2020-2021

Optimisation of wheelchairs for Paralympic athletes: design of a flexible carbon fibre backrest

By Tim Biesmans

Master of Electromechanical Engineering Technology

Context

The research lab ICA is working on a global project of designing a wheelchair for a Paralympic badminton athlete. Because this athlete has no abdominal muscles, the backrest of this wheelchair requires elastic bands to support the athlete's back. Each elastic band has a different rigidity. The goal of this master's thesis is to investigate if the elastic bands could be replicated with thin carbon fibre sheets with a variable rigidity.

Successful section models

Deformation for U-model

- results in complex calculations to find the deformation and create a design.
- The range of I_{gz} is small compared to the other models.

EASIEST MODEL TO USE TO CREATE THE DESIGN

- calculations easier.
- The range of I_{gz} complements the range for model omega very well, but is superior for the U-model.

Conclusions

The range of I_{gz} is the biggest

compared to the other models.

Conclusions

- The U-model was the easiest, most effective model to create the design. Creating the design with the U-model with constant base by varying parameters was nearly impossible.
- When beam theory is applicable (linear FEM-calculations, small deformation,...), the theoretical model yields favourable results. The model needs to expand to incorporate non-linear deformations. • Values for t, E and q are estimations. Physical tests should give concrete values for these parameters. **Outlook for future research**
- Conduct physical tests of the prototype to check the model parameters and to optimise E and t.
- Conduct 3D scans of the charge and the deformations to adjust/verify the theoretical model.
- Expand the model to include non-linear calculations in function of the position x, shear and time.

Finite Element Analysis (FEA) results

Li	Linear FEA deformation for q = 0,3 N/mm		Non-linear FEA deformations Comparison deformation calculations			Linear FEA stress for q = 0,3 N/mm Table 1: Comparison FEA stress results		
		(¹⁰ (^m m)/ ₅		v theoretic	Type of stress	Calculated stress (MPa)	FEA stress results (MPa	
1		0			Maximum	488	474	
		0	0 10 g(N/m) ²⁰	30	Minimum	-976	-933	
Fig	. 19: FEA deformation result	Fig. 2	Fig. 20: FEA results comparison					
Ma	Maximum deformation of the		For q>0,021 N/mm, it isn't possible to					
lin	ear FEA is 108 mm. Close to	calc	calculate the non-linear deformation.					
the	e expected result.	Limited application for the model.			Fig. 21: FEA results z-axis deformation			

Supervisors / Co-supervisors / Advisors Prof. dr. ir. Kris Henrioulle, Prof. dr. Yann Landon

