
Faculteit Industriële Ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Analysis and implementation of novel non-cryptographic hash
functions

2020•2021

PROMOTOR :

Prof. dr. ir. Nele MENTENS

PROMOTOR :

dr. ing. Jo VLIEGEN

Thomas Claesen
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

Gezamenlijke opleiding UHasselt en KU Leuven

Faculteit Industriële Ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Analysis and implementation of novel non-cryptographic hash
functions

2020•2021

PROMOTOR :

Prof. dr. ir. Nele MENTENS

PROMOTOR :

dr. ing. Jo VLIEGEN

Thomas Claesen
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

Foreword

This thesis forms the culmination of my four-year course in Engineering Technology at UHasselt and
KULeuven and months of research and testing within the context of the Master’s thesis.

This project started off with the intent of implementing the HeavyKeeper algorithm to detect large
flows in network streams. But about halfway through the project, we realized that the original hash
function we wanted to implement (Speck), was just a bit too slow. So we decided to change the
project. From then on, we focused on finding other hash functions which are fast enough to
implement on hardware.

Luckily, my promotors Prof. dr. ir. Nele Mentens, and Arish Sateesan did an amazing job in guiding
me towards the new goals for the project. They never failed to keep me motivated by giving me new
advice and help during our weekly meetings. And I am very grateful for them to take the time out of
their busy schedule to talk with me every week. I would also like to thank my external promotor dr.
ing. Jo Vliegen, who helped me with the final thesis and giving me a better view of the results.

Furthermore, I would like to thank dr. Bart Dreesen in providing excellent information on the
structure and planning of the master’s thesis.

Finally, I would like to thank my family, who have helped me mentally during the darker parts of the
lockdown restrictions.

Table of contents
Foreword ... 1

List of tables .. 5

List of figures and pictures .. 7

Nomenclature .. 9

Abstract ... 11

Abstract in het Nederlands.. 13

1 Introduction ... 15

2 Analysis of the hash functions ... 17

2.1 Speck.. 17

2.1.1 Initialization ... 17

2.1.2 Round Function ... 17

2.1.3 Key schedule .. 18

2.2 Pyjamask .. 19

2.2.1 Initialization ... 19

2.2.2 Round Functions .. 19

2.2.3 Key Schedule.. 20

2.3 GIFT .. 21

2.3.1 Initialization ... 21

2.3.2 Round Functions .. 22

2.3.3 Key Schedule.. 23

2.4 AES ... 23

2.4.1 Initialization ... 23

2.4.2 Round Functions .. 24

2.4.3 Key Schedule.. 25

2.5 Skinny .. 26

2.5.1 Initialization ... 26

2.5.2 Round Functions .. 27

2.5.3 Key Schedule.. 28

3 Performing the avalanche analysis .. 29

3.1 Avalanche metrics ... 29

3.1.1 Avalanche Dependence ... 29

3.1.2 Avalanche weight .. 30

3.1.3 Entropy .. 30

3.2 Avalanche results .. 30

4 Hardware Evaluation ... 33

4.1 Setup .. 33

4.2 Hardware results ... 33

4.2.1 Timing .. 33

4.2.2 Resource utilization ... 35

4.2.3 Throughput .. 35

4.2.4 Comparison with related work .. 35

5 Conclusion ... 37

References ... 38

List of Appendices ... 39

List of tables

Table 1: Different variations of the Speck cipher ... 17

Table 2: Results of the avalanche analysis with key .. 31

Table 3: Results of the avalanche analysis without key .. 32

Table 4: Max frequency measured in the hardware implementation without key 34

Table 5: Max frequency measured in the hardware implementation with key 34

Table 6: Resources used in the hardware implementation .. 35

Table 7: Throughput results for all ciphers with and without key .. 35

Table 8: Comparison of maximum frequency, throughput, throughput per LUT and delay with related
work ... 36

List of figures and pictures

Figure 1: A single encryption round for Speck .. 18

Figure 2: Key round operations in Speck ... 18

Figure 3: Representation of the plaintext in Pyjamask-96 .. 19

Figure 4: Sbox for Pyjamask-96 ... 19

Figure 5: Sbox for Pyjamask-128 ... 19

Figure 6: Matrices used in the MixRows operation .. 20

Figure 7: Matrix used in the MixColumns operation... 20

Figure 8: Matrix used on the first row in the MixRows operation for the key state 20

Figure 9: Visual representation of the Constant Addition operation .. 21

Figure 10: Representation of the plaintext in GIFT ... 21

Figure 11: Sbox used in the Sub Cells operation ... 22

Figure 12: Permutation of the internal state .. 22

Figure 13: Visual representation of the AddRoundKey operation .. 22

Figure 14: Round Constant Lookup Table ... 23

Figure 15: Visual representation of a round in the GIFT key schedule ... 23

Figure 16: Structure of the internal state in AES ... 24

Figure 17: ShiftRows operation in AES .. 24

Figure 18: Matrix M for the MixColumns operation in AES .. 25

Figure 19: Key Schedule for AES .. 25

Figure 20: Round Constant Lookup Table for the Key Schedule in AES .. 26

Figure 21: Internal state of Skinny .. 26

Figure 22: ShiftRows function in Skinny .. 27

Figure 23: Multiplication Matrix for the MixColumns function in Skinny ... 28

Figure 24: Key Schedule for Skinny ... 28

Figure 25: Pseudocode to calculate the probability vector P ... 29

Figure 26: Results of the Avalanche analysis with key .. 31

Figure 27: Results of the Avalanche analysis without key .. 31

Figure 28: General setup for the hardware implementation .. 33

Figure 29: Timing results for the hardware evaluation ... 34

Nomenclature

ARX cipher

An ARX cipher stands for Add-Rotate-XOR cipher. Here, only these three operations are used
to calculate the ciphertext and the key state.

Avalanche metrics

Values to measure the randomness of a hash function. If it is not random enough, then the
hash function can be vulnerable to attacks. It is calculated with the use of three values:
Avalanche dependence, avalanche weight and avalanche entropy.

Ciphertext

A piece of text of predetermined length received from a cipher or hash function. It is
dependent on the input of the cipher or hash function.

Hash function

A function that uses mathematical functions to transform a piece of text of arbitrary length
into a ciphertext of fixed length. When the ciphertext is received, it should be impossible to
get the original input. Also, it is very difficult to find two values which have the same
ciphertext.

Internal state

Value of the plaintext after it is inserted in the cipher or hash function and before it is output
as the ciphertext.

Key state

 Same as the internal state, but then for the key instead of the plaintext.

Least significant bits (LSB)

The bit with the lowest value from a word or byte or any value. For example, the byte
00001001 is 9 in decimals. Here, the right most 1 is the least significant bit.

Most significant bits (MSB)

The opposite of the LSB. From the example from the LSB, the left most 0 is the most
significant bit.

Plaintext

Input of a cipher or hash function. Usually it has a predetermined length, but for hash
functions, it can be any length.

Sbox

A predetermined array of values. It is used inside the ciphers to replace the internal state by
the values in the Sbox.

SPN cipher

An SPN cipher stands for Substitute-Permutation network cipher. It uses the substitution
mathematical function, followed by permutating the internal states, and sometimes
accompanied by an addition of the key.

Symmetric cipher

A symmetric cipher uses the same mathematical functions each round. These rounds are
then repeated a set amount of times to get the ciphertext at the end.

Throughput

 The amount of data which can be sent through the hash functions in a given amount of time.

Worst negative slack

This value shows the most negative of any single path that failed the timing constraint. It is
mostly used as a value to show how badly the timing was missed.

Abstract

Hash functions are vital building blocks for many networking and security applications. In these
applications, the speed of hashing is of crucial importance, affecting the overall throughput of the
system. The goal of this thesis is to design novel non-cryptographic hash functions based on reduced-
round versions of symmetric-key ciphers, and to analyze the avalanche properties and timing
characteristics of these algorithms. The considered ciphers are Speck, Pyjamask, GIFT, AES and
Skinny. The number of rounds required are determined so that satisfactory avalanche properties are
met, both with and without the addition of the key.

After finding the optimal number of rounds, the timing properties are evaluated using hardware
design tools. Each hash function is implemented as the reduced version of the original cipher on
different FPGA platforms, both with and without the addition of a key. The maximum possible
operating frequency is calculated and the resources required at that frequency are also measured.
The throughput is calculated based on the maximum operating frequency. The analysis results show
that different ciphers have different performance characteristics. Also, the obtained hash functions
show better avalanche properties and outperform most of the existing non-cryptographic hash
functions.

Abstract in het Nederlands

Hashfuncties zijn essentiële bouwblokken voor veel netwerk- en beveiligingstoepassingen. In deze
toepassingen is de snelheid van hashen van cruciaal belang, met een grote invloed op de
verwerkingssnelheid van de hashfuncties. Het doel van deze scriptie is om nieuwe niet-
cryptografische hashfuncties te ontwerpen op basis van symmetrische-sleutel algoritmen met een
gereduceerd aantal ronden en de avalanche-eigenschappen en timing beperkingen te analyseren. De
volgende algoritmen worden beschouwd: Speck, Pyjamask, GIFT, AES en Skinny. Het aantal
benodigde rondes wordt zo bepaald dat er aan de avalanche eigenschappen wordt voldaan, zowel
met als zonder toevoeging van de sleutel.

Nadat het optimale aantal rondes is gevonden, worden de timing eigenschappen geëvalueerd met
behulp van hardware-ontwerptools. Elke hashfunctie is geïmplementeerd als de gereduceerde versie
van het originele cijfer op verschillende FPGA-platformen, zowel met als zonder sleutel. De maximaal
mogelijke werkingsfrequentie wordt berekend en ook de bij die frequentie benodigde middelen
worden gemeten. De doorvoer wordt berekend op basis van de maximale werkingsfrequentie. De
analyseresultaten tonen aan dat verschillende algoritmen verschillende prestatiekenmerken hebben.
Ook vertonen de verkregen hashfuncties betere avalanche eigenschappen en presteren ze beter dan
de meeste bestaande niet-cryptografische hashfuncties.

1 Introduction

Hash functions are operations where a text of arbitrary length is converted into an encrypted
message with fixed length. They are one-way functions, which means that it is not feasible to
recover the original message in practice. They are used in many networking and security
applications where hash functions help to reduce the memory overhead and increase the speed
of the computations. Network security applications such as Bloom filters [1] for fast lookups and
sketches [2] for memory efficient measurements use hash functions as one of their components.
With the ever increasing data-rate of the internet, the throughput of these applications needs to
be matched. However, the throughput of these applications is reliant on the efficiency of the
hash functions, which makes the speed of the hash functions an important factor.

Usually, hash functions offer high levels of security. However, these are not necessary for lookup
or counting architectures. Only data-rate and avalanche properties are more important. In this
thesis, non-cryptographic hash functions inspired by five symmetric-key ciphers are proposed:
Speck, Pyjamask, GIFT, AES and Skinny. How these ciphers work, is described in section 2. Section
3 will be an analysis of the avalanche properties for each cipher as a function of the number of
rounds. These avalanche properties are measurements to indicate to which extent a change of
the input has an influence on the change of the output. The optimal amount of rounds for each
cipher is measured here. Lastly, section 4 will measure the throughput for these ciphers. The
hash functions will be evaluated on both Zynq and Virtex Ultrascale+ FPGAs. All of these
calculations are done using an input of 96 bits. Some ciphers, however, only operate with an
input of 128 bits. For these, the results are generated for only 96 bits, while 32 other bits are
fixed to 0.

16

17

2 Analysis of the hash functions

2.1 Speck

2.1.1 Initialization

The Speck block cipher family [3] holds a staggering 10 different variations of the Speck
algorithm. Table 1 shows the difference between these variations. This thesis focuses on the
variation with block size and key size of 96 bits. Speck is an ARX cipher, which means it only
uses these three operations to calculate the ciphertext.

Table 1: Different variations of the Speck cipher [3]

During the rounds, the key and the plaintext are split into two parts of 48 bits. The most
significant bits of the plaintext and the key are stored in plaintext 1 and key 1 respectively,
while the least significant bits are stored in plaintext 2 and key 2.

2.1.2 Round Function

In Speck, each round performs the same three operations: Rotation, Addition and an XOR.
First, plaintext 1 is rotated 8 bits to the right, this is followed by an addition with plaintext 2.
plaintext 1 is the XORed with key 2. For plaintext 2, the operations start after the addition to
plaintext 1, it is first rotated 3 bits to the left and then XORed with plaintext 1. Figure 1 shows
how this is done for a single round. After each round, the output is connected to the input of
the next round.

18

Figure 1: A single encryption round for Speck

2.1.3 Key schedule

The key changes every round for Speck, this round function works similarly to the encryption
round for the plaintext. First, key 1 is rotated 8 bits to the right. Then, key 2 is added to key 1.
This is followed by and XOR with the number of the round, this starts counting from 0 from
the first round and increments by 1 every round. Key 2 starts with a rotation by 3 bits to the
left and is then XORed with the intermediate value on the left. Figure 2 shows how these
operations are executed onto the key.

Figure 2: Key round operations in Speck

 A full diagram of the first two rounds of the Speck algorithm can be found in appendix A.

19

2.2 Pyjamask

2.2.1 Initialization

Pyjamask is a block cipher family [4] which contains two algorithms: Pyjamask-96, which has
a block size of 96 bits, and Pyjamask-128, which has a block size of 128 bits. Both algorithms
use a key with a size of 128 bits, perform 14 rounds and rely on a Substitution-Permutation
Network (SPN) structure to transform the plaintext into the ciphertext. The plaintext is
structured in a bit by bit left-right top-down structure. Each row consists of 32 bits.
Depending on the block size of the chosen algorithm, 3 or 4 rows are used. The cell which
holds the lowest index represents the most significant bit of the plaintext and the cell with
the highest index represents the least significant bit. The key is represented in the same way
as the plaintext. Only this time, there are 4 rows used of which each contain 32 bits. Once the
plaintext enters the algorithm, it will be referred to as the internal state. Figure 3 represents
the structure of the plaintext for pyjamask-96.

Figure 3: Representation of the plaintext in Pyjamask-96

Each round is composed of three operations, which happen in chronological order:
AddRoundKey, SubBytes and MixRows.

2.2.2 Round Functions

 AddRoundKey

First, the key is bitwise added to the internal state. For Pyjamask-128, this is done with a
simple XOR. For Pyjamask-96 however, only the 96 most significant bits of the key are XORed
with the 96-bit internal state.

 SubBytes

Then, all 32 columns of the internal state are extracted and compared to a constant Sbox. For
Pyjamask-96, this Sbox is called S3 and for Pyjamask-128 it is called S4 . S3 and S4 are shown
in Figure 4 and Figure 5 respectively. For example, in a given Pyjamask-96 round, column 1
contains the bits “100”, which is binary for the number 4. The fourth number from S3 is 2
(start counting from zero). 2 in binary gives “010”, which is then put in column 1.

Figure 4: Sbox for Pyjamask-96

Figure 5: Sbox for Pyjamask-128

20

 MixRows

Finally, each row Ri of the internal state is seen as a column matrix. This matrix is then
multiplied by a constant matrix Mi with i ∈ {0, 1, 2} for Pyjamask-96 and i ∈ {0, 1, 2, 3} for
Pyjamask-128. Each row in the internal state is then replaced by Mi · Ri. Each matrix M is a
32x32 circulant binary matrix, they are shown in Figure 6.

After the last round, a final AddRoundKey operation is applied to the internal state and the
ciphertext is created. Appendix B shows a visual representation of a round in the Pyjamask-
96 algorithm.

Figure 6: Matrices used in the MixRows operation

2.2.3 Key Schedule

Throughout the algorithm, different keys are used in each AddRoundKey. These keys are
called subkeys, and all originate from the original secret key. To receive these subkeys, three
operations are executed each round: MixColumns, MixRows and Constant Addition. Because
Pyjamask-96 and Pyjamask-128 both use 128-bit keys, the same operations are used to
create the subkeys.

 MixColumns

First, all 32 columns Ci of each 4 bits are replaced by Ci · M where M is a constant matrix,
which is shown in Figure 7.

Figure 7: Matrix used in the MixColumns operation

 MixRows

Then, the first row R0 of the key state is replaced by MK · R0. This operation is similar to the
MixRows operation in the internal state. MK is a 32x32 circulant matrix, which is shown in
Figure 8. The second row R1 of the key state, is rotated to the left by 8 bits. The third and
fourth row R2 and R3 are also similarly rotated to the left by 15 and 18 bits respectively.

Figure 8: Matrix used on the first row in the MixRows operation for the key state

21

 Constant Addition

Finally, a 32-bit constant value is broken down into four bytes, which are then bitwise added
to the key state. The four least significant bits of this constant are equal to the round
number, which is between 0 and 13. Figure 9 gives a visual representation of this operation.

Figure 9: Visual representation of the Constant Addition operation

 Appendix C gives a full visual image of a single round of the key schedule.

2.3 GIFT

2.3.1 Initialization

The GIFT block cipher family [5] contains two algorithms: GIFT-64 and GIFT-128. Both use a
key size of 128 bits, while the former uses a block size of 64 bits and the latter of 128 bits. In
this thesis, GIFT-128 is used. Like Pyjamask, GIFT is an SPN cipher containing 40 rounds of
three operations: SubCells, PermBits and AddRoundKey. There are multiple ways the
plaintext can be initialized, but this thesis uses the following method: The plaintext is
initialized in a 4x32 matrix of bits and the most significant bits are stored in the cell with the
lowest index, so cell 0 stores the most significant bit of the plaintext. Unlike Pyjamask, the
bits are stored top-down left-right. The 128-bit key is stored like the key in Pyjamask, left-
right top-down. A visual interpretation of the internal state is shown in Figure 10.

Figure 10: Representation of the plaintext in GIFT

22

2.3.2 Round Functions

 SubCells

Similar to SubBytes in Pyjamask, each 4-bit column is compared to an Sbox and replaced by
the appropriate value. The Sbox is show in Figure 11. X gives the value which was in the
column before the operation and GS(x) is the value which replaces x.

Figure 11: Sbox used in the SubCells operation

 PermBits

This operation shuffles all the bits in the internal state in a given way. It is shown in Figure 12.

Figure 12: Permutation of the internal state

 AddRoundKey

Finally, the key is added to the internal state. The key is split into 4 blocks Ki of 32 bits each.
The same is done to the internal state with blocks Pi. For both the key and the internal state,
i ∈ {0, 1, 2, 3} where P0 and K0 hold the most significant bits of both the key and the internal
state. Of these blocks, P1 and P2 are XORed with K1 and K2 respectively. The most significant
bit of P3 is also XORed with ‘1’ and the least significant bits of P3 is XORed with a constant.
This value is extracted from the round constant lookup table based on which round is given.
A visual representation of this operation is shown in Figure 13 and the round constant lookup
table is shown in Figure 14.

Figure 13: Visual representation of the AddRoundKey operation

23

Figure 14: Round Constant Lookup Table

 Appendix D gives a visual representation of a full round in the GIFT-128 algorithm.

2.3.3 Key Schedule

The key schedule is a very simple operation for GIFT compared to the key schedule for
Pyjamask. The key is again split in 4 blocks Ki of 32 bits each, like in AddRoundKey. K0, K1 and
K2 are then shifted towards the least significant bits of the key state, while K3 now holds the
most significant bit. K3 is then split again in two 16-bit blocks, K3,1 and K3,2. These two blocks
are then right-rotated 2 and 12 bits respectively. Figure 15 shows how this operation works.

Figure 15: Visual representation of a round in the GIFT key schedule

2.4 AES

2.4.1 Initialization

AES is probably the most famous encryption cipher [6]. It has a block size of 128 bits and the
key size can be either 128, 192 or 256 bits. Depending on the key size, the number of rounds
are 10, 12 and 14 respectively. This thesis focuses on the algorithm with key size of 128 bits
Each round consists of 4 operations: SubBytes, ShiftRows, MixColumns and AddRoundKey.
However, the first and last round differ slightly from this order. The first round starts with an
initial AddRoundKey and the last round does not calculate the MixColumns operation.

Just like in GIFT, the plaintext input is structured in a top-down left-right structure. The
difference with GIFT, is that AES is structured byte-by-byte instead of bit-by-bit. This results
in a 4x4 matrix of bytes, as shown in Figure 16. The key is structured similarly.

24

Figure 16: Structure of the internal state in AES

2.4.2 Round Functions

 SubBytes

Similarly to Pyjamask and GIFT, each byte is compared and replaced by a value from the
Sbox. The Sbox can be found in appendix E and is a 16x16 matrix where the column selection
is determined by the last 4 bits of the byte and the row selection by the first 4 bits.

 ShiftRows

Afterwards, each row is shifted in a given way. The first row stays the same, the second row
is shifted one byte to the left, the third row is shifted two bytes to the left and the fourth row
three bytes to the left. Figure 17 shows how this is done.

Figure 17: ShiftRows operation in AES

 MixColumns

Then, the MixColumns operation works similarly to the one in the key schedule in Pyjamask.
Each column is multiplied by a given Matrix M, which is given in Figure 18. The results then
replace each column of the internal state.

25

Figure 18: Matrix M for the MixColumns operation in AES

 AddRoundKey

Finally, the AddRoundKey calculates a simple XOR of the key into the internal state. This is
similar to the AddRoundKey function in Pyjamask. Each round uses a different subkey. These
are calculated in the key schedule.

The full visual representation of a single round can be found in appendix F.

2.4.3 Key Schedule

The key schedule of AES, similar to GIFT, is constructed of only one operation. It is however,
slightly more complex. As mentioned in the beginning of this chapter, the key state is
structured like the internal state: byte-by-byte, top-down left-right. Here, each byte is
numbered Ki where i ∈ {0, 1, 2, …, 14, 15}. K0 holds the most significant byte of the key state.
During the key schedule, if i is greater than or equal to 4, every byte Ki is XORed with Ki-4.
Furthermore, K1, K2 and K3 are XORed with a value from the same Sbox as in SubBytes by
extracting the value from K14, K15 and K12 respectively and putting those in said Sbox. Finally,
K0 is XORed with the value from the Sbox by extracting K13 and by a round constant. Figure 19
gives a visual representation of this operation and Figure 20 gives the round constant lookup
table.

Figure 19: Key Schedule for AES

26

Figure 20: Round Constant Lookup Table for the Key Schedule in AES

 Appendix G gives a full representation of the Key Schedule.

2.5 Skinny

2.5.1 Initialization

The final cipher that will be discussed in this thesis, is the Skinny block cipher family [7],
which holds 6 algorithms:

o Skinny-64-64
o Skinny-64-128
o Skinny-64-196
o Skinny-128-128
o Skinny-128-256
o Skinny-128-384

The first numerical value is the block size used in the algorithm, the second value is the key
size. This thesis focuses on Skinny-128-128.

The plaintext and key are initialized similarly to AES, but now in a left-right top-down
method, as shown in Figure 21.

Figure 21: Internal state of Skinny

Skinny also uses a different amount of rounds depending on the algorithm used. For the
algorithm used in this thesis, which is Skinny-128-128, 40 rounds are used. Each round
consists of no less than 5 different operations: SubBytes, AddConstants, AddRoundKey,
ShiftRows and MixColumns.

27

2.5.2 Round Functions

 SubBytes

First, the SubBytes operation is calculated. This follows the exact same way as SubBytes in
AES, only this time, the Sbox is different. This Sbox can be found in Appendix H.

 AddConstants

Next, round constants are XORed to the first column of the internal state. The value in b8, as
shown in Figure 21, is XORed with a constant hexadecimal value of 0x02. Meanwhile, b12
stays the same, but b0 and b4 are XORed with a round constant, this value is a 6-bit number
which changes every round. The 4 least significant bits of b0 are XORed with the 4 least
significant bits of this value and the 2 least significant bits of b4 are XORed with the 2 most
significant bits of the round constant. The lookup table for this round constant, is shown in
appendix I.

 AddRoundKey

Then, the key state is added to the internal state. Unlike the AddRoundKey function in AES,
only the 8 most significant bytes of the key are XORed to the 8 most significant bytes of the
internal state.

 ShiftRows

Furthermore, the ShiftRows function is implemented. Fundamentally, this works the same
way as the ShiftRows function in AES, only this time the rows are shifted to the right. Also,
due to the initial structure of the internal state being different than the one in AES, this
ShiftRows gives other results. Like AES, the first row is not shifted, the second row is shifted
right once, the third row shifted twice and the last row shifter thrice. The result is shown in
Figure 22.

Figure 22: ShiftRows function in Skinny

 MixColumns

Finally, the MixColumns function wraps up the round. Similar to MixColumns in Pyjamask and
AES, each column of the internal state is multiplied by a Matrix M, which is given in Figure 23.

28

Figure 23: Multiplication Matrix for the MixColumns function in Skinny

 Appendix J gives a full visual diagram of a single round in Skinny.

2.5.3 Key Schedule

Just like other ciphers, the key updates every round into different subkeys. In Skinny, the key
updates similarly to the key schedule in GIFT. By shifting different key bytes to other places in
the key state. How the bytes shift, is shown in Figure 24.

Figure 24: Key Schedule for Skinny

A full visual representation of the key schedule can be found in appendix K.

29

3 Performing the avalanche analysis

3.1 Avalanche metrics

The avalanche properties are metrics used to measure the influence of an input change to the
change of the output. If the hash function does not show good avalanche properties, then a
change at the input does not have an effect on a sufficient amount of output bits. This leaves the
hash function vulnerable to attacks. There are three avalanche metrics which are used to
evaluate the hash functions mentioned in this thesis: Avalanche dependence, avalanche weight
and avalanche entropy [8].

These values are all calculated using the probability vector, which is a measure of the average
amount of times a bit changes in the output if you only change one bit in the input. It stores the
average bit changes for each bit in the output. These calculations have to be iterated a large
amount of times to try to prevent outliers. Figure 25 shows the pseudocode to calculate the
probability vector P. N indicates the input size, which is 96 for Speck and Pyjamask, or 128 for
GIFT, AES and Skinny. A1 and A2 are inputs for the hash functions and H1 and H2 are outputs.
Finally, T gives which bit needs to be toggled from A1 to get A2. The probability vector is
calculated for every value of T (0 to 95 or 127) and the avalanche metrics are measured for every
probability vector of T. Afterwards, the worst metrics are stored.

These calculations are done in search for the ideal number of rounds each cipher needs, to get
good enough avalanche metrics. When all calculations are done, the avalanche metrics are
plotted in function of the number of rounds.

Figure 25: Pseudocode to calculate the probability vector P [9]

3.1.1 Avalanche Dependence

The avalanche dependence Dav is defined by the number of bits which toggle in the output
when there is a single-bit change in the input. Equation 1 shows how this value is calculated
[9]. Here, n is the number of bits at the output, p[i] is the probability vector and g(p) is a
function where g(p) = 1 if p = 0 and g(p) = 0 otherwise. The avalanche dependence is satisfied
when Dav = n.

30

𝐷 = 𝑛 − ∑ 𝑔(𝑝[𝑖]) [1]

3.1.2 Avalanche weight

The avalanche weight wav is a measurement to define the weight of the output difference.
The formula is shown in equation 2. It is in essence a sum of the probability vectors. Ideally,
half of the output should change so that the randomization is at its best, which means that
the ideal value for the avalanche weight is half of the output size n.

𝑤 = ∑ 𝑝[𝑖] [2]

3.1.3 Entropy

Finally, the avalanche entropy Hav is a value to show the uncertainty about whether the
output bits toggle or not for a single-bit input change in the input.

𝐻 = ∑ (−𝑝[𝑖] ∙ log (𝑝[𝑖]) − (1 − 𝑝[𝑖]) ∙ log (1 − 𝑝[𝑖])) [3]

3.2 Avalanche results

These three avalanche metrics are then plotted against the number of rounds that have been
executed. Figure 26 and Figure 27 show these plots for ciphers with key and without key
respectively. When a key is used, it is initialized at a fixed value of 0. When the key is not used,
every operation involving the key is simply ignored. For each cipher, NC (Non-Cryptographic) is
added to the name to indicate the round-reduced version. The X-axis gives the number of rounds
used when the avalanche metrics are measured and the Y-axis gives the values for the avalanche
metrics, which are in bits.

As shown in the figures, there is no significant difference between the avalanche properties
when a key is used or not. Even more so, the key seems to have no effect on the avalanche
properties of the hash functions. This means that when it is desired that the output of the hash
function needs to be changed, the avalanche properties will not be affected.

As mentioned in section 2, Speck normally needs 28 rounds to be considered secure. Speck-NC,
however, only requires 7 rounds to be used as a non-cryptographic hash function. The same
happens for all other ciphers. Pyjamask requires 14 rounds, but it meets the avalanche
requirements at round 3. However, 2 rounds are also a valuable solution if speed is of the
essence. GIFT-NC only needs 7 rounds instead of GIFT’s 40 rounds, but 6 rounds are also
acceptable. AES goes from 10 rounds to 3 rounds for AES-NC and finally, Skinny-NC needs only 6
rounds while Skinny needs 40. Table 2 gives a summary of the results of the avalanche analysis.

Finally, as mentioned earlier, Speck and Pyjamask have an input and output size of 96 bits, while
the other ciphers have a 128-bit input and output size. However, when the 128-bit ciphers are
tested for their avalanche properties, a random input of 96 bits is padded with 32 zero bits. The
placement of the padding zeros has no effect on the avalanche metrics.

31

Figure 26: Results of the Avalanche analysis with key

Table 2: Results of the avalanche analysis with key

Hash function Dav wav Hav r rav

Speck-NC 96 47.3848 95.6196 28 7
Pyjamask-NC 96 47.5808 95.9627 14 3

GIFT-NC 128 63.4416 127.9309 40 7
AES-NC 128 62.854 127.4397 10 3

Skinny-NC 128 61.798 127.3621 40 6

Figure 27: Results of the Avalanche analysis without key

32

Table 3: Results of the avalanche analysis without key

Hash function Dav wav Hav r rav

Speck-NC 96 47.4476 95.6829 28 7
Pyjamask-NC 96 47.7296 95.9628 14 3

GIFT-NC 128 63.3888 127.9482 40 7
AES-NC 128 62.858 127.4356 10 3

Skinny-NC 128 61.830 127.4030 40 6

33

4 Hardware Evaluation

4.1 Setup

The reduced round version of the ciphers are implemented on FPGA to evaluate the performance
on hardware. The platforms chosen for the evaluation are Zynq 7020, Virtex Ultrascale and Virtex
Ultrascale+ board. To generate the results, the Vivado 2019.1 design tool is used. Each cipher is
tested for a specific clock period and the Worst Negative Slack (WNS) is taken to check if the
specified timing constraint is met. If this value is positive, then the timing constraint is met and
the operating speed can be faster. If it is negative, then the clock period needs to be lowered.
Figure 28 gives a general setup for the hardware implementation. As shown in the figure, only
input and output registers are added and the execution of all the rounds are completed in a
single clock cycle. The number of rounds for each cipher is equal to the number of rounds which
are needed to maintain the avalanche properties. These are calculated in section 3 and shown in
Table 2 and 3 under the value of rav. The key is not a necessary parameter for traditional hash
functions, as a given plaintext should always have the same ciphertext. But for some
applications, like in Bloom filters, it can be useful to receive other ciphertext values for the same
plaintext. This can be done by using different key values. A full visual representation of the
hardware implementation of all ciphers, can be seen in appendix L.

Figure 28: General setup for the hardware implementation

4.2 Hardware results

4.2.1 Timing

Figure 29 shows the results for the timing tests. The X-axis gives the clock period and the Y-
axis gives the WNS. Each cipher is tested on all three boards, once with key and once without
key. Using the graphs, it is possible to calculate the maximum operating frequency using
equation 4,where the min clock period is taken as the lowest possible clock period with a
positive WNS.

𝑓 =
, , ,

 ()
 [4]

34

It is clearly visible from the graphs that the key has an impact on the timing constraints for
Speck, Pyjamask and AES. Speck sees an increase of operating frequency of 11-18%.
Furthermore, the operating frequency of AES increases by 15-25%. While Pyjamask’s
operating frequency only increases on the Zynq board by 18%. GIFT and Skinny see no
significant improvements when the key is removed. From all the hash functions mentioned in
this thesis, GIFT-NC looks the most promising. It is the fastest hash function for both using
the key and not using the key. Table 4 shows a better representation of the maximum
operating frequencies of the hash functions. As expected, the frequency increases for bigger
boards.

Figure 29: Timing results for the hardware evaluation

Table 4: Max frequency measured in the hardware implementation without key

 Max Frequency (without key)
 Board
Hash function

Zynq 7020 Virtex
Ultrascale

Virtex
Ultrascale+

Speck-NC 62.50 MHz 111.11 MHz 166.66 MHz
Pyjamask-NC 90.91 MHz 200.000 MHz 250.00 MHz

GIFT-NC 111.11 MHz 250.00 MHz 333.33 MHz
AES-NC 76.92 MHz 200.00 MHz 250.00 MHz

Skinny-NC 55.56 MHz 142.86 MHz 200.00 MHz

Table 5: Max frequency measured in the hardware implementation with key

 Max Frequency (with key)
 Board
Hash function

Zynq 7020 Virtex
Ultrascale

Virtex
Ultrascale+

Speck-NC 52.63 MHz 100.00 MHz 142.86 MHz
Pyjamask-NC 76.92 MHz 200.00 MHz 250.00 MHz

GIFT-NC 111.11 MHz 250.00 MHz 333.33 MHz
AES-NC 66.67 MHz 166.67 MHz 200.00 MHz

Skinny-NC 55.56 MHz 142.86 MHz 200.00 MHz

35

4.2.2 Resource utilization

Another value which can be received from the hardware implementation, are the resources
used for each cipher. Table 6 shows these results. It is clearly visible that GIFT-NC is uses the
least amount of resources of all ciphers with key, but Speck-NC is slightly better for all ciphers
without key. However, when the key is added, it needs two to three times the amount of
resources. Meanwhile, GIFT-NC and Skinny show negligible increase in resources when the
key is added compared to the other hash functions.

Table 6: Resources used in the hardware implementation

 Without key With key
Hash function LUTs Flip Flops LUTs Flip Flops

Speck-NC 432 192 1273 384
Pyjamask-NC 811 448 1615 448

GIFT-NC 546 512 665 512
AES-NC 2225 512 3402 512

Skinny-NC 2176 512 2348 512

4.2.3 Throughput

The throughput measures how many bits per seconds can be passed through the hash
function per second. It can be calculated using equation 5, where latency in cycles is equal to
1 because all rounds are calculated in one cycle. The block size is equal to 96 bits and the max
frequency is taken from the highest value from

Table 4. The throughput is measured in bits per second and the results are shown in Table 7.
Again, GIFT-NC shows the best throughput among the ciphers evaluated in this thesis. It has
the highest throughput out of all ciphers with or without key. Meanwhile, Speck-NC and AES-
NC show an increase in throughput of 16,67% and 25% respectively.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =

∙ 𝑓 [5]

Table 7: Throughput results for all ciphers with and without key

 Without key With key
Hash function Maximum

frequency
Throughput
(Mbps)

Maximum
frequency

Throughput
(Mbps)

Speck-NC 166.66 MHz 16,000 142.86 MHz 13,714
Pyjamask-NC 250.00 MHz 24,000 250.00 MHz 24,000
GIFT-NC 333.33 MHz 32,000 333.33 MHz 32,000
AES-NC 250.00 MHz 24,000 200.00 MHz 19,200
Skinny-NC 200.00 MHz 19,200 200.00 MHz 19,200

4.2.4 Comparison with related work

The five novel non-cryptographic hash functions measured in this thesis are now related to
some existing hash functions: Murmur3 [10], FNV-1a [11], SipHash [12], XORHash [12],
NSGAHash7 [12] and Xoodoo-NC [13]. Here, Murmur3 and FNV-1a were implemented on

36

FPGA to get the timings for this thesis. Table 8 gives a full overview of the comparison.
Although XORHash has the highest operating frequency, it has 5.57x less throughput
compared to Speck-NC. Which has the lowest throughput among the hash functions analyzed
in this thesis. This is due to XORHash having a 32-bit block size and a latency of 7 clock cycles.
Furthermore, Xoodoo-NC has a slightly higher throughput over GIFT-NC, which has the
highest throughput out of all the hash functions analyzed in this thesis. However, in theory
the maximum frequency of GIFT-NC could be higher. This is because only round numbers
have been tested as clock periods. In terms of throughput per LUT (Tp/LUT), Xoodoo-N is the
highest, almost doubling the Tp/LUT of GIFT-NC. So for applications where area plays an
important role, Xoodoo-NC should be used over GIFT-NC.

Finally, it is clearly visible that the hash functions analyzed in this paper have way higher
throughput compared to Murmur3, FNV-1a, SipHash, XORHash and NSGAHash7. The delay is
also way lower. Another important point to mention, is that SipHash, XORHash and
NSGAHash7 use a 32-bit input block size, which is 3x smaller compared to the hash functions
in this thesis. Xoodoo-NC uses a 96-bit input block size.

Table 8: Comparison of maximum frequency, throughput, throughput per LUT and delay with related work

Hash function Maximum
frequency

Throughput
(Mbps)

Tp / LUT
(Mbps / LUT)

Delay (ns)

Murmur3 120.6 MHz 2,573 4.54 24.87
FNV-1a 122.9 MHz 925 1.63 130.08
SipHash [12] 182.8 MHz 1,463 1.38 21.88
XORHash [12] 627.3 MHz 2,868 9.86 11.13
NSGAHash7 [12] 184.1 MHz 1,473 18.41 21.72
Xoodoo-NC [13] 363.6 MHz 34,906 112.96 2.75
Speck-NC 166.66 MHz 16,000 37.04 6.000
Pyjamask-NC 250.00 MHz 24,000 29.59 4.000
GIFT-NC 333.33 MHz 32,000 58.61 3.000
AES-NC 250.00 MHz 24,000 10.79 4.000
Skinny-NC 200.00 MHz 19,200 8.82 5.000

37

5 Conclusion

The reduced round non-cryptographic versions of symmetric-key ciphers are implemented and
analyzed in this thesis. The avalanche properties are calculated first to determine how many
rounds from the ciphers can be reduced. Here, a 70-85% reduction is measured for all ciphers,
while still having excellent avalanche properties. It is also noted that the key implementation has
no effect on the avalanche properties. Afterwards, the reduced-round hash functions are
implemented on the different FPGA platforms and the timings are measured. It is concluded that
all hash functions have better operating frequency when they are implemented on bigger FPGA
platforms. Furthermore, GIFT-NC clearly outperforms all other ciphers in terms of timing,
resource utilization and throughput. However, the other ciphers are still good enough to be used
as alternatives when multiple different hash functions need to be used in an application. Also,
the key implementation can be used to create different versions of each hash function. But this is
paired with a decrease in operating frequency for some hash functions. This can be counteracted
by utilizing larger, more powerful FPGA platforms.

38

References

[1] A. Kirsch and M. Mitzenmacher, "Less Hashing, Same Performance:Building a Better Bloom
Filter," 15 May 2008. [Online]. Available: https://onlinelibrary-wiley-com.bib-
proxy.uhasselt.be/doi/abs/10.1002/rsa.20208.

[2] G. Cormode and S. Muthukrishnan, "An improved data stream summary: the count-min sketch
and its applications," 4 February 2004. [Online]. Available: https://www-sciencedirect-com.bib-
proxy.uhasselt.be/science/article/pii/S0196677403001913.

[3] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks and L. Wingers, "The Simon and
Speck Families of Lightweight Block Ciphers," 19 June 2013. [Online]. Available:
https://eprint.iacr.org/2013/404.pdf.

[4] D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki and S. M. Sim, "Pyjamask," [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/round-2/spec-doc-rnd2/pyjamask-spec-round2.pdf.

[5] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim and Y. Todo, "GIFT: A Small Present,"
[Online]. Available: https://eprint.iacr.org/2017/622.pdf.

[6] J. Daemen and V. Rijmen, "AES Proposal: Rijndael," [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf.

[7] C. Beierle, J. Jean, S. Kölbl and G. Leander, "The SKINNY Family of Block Ciphers and its Low-
Latency Variant MANTIS," [Online]. Available: https://eprint.iacr.org/2016/660.pdf.

[8] Y. Yang, F. Chen, J. Chen, Y. Zhang and K. L. Yung, "A secure hash function based on feedback
iterative structure," 10 December 2018. [Online]. Available: https://web-b-ebscohost-com.bib-
proxy.uhasselt.be/ehost/pdfviewer/pdfviewer?vid=1&sid=14ce3c6e-298a-45bd-bf9a-
60de243644fc%40pdc-v-sessmgr02.

[9] A. Sateesan, "Analyze your hash functions: The Avalanche Metrics Calculation," Medium, 6 Juli
2020. [Online]. Available: https://arishs.medium.com/analyze-your-hash-functions-the-
avalanche-metrics-calculation-767b7445ee6f.

[10] C. Esébanez, Y. Saez, G. Recio and P. Isasi, "Performance of the most common non-
cryptographic hash functions," Software: Practice and Experience, pp. 681-698, 2014.

[11] G. Fowler, L. C. Noll, K.-P. Vo, D. Eastlake and T. Hansen, "The FNV non-cryptographic hash
algorithm," 2011.

[12] D. Sekanina and L. Grochol, "Fast Reconfigurable Hash Functions for Network Flow Hashing in
FPGAs," in NASA/ESA Conference on Adaptive Hardware and Systems.

[13] A. Sateesan, J. Vliegen, J. Daemen and N. Mentens, "Novel Bloom filter algorithms and
architectures for ultra-high-speed network security applications," in 23rd Euromicro Conference
on Digital System Design, 2020, pp. 262-269.

39

List of Appendices

Appendix A Diagram of the two rounds of Speck .. 40

Appendix B Visual representation of a round in the Pyjamask 96 encryption 41

Appendix C Visual representation of a round in the key schedule in Pyjamask 42

Appendix D Visual representation of a round in the GIFT-128 encryption 43

Appendix E Sbox for the SubBytes operation in AES ... 44

Appendix F A single encryption round in AES ... 45

Appendix G A single round of the key schedule in AES ... 46

Appendix H Sbox for the SubBytes operation in Skinny ... 47

Appendix I Round constant lookup table for Skinny .. 47

Appendix J A single encryption round in Skinny .. 48

Appendix K A single round of the key schedule in Skinny .. 49

Appendix L Diagrams of the hardware implementation .. 50

40

Appendix A: Diagram of the first two rounds of Speck

41

Appendix B: Visual representation of a round in the Pyjamask-96 encryption

42

Appendix C: Visual representation of a round of the key schedule in Pyjamask

43

Appendix D: Visual representation of a round in the GIFT-128 encryption

44

Appendix E: Sbox for the SubBytes operation in AES

45

Appendix F: A single encryption round in AES

46

Appendix G: A single round of the key schedule in AES

47

Appendix H: Sbox for the SubBytes operation in Skinny

Appendix I: Round Constant Lookup Table for Skinny

48

Appendix J: A single encryption round in Skinny

49

Appendix K: A single round of the key schedule in Skinny

50

Appendix L: Diagrams of the hardware implementation

