample simulations. The 
behaviors of both methods in terms of bias and mean square error, under various correctly 
and misspecified models, has been studied and the strengths of each method under various 
types of misspecification has been examined. Results for this Section are also compared 
with the results in Section 4 for the samples of size N=100. 
 

5.1    Everything Correctly Specified 
 
In this Section, all models which are correctly specified were considered. All three data 
generating models are taken into account. 
 
In line with the Section 4, the correct analysis model for GMI is WGEE. In this regard, 
WGEE was applied to GMI with weights from a logistic dropout model with the treatment 
indicator and the previous outcome as predictors. Both asymptotic and small-sample 
process were considered and results are placed in left panel of the Table 10. Right panel of 
Table 10 represent the results from Section 4 for the samples of size N=100. 
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Table 10: Asymptotic and small-sample simulation results for WGEE, with correctly specified, under GMI for 
N=100. 

Case 1: Percentage of completers=45 Case 1: Percentage of completers=68 
Asymptotic  Small-sample Asymptotic Small-sample 

Parameter Bias∞ Var∞ BiasN Est(VarN) MSE Bias∞ Var∞ BiasN Est(VarN) MSE 

0β  0.000 0.4410 -0.0273 0.2956 0.2964 0.000 0.4410 -0.3957 1.0779 1.2345 

xβ  
0.000 1.1097 0.0674 0.6306 0.6351 0.000 1.1097 0.1225 2.1108 2.1258 

tβ  
0.000 0.1194 0.0143 0.0846 0.0848 0.000 0.1194 0.3018 0.2388 0.2492 

xtβ  
0.000 0.2782 -0.046 0.1914 0.1935 0.000 0.2782 -0.1355 0.4441 0.4625 

  
 In the left panel of the Table 10, it can be seen that there is asymptotic unbiasedness 
property of the WGEE estimates under correctly specified mean structure. In the small-
sample counterpart, some quantities of bias were seen. Comparing results of both panels, 
WGEE performed better for the data with more dropouts. In the right panel, the amounts of 
bias (BiasN) and estimated variances (Est(VarN)) were very large. Interesting results might be 
expected for various other samples, if considered. 
 
As discussed earlier, the analysis model for GMII that is consistent with the underlying 
measurement model after multiple imputations and is MI-Transition. The results are 
displayed in the left panel of Table 11. The right panel of Table 11 represent the results 
from Section 4 for the samples of size N=100. 
 
Table 11: Asymptotic and Small-sample simulation results for MI-Transition, with everything correctly 
specified under GMII for N=100. 

Case 1: Percentage of completers=49 Case 2:Percentage of completers=73 
Asymptotic  Small-sample Asymptotic Small-sample 

     
Parameter Bias∞ Var∞ BiasN Est(VarN) MSE Bias∞ Var∞ BiasN Est(VarN) MSE 

0α  0.0000 8.0803 -0.0313 0.0925 0.0935 0.0000 8.0803 -0.0313 0.0925 0.0935 

xα  0.0000 16.1003 0.0369 0.1791 0.1805 0.0000 16.1003 0.0369 0.1791 0.1805 

            

0φ  -0.0104 12.3648 0.0300 0.2792 0.2801 -0.0096 12.0925 0.0293 0.2140 0.2148 

tφ  -0.0436 17.9467 -0.0019 0.3697 0.3697 -0.0666 18.0150 0.0061 0.2724 0.2724 

1φ  -0.1761 18.0521 0.0567 0.3365 0.3397 0.0343 18.1481 0.0271 0.2768 0.2775 

            

0γ  0.0542 18.3915 0.1602 2.0728 2.0985 0.0274 17.3872 0.0768 0.3362 0.3421 

xγ  0.0159 19.2350 -0.0025 2.2136 2.2136 -0.0534 18.5088 0.0183 0.3014 0.3018 

1γ  -0.1731 19.3857 0.0160 0.6057 0.6060 0.0130 18.8832 0.0496 0.3427 0.3452 

2γ  -0.2602 20.2183 -0.1715 0.2860 0.3154 -0.0749 19.7294 -0.1024 0.2495 0.2600 

 
From the left panel of Table 11, in the asymptotic approach, it can be seen in the first 
segment, there is asymptotic unbiasedness of the parameter estimates. In the second and 
third segments, some amount of bias was observed, as expected. In the small-sample 
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counterpart, some amount of bias was observed. Comparing these results with right panel, 
in the asymptotic case, more bias was noticed in segments 2 and 3, for this setting with 
more missingness, especially in the estimates of 1γ  and 2γ . More amount of bias was 
observed but that might be the effect of the more missingness in second and third time 
points in the data. For the small sample simulations, slightly more bias was observed for 
data setting with more missingness, in addition, estimated variances in second and third 
segments are also comparatively large. 
 
Recalled that GMIII is based on the Gaussian measurement model and a logistic dropout 
model. The true parameters corresponding to the binary outcome (dichotomized version of 
continuous outcome) were calculated by applying a GEE model and the resulting 
parameters are 1.7835,0.0353,-3.03880 === xx βββ  and 0.4532=xtβ . The correct analysis 
model for this generating model is MI-GEE. Thus, multiple imputations based on the 
continuous outcome were considered and later dichotomized based on the predefined cut-
off value. Afterward, standard GEE was applied and the results are placed in the left panel 
of Table 12. The right panel of Table12 represent the results from Section 4 for the samples 
of size N=100. 
 
Table 12: Small-sample simulation result for MI-GEE under GMIII, with everything correctly specified, for 
N=100. 

Case 1: Percentage of completer=45  Case 2: Percentage of completer=76 
Parameter BiasN Est(VarN) MSE BiasN Est(VarN) MSE 

0β  
0.0169 0.1957 0.1959 0.0017 0.1973 0.1973 

xβ  
-0.0049 0.3950 0.3950 0.0043 0.3966 0.3966 

tβ  
-0.0099 0.0569 0.0570 -0.0003 0.0599 0.0599 

xtβ  
-0.0018 0.1407 0.1407 -0.0047 0.1472 0.1472 

 
In the application of MI-GEE to the data having more dropouts (left panel of Table 12), it 
was discovered that total of 108 samples did not converge. As explained earlier, the main 
reason was the inestimability of the treatment-by-time interaction. Thus, only 392 
convergent samples were taken for the final analysis. From the left panel of Table 12, it can 
be seen that in all cases, bias of the estimates are quite small which can be viewed as the 
effectiveness of multiple imputation. Comparing this result with right panel of Table 12, it 
was found that the amount of bias in both cases was small. Similarly in both the cases, the 
estimated variances are quite close to each other. This can be viewed as the consistency of 
MI-GEE over various percentage of missing data. 
 

5.2 Measurement Model and Dropout Models Correct but Incorrect 
Imputation Model 

 
In this Section, correct measurement and dropout models were considered, but, with an 
incorrect imputation model. For this purpose, as discussed in Sections 3.3 and 4.2, GMI can 
be taken. The results of both WGEE and MI-GEE are placed in left panel of Table 13. The 
right panel of Table 13 represent the results from Section 4 for samples of size N=100. 
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Table 13: Small-sample simulation results for WGEE, with correctly specified dropout and measurement 
model, and MI-GEE, with incorrectly specified imputation model, under GM1 for N=100. 

Case 1: Percentage of completers=45 Case 2: Percentage of completers=68 
Parameter BiasN Est(VarN) MSE Parameter BiasN Est(VarN) MSE 
WGEE    WGEE    

0β  -0.0273 0.2956 0.2964 0β  
-0.3957 1.0779 1.2345 

xβ  0.0674 0.6306 0.6351 xβ  
0.1225 2.1108 2.1258 

tβ  0.0143 0.0846 0.0848 tβ  
0.1018 0.2388 0.2492 

xtβ  -0.0462 0.1914 0.1935 xtβ  
-0.1355 0.4441 0.4625 

MI-GEE    MI-GEE    

0β  -0.0040 0.2781 0.2781 0β  
-0.0143 0.2302 0.2304 

xβ  -0.0128 0.5557 0.5559 xβ  
0.0137 0.4729 0.4731 

tβ  -0.0010 0.0797 0.0797 tβ  
0.0059 0.0538 0.0538 

xtβ  0.0216 0.1594 0.1599 xtβ  
-0.00197 0.1141 0.1141 

 
In the left panel of Table 13, it can be seen that, the amount of bias and estimated variance 
from the WGEE approach are slightly larger than those of MI-GEE, but are very close to 
each other. Based on the result, MI-GEE seemed more robust than WGEE even though 
misspecifying the imputation model. Comparing these results with the results displayed in 
the right panel of Table 13, in the WGEE approach, the amount of bias and estimated 
variances are quite large in the right panel. This indicates better performance of the WGEE 
in data having more dropouts. However, comparing the MI-GEE results, in both panels, 
they are quite consistent, and bias and estimated variances of the parameter estimates are 
quite similar. 
 
5.3    Measurement Model and Imputation Models Correct but Incorrect 

Dropout Model. 
 
In this Section, correct imputation and measurement models but misspecified dropout 
model is considered. For this purpose GMIII is chosen. The results for both approaches MI-
GEE and WGEE, are placed in the left panel of Table 14. The right panel of Table 14 
represent the results from Section 4 for samples of size N=100. 
 
In the left panel of Table 14, it can be seen that the bias and estimated variance of the 
parameter estimates under MI-GEE are smaller compared to WGEE, since for this case, 
MI-GEE is correctly specified and WGEE uses an incorrectly specified dropout model. 
Even with a misspecification in the dropout model, WGEE is not performing badly. 
Comparing these results with the results in the right panel of Table 14, the results for MI-
GEE are similar, but results in WGEE are quite different. In the WGEE results, the amount 
of bias in the right panel is quite big as compared to left panel. This can be viewed as the 
better performance of WGEE in terms of bias in data with more missingness even though 
the dropout model is misspecified. 
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Table 14: Small-sample simulation results of WGEE, with incorrectly specified dropout model and for MI-
GEE, with correctly specified imputation model under GMIII for N=100. 

Case 1: Percentage of completer=45 Case 2: Percentage of completer=76 
Parameter BiasN Est(VarN) MSE Parameter BiasN Est(VarN) MSE 

WGEE    WGEE    

0β  -0.0738 0.3553 0.3607 0β  
-0.1855 0.3113 0.3457 

xβ  0.0605 0.6073 0.6110 xβ  
-0.1380 0.5644 0.5834 

tβ  0.0595 0.1227 0.1262 tβ  
0.3099 0.1376 0.2336 

xtβ  -0.0517 0.2468 0.2495 xtβ  
0.0367 0.2312 0.2325 

MI-GEE    MI-GEE    

0β  0.0169 0.1957 0.1959 0β  
0.0017 0.1973 0.1973 

xβ  -0.0049 0.3950 0.3950 xβ  
0.0043 0.3966 0.3966 

tβ  -0.0099 0.0569 0.0570 tβ  
-0.0003 0.0599 0.0599 

xtβ  -0.0018 0.1407 0.1407 xtβ  
-0.0047 0.1472 0.1472 

 
5.4    Dropout Model and Imputation Models Correct but Incorrect 

Measurement Model 
 
In this Section, correct imputation and dropout models, but a misspecified measurement 
model, are considered. For this purpose GMII is chosen. Before comparing the MI-GEE 
and WGEE approaches, firstly asymptotic and small-sample simulation results for 
marginalized MI-transition were fitted in line with Section 4.3. The results are placed in the 
left panel of Table 15. These results are compared to fitted GEE model of the form (4) on a 
hypothetical dataset which consists of all 16 possible combinations with corresponding 
probability weights obtained from (7) based on the true parameters defined in (6). The 
resulting marginalized true parameters for GMII were found to be 

2265.0,2673.0,3658.00 ==−= xx βββ  and 0790.0=xtβ . The right panel of Table 15 
represent the results from Section 4 for samples of size N=100. 
 
In the left panel of Table 15, both asymptotic and small-sample case, the bias of the 
parameter estimates is small. But comparing these results with results of the right panel in 
Table 15, the results are quite similar in terms of bias and efficiency. This can be viewed as 
the consistency of multiple imputations under various amount of missingness. 
 
Table 15: Asymptotic and small-sample simulation results for marginalized MI-Transition under GM II for 
N=100. 

Case 1: Percentage of completer=49 Case 2: Percentage of completer=73 
Asymptotic  Small-sample Asymptotic Small-sample 
Para
meter 

Bias∞ Var∞ BiasN Est(VarN) MSE Bias∞ Var∞ BiasN Est(VarN) MSE 

0β
 

0.0834 1.1399 -0.0767 1.1552 1.1611 -0.0035 1.1160 -0.0591 1.1200 1.1235 

xβ
 

0.0072 2.4234 0.0583 2.5256 2.5290 0.0469 2.3885 0.0404 2.4671 2.4687 

tβ
 

-0.0838 0.2216 0.0536 0.2110 0.2139 0.0041 0.2039 0.0373 0.2048 0.2061 

xtβ
 

-0.0160 0.4712 -0.0246 0.4612 0.4618 -0.0493 0.4363 -0.0094 0.4505 0.4506 
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As discussed in Section 3.3, under GMII, the marginalized parameters are used to define 
the measurement model, indicating that the outcomes are modeled marginally. The results 
for MI-GEE and WGEE are placed in the left panel of Table 16. The right panel of Table16 
represent the results from Section 4 for samples of size N=100. 
 
Table 16: Small-sample simulation results of WGEE, with correctly specified dropout model with 
misspecified measurement model, and MI-GEE, with correctly specified imputation model with misspecified 
measurement model, under GMII for N=100. 

Case 1: Percentage of completer=49 Case 2: Percentage of completer=73 
Parameter BiasN Est(VarN) MSE Parameter BiasN Est(VarN) MSE 

WGEE    WGEE    

0β  -0.1152 0.2860 0.2993 0β  
-0.4229 1.131 1.3098 

xβ  -0.0290 0.6367 0.6375 xβ  
-0.1451 2.9804 3.0014 

tβ  0.0723 0.0917 0.0969 tβ  
0.1241 0.2149 0.2303 

xtβ  0.0309 0.1886 0.1895 xtβ  
0.0792 0.5877 0.594 

MI-GEE    MI-GEE    

0β  -0.0382 0.3239 0.3254 0β  
-0.0552 0.2381 0.2412 

xβ  0.0442 0.6073 0.6093 xβ  
0.048 0.4779 0.4802 

tβ  0.0215 0.1043 0.1048 tβ  
0.0334 0.057 0.0581 

xtβ  -0.0171 0.1797 0.1800 xtβ  
-0.019 0.1149 0.1152 

 
From the left panel in Table 16, it can be seen that bias and estimated variance of the 
parameter estimates in MI-GEE are not so far from those of WGEE. But if these results are 
compared with results in the right panel in Table 16, WGEE is performing outstanding in 
the situation with more dropouts. The amounts of bias found in MI-GEE are similar in both 
cases, but slight differences were seen in the estimated variance. This result gives some 
interesting remarks for WGEE that seems to perform best for datasets having more 
missingness. 
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6. Discussion and Conclusion 
 
Missing data happen habitually in longitudinal studies. Subjects may drop out before the 
study terminates, or be nowhere to be found to follow-up in such a way that no further 
measurements are made available after the time of dropout. Statistical methods which take 
no notice of the mechanism for dropout will show the way to biased inference. In the 
analysis of incomplete longitudinal data, there has been a shift, away from simple ad hoc 
methods that are valid only if the data are missing completely at random (MCAR), to more 
principled likelihood-based ignorable analyses, which are valid under the less restrictive 
missing at random (MAR) assumption, where the missing data simply don’t contribute to 
estimation of parameters. Thus, which method is to be considered for handling incomplete 
data depends on which type of dropout mechanism it is. Inverse probability weights method 
is one of the common methods for handling dropout that is MAR and is more usually used 
in marginal models for discrete longitudinal data. Alternatively, multiple imputation can be 
used to preprocess incomplete data, after which standard GEE is applied (MI-GEE). When 
multiple imputation is considered, a number of analysis methods can be taken into account, 
e.g., MI-Transition. 
 
This report is concerned with the comparison of the imputation techniques with inverse 
probability weighing techniques that are applied to incomplete binary longitudinal data with 
MAR dropout mechanism. This study explores further the work carried out by Beunckens 
et al (2007). In this study, the number of samples were diverse from N=50 to 500 in the 
same setting of the study of Beunckens et al (2007). In addition more percentage of 
missingness was also considered as an additional run. For this, asymptotic and small-
sample simulations were considered, and inverse probability weighting and multiple 
imputations techniques were applied in different sets of circumstances. The applications of 
these approaches were classified into two parts. In the first part, 68-76% completers were 
considered for the different sample of sizes N=50,100,200 and 500. In the second part, just 
reversed, more missingness, with 45-49% completers, was considered for a sample of size 
N=100. The main focus in second part was to distinguish the effect of the amount of 
missingness on the performance of the methods. For this rationale, same measurement 
models that were used in the first part were chosen, but the dropout models were altered, 
and the analyses were conducted. In both parts, various types of data generating models 
were used in order to examine the effectiveness of approaches that are used to analyze 
incomplete longitudinal binary data.  
 
First of all, let us discuss about the situation of the first part (Section 4), where the 68-76% 
subjects are completers. Although, WGEE has asymptotic unbiasedness property, even for 
correctly specified measurement and dropout models, in the small-sample simulations, 
WGEE has biased and imprecise estimates not only for small samples of size, 50 or 100, 
but a similar trend was observed in large samples of size 500. A clearer picture can be seen 
from Figure 1. Figure1 presents the plot of bias (biasN) and MSE of the parameter estimates 
under GMI, where the left panel of the plot represents results of WGEE and the right panel 
is for results of MI-GEE. The only encouraging observation from the figure is that the 
amount of bias tends towards zero and MSE are reduced as the sample size increases. The 
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amount of bias and MSE are larger in WGEE in compared to MI-GEE . The results shows 
steadiness starting from sample of size N=100. 
 

 

 
Figure 1: Plot of Bias and MSE of the parameters estimates under GMI with respect to the sample size, for 
GMI. 
 
In addition, misspecification in dropout and measurement model also gave inefficiency of 
WGEE methods. Figures 2 and 3 (Appendix) shows the clear picture about this fact. 
 

 

 
Figure 2 :Plot of Bias and MSE of the parameters estimates under GMI with respect to the sample size, for 
GMIII. 
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Figure 2 presents the plot of bias (biasN) and MSE of the parameter estimates under GMIII, 
where the amount of bias and MSE are larger in WGEE in compared to MI-GEE in all the 
cases. On the other hand, MI-GEE provided positive extent of strength to misspecification 
in either measurement or imputation model. In both scenarios, the sample size plays role in 
the sense that an increase of sample size reduces the quantity of bias, as well as the 
estimated variances of the parameter estimates for MI-GEE. In conclusion, MI-GEE 
showed less biased and more precise results. 
 
In the second part (Section 5), there were 45-49% of subjects are completers. In this case, 
WGEE has asymptotic unbiasedness property. It was found that  even under incorrectly 
specified measurement and dropout model, in small-sample simulations, WGEE has 
performed better for the given sample size N=100. This is an interesting result compared to 
previous case. The results for the bias and the estimated variances from WGEE are not far 
from the results from MI-GEE. Though, MI-GEE has shown always less biased and more 
precise results in both scenarios of the missingness in the first and second parts, WGEE has 
shown equally better performance in the second part with larger amount of missingness. 
Since in the second part, only samples of size N=100 were considered, more interesting 
results might be expected for other sample sizes. 
 
A simulation is an imitation of some real thing or process. The act of simulating something 
generally entails representing certain key characteristics or behaviors of a selected physical 
or abstract system. Thus, a simulation study cannot cover all possible alternatives.  
 
The following aspects are recommended for further research. Since in the second part, only 
samples of size 100 were considered, it is recommend exploring more sample sizes and 
varying percentages of missingness. Extension to more time points would be preferred so as 
to conclude the result in a more general setting.  
 
An important remark, asymptotic simulations were done to obtain the asymptotic bias and 
asymptotic variances, which have theoretical use only, and may provide the guidance as to 
what happens in large to very large samples. Supplementing them with small-sample 
simulations is therefore an attractive route. 
 
In conclusion, the use of direct likelihood methods is attractive to analyze incomplete data 
and might be the user’s ideal choice, but such methods have computational complexity, 
particularly arising when taking into consideration longitudinal binary data. Thus, weighted 
GEE and MI-GEE have been proposed for marginal models under the assumption of MAR. 
The results provide evidence for the fact that MI-GEE is less biased and more accurate in 
the small to moderate sample sizes, while WGEE is asymptotically unbiased and has shown 
only better performance for data having more percentage of dropout. 



 35

 

7.  References 
 
Agresti, A. (2002) Categorical Data Analysis (2nd edn). New York: John Wiley & Sons, Inc. 
Bahadur, R.R., 1961. A representation of the joint distribution of responses to n dichotomous items. In: 

Studies in Item Analysis and Prediction, Solomon, H. (Ed.), Stanford Mathematical Studies in the Social 
Sciences, vol. VI. Stanford, CA: University Press, Stanford. 

Beunckens, C., Sotto, C. and Molenberghs, G. (2007) A simulation study comparing weighted estimating 
equations with multiple imputation based estimating equations for longitudinal binary data. Computational 
Statistics and Data Analysis. In press. 

Carey, V.C., Zeger, S. L., and Diggle, P.J. (1993) Modelling multivariate binary data with alternating logistic 
regressions. Biometrika, 80, 517-526. 

Dale, J.R., 1986. Global cross-ratio models for bivariate, discrete, ordered responses. Biometrics 42, 909–917. 
Diggle, P.J., Liang, K.-Y., and Zeger, S.L. (1994) Analysis of Longitudinal Data. Oxford: Clarendon Press. 
Diggle, P.J., Heagerty, P.J., Liang, K-Y., and Zeger, S.L. (2002). Analysis of Longitudinal Data.  Oxford: 

Clarendon Press. 
Heckman, J.J. (1976) The common structure of statistical models of truncation, sample selection and limited 

dependent variables and a simple estimator for such models. Annals of Economic and Social Measurement, 
5, 475-492 

Jansen, I., Beunckens, C., Molenberghs, G., Verbeke, G., Mallinckrodt, C. (2006a) Analyzing incomplete 
binary longitudinal clinical trial data. Statistical Science, 21, 52–69. 

Lang, J.B., Agresti, A., 1994. Simultaneously modelling joint and marginal distributions of multivariate 
categorical responses. J. Amer. Statist. Assoc. 89, 625–632. 

Le Cessie, S. and Van Houwelingen, J.C. (1994) Logistic regression for correlated binary data. Applied 
Statistics, 43, 95-108. 

Liang, K.-Y., Zeger, S.L., 1986. Longitudinal data analysis using generalized linear models. Biometrika 73, 
13–22. 

Little, R.J.A.(1993) Pattern-mixture models for multivariate incomplete data. Journal of the American 
Statistical Association, 88, 125-134 

Little, R.J.A. (1994 a) A class of pattern-mixture models for normal incomplete data. Biometrika, 81, 471-
483. 

Molenberghs, G., Lesaffre, E., 1994. Marginal modelling of correlated ordinal data using a multivariate 
Plackett distribution. J. Amer. Statist. Assoc. 89, 633–644. 

Molenberghs, G., Lesaffre, E., 1999. Marginal modelling of multivariate categorical data. Statist. Med. 18, 
2237–2255. 

Molenberghs, G. and Kenward, M.G. (2007) Missing Data in Clinical Studies, John Wiley & Sons. 
Molenberghs, G. and Verbeke, G. (2005) Models for Discrete Longitudinal Data. New York: Springer-

Verlag. 
Plackett, R.L., 1965. A class of bivariate distributions. J. Amer. Statist. Assoc. 60, 516–522. 
Robins, J. M., Rotnitzky A., Zhao, L.P, 1995.Analysis of semiparametric regression models for repeated   

outcomes in the presence of missing data. J.Amer.Statist.Assoc.90, 106-121. 
Rotnitzky A., Wypij, D., 1994. A note on the bias of estimators with missing data. Biometrics 50,106-121. 
Rubin, D.B., 1978. Multiple imputations in sample surveys—a phenomenological Bayesian approach to 

nonresponse. In: Imputation and Editing of Faulty or Missing Survey Data. U.S. Department of Commerce, 
Washington, DC, pp. 1–23. 

Rubin, D.B., 1976. Inference and missing data. Biometrika 63,581-592 
Rubin, D.B., 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.  
Verbeke, G. and Molenberghs, G. (2000) Linear Mixed Models for Longitudinal Data. New-York: Springer. 
Wu, M.C., Bailey, K.R., 1989. Estimation and comparison of changes in the presence of informative right 

censoring: conditional linear model. Biometrics 45, 939-955. 
Wu, M.C., Carrol, R.J., 1988. Estimation and comparison of changes in the presence of informative right 

censoring by modelling the censoring process. Biometrics 44, 175-188. 
  
 
 



 36

 
 

8. Appendix  
 

Table : True Parameter under GMIII for Section 4. 
Parameter N=50 N=100 N=200 N=500 S* 

0β  -3.0596 -3.0373 -3.0388 -3.0231 323 

xβ  0.0605 0.0095 0.0112 0.0123 449 

tβ  1.7987 1.7812 1.7774 1.7643 498 

xtβ  0.4065 0.4828 0.4922 0.4947 500 
  S*= Number of convergent samples. 
 
 

 

 
Figure 1: Plot of Bias and MSE of the parameters estimates under GMI with respect to the sample size, for 
GMIII. 
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