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Nomenclature 

ARX cipher 

An ARX cipher stands for Add-Rotate-XOR cipher. Here, only these three operations are used 
to calculate the ciphertext and the key state. 

Avalanche metrics 

Values to measure the randomness of a hash function. If it is not random enough, then the 
hash function can be vulnerable to attacks. It is calculated with the use of three values: 
Avalanche dependence, avalanche weight and avalanche entropy. 

Ciphertext 

A piece of text of predetermined length received from a cipher or hash function. It is 
dependent on the input of the cipher or hash function. 

Hash function 

A function that uses mathematical functions to transform a piece of text of arbitrary length 
into a ciphertext of fixed length. When the ciphertext is received, it should be impossible to 
get the original input. Also, it is very difficult to find two values which have the same 
ciphertext.  

Internal state 

Value of the plaintext after it is inserted in the cipher or hash function and before it is output 
as the ciphertext. 

Key state 

 Same as the internal state, but then for the key instead of the plaintext. 

Least significant bits (LSB) 

The bit with the lowest value from a word or byte or any value. For example, the byte 
00001001 is 9 in decimals. Here, the right most 1 is the least significant bit. 

Most significant bits (MSB) 

The opposite of the LSB. From the example from the LSB, the left most 0 is the most 
significant bit. 

Plaintext 

Input of a cipher or hash function. Usually it has a predetermined length, but for hash 
functions, it can be any length. 

Sbox 

A predetermined array of values. It is used inside the ciphers to replace the internal state by 
the values in the Sbox. 



SPN cipher 

An SPN cipher stands for Substitute-Permutation network cipher. It uses the substitution 
mathematical function, followed by permutating the internal states, and sometimes 
accompanied by an addition of the key. 

Symmetric cipher 

A symmetric cipher uses the same mathematical functions each round. These rounds are 
then repeated a set amount of times to get the ciphertext at the end. 

Throughput 

 The amount of data which can be sent through the hash functions in a given amount of time.  

Worst negative slack 

This value shows the most negative of any single path that failed the timing constraint. It is 
mostly used as a value to show how badly the timing was missed. 

  



Abstract 

Hash functions are vital building blocks for many networking and security applications. In these 
applications, the speed of hashing is of crucial importance, affecting the overall throughput of the 
system. The goal of this thesis is to design novel non-cryptographic hash functions based on reduced-
round versions of symmetric-key ciphers, and to analyze the avalanche properties and timing 
characteristics of these algorithms. The considered ciphers are Speck, Pyjamask, GIFT, AES and 
Skinny. The number of rounds required are determined so that satisfactory avalanche properties are 
met, both with and without the addition of the key. 

After finding the optimal number of rounds, the timing properties are evaluated using hardware 
design tools. Each hash function is implemented as the reduced version of the original cipher on 
different FPGA platforms, both with and without the addition of a key. The maximum possible 
operating frequency is calculated and the resources required at that frequency are also measured. 
The throughput is calculated based on the maximum operating frequency. The analysis results show 
that different ciphers have different performance characteristics. Also, the obtained hash functions 
show better avalanche properties and outperform most of the existing non-cryptographic hash 
functions. 



  



Abstract in het Nederlands 

Hashfuncties zijn essentiële bouwblokken voor veel netwerk- en beveiligingstoepassingen. In deze 
toepassingen is de snelheid van hashen van cruciaal belang, met een grote invloed op de 
verwerkingssnelheid van de hashfuncties. Het doel van deze scriptie is om nieuwe niet-
cryptografische hashfuncties te ontwerpen op basis van symmetrische-sleutel algoritmen met een 
gereduceerd aantal ronden en de avalanche-eigenschappen en timing beperkingen te analyseren. De 
volgende algoritmen worden beschouwd: Speck, Pyjamask, GIFT, AES en Skinny. Het aantal 
benodigde rondes wordt zo bepaald dat er aan de avalanche eigenschappen wordt voldaan, zowel 
met als zonder toevoeging van de sleutel. 

Nadat het optimale aantal rondes is gevonden, worden de timing eigenschappen geëvalueerd met 
behulp van hardware-ontwerptools. Elke hashfunctie is geïmplementeerd als de gereduceerde versie 
van het originele cijfer op verschillende FPGA-platformen, zowel met als zonder sleutel. De maximaal 
mogelijke werkingsfrequentie wordt berekend en ook de bij die frequentie benodigde middelen 
worden gemeten. De doorvoer wordt berekend op basis van de maximale werkingsfrequentie. De 
analyseresultaten tonen aan dat verschillende algoritmen verschillende prestatiekenmerken hebben. 
Ook vertonen de verkregen hashfuncties betere avalanche eigenschappen en presteren ze beter dan 
de meeste bestaande niet-cryptografische hashfuncties. 



  



1 Introduction 

Hash functions are operations where a text of arbitrary length is converted into an encrypted 
message with fixed length. They are one-way functions, which means that it is not feasible to 
recover the original message in practice. They are used in many networking and security 
applications where hash functions help to reduce the memory overhead and increase the speed 
of the computations. Network security applications such as Bloom filters [1] for fast lookups and 
sketches [2] for memory efficient measurements use hash functions as one of their components. 
With the ever increasing data-rate of the internet, the throughput of these applications needs to 
be matched. However, the throughput of these applications is reliant on the efficiency of the 
hash functions, which makes the speed of the hash functions an important factor. 

Usually, hash functions offer high levels of security. However, these are not necessary for lookup 
or counting architectures. Only data-rate and avalanche properties are more important. In this 
thesis, non-cryptographic hash functions inspired by five symmetric-key ciphers are proposed: 
Speck, Pyjamask, GIFT, AES and Skinny. How these ciphers work, is described in section 2. Section 
3 will be an analysis of the avalanche properties for each cipher as a function of the number of 
rounds. These avalanche properties are measurements to indicate to which extent a change of 
the input has an influence on the change of the output. The optimal amount of rounds for each 
cipher is measured here. Lastly, section 4 will measure the throughput for these ciphers. The 
hash functions will be evaluated on both Zynq and Virtex Ultrascale+ FPGAs. All of these 
calculations are done using an input of 96 bits. Some ciphers, however, only operate with an 
input of 128 bits. For these, the results are generated for only 96 bits, while 32 other bits are 
fixed to 0. 
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2 Analysis of the hash functions 
 

2.1 Speck 
 

2.1.1 Initialization 

The Speck block cipher family [3] holds a staggering 10 different variations of the Speck 
algorithm. Table 1 shows the difference between these variations. This thesis focuses on the 
variation with block size and key size of 96 bits. Speck is an ARX cipher, which means it only 
uses these three operations to calculate the ciphertext. 
 

Table 1: Different variations of the Speck cipher [3] 

 
 

During the rounds, the key and the plaintext are split into two parts of 48 bits. The most 
significant bits of the plaintext and the key are stored in plaintext 1 and key 1 respectively, 
while the least significant bits are stored in plaintext 2 and key 2.  
 

2.1.2 Round Function 

In Speck, each round performs the same three operations: Rotation, Addition and an XOR. 
First, plaintext 1 is rotated 8 bits to the right, this is followed by an addition with plaintext 2. 
plaintext 1 is the XORed with key 2. For plaintext 2, the operations start after the addition to 
plaintext 1, it is first rotated 3 bits to the left and then XORed with plaintext 1. Figure 1 shows 
how this is done for a single round. After each round, the output is connected to the input of 
the next round. 
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Figure 1: A single encryption round for Speck 
 

2.1.3 Key schedule 

The key changes every round for Speck, this round function works similarly to the encryption 
round for the plaintext. First, key 1 is rotated 8 bits to the right. Then, key 2 is added to key 1. 
This is followed by and XOR with the number of the round, this starts counting from 0 from 
the first round and increments by 1 every round. Key 2 starts with a rotation by 3 bits to the 
left and is then XORed with the intermediate value on the left. Figure 2 shows how these 
operations are executed onto the key. 
 

 

Figure 2: Key round operations in Speck 
 

 A full diagram of the first two rounds of the Speck algorithm can be found in appendix A. 
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2.2 Pyjamask 
 

2.2.1 Initialization 

Pyjamask is a block cipher family [4] which contains two algorithms: Pyjamask-96, which has 
a block size of 96 bits, and Pyjamask-128, which has a block size of 128 bits. Both algorithms 
use a key with a size of 128 bits, perform 14 rounds and rely on a Substitution-Permutation 
Network (SPN) structure to transform the plaintext into the ciphertext. The plaintext is 
structured in a bit by bit left-right top-down structure. Each row consists of 32 bits. 
Depending on the block size of the chosen algorithm, 3 or 4 rows are used. The cell which 
holds the lowest index represents the most significant bit of the plaintext and the cell with 
the highest index represents the least significant bit. The key is represented in the same way 
as the plaintext. Only this time, there are 4 rows used of which each contain 32 bits. Once the 
plaintext enters the algorithm, it will be referred to as the internal state. Figure 3 represents 
the structure of the plaintext for pyjamask-96. 
 

 

Figure 3: Representation of the plaintext in Pyjamask-96 
 

Each round is composed of three operations, which happen in chronological order: 
AddRoundKey, SubBytes and MixRows. 
  

2.2.2 Round Functions 

 AddRoundKey 

First, the key is bitwise added to the internal state. For Pyjamask-128, this is done with a 
simple XOR. For Pyjamask-96 however, only the 96 most significant bits of the key are XORed 
with the 96-bit internal state.  

 SubBytes 

Then, all 32 columns of the internal state are extracted and compared to a constant Sbox. For 
Pyjamask-96, this Sbox is called S3 and for Pyjamask-128 it is called S4 . S3 and S4 are shown 
in Figure 4 and Figure 5 respectively. For example, in a given Pyjamask-96 round, column 1 
contains the bits “100”, which is binary for the number 4. The fourth number from S3 is 2 
(start counting from zero). 2 in binary gives “010”, which is then put in column 1. 
 

 

Figure 4: Sbox for Pyjamask-96 

 

Figure 5: Sbox for Pyjamask-128 
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 MixRows 

Finally, each row Ri of the internal state is seen as a column matrix. This matrix is then 
multiplied by a constant matrix Mi with i ∈ {0, 1, 2} for Pyjamask-96 and i ∈ {0, 1, 2, 3} for 
Pyjamask-128. Each row in the internal state is then replaced by Mi · Ri. Each matrix M is a 
32x32 circulant binary matrix, they are shown in Figure 6. 

After the last round, a final AddRoundKey operation is applied to the internal state and the 
ciphertext is created. Appendix B shows a visual representation of a round in the Pyjamask-
96 algorithm. 
 

 

Figure 6: Matrices used in the MixRows operation 
 

2.2.3 Key Schedule 

Throughout the algorithm, different keys are used in each AddRoundKey. These keys are 
called subkeys, and all originate from the original secret key. To receive these subkeys, three 
operations are executed each round: MixColumns, MixRows and Constant Addition. Because 
Pyjamask-96 and Pyjamask-128 both use 128-bit keys, the same operations are used to 
create the subkeys. 

 MixColumns 

First, all 32 columns Ci of each 4 bits are replaced by Ci · M where M is a constant matrix, 
which is shown in Figure 7. 
 

 

Figure 7: Matrix used in the MixColumns operation 
 

 MixRows 

Then, the first row R0 of the key state is replaced by MK · R0. This operation is similar to the 
MixRows operation in the internal state. MK is a 32x32 circulant matrix, which is shown in 
Figure 8. The second row R1 of the key state, is rotated to the left by 8 bits. The third and 
fourth row R2 and R3 are also similarly rotated to the left by 15 and 18 bits respectively. 
 

 

Figure 8: Matrix used on the first row in the MixRows operation for the key state 
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 Constant Addition 

Finally, a 32-bit constant value is broken down into four bytes, which are then bitwise added 
to the key state. The four least significant bits of this constant are equal to the round 
number, which is between 0 and 13. Figure 9 gives a visual representation of this operation.  
 

 

Figure 9: Visual representation of the Constant Addition operation 
 

 Appendix C gives a full visual image of a single round of the key schedule. 

 

2.3 GIFT 
 

2.3.1 Initialization 

The GIFT block cipher family [5] contains two algorithms: GIFT-64 and GIFT-128. Both use a 
key size of 128 bits, while the former uses a block size of 64 bits and the latter of 128 bits. In 
this thesis, GIFT-128 is used. Like Pyjamask, GIFT is an SPN cipher containing 40 rounds of 
three operations: SubCells, PermBits and AddRoundKey. There are multiple ways the 
plaintext can be initialized, but this thesis uses the following method: The plaintext is 
initialized in a 4x32 matrix of bits and the most significant bits are stored in the cell with the 
lowest index, so cell 0 stores the most significant bit of the plaintext. Unlike Pyjamask, the 
bits are stored top-down left-right. The 128-bit key is stored like the key in Pyjamask, left-
right top-down. A visual interpretation of the internal state is shown in Figure 10. 
 

 

Figure 10: Representation of the plaintext in GIFT 
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2.3.2 Round Functions 

 SubCells 

Similar to SubBytes in Pyjamask, each 4-bit column is compared to an Sbox and replaced by 
the appropriate value. The Sbox is show in Figure 11. X gives the value which was in the 
column before the operation and GS(x) is the value which replaces x. 
 

 

Figure 11: Sbox used in the SubCells operation 
 

 PermBits 

This operation shuffles all the bits in the internal state in a given way. It is shown in Figure 12. 
 

 

Figure 12: Permutation of the internal state 
 

 AddRoundKey 

Finally, the key is added to the internal state. The key is split into 4 blocks Ki of 32 bits each. 
The same is done to the internal state with blocks Pi. For both the key and the internal state,  
i ∈ {0, 1, 2, 3} where P0 and K0 hold the most significant bits of both the key and the internal 
state. Of these blocks, P1 and P2 are XORed with K1 and K2 respectively. The most significant 
bit of P3 is also XORed with ‘1’ and the least significant bits of P3 is XORed with a constant. 
This value is extracted from the round constant lookup table based on which round is given. 
A visual representation of this operation is shown in Figure 13 and the round constant lookup 
table is shown in Figure 14.  
 

 

Figure 13: Visual representation of the AddRoundKey operation 
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Figure 14: Round Constant Lookup Table 
 

 Appendix D gives a visual representation of a full round in the GIFT-128 algorithm. 
 

2.3.3 Key Schedule 

The key schedule is a very simple operation for GIFT compared to the key schedule for 
Pyjamask. The key is again split in 4 blocks Ki of 32 bits each, like in AddRoundKey. K0, K1 and 
K2 are then shifted towards the least significant bits of the key state, while K3 now holds the 
most significant bit. K3 is then split again in two 16-bit blocks, K3,1 and K3,2. These two blocks 
are then right-rotated 2 and 12 bits respectively. Figure 15 shows how this operation works. 
 

 

Figure 15: Visual representation of a round in the GIFT key schedule 

 

2.4 AES 
 

2.4.1 Initialization 

AES is probably the most famous encryption cipher [6]. It has a block size of 128 bits and the 
key size can be either 128, 192 or 256 bits. Depending on the key size, the number of rounds 
are 10, 12 and 14 respectively. This thesis focuses on the algorithm with key size of 128 bits 
Each round consists of 4 operations: SubBytes, ShiftRows, MixColumns and AddRoundKey. 
However, the first and last round differ slightly from this order. The first round starts with an 
initial AddRoundKey and the last round does not calculate the MixColumns operation. 

Just like in GIFT, the plaintext input is structured in a top-down left-right structure. The 
difference with GIFT, is that AES is structured byte-by-byte instead of bit-by-bit. This results 
in a 4x4 matrix of bytes, as shown in Figure 16. The key is structured similarly. 
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Figure 16: Structure of the internal state in AES 
 

2.4.2 Round Functions 

 SubBytes 

Similarly to Pyjamask and GIFT, each byte is compared and replaced by a value from the 
Sbox. The Sbox can be found in appendix E and is a 16x16 matrix where the column selection 
is determined by the last 4 bits of the byte and the row selection by the first 4 bits. 

 ShiftRows 

Afterwards, each row is shifted in a given way. The first row stays the same, the second row 
is shifted one byte to the left, the third row is shifted two bytes to the left and the fourth row 
three bytes to the left. Figure 17 shows how this is done. 
 

 

Figure 17: ShiftRows operation in AES 
 

 MixColumns 

Then, the MixColumns operation works similarly to the one in the key schedule in Pyjamask. 
Each column is multiplied by a given Matrix M, which is given in Figure 18. The results then 
replace each column of the internal state. 
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Figure 18: Matrix M for the MixColumns operation in AES 
 

 AddRoundKey 

Finally, the AddRoundKey calculates a simple XOR of the key into the internal state. This is 
similar to the AddRoundKey function in Pyjamask. Each round uses a different subkey. These 
are calculated in the key schedule. 

The full visual representation of a single round can be found in appendix F. 
 

2.4.3 Key Schedule 

The key schedule of AES, similar to GIFT, is constructed of only one operation. It is however, 
slightly more complex. As mentioned in the beginning of this chapter, the key state is 
structured like the internal state: byte-by-byte, top-down left-right. Here, each byte is 
numbered Ki where i ∈ {0, 1, 2, …, 14, 15}. K0 holds the most significant byte of the key state. 
During the key schedule, if i is greater than or equal to 4, every byte Ki is XORed with Ki-4. 
Furthermore, K1, K2 and K3 are XORed with a value from the same Sbox as in SubBytes by 
extracting the value from K14, K15 and K12 respectively and putting those in said Sbox. Finally, 
K0 is XORed with the value from the Sbox by extracting K13 and by a round constant. Figure 19 
gives a visual representation of this operation and Figure 20 gives the round constant lookup 
table. 
 

 

Figure 19: Key Schedule for AES 
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Figure 20: Round Constant Lookup Table for the Key Schedule in AES 

 Appendix G gives a full representation of the Key Schedule. 
 

2.5 Skinny 
 

2.5.1 Initialization 

The final cipher that will be discussed in this thesis, is the Skinny block cipher family [7], 
which holds 6 algorithms: 

o Skinny-64-64 
o Skinny-64-128 
o Skinny-64-196 
o Skinny-128-128 
o Skinny-128-256 
o Skinny-128-384 

The first numerical value is the block size used in the algorithm, the second value is the key 
size. This thesis focuses on Skinny-128-128. 

The plaintext and key are initialized similarly to AES, but now in a left-right top-down 
method, as shown in Figure 21. 
 

 

Figure 21: Internal state of Skinny 
 

Skinny also uses a different amount of rounds depending on the algorithm used. For the 
algorithm used in this thesis, which is Skinny-128-128, 40 rounds are used. Each round 
consists of no less than 5 different operations: SubBytes, AddConstants, AddRoundKey, 
ShiftRows and MixColumns. 

  



27 
 

2.5.2 Round Functions 

 SubBytes 

First, the SubBytes operation is calculated. This follows the exact same way as SubBytes in 
AES, only this time, the Sbox is different. This Sbox can be found in Appendix H. 

 AddConstants 

Next, round constants are XORed to the first column of the internal state. The value in b8, as 
shown in Figure 21, is XORed with a constant hexadecimal value of 0x02. Meanwhile, b12 
stays the same, but b0 and b4 are XORed with a round constant, this value is a 6-bit number 
which changes every round. The 4 least significant bits of b0 are XORed with the 4 least 
significant bits of this value and the 2 least significant bits of b4 are XORed with the 2 most 
significant bits of the round constant. The lookup table for this round constant, is shown in 
appendix I. 

 AddRoundKey 

Then, the key state is added to the internal state. Unlike the AddRoundKey function in AES, 
only the 8 most significant bytes of the key are XORed to the 8 most significant bytes of the 
internal state. 

 ShiftRows 

Furthermore, the ShiftRows function is implemented. Fundamentally, this works the same 
way as the ShiftRows function in AES, only this time the rows are shifted to the right. Also, 
due to the initial structure of the internal state being different than the one in AES, this 
ShiftRows gives other results. Like AES, the first row is not shifted, the second row is shifted 
right once, the third row shifted twice and the last row shifter thrice. The result is shown in 
Figure 22. 
 

 

Figure 22: ShiftRows function in Skinny 
 

 MixColumns 

Finally, the MixColumns function wraps up the round. Similar to MixColumns in Pyjamask and 
AES, each column of the internal state is multiplied by a Matrix M, which is given in Figure 23.  
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Figure 23: Multiplication Matrix for the MixColumns function in Skinny 
 

 Appendix J gives a full visual diagram of a single round in Skinny. 

2.5.3 Key Schedule 

Just like other ciphers, the key updates every round into different subkeys. In Skinny, the key 
updates similarly to the key schedule in GIFT. By shifting different key bytes to other places in 
the key state. How the bytes shift, is shown in Figure 24. 
 

 

Figure 24: Key Schedule for Skinny 
 

A full visual representation of the key schedule can be found in appendix K. 
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3 Performing the avalanche analysis 
 

3.1 Avalanche metrics 

The avalanche properties are metrics used to measure the influence of an input change to the 
change of the output. If the hash function does not show good avalanche properties, then a 
change at the input does not have an effect on a sufficient amount of output bits. This leaves the 
hash function vulnerable to attacks. There are three avalanche metrics which are used to 
evaluate the hash functions mentioned in this thesis: Avalanche dependence, avalanche weight 
and avalanche entropy [8].  

These values are all calculated using the probability vector, which is a measure of the average 
amount of times a bit changes in the output if you only change one bit in the input. It stores the 
average bit changes for each bit in the output. These calculations have to be iterated a large 
amount of times to try to prevent outliers. Figure 25 shows the pseudocode to calculate the 
probability vector P. N indicates the input size, which is 96 for Speck and Pyjamask, or 128 for 
GIFT, AES and Skinny. A1 and A2 are inputs for the hash functions and H1 and H2 are outputs. 
Finally, T gives which bit needs to be toggled from A1 to get A2. The probability vector is 
calculated for every value of T (0 to 95 or 127) and the avalanche metrics are measured for every 
probability vector of T. Afterwards, the worst metrics are stored. 

These calculations are done in search for the ideal number of rounds each cipher needs, to get 
good enough avalanche metrics. When all calculations are done, the avalanche metrics are 
plotted in function of the number of rounds. 
 

 

Figure 25: Pseudocode to calculate the probability vector P [9] 
 

3.1.1 Avalanche Dependence 

The avalanche dependence Dav is defined by the number of bits which toggle in the output 
when there is a single-bit change in the input. Equation 1 shows how this value is calculated 
[9]. Here, n is the number of bits at the output, p[i] is the probability vector and g(p) is a 
function where g(p) = 1 if p = 0 and g(p) = 0 otherwise. The avalanche dependence is satisfied 
when Dav = n. 
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𝐷 = 𝑛 − ∑ 𝑔(𝑝[𝑖]) [1] 
 

3.1.2 Avalanche weight 

The avalanche weight wav is a measurement to define the weight of the output difference. 
The formula is shown in equation 2. It is in essence a sum of the probability vectors. Ideally, 
half of the output should change so that the randomization is at its best, which means that 
the ideal value for the avalanche weight is half of the output size n.  

𝑤 =  ∑ 𝑝[𝑖] [2] 
 

3.1.3 Entropy 

Finally, the avalanche entropy Hav is a value to show the uncertainty about whether the 
output bits toggle or not for a single-bit input change in the input.  
 

𝐻 =  ∑ (−𝑝[𝑖] ∙ log (𝑝[𝑖]) − (1 − 𝑝[𝑖]) ∙ log (1 − 𝑝[𝑖])) [3] 
 

3.2 Avalanche results 

These three avalanche metrics are then plotted against the number of rounds that have been 
executed. Figure 26 and Figure 27 show these plots for ciphers with key and without key 
respectively. When a key is used, it is initialized at a fixed value of 0. When the key is not used, 
every operation involving the key is simply ignored. For each cipher, NC (Non-Cryptographic) is 
added to the name to indicate the round-reduced version. The X-axis gives the number of rounds 
used when the avalanche metrics are measured and the Y-axis gives the values for the avalanche 
metrics, which are in bits.  

As shown in the figures, there is no significant difference between the avalanche properties 
when a key is used or not. Even more so, the key seems to have no effect on the avalanche 
properties of the hash functions. This means that when it is desired that the output of the hash 
function needs to be changed, the avalanche properties will not be affected. 

As mentioned in section 2, Speck normally needs 28 rounds to be considered secure. Speck-NC, 
however, only requires 7 rounds to be used as a non-cryptographic hash function. The same 
happens for all other ciphers. Pyjamask requires 14 rounds, but it meets the avalanche 
requirements at round 3. However, 2 rounds are also a valuable solution if speed is of the 
essence. GIFT-NC only needs 7 rounds instead of GIFT’s 40 rounds, but 6 rounds are also 
acceptable. AES goes from 10 rounds to 3 rounds for AES-NC and finally, Skinny-NC needs only 6 
rounds while Skinny needs 40. Table 2 gives a summary of the results of the avalanche analysis. 

Finally, as mentioned earlier, Speck and Pyjamask have an input and output size of 96 bits, while 
the other ciphers have a 128-bit input and output size. However, when the 128-bit ciphers are 
tested for their avalanche properties, a random input of 96 bits is padded with 32 zero bits. The 
placement of the padding zeros has no effect on the avalanche metrics. 
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Figure 26: Results of the Avalanche analysis with key 

 

Table 2: Results of the avalanche analysis with key 

Hash function Dav wav Hav r rav 

Speck-NC 96 47.3848 95.6196 28 7 
Pyjamask-NC 96 47.5808 95.9627 14 3 

GIFT-NC 128 63.4416 127.9309 40 7 
AES-NC 128 62.854 127.4397 10 3 

Skinny-NC 128 61.798 127.3621 40 6 
 

 

 

 
Figure 27: Results of the Avalanche analysis without key 
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Table 3: Results of the avalanche analysis without key 

Hash function Dav wav Hav r rav 

Speck-NC 96 47.4476 95.6829 28 7 
Pyjamask-NC 96 47.7296 95.9628 14 3 

GIFT-NC 128 63.3888 127.9482 40 7 
AES-NC 128 62.858 127.4356 10 3 

Skinny-NC 128 61.830 127.4030 40 6 
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4 Hardware Evaluation 
 

4.1 Setup 

The reduced round version of the ciphers are implemented on FPGA to evaluate the performance 
on hardware. The platforms chosen for the evaluation are Zynq 7020, Virtex Ultrascale and Virtex 
Ultrascale+ board. To generate the results, the Vivado 2019.1 design tool is used. Each cipher is 
tested for a specific clock period and the Worst Negative Slack (WNS) is taken to check if the 
specified timing constraint is met. If this value is positive, then the timing constraint is met and 
the operating speed can be faster. If it is negative, then the clock period needs to be lowered. 
Figure 28 gives a general setup for the hardware implementation. As shown in the figure, only 
input and output registers are added and the execution of all the rounds are completed in a 
single clock cycle. The number of rounds for each cipher is equal to the number of rounds which 
are needed to maintain the avalanche properties. These are calculated in section 3 and shown in 
Table 2 and 3 under the value of rav. The key is not a necessary parameter for traditional hash 
functions, as a given plaintext should always have the same ciphertext. But for some 
applications, like in Bloom filters, it can be useful to receive other ciphertext values for the same 
plaintext. This can be done by using different key values. A full visual representation of the 
hardware implementation of all ciphers, can be seen in appendix L. 
 

 
Figure 28: General setup for the hardware implementation 

 
 

4.2 Hardware results 
 

4.2.1 Timing 

Figure 29 shows the results for the timing tests. The X-axis gives the clock period and the Y-
axis gives the WNS. Each cipher is tested on all three boards, once with key and once without 
key. Using the graphs, it is possible to calculate the maximum operating frequency using 
equation 4,where the min clock period is taken as the lowest possible clock period with a 
positive WNS. 
 

𝑓 =
, , ,

  ( )
 [4] 
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It is clearly visible from the graphs that the key has an impact on the timing constraints for 
Speck, Pyjamask and AES. Speck sees an increase of operating frequency of 11-18%. 
Furthermore, the operating frequency of AES increases by 15-25%. While Pyjamask’s 
operating frequency only increases on the Zynq board by 18%. GIFT and Skinny see no 
significant improvements when the key is removed. From all the hash functions mentioned in 
this thesis, GIFT-NC looks the most promising. It is the fastest hash function for both using 
the key and not using the key. Table 4 shows a better representation of the maximum 
operating frequencies of the hash functions. As expected, the frequency increases for bigger 
boards. 

 

Figure 29: Timing results for the hardware evaluation 

Table 4: Max frequency measured in the hardware implementation without key 

 Max Frequency (without key) 
                     Board 
Hash function 

Zynq 7020 Virtex 
Ultrascale 

Virtex 
Ultrascale+ 

Speck-NC 62.50 MHz 111.11 MHz 166.66 MHz 
Pyjamask-NC 90.91 MHz 200.000 MHz 250.00 MHz 

GIFT-NC 111.11 MHz 250.00 MHz 333.33 MHz 
AES-NC 76.92 MHz 200.00 MHz 250.00 MHz 

Skinny-NC 55.56 MHz 142.86 MHz 200.00 MHz 

 

Table 5: Max frequency measured in the hardware implementation with key 

 Max Frequency (with key) 
                     Board 
Hash function 

Zynq 7020 Virtex 
Ultrascale 

Virtex 
Ultrascale+ 

Speck-NC 52.63 MHz 100.00 MHz 142.86 MHz 
Pyjamask-NC 76.92 MHz 200.00 MHz 250.00 MHz 

GIFT-NC 111.11 MHz 250.00 MHz 333.33 MHz 
AES-NC 66.67 MHz 166.67 MHz 200.00 MHz 

Skinny-NC 55.56 MHz 142.86 MHz 200.00 MHz 
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4.2.2 Resource utilization 

Another value which can be received from the hardware implementation, are the resources 
used for each cipher. Table 6 shows these results. It is clearly visible that GIFT-NC is uses the 
least amount of resources of all ciphers with key, but Speck-NC is slightly better for all ciphers 
without key. However, when the key is added, it needs two to three times the amount of 
resources. Meanwhile, GIFT-NC and Skinny show negligible increase in resources when the 
key is added compared to the other hash functions.  
 

Table 6: Resources used in the hardware implementation 

 Without key With key 
Hash function LUTs  Flip Flops LUTs Flip Flops 

Speck-NC 432 192 1273 384 
Pyjamask-NC 811 448 1615 448 

GIFT-NC 546 512 665 512 
AES-NC 2225 512 3402 512 

Skinny-NC 2176 512 2348 512 

 

4.2.3 Throughput  

The throughput measures how many bits per seconds can be passed through the hash 
function per second. It can be calculated using equation 5, where latency in cycles is equal to 
1 because all rounds are calculated in one cycle. The block size is equal to 96 bits and the max 
frequency is taken from the highest value from  

Table 4. The throughput is measured in bits per second and the results are shown in Table 7. 
Again, GIFT-NC shows the best throughput among the ciphers evaluated in this thesis. It has 
the highest throughput out of all ciphers with or without key. Meanwhile, Speck-NC and AES-
NC show an increase in throughput of 16,67% and 25% respectively. 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
 

  
∙ 𝑓  [5] 

 

Table 7: Throughput results for all ciphers with and without key 

 Without key With key 
Hash function Maximum 

frequency 
Throughput 
(Mbps) 

Maximum 
frequency 

Throughput 
(Mbps) 

Speck-NC 166.66 MHz 16,000 142.86 MHz 13,714 
Pyjamask-NC 250.00 MHz 24,000 250.00 MHz 24,000 
GIFT-NC 333.33 MHz 32,000 333.33 MHz 32,000 
AES-NC 250.00 MHz 24,000 200.00 MHz 19,200 
Skinny-NC 200.00 MHz 19,200 200.00 MHz 19,200 

 

4.2.4 Comparison with related work 

The five novel non-cryptographic hash functions measured in this thesis are now related to 
some existing hash functions: Murmur3 [10], FNV-1a [11], SipHash [12], XORHash [12], 
NSGAHash7 [12] and Xoodoo-NC [13]. Here, Murmur3 and FNV-1a were implemented on 
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FPGA to get the timings for this thesis. Table 8 gives a full overview of the comparison. 
Although XORHash has the highest operating frequency, it has 5.57x less throughput 
compared to Speck-NC. Which has the lowest throughput among the hash functions analyzed 
in this thesis. This is due to XORHash having a 32-bit block size and a latency of 7 clock cycles. 
Furthermore, Xoodoo-NC has a slightly higher throughput over GIFT-NC, which has the 
highest throughput out of all the hash functions analyzed in this thesis. However, in theory 
the maximum frequency of GIFT-NC could be higher. This is because only round numbers 
have been tested as clock periods. In terms of throughput per LUT (Tp/LUT), Xoodoo-N is the 
highest, almost doubling the Tp/LUT of GIFT-NC. So for applications where area plays an 
important role, Xoodoo-NC should be used over GIFT-NC. 

Finally, it is clearly visible that the hash functions analyzed in this paper have way higher 
throughput compared to Murmur3, FNV-1a, SipHash, XORHash and NSGAHash7. The delay is 
also way lower. Another important point to mention, is that SipHash, XORHash and 
NSGAHash7 use a 32-bit input block size, which is 3x smaller compared to the hash functions 
in this thesis. Xoodoo-NC uses a 96-bit input block size. 

Table 8: Comparison of maximum frequency, throughput, throughput per LUT and delay with related work 

Hash function Maximum 
frequency 

Throughput 
(Mbps) 

Tp / LUT 
(Mbps / LUT) 

Delay (ns) 

Murmur3 120.6 MHz 2,573 4.54 24.87 
FNV-1a 122.9 MHz 925 1.63 130.08 
SipHash [12] 182.8 MHz 1,463 1.38 21.88 
XORHash [12] 627.3 MHz 2,868 9.86 11.13 
NSGAHash7 [12] 184.1 MHz 1,473 18.41 21.72 
Xoodoo-NC [13] 363.6 MHz 34,906 112.96 2.75 
Speck-NC 166.66 MHz 16,000 37.04 6.000 
Pyjamask-NC 250.00 MHz 24,000 29.59 4.000 
GIFT-NC 333.33 MHz 32,000 58.61 3.000 
AES-NC 250.00 MHz 24,000 10.79 4.000 
Skinny-NC 200.00 MHz 19,200 8.82 5.000 
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5 Conclusion 

The reduced round non-cryptographic versions of symmetric-key ciphers are implemented and 
analyzed in this thesis. The avalanche properties are calculated first to determine how many 
rounds from the ciphers can be reduced. Here, a 70-85% reduction is measured for all ciphers, 
while still having excellent avalanche properties. It is also noted that the key implementation has 
no effect on the avalanche properties. Afterwards, the reduced-round hash functions are 
implemented on the different FPGA platforms and the timings are measured. It is concluded that 
all hash functions have better operating frequency when they are implemented on bigger FPGA 
platforms. Furthermore, GIFT-NC clearly outperforms all other ciphers in terms of timing, 
resource utilization and throughput. However, the other ciphers are still good enough to be used 
as alternatives when multiple different hash functions need to be used in an application. Also, 
the key implementation can be used to create different versions of each hash function. But this is 
paired with a decrease in operating frequency for some hash functions. This can be counteracted 
by utilizing larger, more powerful FPGA platforms. 
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Appendix A: Diagram of the first two rounds of Speck 
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Appendix B: Visual representation of a round in the Pyjamask-96 encryption 
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Appendix C: Visual representation of a round of the key schedule in Pyjamask 

 

 

  



43 
 

Appendix D: Visual representation of a round in the GIFT-128 encryption 
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Appendix E: Sbox for the SubBytes operation in AES 
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Appendix F: A single encryption round in AES 
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Appendix G: A single round of the key schedule in AES 
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Appendix H: Sbox for the SubBytes operation in Skinny 

 

  

Appendix I: Round Constant Lookup Table for Skinny 
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Appendix J: A single encryption round in Skinny 
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Appendix K: A single round of the key schedule in Skinny 

 

  



50 
 

Appendix L: Diagrams of the hardware implementation 

 

 


