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Preface 
When I was a child, I dreamed of becoming an astronaut or a pilot. Unfortunately, I discovered that 

this would be very difficult for someone with asthma. However, I had an interest in engineering 

already from a young age, when I built crazy creations with my favourite Lego-bricks. Therefore, I 

swore that I would one day be involved in developing an airplane or spaceship or by working together 

with the aerospace industry. 

Fast forward 19 years into the future during the COVID-pandemic. I loathed staying at home in my 

room, constantly following online seminars and working on several group projects in lockdown, 

without being able to visit the campus to socialise with my peers. Although I could always rely on my 

family for relaxation, love, and support, I felt like my room had become an unfulfilling workstation. 

One day, I heard that there were still students signing up and experiencing Erasmus exchanges abroad, 

despite the global lockdown and unrest. Frightened of the prospect of another year in confinement at 

home, I made a spontaneous decision to sign up for an Erasmus exchange. I could picture no better 

location than Toulouse: this would help me attain my goal of becoming fluent in French and perhaps 

fulfil a lifelong dream. 

The exchange wasn’t without difficulty. It was a lot of work solely to arrive in Toulouse, let alone rent 

a student residence. But I have learned more in the past three months about myself than in the rest of 

my twenty-three-year-old life. I have made amazing friends, become far more self-sufficient and fallen 

in love with Toulouse and all its charms. I thoroughly enjoyed worked on this master’s thesis because 

of its challenges and context. I even fulfilled a lifelong dream to work together with the company 

Airbus… 

This thesis wasn’t possible without the amazing assistance of my colleagues prof. dr. Yann Landon, 

prof. dr. Pablo Navarro and engineer Adrien Loiseau. Thank you for your knowledge, for the great 

cooperation, for always being the wind beneath my wings and guiding me through the maze of 

calculations. I also would to thank prof. dr. ir. Kris Henrioulle for the excellent supervision and 

advice. I also want to mention the staff members of the three universities (KU Leuven, Hasselt 

University, UT3 Paul Sabatier) and the staff of the research institute Institute Clément Ader (ICA). 

Thanks to your efforts, I was able to make this dream come through. Finally, I want to praise my 

family for always lending their support in my most difficult hours… 

  



 

 

  



 

 

Table of contents 
Preface ..................................................................................................................................................... 1 

List of tables ............................................................................................................................................ 5 

List of figures .......................................................................................................................................... 7 

Glossary of terms .................................................................................................................................... 9 

Abstract in English ................................................................................................................................ 11 

Abstract in Dutch .................................................................................................................................. 13 

1. Introduction ................................................................................................................................... 15 

1.1 Context of the thesis .............................................................................................................. 15 

1.2 Problem definition ................................................................................................................. 17 

1.3 Objectives .............................................................................................................................. 18 

1.4 Methodology ......................................................................................................................... 18 

1.4.1 Simplifications ............................................................................................................... 18 

1.4.2 Concrete methodology .................................................................................................. 19 

2. Theoretical background ................................................................................................................. 21 

2.1 Designing using Finite Element Modelling ........................................................................... 21 

2.2 Defining rigidity .................................................................................................................... 22 

2.3 Estimating material characteristics ........................................................................................ 23 

2.4 Conclusions ........................................................................................................................... 23 

3. Calculating the rigidity .................................................................................................................. 25 

3.1 Creating mathematical models .............................................................................................. 25 

3.1.1 Analytical circular model .............................................................................................. 25 

3.1.2 Polynomial model .......................................................................................................... 26 

3.1.3 U-model ......................................................................................................................... 26 

3.1.4 U-model with a constant base ........................................................................................ 27 

3.2 Calculating moment of inertia for each model ...................................................................... 28 

3.2.1 Polynomial model .......................................................................................................... 28 

3.2.2 U-model ......................................................................................................................... 30 

3.2.3 U-model with constant base .......................................................................................... 31 

3.3 Discussion of the results ........................................................................................................ 31 

3.3.1 Polynomial model .......................................................................................................... 32 

3.3.2 U-model ......................................................................................................................... 33 

3.3.3 U-model with a constant base ........................................................................................ 34 

4. Calculating the deformation .......................................................................................................... 35 

4.1 Calculation of the deformation in function of position x ...................................................... 35 

4.2 Parameter variance impact on the deformation ..................................................................... 41 

4.2.1 Parameter beam length H .............................................................................................. 42 



 

 

4.2.2 Parameter height difference Δh ..................................................................................... 45 

4.2.3 Parameter thickness t ..................................................................................................... 48 

4.2.4 Parameter length L ........................................................................................................ 51 

4.2.5 Parameter width W ........................................................................................................ 54 

4.2.6 Parameter charge q ........................................................................................................ 56 

5. Designing the sheet ....................................................................................................................... 59 

5.1 Calculating the desired deformation ...................................................................................... 59 

5.2 Calculating the design ........................................................................................................... 63 

5.2.1 Calculating section parameters ...................................................................................... 63 

5.2.2 U-model ......................................................................................................................... 66 

5.2.3 U-model with constant base .......................................................................................... 67 

5.2.4 Conclusion calculation results ....................................................................................... 68 

5.3 Designing the prototype and mould ...................................................................................... 69 

6. Virtual testing on the prototype ..................................................................................................... 71 

6.1 Linear FEM testing of the deformation ................................................................................. 71 

6.2 Non-linear FEM testing of the deformation .......................................................................... 73 

6.3 Linear FEM testing of the bending stress .............................................................................. 75 

6.4 Conclusions and preparing physical tests .............................................................................. 77 

7. Conclusion ..................................................................................................................................... 79 

7.1 Evaluation .............................................................................................................................. 79 

7.2 Relevance .............................................................................................................................. 79 

7.3 Critical remarks ..................................................................................................................... 79 

7.4 Prospects ................................................................................................................................ 80 

Reference list ......................................................................................................................................... 81 

Appendix A: Scan of the calculation for Igz for the polynomial model ................................................. 82 

Appendix B: Scan of the calculation of Iox for a trapezoid section ....................................................... 85 

Appendix C: Scan of the calculation of Igz for the U-model ................................................................. 86 

Appendix D: Scan of the calculation of Igz for the U-model with constant base ................................... 91 

Appendix E: MATLAB code to calculate the deformation analytically ............................................... 98 

 

 



 

 

List of tables 
Table 1: Control of the moment of inertia for a given radius R, section length L and 

thickness t. 

Pg. 30 

Table 2: Example of the Excel sheet for the U-model with a constant base, to show 

the application of formula 4.21 

Pg. 38 

Table 3: Values for the used parameters to calculate v(x) for the U-model Pg. 39 

Table 4: Values for the used parameters to calculate v(x) for the U-model with a 

constant base 

Pg. 40 

Table 5: Constant parameters varying H for U-model Pg. 42 

Table 6: Changing parameters varying H for U-model Pg. 42 

Table 7: Constant parameters varying H for U-model with constant base Pg. 43 

Table 8: Changing parameters varying H for U-model with constant base Pg. 44 

Table 9: Constant parameters varying Δh for U-model Pg. 45 

Table 10: Changing parameters varying Δh for U-model Pg. 45 

Table 11: Constant parameters varying Δh for U-model with constant base Pg. 46 

Table 12: Changing parameters varying Δh for U-model with constant base Pg. 47 

Table 13: Constant parameters varying t for U-model Pg. 48 

Table 14: Changing parameters varying t for U-model Pg. 48 

Table 15: Constant parameters varying t for U-model with constant base Pg. 49 

Table 16: Changing parameters varying t for U-model with constant base Pg. 49 

Table 17: Constant parameters varying L for U-model Pg. 51 

Table 18: Changing parameters varying L for U-model Pg. 51 

Table 19: Constant parameters varying L for U-model with constant base Pg. 52 

Table 20: Changing parameters varying L for U-model with constant base Pg. 52 

Table 21: Constant parameters varying W for U-model with constant base Pg. 54 

Table 22: Changing parameters varying W for U-model with constant base Pg. 54 

Table 23: Constant parameters varying q for U-model Pg. 56 

Table 24: Changing parameters varying q for U-model Pg. 56 

Table 25: Constant parameters varying q for U-model with constant base Pg. 57 

Table 26: Changing parameters varying q for U-model with constant base Pg. 57 

Table 27: Calculating the desired deformation Pg. 62 

Table 28: Measurements of the carbon fibre handle as reference Pg. 63 

Table 29: Summary fixed parameters Pg. 66 



 

 

Table 30: Utilised section lengths and maximal deformation results for U-model Pg. 66 

Table 31: Utilised height differences and maximal deformation results for U-model Pg. 67 

Table 32: Utilised section lengths and maximal deformation results for U-model 

with constant base W = 15 

Pg. 68 

Table 33: Used values for the FEM tests and calculations Pg. 69 

Table 34: Calculation of the relative difference between the theory and the linear 

FEA 

Pg. 74 

Table 35: Calculation of the relative difference between the theory and the non-

linear FEA 

Pg. 75 

  



 

 

List of figures 
Figure 1: 3D-scan of the backrest of the current wheelchair Pg. 15 

Figure 2: Schematic representation of the elastic bands Pg. 15 

Figure 3: New concept for the backrest Pg. 16 

Figure 4: The new design concept, a backrest made from multiple carbon fibre 

sheets with a variable section 

Pg. 17 

Figure 5: The design process Pg. 17 

Figure 6: Mechanical representation of the carbon fibre sheet for beam theory Pg. 18 

Figure 7: Schematic representation of the methodology Pg. 19 

Figure 8: Principle of the variation of a circular section when increasing the radius 

R 

Pg. 25 

Figure 9: Principle of the polynomial model Pg. 26 

Figure 10: Principle of the U-model Pg. 26 

Figure 11: Evolution of the U-model when lowering the height h Pg. 27 

Figure 12: Principle of the U-model with a constant base Pg. 27 

Figure 13: Evolution of the U-model with a constant base when lowering the height h Pg. 28 

Figure 14: Defining the circular arc and approximating by a polynomial Pg. 29 

Figure 15: Principle of calculating the two trapezoids to create the U-model, by 

subtracting trapezoid 2 from trapezoid 1 

Pg. 30 

Figure 16: Resulting function polynomial model Pg. 32 

Figure 17: Results for the U-model Pg. 33 

Figure 18: Results for the U-model with a constant base Pg. 34 

Figure 19: Mechanical situation for the sheet Pg. 35 

Figure 20: Deformation characteristic for the U-model Pg. 39 

Figure 21: Deformation characteristic for the U-model with constant base Pg. 41 

Figure 22: Effect variation of H for the U-model Pg. 43 

Figure 23: Effect variation of H for the U-model with constant base Pg. 44 

Figure 24: Effect variation of Δh for the U-model Pg. 46 

Figure 25: Effect variation of Δh for the U-model with constant base Pg. 47 

Figure 26: Effect variation of t for the U-model Pg. 49 

Figure 27: Effect variation of t for the U-model with constant base Pg. 50 

Figure 28: Effect variation of L for the U-model Pg. 52 

Figure 29: Effect variation of L for the U-model with constant base Pg. 53 



 

 

Figure 30: Effect variation of W for the U-model with constant base Pg. 55 

Figure 31: Effect variation of q for the U-model Pg. 56 

Figure 32: Effect variation of q for the U-model with constant base Pg. 57 

Figure 33: Point of reference on the backrest Pg. 59 

Figure 34: Deformation of the first stroke Pg. 60 

Figure 35: Deformation of the second stroke with side panel reference (centre) and 

tube reference (right) 

Pg. 60 

Figure 36: Deformation of the third stroke Pg. 61 

Figure 37: Deformation of the fourth stroke Pg. 61 

Figure 38: Deformation of the fifth stroke Pg. 62 

Figure 39: Current measurements backrest in profile Pg. 64 

Figure 40: Transformation of the backrest to a straight sheet Pg. 64 

Figure 41: Required transformation of the section for the U-model Pg. 69 

Figure 42: Final design of the prototype with section at the origin. Pg. 69 

Figure 43: Approximation of the desired movement of point A of the section (red) by 

linearly connecting certain sections (black) 

Pg. 70 

Figure 44: Final design of the mould Pg. 70 

Figure 45: Result linear FEM analysis of the deformation for a straight sheet Pg. 71 

Figure 46: Constant section of bent sheet for FEM test Pg. 72 

Figure 47: Result linear FEM analysis of the deformation for a bent sheet with 

constant section 

Pg. 72 

Figure 48: Result linear FEM analysis of the deformation for the designed prototype Pg. 73 

Figure 49: Comparison between the theoretic, linear FEM and non-linear FEM 

results 

Pg. 74 

Figure 50: Section with indicated centres of gravity Pg. 76 

Figure 51: Result linear FEM analysis of the stress for the designed prototype Pg. 76 

Figure 52: The 6-axis CNC-milling machine is milling the mould by repositioning 

the clamped object 

Pg. 77 

Figure 53: Completed aluminium mould Pg. 78 

  



 

 

Glossary of terms 
 

Design parameter Parameter related to the design of the sheet/section. Examples include the 

section length L and the thickness t for the section of the different models. 

This may also include the beam length H for the sheet design. 

FEM Finite Elements Method 

FEA Finite Elements Analysis 

Rigidity The relationship between the load and the deformation caused by that load. 

For example: an elastic spring has a linear relation between the load F and 

deformation v, characterised by the formula 𝐹 = 𝑘 ∗ 𝑣. In this formula, k is 

the spring constant or the rigidity of that spring. The higher the rigidity, the 

less the spring will deform given a given load. 

In the context of this thesis, this principle is applied for a beam under a 

distributed charge. It is further explained in chapter two: theoretical 

background. 

 

  



 

 

  



 

 

Abstract in English 
The research lab ICA is working on a global project of designing a wheelchair for a Paralympic 

badminton athlete. Because this athlete has no abdominal muscles, the backrest of this wheelchair 

requires elastic bands to support the athlete’s back. The goal of this master’s thesis is to investigate if 

the elastic bands could be replicated with thin carbon fibre sheets with a variable rigidity. 

There are three objectives in the design of such a sheet. Firstly, the relationship between the design of 

the sheet and the deformation is unknown. The rigidity varies depending on the position on the sheet. 

Therefore, a method to calculate the deformation characteristic in function of the position is 

developed. Secondly, the impact of varying a design parameter on the deformation is investigated. 

Thirdly, the desired deformation is converted to a sheet design and prototype. 

To investigate the deformation, various designs for the section of the sheet are made, for each of 

which a mathematical model is developed. After selecting the preferred model, the deformation in 

function of the position is calculated. By varying design parameters, the impact on the deformation 

characteristic is found. Subsequently, the desired deformation can be converted by varying the design 

parameters of the model, resulting in a final sheet design. Finally, the results of finite element analyses 

(FEA) on the design are discussed and physical tests are prepared. The linear and non-linear FEA 

show that the proposed design is feasible for a limited charge. 

  



 

 

  



 

 

Abstract in Dutch 
Het onderzoekslab ICA werkt aan een globaal project om een rolstoel te ontwerpen voor een 

Paralympische batmintonatleet. Omdat deze atleet geen buikspieren heeft, gebruikt de rugsteun van de 

rolstoel elastieken om de atleet zijn rug te ondersteunen. Het doel van deze Masterproef is te 

onderzoeken of de elastieken gerepliceerd kunnen worden door dunne carbonvezel platen met een 

variërende stijfheid. 

Er zijn drie doelstellingen in het ontwerpen van een dergelijke plaat. Ten eerste is de relatie tussen het 

ontwerp van de plaat en de vervorming onbekend. De stijfheid varieert afhankelijk van de positie op 

de plaat. Daarom is een methode ontwikkeld om de vervormingskarakteristiek in functie van de positie 

te tonen. Ten tweede wordt voor elke ontwerpparameter het effect getoond op de 

vervormingskarakteristiek. Ten slotte, wordt de gewenste vervorming omgezet worden in een 

plaatontwerp en prototype. 

Om de vervorming te onderzoeken, worden verschillende ontwerpen voor de sectie van de plaat 

gemaakt, waarvoor elk een wiskundig model wordt opgesteld. Na de selectie van de modellen, wordt 

de vervorming berekend. Door elk van de ontwerpparameters te variëren, kan de impact op de 

vervorming bekomen worden. Vervolgens, kan de gewenste vervorming omgezet worden door 

ontwerpparameters te optimaliseren, wat leidt tot een eindontwerp. Ten slotte, worden eindige-

elementanalyses (EEA) op het ontwerp besproken en fysieke testen voorbereid. De lineaire en non-

lineaire EEA tonen aan dat dit ontwerp haalbaar is voor een beperkte belasting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

 

 



1. Introduction 

1.1 Context of the thesis 

The aerospace company Airbus is currently designing a wheelchair for a Paralympic badminton 

athlete to compete in the 2024 Paralympic games. For the design of specific components of the 

wheelchair, they are working together with the research centre Institute Clément Ader (ICA), who 

granted this thesis subject in cooperation with Université Toulouse III Paul Sabatier. This thesis 

focusses specifically on the backrest of the athlete. Because of his injury, the Paralympic athlete has 

no abdominal muscles left.  

Therefore, the athlete currently uses a backrest made entirely from elastic bands. The purpose of these 

bands is to support the back of the athlete and to give more power during strokes. Because Para-

badminton games require high agility and fast acceleration, the mass of the components of the 

wheelchair also need to be minimised. Elastic bands fit this constraint perfectly, since their mass is 

negligible compared to the frame of the wheelchair. A 3D scan of the current backrest, made by a 

previous Master’s student Mathias Lambrecht and his colleagues, is shown on the following figure 

(Fig. 1). [1] 

 

Figure 1: 3D-scan of the backrest of the current wheelchair 

Because the athlete requires more support at his lower back and more flexibility at the top of his 

backrest, each elastic band has a different rigidity. This is illustrated on the following image (Fig. 2). 

  

Figure 2: Schematic representation of the elastic bands 
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The colours on figure 2 represent the different levels of rigidity. A redder colour means a higher 

rigidity is required, whilst a greener colour means a lower rigidity is required. Thus, a higher rigidity 

is required at the base and a lower rigidity at the top. However, utilising these elastic bands is not 

an ideal solution for three key reasons:  

1. It takes a long time to calibrate these elastic bands. 

2. The bands are stretched beyond their limits. This means they are prone to permanent 

deformation even during the match. 

3. Because of the high stress on the elastic bands, they must be replaced and recalibrated after 

each match. This also means that the configuration might be inconsistent or suboptimal.  

These disadvantages would be remedied by designing thin elastic panels made from carbon fibre 

epoxy resin, which mimic the rigidity of the elastic bands. Utilising these carbon fibre sheets would 

yield the following advantages: 

- Because of its design, practically no calibration would be necessary before the match.  

- If designed properly, the carbon sheets will only deform elastically under the loads of the 

match. This means the rigidity of the backrest does not change during matches and the 

backrest can be used for multiple matches without a decrease in performance.  

- Because of the utilised material category (carbon fibre/epoxy resin), difference in mass for 

replacing the elastic bands would be negligible, thus satisfying the goal of minimizing the 

mass of the wheelchair. 

- Because the backrest is already calibrated in its design, the rigidity will be more consistent 

during matches and could be optimised on the physiology of the athlete. In theory, this would 

yield consistent optimal results. 

A design concept for this carbon fibre backrest proposed by Mathias Lambrecht is shown on figure 4. 

 

Figure 3: New concept for the backrest 

As visible in the figure, the back panel is slanted and does not rely on elastic bands. Because the 

rigidity of the elastic band is different depending on the height, the carbon fibre replication must vary 

in rigidity in function of the height of the panel. This means that the rigidity of the backrest must be 

calibrated to match the rigidity of the elastic bands at each given height.  

Although it is proposed to create a backrest from a single carbon fibre sheet, this is not the most ideal 

option. The deformation is different for each side of the backrest: in the middle the deformation will 

be the highest, whilst at the sides the deformation would be minimal. To achieve this, the rigidity must 

vary within the single sheet from the centre to the side. A single sheet could in theory address this 

concern by varying the thickness of the sheet. However, since carbon fibre sheets are produced layer 

by layer, it is far harder to vary the thickness during production. 
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This problem is resolved by designing a backrest consisting of multiple carbon fibre sheets connected 

by a solid piece. To vary the rigidity in function of the height of the backrest, the section of the sheet 

can be altered. This way, the deformations, and rigidities from side to centre could be reproduced by 

the individual sheets. Therefore, it would be more beneficial to create a backrest from multiple 

carbon fibre sheets with a varying section. This principle is shown on the following figure (Fig. 4). 

 

Figure 4: The new design concept, a backrest made from multiple carbon fibre sheets with a variable section 

 

1.2 Problem definition 

Although the goal is to replicate elastic bands by a fully carbon fibre backrest, it is still unknown if it 

is possible to replicate the characteristics of the elastic bands by multiple carbon fibre sheets. Design 

an entirely carbon fibre backrest has too many variables to take into consideration, such as rigidity, 

design parameters (like section design, sheet length), the applied load, etc…  

Therefore, this Master’s thesis poses the following research question: 

“Can the characteristics of the elastic bands of the current backrest be replicated by flexible thin 

carbon fibre epoxy resin sheets with a variable rigidity?” 

To know if it is possible to design a whole backrest from carbon fibre sheets, it must be known if it is 

possible to design one single carbon fibre sheet based on a desired deformation and rigidity at a 

given position. If this is possible, the same methodology can be applied to design multiple sheets. 

Because of this reasoning, this Master’s thesis will focus on replicating one single sheet. This 

reasoning is shown on the following figure (Fig. 5). 

 

Figure 5: The design process – 1) Calculate/measure the desired deformation (left); 2) Recreate the deformation for a single 

sheet (centre); 3) Design the entire backrest based on the same methodology (right) 

This study is based on estimations and approximations of real values, since no concrete data was 

available on the forces on the elastic bands, the rigidity, the deformation, etc… Therefore, the goal of 

the thesis is not to accurately recreate the deformation and rigidity based on the given data. The goal 

of this study is to develop the methodology and mathematical framework to recreate the rigidity 

for a sheet, to be applied when the necessary data becomes available. This thesis functions as the 

foundation for the development of each individual carbon fibre sheet and consequently the 

backrest. 
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1.3 Objectives 

The overarching goal of recreating the characteristics of the elastic bands can be achieved by first 

recreating the rigidity. To measure if the rigidity is successfully recreated, we need to measure the 

deformation, since this is related to the rigidity. The relationship between the rigidity and the 

deformation is further explained in paragraph 3.1.  

Therefore, the goal of recreating the elastic bands by a single carbon fibre sheet can be divided into 

three subgoals: 

1. Find the relation between the sheet design and the deformation. 

2. Visualise the impact of varying each design parameter on the resulting deformation. 

3. Convert the desired deformation into a functional prototype. 

By measuring the deformation of a prototype, which is designed to replicate the deformation of the 

elastic bands for a given point, it is possible to check if the result matches the designed deformation 

and therefore the designed rigidity.  

1.4 Methodology 

1.4.1 Simplifications 

To design a carbon fibre sheet based on the rigidity and deformation of the backrest, some 

simplifications are necessary. Because a single sheet is fixed at the backrest at a single point, the sheet 

can be considered as an embedded beam. Therefore, this thesis adopts the first simplification, that 

classical beam theory [2] is applicable on the carbon fibre sheet. This means that there is a linear 

relationship between the applied load and the deformation of the sheet, which makes calculations far 

easier. If the deformation is limited, this is a good simplification. If, however, the desired deformation 

is relatively great, it should be calculated for which range beam theory is applicable. When beam 

theory is applied, the carbon fibre sheet can be mechanically represented in a 2D plane as in the 

following figure (Fig. 6). 

 

Figure 6: Mechanical representation of the carbon fibre sheet for beam theory 

Since the backrest will be used in a competitive environment, the sheet will be subjected to a varying 

load at different positions in the x-axis. However, it is not yet measured how this load is distributed 

and which order of magnitude is applicable. Therefore, the second simplification states that the 

charge on the carbon fibre sheet is uniform.  

Since the real charge is unknown, it is far easier to replace a varying charge with a constant charge q. 

In essence, the function for the charge in function of the position q(x) can be described with the 

following equation (1.1): 
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 𝑞(𝑥) = 𝑞 (1.1) 

With q(x) the charge at any given position of x and q the constant charge. Since in all the following 

mathematical calculations the charge is assumed as constant, the charge can easily be updated by a 

function of x when the charge is measured/quantified. This makes it relatively easy to expand the 

mathematical models calculated in this thesis and the Excel calculations. 

 

1.4.2 Concrete methodology 

The methodology of this thesis follows the following schematic (Fig. 7). 

 

Figure 7: Schematic representation of the methodology 

To design the carbon fibre sheet, the methodology can be divided into two processes. The first process 

is the ‘Model process’, which aims to check which mathematical models for the section yield a 

favourable relationship with the deformation. The steps in the model process are: 

1. Design: the design of multiple mathematical models of the section of the hypothetical sheet. 

2. Moment of inertia: the calculation of the moment of inertia, based on the models of the 

section. 

3. Deformation: the calculation of the deformation, based on the previously calculated moments 

of inertia. This includes checking the effects of each design parameter on the deformation. 

When these three steps are completed, a direct relationship between the sheet design and the 

deformation will be found. It is important to note that the effect of varying each design parameter is 

studied. This would enable the recreation of the desired deformation in a discrete manner during the 

reverse process. 

The ‘Reverse process’ aims to reverse the previous three steps to find the optimal design of the sheet. 

By reversing the process and starting from the desired deformation, the sheet parameters can be 

calculated to mimic this desired deformation. This process consists of the following steps: 

4. Deformation: the calculation of the desired deformation for one point of the backrest. 

5. Moment of inertia: by utilising the model of the moment of inertia, the design parameters are 

calculated based on the deformation. This can be completed analytically or discretely. 

6. Design: the conversion of the design parameters into an actual prototype and mould design for 

the sheet. This design should be tested with FEM-software and physical tests to see if the 

replication of the deformation is successful. 
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It could be argued that the model process could be sidestepped by directly trying to calculate the sheet 

design from the desired deformation, but this would be less effective. First and foremost, the relation 

between the section design (by mathematical models) and the deformation is necessary to calculate the 

shape of the sheet. Secondly, the model process is a way of testing multiple sections designs to see 

which shape is easily utilised and altered to replicate the elastic bands. Thirdly, by calculating the 

deformation based on the different section models, it is possible to find the effect of each design 

parameter of the sheet on the deformation. If the analytical calculation of the design parameters in step 

four is not possible/hard, the result can be found discretely by tweaking parameters until the correct 

deformation is found.    



2. Theoretical background 
The overarching goal of the master’s thesis is to check if a carbon fibre sheet can replicate the desired 

deformation. This requires important theoretical insights and literature. This chapter aims to provide a 

base of reference for the insights required to finish the project. 

Firstly, this chapter will discuss how to create a design utilising Finite Element Modelling. Secondly, 

the theoretical concept of rigidity is discussed. Thirdly, literature is reviewed to perform an estimation 

for certain material characteristics in this thesis. Finally, the chapter is closed by stating the 

conclusions. 

 

2.1 Designing using Finite Element Modelling 

This thesis is in essence a design study entirely based on FEM analyses. Because there are no physical 

tests performed, the results are entirely based on these analyses, which should confirm the preformed 

calculations. A study with an equivalent methodology is researched to check if the methodologies 

align and to find possible difficulties with this study. 

In 2018, a study was conducted to design a carbon-fibre ankle-foot prosthetic by only utilising Finite 

Element Modelling [3]. It aims to design a prosthetic foot from carbon fibre sheets, based on 

biomechanics and numerical data available. No physical tests were conducted to verify the FEA from 

this study, which means this is a good comparison with this thesis. 

The methodology is divided into three main chapters (excluding the introduction):  

- Design considerations 

- Methods 

- Results and discussion 

The chapter ‘Design considerations’ focusses on the theoretical background necessary for designing 

such a study, such as ISO standards, biomechanics, anthropometry, … This indicates that a theoretical 

framework must be clearly defined at the start of the thesis. Applied to this thesis, this means 

explaining the theoretical concepts of rigidity, deformation, and the underlying theory beneath it. 

The chapter ‘Methods’ focusses on the actual design of the prosthetics and creating the CAD model. It 

also discusses how the FEM software is used. This can be related to this study: there are multiple 

chapters dedicated to calculating the theoretical results and one chapter implements these results into a 

prototype design. Results and discussion focus on showing and discussing the FEM results. This 

should be applied in the final chapter before the conclusion. 

There are aspects that are not applied in this study. The source is dependent on biomechanical theory, 

whilst this study is focussed primarily on beam theory from mechanics. This study does not utilise 

measurements on the backrest or the athlete to predict the results. This should be taken into 

consideration when comparing these studies.  
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2.2 Defining rigidity 

The concept of rigidity is the resistance to deformation: The more rigid an object is, the less it will 

deform when subjected to a given load. In this thesis, it is related to the bending stiffness of a material, 

which is the resistance against bending deformation [4]. The stiffness, and in essence the rigidity, can 

be calculated based on the formula’s related to classic beam theory. The course “Mechanics of 

Materials” by Russel C. Hibbeler [5] is consulted for the required formulas for the calculations and 

this concept will be explained based on these formulas. 

In classical beam theory, the rigidity of a thin sheet can be compared to the rigidity of a beam. The 

rigidity can be concluded as the relation between the applied load and the resulting deformation. This 

relation is described by the following differential equations (2.1 and 2.2): 

 
𝐸 ∗ 𝐼 ∗

𝑑4𝑣

𝑑𝑥4
= 𝑞(𝑥) 

(2.1) 

 
𝐸 ∗ 𝐼 ∗

𝑑2𝑣

𝑑𝑥2
= 𝑀(𝑥) 

(2.2) 

Containing: 

E:    Young’s Modulus of the selected material, more specifically the Flexural Modulus 

I:  moment of inertia of the beam section 

v:   deformation of the beam for a position x 

M:   flexural moment in the beam for a position x 

q: distributed load applied at the beam for a position x 

The deformation v (also a function of x) and the load q(x) can be determined by experimental data on 

the elastic bands. The Young’s Modulus/Flexural Modulus is entirely dependent on the material used 

(in this case, carbon fibre epoxy resin) and is a constant. Because the goal is to vary the section of the 

sheet, the moment of inertia will not be a constant, but a function of x. Because of the previously 

stated simplifications, the charge is defined as a constant q. This means (by double integrating the 

differential in formula 2.1) that M(x) is a second order polynomial. This means the functions change 

to the following (2.3 and 2.4): 

𝐸 ∗ 𝐼(𝑥) ∗
𝑑4𝑣(𝑥)

𝑑𝑥4
= 𝑞 

(2.3) 

𝐸 ∗ 𝐼(𝑥) ∗
𝑑2𝑣(𝑥)

𝑑𝑥2
= 𝑀(𝑥) ~ 𝑞 ∗ 𝑥² 

(2.4) 

Formula 2.4 is the basis for every calculation in this thesis. For the model process, the formula is used 

to calculate the deformation, whilst for the reverse process it is used to calculate the design parameters 

of the moment of inertia. 

The relation between the load and the deformation, is known as the rigidity. Therefore, the rigidity of 

a beam is equal to the Young’s modulus of the material multiplied by the moment of inertia of 

the beam section (2.5): 

 𝑅𝑖𝑔𝑖𝑑𝑖𝑡𝑦 = 𝐸 ∗ 𝐼(𝑥) (2.5) 

Because the Flexural Modulus is a constant, it can be stated that the bending stiffness and rigidity of 

the carbon fibre sheet is directly related to the moment of inertia of the section. Therefore, the moment 

of inertia will be used to characterise the rigidity of the sheet at any position for x.   
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2.3 Estimating material characteristics 

From chapter 4 onwards, the calculations for the rigidity and the reverse require an estimation of the 

Flexural Modulus of the material. However, the exact material used to produce the prototype was not 

yet determined, since there are multiple variants for producing carbon fibre epoxy resin. Therefore, the 

Flexural Modulus should be estimated based on studies that test the flexural modulus of this material.  

In the calculations, a Modulus of 75 GPa is used as a reference value. This was first based on the 

Tensile Modulus of a peer reviewed study from the 2nd International Conference on Nanomaterials and 

Technologies in 2014 [6]. In this study, the average value of the Tensile Modulus was calculated at 

75.095 GPa. Therefore, a value of 75 GPa was used during the first calculations. 

However, the stress on this sheet is primarily flexural stress instead of tensile strength because of the 

applied load on the sheet. This means the Flexural Modulus should be used to calculate the 

deformation in formula 2.4. In this study, an average flexural modulus of 69.63 GPa was found. To 

check if this value was up to date, another study specifically focussing on the flexural properties from 

2020 was consulted [7]. For 0% glass/epoxy plies, a flexural modulus of around 70 GPa is indeed 

found. From this study, the value for the flexural strength of 950 MPa is utilised as a reference during 

the discussion of the FEM analyses.  

Since this is still an estimate of the real flexural modulus and close to the reference value of 75 GPA, 

it was decided to keep using 75 GPa as reference modulus. Because this is an estimation, the FEA 

results must be regarded critically. The flexural modulus and the flexural strength should be tested 

with an extra carbon fibre sheet during the physical tests to modify the references for the mathematical 

calculations. Therefore, the test results should be used to recalculate the deformation and rigidity. This 

is one of the key reasons why physical testing is very important. 

 

2.4 Conclusions 

- To design the sheet, a structure of Theory-Design-Discussion is necessary. This is the best 

approach to replicating an object with another material. 

- The flexural moment is a function of the position x and should be second order polynomial 

according to the utilised simplifications. This is an important control for the calculations. 

- The rigidity on a given position x is directly related to the moment of inertia of the section in 

x. The rigidity is also dependant on the flexural modulus of the material. 

- The flexural modulus is estimated at 75 GPa and the flexural strength at 950 MPa. These 

values should be checked by physical tests on the used material. The test results should be 

used to recalculate the deformation and rigidity. 
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3. Calculating the rigidity 
To create a successful design for the section of the sheet, the relationship between the section design 

and the rigidity must be found. As stated previously in chapter 2, the rigidity is defined by the moment 

of inertia of the section of the sheet. To calculate the rigidity for each position of the sheet, a relation 

between the shape of the sheet and the moment of inertia must first be defined. This relation should be 

simple enough to allow for easier calculations using formula 2.4. Therefore, mathematical models for 

the section of the sheet are established to calculate the moment of inertia using Microsoft Excel. 

Afterwards, an interpolation equation is established with excel to find the best fitting function to use in 

further calculations. In this chapter, these calculations are summarised and the resulting characteristics 

of the moment inertia are discussed.  

 

3.1 Creating mathematical models 

3.1.1 Analytical circular model   

The first impulse to defining a model for the section, was to use a sheet in the form of a circular arc 

and calculate the moment of inertia analytically. This sheet would have a fixed section length and 

thickness because it is easier to produce a sheet with a fixed length and thickness. To vary the rigidity 

(and the moment of inertia), the radius would increase. This is illustrated by the following image (Fig. 

8). 

 

Figure 8: Principle of the variation of a circular section when increasing the radius R 

The model was based entirely on analytical calculations and integrations. However, the calculation of 

the moment of inertia showed great errors when the radius R increased. Mathematically, the model is 

correct, but it is inapplicable in this scenario. This model is very hard to use because of the complex 

calculations and is practically unusable for calculating the deformation. A lesson was learned: the 

most intuitive solution is not always the correct/best solution. 

The next model approximates this circular arc by a 2nd order Least Squares Solution of for the circular 

arc. Although the error remained for lower values of the radius, the error diminished when the radius 

increased. This is the first model that successfully approximated the circular arc, but the error remains 

too great to be used consistently.  
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The lessons learned when calculating these two models are implemented into the next three models. 

Each of these models has successfully calculated the moment of inertia in relation to their section. 

 

3.1.2 Polynomial model 

The first model to effectively calculate the moment of inertia in relation to the section design. It is also 

based on a circular arc. The section design is shown on figure 9 below. 

 

Figure 9: Principle of the polynomial model 

In essence, this model is based on a 2nd polynomial approximation of a circular arc (as shown by the 

white striped line). This polynomial has a constant thickness based on the development of the 

polynomial function. This model has the following constant parameters for each position of x: 

L:  Section length and the length of the polynomial. 

t:  Thickness of the sheet. 

The variable parameter of this model is the radius R. When the radius increases, the section becomes 

more flat and less bent. The evolution of the section is the same as illustrated on figure 8. 

 

3.1.3 U-model  

The second successful section model is the U-model. This model works by varying the shape of a U 

where each leg has the same length as the top base. This principle is illustrated on figure 10. 

 

Figure 10: Principle of the U-model 

For this model, the top base and the length of each leg has the same length. Thus, the section length L, 

the thickness t and the top base a are constant parameters. The variable parameter is the height h. By 
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decreasing the height, the shape of the model can be changed to a straighter surface. This evolution is 

shown on the following figure (Fig. 11). 

 

Figure 11: Evolution of the U-model when lowering the height h 

3.1.4 U-model with a constant base 

The final successful section model has the same principle as the U-model, but has one key difference: 

the base is always constant in length. This principle is shown in figure 12. 

 

Figure 12: Principle of the U-model with a constant base 

For this model, the parameters section length L, thickness t and base W are constant, while the 

parameters top base a and height h can change. The most important aspect about this model is the 

relation between the base W and the section length L, characterised by the following formula (3.1): 

 𝐿 − 𝑎

2
=

𝑊

2
 

(3.1) 

The height h is directly related to the top base a and can be calculated by the following formula: 

 
(

𝐿 − 𝑎

2
)

2

= (
𝑊 − 𝑎

2
)

2

+ ℎ² 
(3.2) 

Although it is easier to vary the section by varying the top base, the moment of inertia is directly 

related to the height of the section. Therefore, the height h is chosen as the variable parameter. 
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Although the top base a also varies, it will thus vary depending of the height. When decreasing the 

height, the moment of inertia will increase. This evolution of the section is shown on figure 13. 

 

Figure 13: Evolution of the U-model with a constant base when lowering the height h 

 

3.2 Calculating moment of inertia for each model 

The goal of this paragraph is to calculate the moment of inertia in the centre of gravity in function of 

the varying parameter (R or h). This will indicate a clear relationship between the rigidity and the 

varying parameter. This relationship can later be used in the calculation of the deformation. 

 

3.2.1 Polynomial model 

The calculation for the moment of inertia for the centre of gravity of the section Igz is summarised in 

this chapter. The full written calculation is added in Appendix A. Note that in the appendix the 

thickness is defined as e because the French for thickness is the word ‘epaisseur’. 

To calculate the moment of inertia, it is first necessary to define the polynomial approximation of the 

circular arc. This can be done by creating a point O on a 2D plane and defining it as the base for the 

circular arc and the approximating 2nd order polynomial. This principle is shown in figure 14. 
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Figure 14: Defining the circular arc and approximating by a polynomial 

After calculating each parameter, the function for the approximation of the circular arc can be 

described by the following formula (3.3): 

 𝑓(𝑧) =
−𝑎

𝑏²
∗ 𝑧2 + 𝑎 (3.3) 

With: 
𝑎 = 𝑅 ∗ (1 − cos (

𝐿

2𝑅
)) 

(3.4) 

 
𝑏 = 𝑅 ∗ sin (

𝐿

2𝑅
) 

(3.5) 

The section of the model can be calculated by creating a line integral [8] for an infinitesimal piece of 

the length, as shown in appendix A. This leads to the following value of the section area: 

 𝑆 = 𝑏 ∗ 𝑡 < 𝐿 ∗ 𝑡 (3.6) 

This is not a good approximation, since the section area should always be equal to L*t. Utilising the 

same integral approximation, the moment of inertia for the point O Ioz is calculated as: 

 
𝐼𝑜𝑧 =

(32 ∗ 𝑎2 + 5 ∗ 𝑡2) ∗ 𝑏 ∗ 𝑡

30
 

(3.7) 

Calculating the moment of inertia for the centre of gravity Igz by calculating the height of the centre of 

gravity, leads to the following result: 

 
𝐼𝑔𝑧 =

(16 ∗ 𝑎2 + 15 ∗ 𝑡2) ∗ 𝑏 ∗ 𝑡

90
 

(3.8) 

Note that the moment of inertia in formula 3.8 is stated in the parameters a and b, as defined by 

formula 3.4 and 3.5. This means that the parameters a and b must be calculated to calculate the 

moment of inertia. In Excel, this can be accomplished by creating a column structure and calculating 

each parameter based on the given radius R.  

The model is checked by calculating the moment of inertia for given parameters and comparing this 

with the real moment of inertia for these parameters. The used software to calculate the real moment 

of inertia in the centre of gravity is CATIA V5. This control is shown in the following table (Tab. 1). 
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Table 1: Control of the moment of inertia for a given radius R, section length L and thickness t 

R(mm) L(mm) t(mm) Measured Igz (mm4) 
Calculated Igz 
(mm4) Error (mm4) 

Relative 
error (%) 

10 10 1 2,109 2,076 0,033 1,550 

50 10 1 0,890 0,887 0,003 0,302 

100 10 1 0,847 0,847 0,000 0,016 

200 10 1 0,837 0,837 0,000 0,034 

500 10 1 0,834 0,834 0,000 0,015 
 

As shown on the table, the error decreases significantly for a higher radius and the starting error is 

relatively low. This means that this model is a good approximation for the section of a circular arc. 

 

3.2.2 U-model 

The calculation for the moment of inertia for the centre of gravity of the section Igz is summarised in 

this chapter. The full written calculation is added in Appendix C. Note that in the appendix the 

thickness is defined as e because the French for thickness is the word ‘epaisseur’. Note also that this 

calculation is based on the x-y coordinate system to make calculations easier. 

To calculate the moment of inertia for the U-model, the moment of inertia must be defined for a 

trapezoid. This is calculated in Appendix B. This results in the following formula for the moment of 

inertia at the height of the lower base: 

 
𝐼𝑜𝑥,𝑡𝑟𝑎𝑝𝑒𝑧𝑜ï𝑑 =

3 ∗ 𝑎 ∗ ℎ³

12
+

𝑏 ∗ ℎ³

12
 

(3.9) 

With b the lower base, a the top base and h the height of the trapezoid.  

The moment of inertia in the origin for the U-model, as shown in figure 10, can be calculated by 

subtracting two trapezoids. The larger trapezoid has a height of h+t/2 whilst the lower trapezoid has a 

height of h-t/2. By calculating the variables of the two trapezoids, the moment of inertia in the origin 

O can be calculated for both trapezoids. This principle is shown on the following figure (Fig. 15). 

 

Figure 15: Principle of calculating the two trapezoids to create the U-model, by subtracting trapezoid 2 from trapezoid 1 
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Afterwards, the values for the moments of inertia in the origin can be subtracted. By calculating the 

height of the centre of gravity and the section area, the moment of inertia in the centre of gravity Igx 

can be calculated. 

The numerical control calculations made in Appendix C show that the moment of inertia is correct for 

both extreme states. These controls were made utilising a calculator (TI-nspire CX CAS) and a 

calculation website [9]. 

 

3.2.3 U-model with constant base 

The full written calculation is added in Appendix D. Note that in the appendix the thickness is defined 

as e because the French for thickness is the word ‘epaisseur’. Note also that this calculation is based 

on the x-y coordinate system to make calculations easier. 

The methodology to calculate the moment of inertia for the U-model with a constant base is the same 

as for the U-model. It is important to note that both calculations are verified by calculations in CATIA 

V5 on the last page of Appendix D.  

 

3.3 Discussion of the results 

Each of the models will be calculated for a section length L of 30 mm and a thickness t of 1 mm. For 

the U-model with a constant base, a base W of 10 mm is chosen. The moment of inertia is calculated 

for the whole range of the varying parameter (R or h). Hereafter, the calculation of the moment of 

inertia is completed in Excel by implementing the methodology described in the previous chapter and 

Appendix A, B and D. The results are discussed in the next paragraphs. 
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3.3.1 Polynomial model 

Figure 16 shows the results for the polynomial model. 

 

Figure 16: Resulting function polynomial model 

This is not a desirable result for three key reasons: 

1. The range is low in comparison to the other models. 

2. The moment of inertia changes very quickly for a small change of the radius R. This yields a 

lot of uncertainty when utilising this model in calculating the deformation. 

3. It is difficult to use this model in calculations and in the reverse process. To find an 

interpolation equation for these results, a complex least squares approximation needs to be 

calculated. This results in an equation in function of 1/R², which is very hard to use.  

For these reasons, the polynomial model will no longer be used in further calculations. 
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3.3.2 U-model 

Figure 17 shows the results for the U-model. 

 

Figure 17: Results for the U-model. 

The results for the U-model are desirable: 

- The characteristic can be approximated easily by the interpolation equation. This equation of 

second order interpolation correlates highly with the results.  

- The range is almost three times as high as for the polynomial model for the same utilised 

values. This means this model can be used to convey a larger change in rigidity than the 

polynomial model.  

- Because of the simplified interpolation equation, this is easier to implement in the 

calculations. 
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3.3.3 U-model with a constant base 

Figure 18 shows the results for the U-model with a constant base. 

 

Figure 18: Results for the U-model with a constant base. 

The results for this model are also desirable: 

- The characteristic can be approximated easily by the interpolation equation. This equation of 

second order interpolation correlates highly with the results.  

- The range is slightly lower than the polynomial model, but a higher rigidity can be achieved. 

The range can also supplement the range of the U-model (since it starts at ~ 350 mm4).  

- Because of the simplified interpolation equation, this is easier to implement in the 

calculations. 

 

Conclusion: 

The polynomial model is not desirable for the next step in the calculations. Therefore, only the U-

model and U-model with a constant base will be used to calculate the deformations. 
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4. Calculating the deformation 

4.1 Calculation of the deformation in function of position x 

To calculate the deformation, the following formula from chapter two (formula 2.4) must be utilised: 

 
𝐸 ∗ 𝐼(𝑥) ∗

𝑑2𝑣(𝑥)

𝑑𝑥2
= 𝑀(𝑥) 

(4.1) 

Containing: 

E:    Young’s Modulus of the selected material, more specifically the Flexural Modulus 

I(x):  moment of inertia of the beam section in function of position x 

v(x):   deformation of the beam for a position x 

M(x):   flexural moment in the beam for a position x 

q: the applied charge 

To use formula 4.1 in calculations, the flexural moment M(x) and moment of inertia in function of x 

I(x) must be defined. 

 

Calculating flexural moment M(x) 

To calculate the flexural moment, the mechanical situation of the sheet must be clarified (Fig. 19).  

 

Figure 19: Mechanical situation for the sheet. 

In figure 19 the mechanical situation is clarified as an imbedded beam. The following parameters are 

of importance: 

H: sheet/beam length 

q:  charge on the sheet 

Calculating the flexural moment of the imbedded beam results in the following equation: 

 𝑀(𝑥) =
𝑞

2
∗ (𝐻 − 𝑥)² (4.2) 

As described in chapter two, the flexural moment should be a 2nd order polynomial in function of x 

because of the constant charge. Formula 4.2 satisfies that condition. 

For the beam length, a reference value of 400 mm is chosen. The charge to be used as reference value 

is 300 N/m. This value is chosen to compensate a load of 12 kg on the sheet, as shown by the 

following calculation:  

 12 𝑘𝑔 ~ 120 𝑁 = 0.400 𝑚 ∗ 300 𝑁/𝑚 (4.3) 



36 

 

Calculating moment of inertia in function of the position x I(x) 

For formula 4.1, the moment of inertia in function of the position in the x-axis is required. However, 

the previously calculated moment of inertia is calculated in function of the total range of the dependant 

parameter (height h). Therefor it should be converted into a function of x. 

Because of the excellent fit of the 2nd order interpolation equation, the moment of inertia of each 

model can be described by the following equation: 

 𝐼(ℎ) = 𝑢̅ ∗ ℎ2 + 𝑣̅ ∗ ℎ + 𝑤̅ (4.4) 

With 𝑢̅, 𝑣̅ and 𝑤̅ the coefficients for the polynome in function of the height of the model. To utilise the 

moment of inertia in formula 4.1, it needs to be described in function of x. To resolve this and to 

control the variation of the rigidity in function of the position, the height can be varied in function of 

x. This leads to the following equation: 

 ℎ(𝑥) = 𝐴 ∗ 𝑥 + 𝐵 (4.5) 

Because the rigidity needs to be the highest at the base (x = 0), h(x) needs to decrease linearly. To 

achieve this, the parameters A and B can be defined as follows: 

 
𝐴 = −

∆ℎ

𝐻
 

(4.6) 

      𝐵 = ℎ𝑚𝑖𝑛 + ∆ℎ (4.7) 

Containing: 

Δh: chosen difference in height (=hfinal – hmin) 

H:  sheet/beam length 

hmin: minimal possible height for the model 

The chosen difference in height Δh is added as a parameter to control the difference in rigidity. This is 

useful for recreating the desired deformation, since this is a parameter that can be easily changed in the 

calculations. The maximal possible difference in height is thus defined as hmax – hmin.  

Since x varies between zero and H, the final height of the model h(H) will be: 

 
ℎ(𝐻) = −

∆ℎ

𝐻
∗ 𝐻 + ℎ𝑚𝑖𝑛 + ∆ℎ = ℎ𝑚𝑖𝑛 

(4.8) 

This calculation is correct, since the rigidity should be lowest at the top of the sheet. Now, formulas 

4.5, 4.6 and 4.7 can be unified in one single function for the height: 

 
ℎ(𝑥) = −

∆ℎ

𝐻
∗ 𝑥 + ℎ𝑚𝑖𝑛 + ∆ℎ 

(4.9) 

When combining formula 4.6 with formula 4.3, the moment of inertia in function of x is found. It 

should be noted that B could also be defined as hmax. However, this resulted in an unfavourable sheet 

design because of the high rigidity of the function. Therefore, a B of hmin + Δh is preferred.  

  



37 

 

Calculating the deformation v(x) analytically 

To calculate the deformation, formula 4.1 can be transformed into the following equation: 

 𝑑2𝑣(𝑥)

𝑑𝑥2
=

𝑀(𝑥)

𝐸 ∗ 𝐼(𝑥)
 

(4.10) 

Logically, the deformation could be calculated by double integrating formula 4.10: 

 
𝑣(𝑥) = ∫ ∫

𝑀(𝑥)

𝐸 ∗ 𝐼(𝑥)
∗ 𝑑𝑥2 + 𝐶1 ∗ 𝑥 + 𝐶2 | 𝑥 𝜖 [0, 𝐻] 

(4.11) 

The integration constant C1 and C2 can be calculated by calculating the first and second integral of 

formula 4.7 for x = 0 respectively. v(x = 0) = 0 and 
𝑑𝑣(𝑥=0)

𝑑𝑥
= 0 applies for an imbedded beam. In 

theory, this should result into the most accurate values for the deformation and yield consistent results. 

However, the solution of formula 4.7 is very complex. The solution was calculated by using a TI-

nspire CX calculator and by using MATLAB. Both yielded different results and were far too complex 

to implement in the calculations. The used MATLAB code and the results of these calculations can be 

found in Appendix E.  

The calculations made with the calculator echoed the results from calculating fff(x) in Appendix E, but 

yielded not the same results. It can therefore be concluded that it is too difficult to calculate the 

deformation analytically. However, the deformation can be calculated discretely by utilising the 

differential equation 4.7. 

 

Calculating the deformation v(x) discretely 

To calculate the deformation discretely, the differential equation should be converted to a formula to 

be used in calculating each individual value of the deformation, devoid of differentials and integrals. 

Therefor the definition of the derivative is needed. The derivative of v(x) is defined as: 

 𝑑𝑣(𝑥)

𝑑𝑥
=

𝑣(𝑥 + ∆𝑥) − 𝑣(𝑥)

∆𝑥
 𝑓𝑜𝑟 ∆𝑥 ≈ 0 

(4.12) 

This reasoning can also be applied for the second derivative of v(x): 

 𝑑²𝑣(𝑥)

𝑑𝑥²
=

1

∆𝑥
∗ (

𝑑𝑣(𝑥 + ∆𝑥)

𝑑𝑥
−

𝑑𝑣(𝑥)

𝑑𝑥
)  𝑓𝑜𝑟 ∆𝑥 ≈ 0 

(4.13) 

Combining formulas 4.12 and 4.13 results in the following equation: 

 𝑑²𝑣(𝑥)

𝑑𝑥²
=

1

∆𝑥²
∗ (𝑣(𝑥 + 2∆𝑥) − 2 ∗ 𝑣(𝑥 + ∆𝑥) + 𝑣(𝑥)) 

(4.14) 

Combining formula 4.10 and 4.14, yields the following result: 

 𝑀(𝑥)

𝐸 ∗ 𝐼(𝑥)
=

1

∆𝑥²
∗ (𝑣(𝑥 + 2∆𝑥) − 2 ∗ 𝑣(𝑥 + ∆𝑥) + 𝑣(𝑥)) 

(4.15) 
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Formula 4.15 is completely devoid of derivatives. This formula can be transformed to find the 

equation to calculate v(x + 2Δx): 

 
𝑣(𝑥 + 2 ∗ ∆𝑥) =

𝑀(𝑥)

𝐸 ∗ 𝐼(𝑥)
∗ ∆𝑥2 + 2 ∗ 𝑣(𝑥 + ∆𝑥) − 𝑣(𝑥) 

(4.16) 

Define the deformation at a given point vi as followed: 

 𝑣𝑖 = 𝑣(𝑥𝑖) = 𝑣(𝑖 ∗ ∆𝑥) 𝑓𝑜𝑟 𝑖 𝜖 𝑛 𝑤𝑖𝑡ℎ 𝑛 ∗ ∆𝑥 = 𝐻 (4.17) 

An imbedded beam has two constraints for the deformation: 

1. The deformation in x = 0 is 0, or v(x=0) = 0 (= v0). 

2. The change in deformation in x = 0 is 0, or 
𝑑𝑣(𝑥=0)

𝑑𝑥
 = 0. 

Because the deformation does not change because of the second constraint, the deformation at a 

position of x = Δx should also be zero. Therefore, the values for v0 and v1 are calculated as: 

 𝑣0 = 𝑣(0 ∗ ∆𝑥) = 0 (4.19) 

 𝑣1 = 𝑣(1 ∗ ∆𝑥) = 0 (4.20) 

With equation 4.19 and 4.20, v2 can be calculated with formula 4.16. This process can be repeated 

until every value of i є [0,n] is calculated. For every value of i є [0,n], the following applies: 

 
𝑣𝑖 =

𝑀(𝑥𝑖−2)

𝐸 ∗ 𝐼(𝑥𝑖−2)
∗ ∆𝑥2 + 2 ∗ 𝑣𝑖−1 − 𝑣𝑖−2 𝑓𝑜𝑟 𝑛 ∗ ∆𝑥 = 𝐻 

(4.21) 

Formula 4.21 is used to calculate every value of the deformation for i > 1. An Excel sheet is made to 

apply this formula for every x value. Because Δx should be as close to zero as possible, a value for n 

of 1000 is chosen for the following calculations. For the study of the parameter variance, a n of 500 is 

used to limit the required computing power. An example of the first five values of the sheet is shown 

in the following table (Tab. 2): 

Table 2: Example of the Excel sheet for the U-model with a constant base, to show the application of formula 4.21 

i x M(x) I(x) v(x) 

[0,n] =i*Δx =M(x,q,H) =I(x,u,v,w,A,B) =M(i-2)/(E*I(i-2))*dx²+2v(i-1)-v(i-2) 

0 0 -24000 298,0244315 0 

1 0,4 -23952,024 297,9870124 0 

2 0,8 -23904,096 297,9494566 -0,000171798 

3 1,2 -23856,216 297,911764 -0,000515072 

4 1,6 -23808,384 297,8739346 -0,001029501 

5 2 -23760,6 297,8359684 -0,001714763 
 

In the final column, v(x) is calculated as defined by formula 4.21. It should be noted that M(x, q, H) 

and I(x, u, v, w, A, B) are macros written in VBA to mimic the formulas 4.2 and 4.4 (with 4.9 applied) 

respectively.  
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Calculating the deformation v(x) for the U-model 

The following reference values are used to calculate the deformation of the U-model (Tab. 3): 

Table 3: Values for the used parameters to calculate v(x) for the U-model 

E(GPa) 75,00 

q(N/m) 300,00 

H(mm) 400,00 

L(mm) 25,00 

t(mm) 1,00 

Δh(mm) 7,83 

--> Δhmax 7,83 

u 2,7923 

v -0,0404 

w 1,1849 

n 1000 

 

Δhmax is the maximal possible value for the deformation. This value is equal to hmax – hmin as calculated 

in Appendix C. Note that the parameters u, v and w are the coefficients used in formula 4.4. Thus, to 

calculate the deformation with these parameters, it is first necessary to calculate the interpolation 

equation for the moment of inertia in function of the height. In this case, the moment of inertia can be 

defined as: 

 𝐼(ℎ) = 2.7923 ∗ ℎ2 − 0.0404 ∗ ℎ + 1.1849 (4.22) 

Using the values for the parameters in table 3, the deformation characteristic in function of x can be 

calculated. The result is shown in figure 20. 

 

Figure 20: Deformation characteristic for the U-model 
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The deformation characteristic looks realistic: 

- The deformation for x = 0 is zero, since the function starts at the origin. 

- The tangent to the curve in x = 0 looks like it has an angle of 0° with the x-axis. This means 

the derivative of the deformation for x = 0 is zero, satisfying both constraints of an imbedded 

beam. 

- The tangent of the curve seems to have a constant value with the x-axis when approaching x = 

400 = H. This is correct, since the flexural moment at this point is zero, which means that the 

second derivative of the deformation is zero.  

 

Calculating the deformation v(x) for the U-model with a constant base 

The following values are used to calculate the deformation of the U-model with a constant base (Tab. 

4): 

Table 4: Values for the used parameters to calculate v(x) for the U-model with a constant base 

E(GPa) 75,00 

q(N/m) 300,00 

H(mm) 400,00 

L(mm) 25,00 

W(mm) 8,33 

t(mm) 1,00 

Δh(mm) 3,09 

-->Δhmax 3,09 

u -7,1622 

v 175,72 

w -774,67 

n 1000 

 

Δhmax is the maximal possible value for the deformation. This value is equal to hmax – hmin as calculated 

in Appendix D. Note that the parameters u, v and w are the coefficients used in formula 4.3. Thus, to 

calculate the deformation with these parameters, it is first necessary to calculate the interpolation 

equation for the moment of inertia in function of the height. In this case, the moment of inertia can be 

defined as: 

 𝐼(ℎ) = −7.1622 ∗ ℎ2 + 175.72 ∗ ℎ − 774.67 (4.23) 

Using the values for the parameters in table 4, the deformation characteristic in function of x can be 

calculated. The result is shown in figure 21. 
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Figure 21: Deformation characteristic for the U-model with constant base 

The deformation characteristic looks realistic: 

- The deformation for x = 0 is zero, since the function starts at the origin. 

- The tangent to the curve in x = 0 looks like it has an angle of 0° with the x-axis. This means 

the derivative of the deformation for x = 0 is zero, satisfying both constraints of an imbedded 

beam. 

- The tangent of the curve seems to have a constant value with the x-axis when approaching x = 

400 = H. This is correct, since the flexural moment at this point is zero, which means that the 

second derivative of the deformation is zero.  

It should be noted that the deformation for the U-model with a constant base is less when compared to 

the U-model. This is the result of the higher overall rigidity of the U-model with a constant base.  

 

4.2 Parameter variance impact on the deformation 

Since the deformation characteristics are successfully calculated for each model, it is now possible to 

check the impact of varying each individual parameter on the deformation characteristic. By knowing 

the relation between the varied parameter and the deformation, the design of the sheet can be 

numerically calculated when necessary. 
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4.2.1 Parameter beam length H 

Results for the U-model 

The following parameters (Tab. 5) stay constant when varying the beam length H. 

Table 5: Constant parameters varying H for U-model 

E(MPa) 75000 

q(N/mm) 0,300 

L(mm) 25,00 

t(mm) 1,00 

Δh(mm) 7,83 

-->Δhmax 7,83333 

u 2,7923 

v -0,0404 

w 1,1849 

B 8,3333 

n 500 
 

To vary the beam length H, the following values for the changing parameters are found (Tab. 6). 

Table 6: Changing parameters varying H for U-model 

H1 = 100,00 

A1 (Aa) -0,0783 

Δx1 (dxa) 0,200 

H2 = 200,00 

A2 (Ab) -0,0392 

Δx2 (dxb) 0,400 

H3 = 400,00 

A3 (Ac) -0,0196 

Δx3 (dxc) 0,800 

H4 = 600,00 

A4 (Ad) -0,0131 

Δx4 (dxd) 1,200 
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By applying these values, the resulting variation can be visualised by on the following figure (Fig. 22). 

 

Figure 22: Effect variation of H for the U-model 

 

Results for the U-model with constant base 

The following parameters (Tab. 7) stay constant when varying the beam length H. 

Table 7: Constant parameters varying H for U-model with constant base 

E(MPa) 75000 

q(N/mm) 0,300 

L(mm) 25,00 

L(mm) 8,33 

t(mm) 1,00 

Δh(mm) 3,09000 

-->Δhmax 3,09276 

u -7,1622 

v 175,72 

w -774,67 

B 11,4233 

n 500 
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To vary the beam length H, the following values for the changing parameters are found (Tab. 8). 

Table 8: Changing parameters varying H for U-model with constant base 

H1 = 100,00 

A1 (Aa) -0,0309 

Δx1 (dxa) 0,200 

H2 = 200,00 

A2 (Ab) -0,0155 

Δx2 (dxb) 0,400 

H3 = 400,00 

A3 (Ac) -0,0077 

Δx3 (dxc) 0,800 

H4 = 600,00 

A4 (Ad) -0,0052 

Δx4 (dxd) 1,200 

 

By applying these values, the resulting variation can be visualised by on the following figure (Fig. 23). 

 

Figure 23: Effect variation of H for the U-model with constant base 

 

Discussion results 

For both models, the deformation increases when the beam length increases. This is due to the 

distributed charge: if the beam length is greater, there is a bigger load on the sheet. Mathematically, 

this makes sense, but in reality, the charge would be distributed over a bigger surface, decreasing this 

effect. Therefore, it is preferred to not vary the beam length to affect the deformation, but rather adjust 

other parameters since the effect of their variations are better modelled in the calculations. 

Another factor is the distance between the centre of gravity and the embedding. When this distance 

increases, the flexural moment on the sheet increases. This is a logical result. 
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4.2.2 Parameter height difference Δh 

Results for the U-model 

The following parameters (Tab. 9) stay constant when varying the height difference Δh. 

Table 9: Constant parameters varying Δh for U-model 

E(MPa) 75000 

q(N/mm) 0,300 

H(mm) 400,00 

L(mm) 25,00 

t(mm) 1,00 

u 2,7923 

v -0,0404 

w 1,1849 

n 500 

Δx(mm) 0,800 

 

To vary the height difference Δh, the following values for the changing parameters are found (Tab. 

10). 

Table 10: Changing parameters varying Δh for U-model 

Δha = 0,00000 

Aa 0,0000 

Ba 0,500 

Δhb = 2,00000 

Ab -0,0050 

Bb 2,5000 

Δhc = 4,00000 

Ac -0,0100 

Bc 4,500 

Δhd = 7,83333 

Ad -0,0196 

Bd 8,333 
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By applying these values, the resulting variation can be visualised by on the following figure (Fig. 24). 

 

Figure 24: Effect variation of Δh for the U-model 

 

Results for the U-model with constant base 

The following parameters (Tab. 11) stay constant when varying the height difference Δh. 

Table 11: Constant parameters varying Δh for U-model with constant base 

E(MPa) 75000 

q(N/mm) 0,300 

H(mm) 400,00 

L(mm) 25,00 

W(mm) 8,33 

t(mm) 1,00 

u -7,1622 

v 175,72 

w -774,67 

n 500 

Δx(mm) 0,800 

 

  

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

0 100 200 300 400 500

v(
m

m
)

x(mm)

U-model: Effect variation Δh

Δha = 0,00000

Δhb = 2,00000

Δhc = 4,00000

Δhd = 7,83333



47 

 

To vary the height difference Δh, the following values for the changing parameters are found (Tab. 

12). 

Table 12: Changing parameters varying Δh for U-model with constant base 

Δha = 0,00000 

Aa 0,0000 

Ba 8,3350 

Δhb = 0,50000 

Ab -0,0013 

Bb 8,8350 

Δhc = 1,00000 

Ac -0,0025 

Bc 9,3350 

Δhd = 3,09276 

Ad -0,0077 

Bd 11,4278 

 

By applying these values, the resulting variation can be visualised by on the following figure (Fig. 25). 

 

Figure 25: Effect variation of Δh for the U-model with constant base 

 

Discussion results 

The height difference seems to have a far greater impact on the U-model. This is due to the great 

variation in rigidity, because for a height difference of zero the rigidity stays the minimal value. The 

height difference varies greater for the U-model because the minimal value for the U-model far lower 

is than for the U-model with constant base. This could be used as a variable design parameter to 

recreate the deformation, since it is easy to vary this parameter. 
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4.2.3 Parameter thickness t 

Results for the U-model 

The following parameters (Tab. 13) stay constant when varying the thickness t. 

Table 13: Constant parameters varying t for U-model 

E(MPa) 75000 

q(N/mm) 0,300 

H(mm) 400,00 

L(mm) 25,00 

Δh(mm) 7,33000 

A -0,0183 

n 500 

Δx(mm) 0,800 

 

To vary the thickness t, the following values for the changing parameters are found (Tab. 14). 

Table 14: Changing parameters varying t for U-model 

ta = 0,25 

-->Δhmax 8,20833 

u 0,6947 

v -0,0006 

w 0,0186 

Ba 7,455 

tb = 0,50 

-->Δhmax 8,08333 

u 1,3466 

v 0,3022 

w -0,2131 

Bb 7,58 

tc = 1,00 

-->Δhmax 7,83333 

u 2,7923 

v -0,0404 

w 1,1849 

Bc 7,83 

td = 2,00 

-->Δhmax 7,33333 

u 5,4527 

v 1,3957 

w 6,7504 

Bd 8,33 
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By applying these values, the resulting variation can be visualised by on the following figure (Fig. 26). 

 

Figure 26: Effect variation of t for the U-model 

 

Results for the U-model with constant base 

The following parameters (Tab. 15) stay constant when varying the thickness t. 

Table 15: Constant parameters varying t for U-model with constant base 

E(MPa) 75000 

q(N/mm) 0,300 

H(mm) 400,00 

L(mm) 25,00 

W(mm) 8,33 

Δh(mm) 2,72208 

A -0,0068 

n 500 

Δx(mm) 0,800 

 

To vary the thickness t, the following values for the changing parameters are found (Tab. 16). 

Table 16: Changing parameters varying t for U-model with constant base 

ta = 0,25 

-->Δhmax 3,36306 
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-->Δhmax 3,27366 

ub -3,8888 

vb 93,738 

wb -416,05 

Bb 11,0554 

tc = 1,00 

-->Δhmax 3,09276 

uc -7,1622 

vc 175,72 

wc -774,67 

Bc 11,0554 

td = 2,00 

-->Δhmax 2,72208 

ud -11,911 

vd 306,1 

wd -1324,8 

Bd 11,0554 
 

By applying these values, the resulting variation can be visualised by on the following figure (Fig. 27). 

 

Figure 27: Effect variation of t for the U-model with constant base 

 

Discussion results 

For both models, there seems to be an inverse relationship between the deformation and the thickness. 

When the thickness halves, the deformation seems to double. This is one of the most defining 

relationships between the sheet design and the deformation and should be taken into consideration 

when preforming the physical tests. 
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4.2.4 Parameter length L 

Results for the U-model 

The following parameters (Tab. 17) stay constant when varying the secton length L. 

Table 17: Constant parameters varying L for U-model 

E(MPa) 75000 

q(N/mm) 0,300 

H(mm) 400,00 

t(mm) 1,00 

Δh(mm) 2,83300 

A -0,0071 

n 500 

Δx(mm) 0,800 

 

To vary the secton length L, the following values for the changing parameters are found (Tab. 18). 

Table 18: Changing parameters varying L for U-model 

La = 10,00 

-->Δhmax 2,83333 

ua 1,1497 

va -0,0487 

wa 0,4751 

Ba 3,3330 

Lb = 20,00 

-->Δhmax 6,16667 

ub 2,1617 

vb 0,4259 

wb 0,4349 

Bb 3,3330 

Lc = 25,00 

-->Δhmax 7,83333 

uc 2,7923 

vc -0,0404 

wc 1,1849 

Bc 3,3330 

Ld = 40,00 

-->Δhmax 12,83333 

ud 4,4535 

vd -0,0401 

wd 1,8996 

Bd 3,3330 
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By applying these values, the resulting variation can be visualised by on the following figure (Fig. 28). 

 

Figure 28: Effect variation of L for the U-model 

 

Results for the U-model with constant base 

The following parameters (Tab. 19) stay constant when varying the secton length L. 

Table 19: Constant parameters varying L for U-model with constant base 

E(MPa) 75000 

q(N/mm) 0,300 

H(mm) 400,00 

W(mm) = 8,33 

t(mm) 1,00 

Δh(mm) 1,77609 

A -0,0044 

n 500 

Δx(mm) 0,800 

 

To vary the secton length L, the following values for the changing parameters are found (Tab. 20). 

Table 20: Changing parameters varying L for U-model with constant base 

La = 10,00 

-->Δhmax 1,77541 

ua 0,9134 

va 0,814 

wa -0,5262 

Ba 2,6087 
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Lb = 20,00 

-->Δhmax 2,93054 

ub -4,3099 

vb 86,985 

wb -286,97 

Bb 8,7639 

Lc = 25,00 

-->Δhmax 3,09276 

uc -7,1622 

vc 175,72 

wc -774,67 

Bc 11,4261 

Ld = 40,00 

-->Δhmax 3,31884 

ud -15,844 

vd 618,95 

wd -4752,7 

Bd 19,1522 
 

By applying these values, the resulting variation can be visualised by on the following figure (Fig. 29). 

 

Figure 29: Effect variation of L for the U-model with constant base 

 

Discussion results 

The results for the deformation are radically different for the two models. The U-model seems to 

indicate an inverse relationship between the deformation and the section length. When the section 

length doubles, the deformation halves.  
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For the U-model with a constant base, the result seems more unrefined. This is due to the influence of 

the base W: since W stays constant and the section length changes, the minimal height changes 

drastically. The lower the section length, the lower the difference between W and L, the higher the 

deformation.  

 

4.2.5 Parameter width W 

Results for the U-model with constant base 

The following parameters (Tab. 21) stay constant when varying the base W. 

Table 21: Constant parameters varying W for U-model with constant base 

E(MPa) 75000 

q(N/mm) 0,300 

H(mm) 400,00 

L(mm) = 25,00 

t(mm) 1,00 

Δh(mm) 1,83216 

A -0,0046 

n 500 

Δx(mm) 0,800 

 

To vary the base W, the following values for the changing parameters are found (Tab. 22). 

Table 22: Changing parameters varying W for U-model with constant base 

Wa = 5,00 

-->Δhmax 1,83216 

ua -9,5387 

va 234,67 

wa -1124,3 

Ba 11,8322 

Wb = 8,33 

-->Δhmax 3,09276 

ub -7,1622 

vb 175,72 

wb -774,67 

Bb 11,4261 

Wc = 10,00 

-->Δhmax 3,62430 

uc -5,9681 

vc 147,65 

wc -619,29 

Bc 11,1243 

Wd = 20,00 

-->Δhmax 4,83144 

ud 0,8227 

vd 19,477 
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wd -50,475 

Bd 7,3314 
 

By applying these values, the resulting variation can be visualised by on the following figure (Fig. 30). 

 

Figure 30: Effect variation of W for the U-model with constant base 

 

Discussion result 

The results are similar to the variation of the section length L. The same reasoning applies here as 

well: the higher the base W, the lower the difference between W and L, the higher the deformation. 

These last two results prove that to increase the deformation means to increase the difference between 

L and W for this model. 
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4.2.6 Parameter charge q 

Results for the U-model 

The following parameters (Tab. 23) stay constant when varying the charge q. 

Table 23: Constant parameters varying q for U-model 

E(MPa) 75000 

H(mm) 400,00 

L(mm) 25,00 

t(mm) 1,00 

Δh(mm) 7,83000 

-->Δhmax 7,83333 

u 2,7923 

v -0,0404 

w 1,1849 

A -0,0196 

B 8,3333 

n 500 

Δx(mm) 0,800 

 

To vary the charge q, the following values for the changing parameters are found (Tab. 24). 

Table 24: Changing parameters varying q for U-model 

qa = 0,050 

qb = 0,150 

qc = 0,300 

qd = 0,600 
 

By applying these values, the resulting variation can be visualised by on the following figure (Fig. 31). 

 

Figure 31: Effect variation of q for the U-model 
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Results for the U-model with constant base 

The following parameters (Tab. 25) stay constant when varying the charge q. 

Table 25: Constant parameters varying q for U-model with constant base 

E(MPa) 75000 

H(mm) 400,00 

L(mm) 25,00 

W(mm) 8,33 

t(mm) 1,00 

Δh(mm) 3,09000 

-->Δhmax 3,09276 

u -7,1622 

v 175,72 

w -774,67 

A -0,0077 

B 11,4233 

n 500 

Δx(mm) 0,800 

 

To vary the charge q, the following values for the changing parameters are found (Tab. 26). 

Table 26: Changing parameters varying q for U-model with constant base 

qa = 0,050 

qb = 0,150 

qc = 0,300 

qd = 0,600 
 

By applying these values, the resulting variation can be visualised by on the following figure (Fig. 32). 

 

Figure 32: Effect variation of q for the U-model with constant base 
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Discussion result 

The results indicate that there is a linear relationship between the deformation and the charge. If the 

charge doubles, the deformation doubles. This is correct, since the charge q is a constant factor of the 

flexural moment M(x) and does not change for a given position. This is only true for a constant 

charge.  



5. Designing the sheet 
Since the relationship between the section design and the deformation is found and the effect of each 

design parameter on the deformation is clear, the sheet can now be calculated based on the desired 

deformation. The reverse process consists of: 

1. Calculating the desired deformation 

2. Calculating the sheet parameters based on the moment of inertia equations 

3. Designing the prototype and mould in parameters and CAD models 

 

5.1 Calculating the desired deformation 

The desired deformation of the elastic bands must be calculated for a single point of the backrest. To 

keep it simple, the middle of the backrest is used since this part will have the maximum deformation. 

The sheet will thus try to reproduce the maximum deformation of the elastic bands. The point of 

reference is shown in the following figure. 

 

Figure 33: Point of reference on the backrest 

Since the athlete was filmed during a training session, the maximum deformation can be determined 

for each stroke. The deformation needs to be calculated based on a reference length at approximately 

the same distance from the camera. When the actual length of the reference is known, the deformation 

and the reference are measured on the images. Utilising the reference length, the deformation can be 

calculated based on a scale factor.  

In the following images, the actual height of a side panel is 153 mm. This reference is marked on the 

images as a yellow rectangle. Another reference is used once to calculate the deformation and control 
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the other references. This reference is a yellow vertical line and follows a tube of the frame. Each 

following figure shows the deformation for a different stroke (Fig. 34 – Fig. 38). 

 

Figure 34: Deformation of the first stroke 

 

Figure 35: Deformation of the second stroke with side panel reference (centre) and tube reference (right) 
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Figure 36: Deformation of the third stroke 

 

Figure 37: Deformation of the fourth stroke 
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Figure 38: Deformation of the fifth stroke 

The deformation is calculated based on the following table (Tab. 27). 

Table 27: Calculating the desired deformation 

Stroke Measured reference  

(cm measured) 

Scale factor  

(mm/cm measured) 

Measured 

deformation  

(cm measured) 

Actual 

deformation 

(mm) 

() (measured) = reference 

length/measured 

reference 

(measured) = scale factor * 

measured 

deformation 

1 2.33 65.7 1.59 104 

2 2.17 (side panel) 

5.85 

66.8 (side panel) 

70.5 (tube) 

1.25 88.1 (tube) 

3 2.24 68.3 1.37 93.6 

4 2.63 58.2 2.01 117 

5 2.56 59.8 1.72 103 
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Based from the data in the final column of table 27, the actual deformation can be averaged to find an 

estimation for the desired deformation of 101 mm. However, the (sample) standard deviation of 

these results is 11.1 mm (whilst the population standard deviation is 9.90). This means the measured 

deformation should be within the interval of 84.4 and 117.6 mm (since an uncertainty of three 

times the standard deviation should include 99.7% of the results, assuming a normal distribution of the 

results). 

 

5.2 Calculating the design 

5.2.1 Calculating section parameters 

To calculate the section parameters, the sheet/beam length and the thickness must be determined. 

Measuring the thickness t 

A reference for the thickness is necessary for the calculations. The thickness of another carbon fibre 

object (a carbon fibre handle) in the research centre is measured to use as a reference. This is a good 

estimation since the carbon fibre sheet will likely be made from the same material. The following 

values were measured for the handle (Tab. 28). 

Table 28: Measurements of the carbon fibre handle as reference 

Measurement Measured value 

(mm) 

1 0.44 

2 0.36 

3 0.32 

4 0.44 

5 0.33 

 

The average thickness of the measurements is 0.38 mm. The sample standard deviation is 0.06, thus 

the realistic thickness has a 99.7% certainty of being within the range of 0.29 and 0.47 mm. Because 

the thickness is an estimate and will be checked by the physical tests, a value of 0.38 mm will suffice 

as a reference for the thickness.  
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Calculating the sheet/beam length H 

The current backrest has the following measurements, as shown on figure 39. 

 

Figure 39: Current measurements backrest in profile 

The curved shape of the current backrest makes the calculation of the effective sheet length more 

complex, but the deformation can be estimated to be equal to the deformation of a straight sheet. 

Therefore, the shape of the current backrest is transformed to a straight sheet. This principle is shown 

on the following figure (Fig. 40). 

 

Figure 40: Transformation of the backrest to a straight sheet 

This is a good estimation since this value can be used to fabricate the prototype and is easier to test for 

Measured a single sheet. Worth mentioning is that this transformation is an estimation. The goal is to 

recreate the deformation and rigidity for estimated values. Because 150 mm from the seat upwards 

must be rigid, the effective length of the sheet in profile is: 

 𝐻 = 107 𝑚𝑚 + 181 𝑚𝑚 − 150 𝑚𝑚 = 𝟏𝟑𝟖 𝒎𝒎 (5.1) 

Based on calculation 5.1, the sheet/beam length is chosen as 138 mm.  
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Calculate the design parameters analytically 

In theory, the design parameters can be calculated based on the following formula: 

 
𝐸 ∗ 𝐼(𝑥) ∗

𝑑2𝑣(𝑥)

𝑑𝑥2
= 𝑀(𝑥) 

(5.2) 

Because of the constraints of an embedded beam (v(x = 0) = 0; 
𝑑𝑣(𝑥=0)

𝑑𝑥
 = 0) , the deformation v(x) can 

be estimated as: 

 𝑣(𝑥) = 𝑣𝑐 ∗ 𝑥2 𝑤𝑖𝑡ℎ 𝑣𝑐  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (5.3) 

Combining 5.2 and 5.3 results in: 

 2 ∗ 𝐸 ∗ 𝑣𝑐 ∗ (𝑢̅ ∗ ℎ(𝑥)2 + 𝑣̅ ∗ ℎ(𝑥) + 𝑤̅) =
−𝑞

2
∗ 𝑥2 + 𝑞 ∗ 𝐻 ∗ 𝑥 −

𝑞

2
∗ 𝐻² (5.4) 

Combining 5.4 and 4.2 results in the following equation (5.5): 

 2 ∗ 𝐸 ∗ 𝑣𝑐 ∗ (𝑢̅ ∗ 𝐴2 ∗ 𝑥2 + (2 ∗ 𝑢̅ ∗ 𝐴 ∗ 𝐵 + 𝑣̅ ∗ 𝐴) ∗ 𝑥 + 𝑢̅ ∗ 𝐵2 + 𝑣̅ ∗ 𝐵 + 𝑤̅)

=
−𝑞

2
∗ 𝑥2 + 𝑞 ∗ 𝐻 ∗ 𝑥 −

𝑞

2
∗ 𝐻² 

(5.5) 

With equation 5.5, the parameters A and B can be analytically calculated in theory. However, since A 

= -Δh/H and B dependant on L and t (and W), this makes it very difficult to calculate the correct 

values iteratively. This is because 𝑢̅, 𝑣̅ and 𝑤̅ can only be calculated with a given L and t. This means 

that L and t must be searched iteratively, whilst satisfying the following system of equations: 

 𝑢̅ ∗ 𝐴2 =
−𝑞

2
 𝑤𝑖𝑡ℎ 𝑢̅ < 0 (5.6) 

 2 ∗ 𝑢̅ ∗ 𝐴 ∗ 𝐵 + 𝑣̅ ∗ 𝐴 = 𝑞 ∗ 𝐻 (5.7) 

 𝑢̅ ∗ 𝐵2 + 𝑣̅ ∗ 𝐵 + 𝑤̅ = −
𝑞

2
∗ 𝐻² (5.8) 

Because of the equation 5.6, 𝑢̅ must be negative. As shown in figure 17, this is not the case for the U-

model, whils this result has been validated as correct by the calculations. This means that the design 

parameters cannot be calculated analytically. 

 

Tweak the design parameters iteratively 

Since the design parameters cannot be calculated analytically, the parameters themselves must be 

adjusted to fit the desired deformation. In essence, the effects of the design parameters that were 

discussed in chapter four are utilised to tweak the deformation iteratively until it matches the desired 

deformation. 
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Before starting the with tweaking, the fixed parameters are summarised in table 29. 

Table 29: Summary fixed parameters 

E(MPa) 75 000 

q(N/mm) 0,300 

H(mm) 138,00 

t(mm) 0,38 

 

It is preferred that L > 25 or 30 because it is necessary to produce a prototype sheet. 

 

5.2.2 U-model 

Firstly, the section length L is varied for a height difference Δh of 1.30 mm. The utilised section 

lengths and the deformation results are summarised in table 30.  

Table 30:Utilised section lengths and maximal deformation results for U-model 

 La = 8,00 

 -->Δhmax 2,47667 

vmaxa: ua 0,3403 

-382,8685496 va -0,0022 

 wa 0,0208 

 Ba 1,4900 

 Lb = 15,00 

 -->Δhmax 4,81000 

vmaxb: ub 0,6347 

-204,6360846 vb -0,0022 

 wb 0,0391 

 Bb 1,4900 

 Lc = 25,00 

 -->Δhmax 8,14333 

vmaxc: uc 1,0563 

-122,7834718 vc -0,0022 

 wc 0,0653 

 Bc 1,4900 

 Ld = 30,00 

 -->Δhmax 9,81000 

vmaxd: ud 1,2673 

-102,3047032 vd -0,0022 

 wd 0,0784 

 Bd 1,4900 
 

Table 30 shows that for a section length of 30 mm, the deformation is still a bit higher than the desired 

deformation. This is ideal for precise tweaking the height difference Δh to match the desired 

deformation. Therefore, the values for option d are used in the next round of tweaking. 

Now the height difference Δh is varied for a section length L of 30 mm. The utilised height differences 

and the deformation results are summarised in table 31. 



67 

 

Table 31: Utilised height differences and maximal deformation results for U-model 

vmaxa: Δha = 1,30000  

-102,3047032 Aa -0,0094 =-Δha/H 

 Ba 1,490 =t/2 + Δha 

vmaxb: Δhb = 1,31000  
-101,0972248 Ab -0,0095 =-Δhb/H 

 Bb 1,5000 =t/2 + Δhb 

vmaxc: Δhc = 1,40000  
-91,12523941 Ac -0,0101 =-Δhc/H 

 Bc 1,590 =t/2 + Δhc 

vmaxd: Δhd = 9,81000  
-2,755947857 Ad -0,0711 =-Δhd/H 

 Bd 10,000 =t/2 + Δhd 

 

Table 31 indicates that a height difference of 1.31 mm can be used to recreate the desired deformation 

of 101 mm. To test the tweaked values, the whole deformation is recalculated for n is 1000 to see if 

the result is equivalent. This calculation results in a maximal deformation of -101,1345852. Because 

the result should only contain 3 significant figures, the maximal deformation is exactly equal to -101 

and can be recreated by tweaking the design parameters L and Δh. 

 

5.2.3 U-model with constant base 

The same methodology as for the U-model is applied here. Firstly, the section length L is varied for a 

height difference Δh of 0 mm to have the minimal height and thus the maximal possible deformation 

in consequence of the section length.  

The base W is chosen as 15 mm to make sure there is enough room at the sides to bend the sheet. The 

highest possible minimal height of the section is calculated by the following equation (with L 

maximally 30 and W minimum 15): 

 𝐿 − 𝑊

2
=

30 − 15

2
 𝑚𝑚 = 7.5 𝑚𝑚 

(5.9) 

This is the length of the legs of the sheet and the amount of sheet that is allowed to bend. If this 

number becomes too small, the sheet will be very hard to produce. This should be kept in mind 

regarding the results. 

The utilised section lengths and the deformation results are summarised in table 32.  
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Table 32: Utilised section lengths and maximal deformation results for U-model with constant base W = 15 

 La = 23,00 

 -->Δhmax 4,63018 

vmaxa: ua -0,7262 

-20,02448491 va 20,347 

 wa -60,701 

 Ba 4,0000 

 Lb = 25,00 

 -->Δhmax 4,90454 

vmaxb: ub -1,1514 

-9,793852444 vb 30,831 

 wb -106,83 

 Bb 5,0000 

 Lc = 28,00 

 -->Δhmax 5,21665 

vmaxc: uc -1,8008 

-4,452220478 vc 50,215 

 wc -209,53 

 Bc 6,5000 

 Ld = 30,00 

 -->Δhmax 5,38022 

vmaxd: ud -2,2386 

-2,944409029 vd 65,524 

 wd -303,84 

 Bd 7,5000 
 

For the highest possible deformation (because Δh = 0) given W = 15 mm, the deformation of a sheet 

with section length 23 mm is five times smaller than the desired deformation of -101. The deformation 

could be increased by increasing W, but this would make the sheet even harder to produce because of 

the low height of the function. This means the sheet must be bent with legs of less than 7.5 mm, which 

is too small for its size. It is also required that the section length be minimally 25 mm to fabricate the 

prototype more easily. This would require significant tweaking and it is uncertain if an ideal design 

could be reached with this model. 

 

5.2.4 Conclusion calculation results 

Because of the low range of section length and deformation of the U-model with constant base, this 

model will not be used to design the prototype. Therefore, the prototype will be designed with the U-

model with the following parameters: 

- L = 30 

- H = 138 

- e = 0.38 

- dh = 1.31 
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5.3 Designing the prototype and mould 

To design the prototype and the mould, the CAD software Creo Parametric 7.0.1.0 is utilised to create 

a 3D model, based on the design specifications found in the previous paragraph. The section design of 

the U-model in figure 10 should transform based on the calculated height difference and thickness. 

The transformation of the section is shown in figure 41. 

 

Figure 41: Required transformation of the section for the U-model 

It is important to note that the coordinate system in Creo replaces the x-axis as defined in the 

theoretical background with the z-axis. This has no effect on the actual design or deformation, but 

reinterprets the insights of the theoretical calculations. For the prototype and mould design and the 

FEM tests, the following values for the design parameters are used (Tab. 33): 

Table 33: Used values for the FEM tests and calculations 

E(GPa) 75,00 

H(mm) 138,00 

L(mm) 30,00 

t(mm) 0,38 

Δh(mm) 1,31 

 

The actual 3D CAD design is shown in figure 42. 

 

Figure 42: Final design of the prototype with section at the origin. 
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Figure 41 shows the transformation for z <= 0 to z = H. This is implemented in figure 42. Note that 

there is a straight section of 50 mm long added for z<0. This part is used to fix the sheet to the 

backrest. Since it will be fixed, the rigidity is constant.  

Note that there are four separate sections of the carbon fibre sheet which transform in form. This is 

due to the approximation of the path of the section as shown in figure 41. Since it is hard to exactly 

approximate this curve, different sketches of the section are linearly swept. This produces a small error 

in the design of the sheet. This principle is shown in figure 43. 

 

Figure 43: Approximation of the desired movement of point A of the section (red) by linearly connecting certain sections 

(black) 

However, for the design of the mould, the slopes of the varying section can be extended. This means 

that there will be too much material used for the production of the prototype, but the excess of material 

can always be removed afterwards. For the mould design, it is also key that the section is t/2 lower for 

each point than for the neutral line of the section. To be able to manufacture the mould with a CNC 

machine, the sharp angles of the section need to be rounded (in this case, with a radius of 1 mm). The 

mould will be manufactured from Aluminium. These design concepts are translated to the mould 

design, visible on figure 44. 

 

Figure 44: Final design of the mould 



6. Virtual testing on the prototype 
To check if the preformed calculations and design are correct, Finite Element Analyses are conducted. 

These analyses are conducted with two different software programs. The linear FEM tests on the 

deformation are preformed using PTC Creo Simulate. The non-linear FEM tests and the linear FEM 

test of the bending stress are conducted with Hyperworks, with the solver OptiStruct.  

For these tests, simplified models of the prototype will be used. The 50 mm long constant section is 

removed because this part of the sheet is embedded and will not undergo any displacements. The 

prototype design is also cut in half because of the symmetry of the section. A Young’s Modulus of 75 

GPa and a Poisson-coefficient of 0.3 are chosen as the material characteristics of the tests. Because of 

the low thickness of the sheet(s), the model is simplified by shell elements with a max element size of 

1 mm.  

 

6.1 Linear FEM testing of the deformation 

To test the linear deformation, three tests are conducted: test one and two measure the displacement 

for the most extreme forms of the section of the sheet (thus a constant rigidity with the extreme 

section). This should correspond with the calculated values for the most extreme cases. The final 

linear test for the deformation is performed on the prototype, to see if the desired deformation can be 

recreated. For all of the tests, a charge of 300 N/m is applied. 

 

Test 1: Straight sheet 

The first design is a straight sheet with section length L = 30 mm and thickness t = 0.38 mm. The 

resulting mesh consists of 919 tria and 2927 quad elements and a max aspect ratio of 2.86, which is 

excellent. The resulting deformation is shown in figure 45. 

 

Figure 45: Result linear FEM analysis of the deformation for a straight sheet 

The FEA result in a maximum deformation of 1286,95 mm. In the theory, it is calculated that the 

deformation should be 1323 mm. However, these calculations are based on values with three 

significant figures, resulting in the value of 132*10 mm. The error is possible due to the Poisson-

deformation, which the calculations do not take into a count. However, the relative error is less than 
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3%, which is a good approximation for such high deformations. There are no displacements in the x- 

and z- directions of the sheet, which is accurate for this sheet. 

 

Test 2: Bent sheet with constant section 

This design consists of a sheet with a constant section as shown on the image below (Fig. 46) 

 

Figure 46: Constant section of bent sheet for FEM test 

The resulting mesh consists of 957 tria and 2950 quad elements and a max aspect ratio of 2.7, which is 

excellent. The resulting deformation is shown in figure 47. 

 

Figure 47: Result linear FEM analysis of the deformation for a bent sheet with constant section 

The FEA result in a maximum deformation of 61.1510 mm. In the theory, it is calculated that the 

deformation should be 62,0. The error is possible due to the Poisson-deformation, which the 

calculations do not take into a count. The relative error is less than 1.5%, which is a good 

approximation for such high deformations.   
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Test 3: Prototype sheet 

This FEA tests the prototype sheet to see if the calculated deformation can actually be recreated. The 

resulting mesh consists of 920 tria and 2934 quad elements and a max aspect ratio of 2.8, which is 

excellent. The resulting deformation is shown in figure 48. 

 

Figure 48: Result linear FEM analysis of the deformation for the designed prototype 

The FEA result in a maximum deformation of 108.863 mm. In the theory, it is calculated that the 

deformation should be 101 mm. The error is possible due to the Poisson-deformation, which the 

calculations do not take into a count. The relative error is 7%, which seems too big. This is actually a 

good result for such high deformations because of the high number of estimations and the result falls 

within the calculated uncertainty (lower than 117.6 mm). The result has the same order of grandeur, 

which is not simple for such a low difference in height Δh: each small error in the height will result in 

huge differences in rigidity and deformation. 

 

6.2 Non-linear FEM testing of the deformation 
The non-linear FEM calculations are a greater approximation of reality because of the implementation 

of a non-linear relation between the charge and the deformation: when the deformation is relatively 

big, the charge can no longer be estimated to be at the original surface. Therefore, an iterative 

calculation is done to incrementally increase the charge and measure the deformation. Based on that 

deformation, the charge is applied at that new deformation. This is a closer representation of reality. 

Because of the nature of these non-linear calculations, no solution will be found when the deformation 

becomes too high. For each non-linear FEA, a linear FEA is also calculated to compare the difference 

in results. This process is repeated for a different charge. The resulting deformations in function of the 

charge are shown in the following figure (Fig. 49). 
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Figure 49: Comparison between the theoretic, linear FEM and non-linear FEM results 

Based on these results, it is clear that for a charge q greater than 20 N/m linear calculations no longer 

apply because of the high relative deformation. From that point onwards, a non-linear model is 

required to calculate the deformation accurately. However, for lower values of the deformation, the 

theoretical and non-linear FEM results correspond well. This means the mathematical model is a good 

representation of the real deformation and rigidity for a limited deformation. 

It is also interesting to check the relative difference between the theoretical deformation and the FEM 

results. In table 34, the relative difference between the theoretical deformation and the linear FEM 

result is determined.  

Table 34: Calculation of the relative difference between the theory and the linear FEA 

v theoretic 
(mm) 

v FEM linear 
(mm) 

Δv FEM linear 
(mm) 

rel Δv FEM linear  
(%) 

1,01 1,089 0,078 7,72 

3,03 3,266 0,232 7,65 

6,07 6,53 0,462 7,61 

7,08 7,62 0,541 7,64 

 

As shown in table 34, the relative difference between the linear FEA and the theoretical calculation is 

constant. This means that there is a key relation between the theoretical and FEA results. It also means 

that the error linearly increases as the deformation increases. 
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In table 35, the relative difference between the theoretical deformation and the linear FEM result is 

determined. 

Table 35: Calculation of the relative difference between the theory and the non-linear FEA 

v theoretic 
(mm) 

v FEM non-linear 
(mm) 

Δv FEM non-linear 
(mm) 

rel Δv FEM non-linear  
(%) 

1,01 1,10 0,0890 8,80 

3,03 3,434 0,400 13,2 

6,07 7,932 1,86 30,7 

7,08 10,54 3,46 48,9 

 

The results in table 35 show that there is no simple relation between the (relative) difference in 

calculated values for the theory and the non-linear FEA. The relative error increases greatly when the 

deformation increases. This could indicate an exponential relationship, but the deformation can no 

longer be calculated for high deformations. 

 

6.3 Linear FEM testing of the bending stress 

Predicting the maximum bending stress 

For this paragraph, only the bending stress will be calculated, since this has a direct relation with the 

applied load. The bending stress in the x-axis can be calculated with the following formula [10]: 

 
𝜎𝑥 =

−𝑀

𝐼𝑔𝑧
∗ 𝑦 

(6.1) 

Containing: 

𝜎𝑥:  Bending stress in the x-direction (x for calculations, z for FEA) 

M: Flexural moment 

𝐼𝑔𝑧: Moment of inertia in the centre of gravity for the z-direction (z for calculations, x for FEA) 

y:  Height in the section relative to the centre of gravity 

Because the flexural moment M and the moment of inertia are dependent on the position in the x-

direction: 

 
𝜎𝑥 =

−𝑀(𝑥)

𝐼𝑔𝑧(𝑥)
∗ (𝑦) 

(6.2) 

For the most extreme values of the tension should be at the embedding (x=0), because the flexural 

moment there is maximal. This could be compensated if I(x) decrease greater than M(x). A quick 

calculation of M(x)/I(x) shows that the minimum is indeed at x=0. To attain the maximal possible 

value for the bending stress, it should be regarded at the two outermost points of the section: the top 

base and the lower base. Because x=0, the section has the most bent shape possible. 

To calculate the height of the centre of gravity, the section of can be split up into three parts. The 

centre of gravity of each individual part of the section can be visualised in figure 50. 
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Figure 50:Section with indicated centres of gravity 

The centre of gravity of the whole section can be described as: 

 

𝑦𝐺 =
∑ 𝑆𝑖 ∗ 𝑦𝑖

∑ 𝑆𝑖
=

2 ∗ (
𝐿
3

∗ 𝑡 ∗
∆ℎ +

𝑡
2

2
) +

𝐿
3

∗ 𝑡 ∗ (∆ℎ +
𝑡
2

)

3 ∗
𝐿
3 ∗ 𝑡

=
2

3
∗ (∆ℎ +

𝑡

2
) 

(6.3) 

From the solution of equation 6.3, the most extreme bending stresses can be calculated for a charge of 

300 N/m: 

 
𝜎𝑥,𝑡𝑜𝑝 =

−𝑀(0)

𝐼(0)
∗ [

1

3
∗ (∆ℎ +

𝑡

2
)] = 488 𝑀𝑃𝑎 

(6.4) 

 
𝜎𝑥,𝑏𝑎𝑠𝑒 =

−𝑀(0)

𝐼(0)
∗ [−

2

3
∗ (∆ℎ +

𝑡

2
)] = −976 𝑀𝑃𝑎 

(6.5) 

The maximal value for the bending stress is a little greater than the reference for the flexural strength 

(950 MPa). These values are checked by a linear FEA. 

 

FEA of the bending stress 

In figure 51, the bending stress in the z-direction is calculated, which corresponds with the bending 

stress in the x-direction for the theoretical calculations. 

 

Figure 51: Result linear FEM analysis of the stress for the designed prototype 
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The maximal stresses as calculated by the FEA are: 474.4 MPa and -933.4 MPa. These values 

correspond greatly with the theoretical values. Note that the maximal value is close to the flexural 

strength for a charge of 300 N/m. If the charge is kept below 20 N/m as calculated in the previous 

section, the sheet can bear the given uniform load and this prototype is strong enough. 

 

6.4 Conclusions and preparing physical tests 

All of the FEM analyses confirm the calculated results with a small margin of error. This means that, 

for a linear deformation, the desired deformation and rigidity of the elastic bands can be replicated by 

a carbon fibre sheet. 

The FEM analyses also show that the deformation can only be recreated for a limited charge of q. The 

limit for the given prototype is 20 N/m. The physical tests should subject the produced prototype by 

this charge.  

 

Preparing the physical tests 

To prepare for the physical tests, the mould can be manufactured by a 6-axis CNC milling machine. 

The cutting process of the CNC-machine is visualised on the following figure (Fig. 52).  

 

Figure 52: The 6-axis CNC-milling machine is milling the mould by repositioning the clamped object 
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The finished mould is completed and shown in the following image (Fig. 53). 

 

Figure 53: Completed aluminium mould 

When the mould is finished, two carbon fibre sheets must be produced: one with the varying section of 

the mould (the prototype) and one with a constant rectangular section (straight sheet). The straight 

sheet will be used to determine the thickness, the flexural modulus and the flexural strength. When 

these parameters are found, the calculations need to be recalibrated with these updated values to 

accurately predict the deformation of the prototype. 

After the calculations are updated, the prototype is tested under a distributed load of 20 N/m 

maximum. It would be ideal to check the deformations for the charges of figure 49: that way, the non-

linear FEA and theoretical deformations can be checked. After these physical tests, it should be clear if 

the theoretical calculations can recreate the linear deformation of an elastic band… 

   



7. Conclusion 

7.1 Evaluation 

To evaluate if this master’s thesis is a success, conclusions must be drawn from the FEM analyses: 

- The difference between the calculated deformation and the linear FEA results for the 

deformation is small. They confirm the mathematical calculations for the deformation made in 

this thesis. For a linear analysis, the calculations can predict the deformation. 

- The non-linear FEA results for the deformation show that the mathematical model to calculate 

the deformation is accurate for a distributed charge below 20 N/m. For these charges, the 

calculations are a good representation of the deformation. 

- The linear FEA results for the stress show that flexural stresses in the prototype are close to 

the flexural strength for a charge of 300 N/m. This means that for a charge of 20 N/m, which 

is an order of magnitude smaller than 300 N/m, the stress should be below the flexural 

strength. Therefore, the prototype can resist the load.  

The results of the thesis support the calculations made. This means that the prototype should be able to 

recreate the rigidity of the elastic bands for a limited charge and deformations. 

 

7.2 Relevance 

The linear calculations for the rigidity are the base for the whole design of the sheet and the backrest. 

Of all the rigidities, the base rigidity of the sheet is the most important. If the base rigidity is too high, 

the backrest will be uncomfortable and result in practically no deformation. If the base rigidity is too 

low, the athlete will receive no support. That’s why this study lays the foundation for calculating the 

whole backrest.  

 

7.3 Critical remarks 

- The constant charge is not an accurate representation of the mechanical situation. This must be 

replaced by a function of the charge (in function of the position x). Also, a larger beam length 

results in a bigger deformation because the charge remains fixed. This results in a higher load 

on the sheet. Ideally, a solution must be found to fix the total load, whilst distributing it 

accurately over the sheet. 

- The calculations of the stresses are hard to validate without concrete values for the flexural 

strength and the flexural modulus. Therefore, physical tests are a necessity to validate this 

thesis. 

- The creation of the CAD model is based on an approximation, whilst the mould produces the 

prototype with the actual required variation of the section. This could result in a discrepancy 

in results during physical tests. 

- The FEA for the stress is calculated solely for a charge of 300 N/m. It would also be advisable 

to check which stresses exactly develop for a charge of 20 N/m. 

- The time of the deformation for the elastic bands should also be taken in consideration. This is 

an important aspect in recreating the whole elastic backrest. 

- The athlete must receive an equal amount of momentum. Therefore, the elastic deformation 

should also be calculated based on the energy of the deformation.  

- In this study, the charge was calculated and focussed on only one sheet. In reality, there are 

multiple carbon fibre sheets bearing the load and distributing the charge. 
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- The deformation is used to calculate if the rigidity can be replicated, but that is not a correct 

assumption. The rigidity of the elastic bands is unknown. But this study does prove that the 

deformation of the elastic bands can be recreated by a carbon fibre sheet. To definitively 

recreate the rigidity, more research about the mechanics of the elastic bands is required.  

7.4 Prospects 

First and foremost, the prototype must be physically tested. The calculations in this thesis were time 

consuming. Therefore, the mould and prototype could not be completed within a three-month period.  

The physical tests do not only need to verify the calculations, they also are a means to optimise the 

values of the flexural modulus and the thickness. When these values are found, the deformation can be 

more accurately calculated and checked with the results of the physical tests. 

A 3D scan to find the deformations and charge on the actual backrest is also preferred to use in the 

calculations. These could be used to expand the model for non-linear deformations and calculating the 

required rigidity for the more flexible parts.  
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Appendix A: Scan of the calculation for Igz for the polynomial model 
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Appendix B: Scan of the calculation of Iox for a trapezoid section 
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Appendix C: Scan of the calculation of Igz for the U-model 
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Appendix D: Scan of the calculation of Igz for the U-model with 

constant base 
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Appendix E: MATLAB code to calculate the deformation analytically 

Code: 
clc 

clear 

  

%Function M(x) = 2nd order polyn 

syms q; 

syms H; 

syms x; 

  

M(x) = -q/2*(x^2) + q*H*x - q*H^2/2; 

fprintf('M(x) = '); 

disp(M(x)); 

  

%Function I(x) = 2nd order polyn 

syms h; 

syms u; 

syms v; 

syms w; 

%syms L; 

%syms W; 

%syms dh; 

  

syms A; 

syms B; 

%In excel: A & B used as simplificaitons, calculate for the 

functions 

  

I(h) = u*(h^2) + v*h + w; 

fprintf('I(h) = '); 

disp(I(h)); 

  

I(x) = I(A*x + B); 

fprintf('I(x) = '); 

disp(I(x)); 

  

%Function f(x) = M(x)/I(x) = E*d²v/dx² 

f(x) = M(x)/I(x); 

fprintf('f(x) = '); 

disp(f(x)); 

  

syms C1; 

ff(x) = int(f(x),x) + C1; 

fprintf('ff(x) = '); 

disp(ff(x)); 

  

syms C2; 

fff(x) = int(ff(x),x) + C2; 

fprintf('fff(x) = '); 

disp(fff(x)); 

 

Results from command window: 
M(x) = H*q*x - (q*x^2)/2 - (H^2*q)/2 

  

I(h) = u*h^2 + v*h + w 
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I(x) = w + v*(B + A*x) + u*(B + A*x)^2 

  

f(x) = -((q*H^2)/2 - q*H*x + (q*x^2)/2)/(w + v*(B + A*x) + u*(B + 

A*x)^2) 

  

ff(x) = C1 - (log(u*A^2*x^2 + 2*u*A*B*x + v*A*x + u*B^2 + v*B + 

w)*(- 16*H*q*w*A^4*u^2 + 4*H*q*A^4*u*v^2 - 16*B*q*w*A^3*u^2 + 

4*B*q*A^3*u*v^2 - 8*q*w*A^3*u*v + 2*q*A^3*v^3))/(2*(16*w*A^6*u^3 - 

4*A^6*u^2*v^2)) - (q*x)/(2*A^2*u) - (q*atan((v + 2*B*u + 

2*A*u*x)/(4*u*w - v^2)^(1/2))*(2*A^2*H^2*u^2 + 4*A*B*H*u^2 + 

2*A*H*u*v + 2*B^2*u^2 + 2*B*u*v - 2*w*u + v^2))/(2*A^3*u^2*(4*u*w - 

v^2)^(1/2)) 

  

fff(x) = C2 - x*((- 2*C1*A^4*u^2 + 2*H*q*A^2*u + 4*B*q*A*u + 

2*q*v*A)/(2*A^4*u^2) - (q*(4*B*A^3*u^2 + 2*v*A^3*u))/(4*A^6*u^3)) - 

(log(((q*x*(A^2*H^2*u^2 + 4*A*B*H*u^2 + 2*A*H*u*v + 3*B^2*u^2 + 

3*B*u*v - w*u + v^2))/(2*A^2*u^2) - ((v + 2*B*u + 2*A*u*x)*(q*v^2 + 

3*B^2*q*u^2 + A^4*u^3*(-(q^2*(2*A^2*B*H^2*u^3 + A^2*H^2*u^2*v + 

4*A*B^2*H*u^3 + 4*A*B*H*u^2*v - 4*w*A*H*u^2 + 2*A*H*u*v^2 + 

2*B^3*u^3 + 3*B^2*u^2*v - 6*w*B*u^2 + 3*B*u*v^2 - 3*w*u*v + 

v^3)^2)/(A^8*u^6*(- v^2 + 4*u*w)))^(1/2) - q*u*w + A^2*H^2*q*u^2 + 

3*B*q*u*v + 2*A*H*q*u*v + 4*A*B*H*q*u^2))/(4*A^3*u^3) + (q*(v + 

2*B*u + 2*A*H*u)*(u*B^2 + v*B + w))/(2*A^3*u^2))*((q*x*(A^2*H^2*u^2 

+ 4*A*B*H*u^2 + 2*A*H*u*v + 3*B^2*u^2 + 3*B*u*v - w*u + 

v^2))/(2*A^2*u^2) - ((v + 2*B*u + 2*A*u*x)*(q*v^2 + 3*B^2*q*u^2 - 

A^4*u^3*(-(q^2*(2*A^2*B*H^2*u^3 + A^2*H^2*u^2*v + 4*A*B^2*H*u^3 + 

4*A*B*H*u^2*v - 4*w*A*H*u^2 + 2*A*H*u*v^2 + 2*B^3*u^3 + 3*B^2*u^2*v 

- 6*w*B*u^2 + 3*B*u*v^2 - 3*w*u*v + v^3)^2)/(A^8*u^6*(- v^2 + 

4*u*w)))^(1/2) - q*u*w + A^2*H^2*q*u^2 + 3*B*q\\\r\n*u*v + 

2*A*H*q*u*v + 4*A*B*H*q*u^2))/(4*A^3*u^3) + (q*(v + 2*B*u + 

2*A*H*u)*(u*B^2 + v*B + w))/(2*A^3*u^2)))*(- 8*q*A^6*H^2*u^3*w + 

2*q*A^6*H^2*u^2*v^2 - 32*q*A^5*B*H*u^3*w + 8*q*A^5*B*H*u^2*v^2 - 

16*q*A^5*H*u^2*v*w + 4*q*A^5*H*u*v^3 - 24*q*A^4*B^2*u^3*w + 

6*q*A^4*B^2*u^2*v^2 - 24*q*A^4*B*u^2*v*w + 6*q*A^4*B*u*v^3 + 

8*q*A^4*u^2*w^2 - 10*q*A^4*u*v^2*w + 2*q*A^4*v^4))/(2*(16*w*A^8*u^4 

- 4*A^8*u^3*v^2)) - (q*x^2)/(4*A^2*u) + (x*log(u*A^2*x^2 + 2*u*A*B*x 

+ v*A*x + u*B^2 + v*B + w)*(8*H*q*A^4*u^3 + 8*B*q*A^3*u^3 + 

4*q*v*A^3*u^2))/(16*A^6*u^4) - (x*atan((v + 2*B*u + 2*A*u*x)/(4*u*w 

- v^2)^(1/2))*(2*q*A^2*H^2*u^2 + 4*q*A*B*H*u^2 + 2*q*A*H*u*v + 

2*q*B^2*u^2 + 2*q*B*u*v - 2*q*w*u + q*v^2))/(2*A^3*u^2*(4*u*w - 

v^2)^(1/2)) - (q*atan((v + 2*B*u + 2*A*u*x)/(4*u*w - 

v^2)^(1/2))*(2*A^2*B*H^2*u^3 + A^2*H^2*u^2*v + 4*A*B^2*H*u^3 + 

4*A*B*H*u^2*v - 4*w*A*H*u^2 + 2*A*H*u*v^2 + 2*B^3*u^3 + 3*B^2*u^2*v 

- 6*w*B*u^2 + 3*B*u*v^2 - 3*w*u*v + v^3))/(2*A^4*u^3*(4*u*w - 

v^2)^(1/2)) 

   

 

 

 


