Optimisation of wheelchairs for Paralympic athletes: design of a flexible carbon fibre backrest

By Tim Biesmans

Master of Electromechanical Engineering Technology

Context

The research lab ICA is working on a global project of designing a wheelchair for a Paralympic badminton athlete. Because this athlete has no abdominal muscles, the backrest of this wheelchair requires elastic bands to support the athlete's back. Each elastic band has a different rigidity. The goal of this master's thesis is to investigate if the elastic bands could be replicated with thin carbon fibre sheets with a variable rigidity.

Objective

Methodology

Successful section models

1) Polynomial model

Fig. 3: Representation polynomial model
Constant parameters:
Section length L
Thickness t
Variable parameters: radius \mathbf{R}
The section model approximates an circular arc. The radius R varies for the sheet.
Result:

Fig. 6: Graph moment of inertia for model polynomial
Undesirable result:
A small variation in R results in a large variation of $\mathrm{I}_{\mathrm{g} 2}$. Relation between I_{gz} and R results in complex calculations to find the deformation and
create a design.
The range of I_{gz} is small
compared to the other models.
2) U-model

Constant parameters:
Section length L
Top base a and leg length $=\mathrm{L} / 3$ Thickness t
Variable parameters: height h
The section based on a U. When h decreases, the U folds open.

Result:

Fig. 7: Graph moment of inertia for the

 U-modelDesirable result:
The I_{gz} in function of h is well approximated by a second order polynomial, which makes calculations easier. The range of I_{gz} is the biggest compared to the other models. compared to the other models. EASIEST MODEL TO USE
TO CREATE THE DESIGN
3) U-model with constant base

Fig. 5: Representation U-model with constant base
Constant parameters:
Section length L
Lower base W
Thickness t
Variable parameters: height h
The section based on a U with a constant base. When h increases, the top base a decreases.
Result:

Fig. 8: Graph moment of inertia for the

 U -model with constant baseDesirable result:
The I_{gz} in function of h is well approximated by a second order polynomial, which makes calculations easier.
The range of I_{gz} complements the range for model omega ver well, but is superior for the U-model.

Conclusions

Finite Element Analysis (FEA) results

Conclusions

The U-model was the easiest, most effective model to create the design. Creating the design with the U-model with constant base by varying parameters was nearly impossible.
When beam theory is applicable (linear FEM-calculations, small deformation,...), the theoretical model yields favourable results. The model needs to expand to incorporate non-linear deformations. - Values for t , E and q are estimations. Physical tests should give concrete values for these parameters. Outlook for future research

Conduct physical tests of the prototype to check the model parameters and to optimise E and t.
Conduct 3D scans of the charge and the deformations to adjust/verify the theoretical model.
Expand the model to include non-linear calculations in function of the position x, shear and time.
Linear FEA deformation Non-linear FEA deformations for $\mathrm{q}=0,3 \mathrm{~N} / \mathrm{mm}$

Supervisors / Co-supervisors / Advisors

Fig. 19: FEA deformation result
Maximum deformation of the linear FEA is 108 mm . Close to the expected result. Fig. 20: FEA results comparison For $\mathrm{q}>0,021 \mathrm{~N} / \mathrm{mm}$, it isn't possible to calculate the non-linear deformation. Limited application for the model.
| Linear FEA stress for $q=0,3 \mathrm{~N} / \mathrm{mm}$

Table 1: Comparison FEA stress results \begin{tabular}{|l|l|l|l|}
\hline Table 1: Comparison FEA stress results

\hline $\begin{array}{l}\text { Type of } \\
\text { stress }\end{array}$ \& $\begin{array}{l}\text { Calculated } \\
\text { stress (MPa) }\end{array}$ \& $\begin{array}{l}\text { FEA Attess } \\
\text { results (MPa) }\end{array}$

\hline

\hline Maximum \& 488 \& 474

\hline Minimum \& -976 \& -93

\hline
\end{tabular}

Fig. 21: FEA results z-axis deformation

Prof. dr. ir. Kris Henrioulle,
Prof. dr. Yann Landon

