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Abstract 

Introduction: Highly active antiretroviral treatments (HAART) have become a sin qua non in the 

live of HIV/AIDS patients most especially for those that have access to it in the developed world. 

It has become an unfulfilled dream for those in developing world due to their cost that may not be 

afforded by the concern patients. Some chronic HIV-1 patients at Institute of Tropical Medicine, 

Antwerp, Belgium are having their treatments interrupted for reasons other than treatment failure.  

Objective of the study: The objectives of the study were to examine the outcome of the patients 

with chronic HIV-1 infection who interrupt their highly active antiretroviral treatments for reasons 

other than treatment failure, in terms of rebound of plasma viral loads and decrease in CD4 cell 

counts and come up with risk factors that are predictive of „good control‟ of the infection.  

Methodology: Apart from using exploratoy data analysis with inclusion of nonparametric Kapla-

Meier survivorship estimates to compare the risk groups, two major ways of dealing with survival 

data are used in achieving the desired objectives which are Cox proportional hazards regression 

model for right censored-data and Weibull parametric regression model for interval censored-data 

based on the fact that the viral load and CD4 counts are not constantly monitored but are only 

measured every 3 to 6 months, the exact time of treatment failure is unknown.  

Results: Of the 1296 patients in the follow-up study, 148 had such treatments interruption since 

2000. We found that the median failure time for the patients is 2 and 3 months respective for viral 

and immunological failures. The following variables are identified as risk factors predicting viral 

and immunological failures; viral load at start HAART on log scale, duration of the disease on log 

scale, duration of treatment interruption, CD4 at start HAART, percentage change in CD4 cell 

counts and continent of origin. For some of these variables, they reduce the hazard of having viral 

and CD4 failure with about 8% while some increase the hazards of failure by more than 100%.  

Conclusion: The findings from this study show that treatments interruption of at least three months 

worsen disease outcome. The results suggest that interruptions might be risky, particularly when 

there is viral rebound of more than 1000 copies/µl and CD4 cell counts less than 20%. 

Keywords: viral failure, interval-censored, right-censored, Cox proportional model, Weibull 

regression model 
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1.0 Introduction 

1.1 Historical Background 

Early in 1981 among epidemics, two-dozens of new heterogeneous diseases began to strike non-

randomly growing numbers of male homosexuals and male intravenous drug users in the United 

State and Europe. Assuming immunodeficiency as the common denominator, the US department 

of disease control termed the disease as Acquired ImmunoDeficiency Syndrome (AIDS). From 

1981-1984 many researchers proposed that this disease was as a result of recreational drug use 

because of the exact correlations and of drug specific diseases. Among the diseases that were 

found to have high correlation with AIDS are Kaposi‟s sarcoma, Bacteria and Fungi pneumonia, 

Oral yeast infections, dementia, diarrhea, tuberculosis, herpes, lymphoma, weight loss, 

toxoplasmosis, chronic fever etc. (Duesberg, Koehnlein and Rasnick 2003). However, in 1984 the 

it was proposed that a virus now termed Human Immunodeficiency Virus (HIV), is the causative 

agent of the epidemics of the US and Europe but also of a new epidemic in Africa.  

 

According to global summary of AIDS epidemic in December 2006 by WHO report, there were a 

total of 39.5million people living with HIV [95% CI (34.1 – 47.1million)] out of which there were 

37.2 million adults [95% CI (32.1 – 44.5million)], 17.7 million women [95% CI (15.1 – 20.9 

million)] and 2.3 million children under 15years of age with [95% CI (1.7 – 3.5 million)]. In the 

year 2006, a total of 4.3 million people were infected with HIV/AIDS among which are 3.8 million 

adults [95% CI (3.6 – 6.6 million)], and 530,000 children under 15 years of age with 95% 

confidence interval of (410,000 – 660, 000). In the same years in context, there were 2.9 million 

people who died of AIDS [95% CI (2.5 – 3.5 million)] out of which were 2.6 million adults [95% 

CI (2.2 – 3.0 million)] and 380,000 children below 15years of age [95% CI (290,000 – 500,000)]. 

 

In the last two years, as reported by WHO global AIDS statistics, there was remarkable increase in 

the number of people living with HIV/AIDS worldwide with significant increment reported at East 

Asia and Eastern Europe (WHO, 2006) where the number of people living with HIV/AIDS in 2006 

was about 21% higher than those found in 2004. Despite all the efforts by international 

organizations to reduce the incidence of HIV/AIDS, there is a continuous growth in the number of 

people living with HIV/AIDS likewise the number of death recorded as a result of AIDS epidemic. 

For instance, in 2004 there were 36.9 million people living with HIV/AIDS which is lesser than 

that recorded in December 2006. The figure shows an increase of about 2.6 million. In addition, 

the death from HIV/AIDS recorded in 2004 was 2.7million compare to 2.9 recorded in December 

2006. 
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1.2 Infection and Transmission of HIV/AIDS 

Infection is aided by Langerhans cells in mucosal epithelial surfaces which can become infected. 

The CD4+ T-lymphocytes have surface receptors to which HIV can attach to promote entry into 

the cell. The infection extends to lymphoid tissues known as mucosa-associated lymphoid tissue 

(MALT), which contain follicular dendritic cells that can become infected and provide a reservoir 

for continuing infection of CD4+ T-lymphocytes. HIV transmission most likely requires HIV-

infected cells, such as macrophages, lymphocyte, which enters the body through micro abrasions 

of the mucous membranes or through penetration of the skin with a needle. Infection is also aided 

by the presence of other sexually transmitted diseases that can produce mucosal ulceration and 

inflammation.  

 

T-lymphocytes (or T-cells) are white blood cells in the body that play prominent roles in the 

immune system. There are two types of T-lymphocytes known as a type with molecule called CD4 

on its surface while the other is one with molecule called CD8 which destroys cells that are 

infected and produced antiviral substance. When HIV infects humans, the cell it infects most often 

is CD4 cells. The virus becomes part of the cells and when the cell multiplies to fight an infection, 

this virus also multiplies. When someone is infected with HIV for a long time, the CD4 count goes 

down. This is a symptom that the immune system is weakened. The lower the CD4 count, the more 

likely the person will get sick. These CD4 cells bounces a lot due to so many factors such as time 

of the day, fatigue, and stress which can affect the test result. It is highly recommended by group 

of experts that it is better to have the blood sampled at the same time of the day and using the same 

laboratory. 

 

The CD4 cell test is normally reported as the number of cells in a cubic millimeter of blood, or 

mm
3
. Though there is some disagreement among medical experts about the normal range for CD4 

cell counts, however, normal counts are between 500 and 1600. CD4 counts drop down drastically 

in people with HIV, in some cases down to zero. Because of variations normally observed in CD4 

cell counts, some health care providers prefer reporting of the counts in terms of percentages based 

on the fact that it is assumed to be more stable than the number of CD4 cells. The normal range is 

between 20% and 40%. A CD4 percentage below 14% indicates serious immune damage. This is a 

sign of AIDS in people with HIV infection according to the US centers for Disease Control. 

 

CD4 counts are used jointly with viral load to estimate how long someone will stay healthy. CD4 

counts are also used to determine when to start certain types of drug therapy. When CD4 counts 



 3 

 

goes down below 350, most health care providers start antiretroviral therapy (ART) or CD4 

percentage going down below 15% as a sign to start aggressive ART, even when CD4 count is 

high. Some conservative health care providers wait till CD4 cell counts go below 200 and recent 

studies shows that starting ART treatment with CD4 percentage of below 5% strongly resulted in 

poor outcome.  

 

Because they are such an important indicator of the strength of the immune system in the body, 

official treatment guideline in the US suggest that CD4 counts be monitored every 3 to 4 months. 

 

1.2.1 Mode of Transmission 

The major modes of transmission known worldwide are basically of the following. HIV/AIDS can 

be transmitted through indiscriminate sex without the use of condom either vaginal or anal sex. 

Also there can be a transmission of the infection through having contact with the blood of someone 

who has HIV. This can be through blood transfusion or use of razor blade that had already been 

used by HIV patient. HIV can easily be transmitted from a mother who has the disease to her baby 

during the pregnancy or child birth or during the breast feeding period. Also a patient who receives 

an unsterilized needle that was previously used by HIV patient is highly susceptible to the disease. 

Record shows that heterosexual transmission is the route by which most people with AIDS have 

become infected with HIV worldwide. 

 

1.2.2 Highly Active Antiretroviral Treatment (HAART) 

Since the discovery of HIV/AIDS 26 years ago, more than 25 million people have died of the 

infection (NIH, 2006) and more than 40 million are currently infected with the disease making it 

the deadliest disease in human history. Giant strides have been made in the treatment of HIV 

through the introduction of Highly Active Antiretroviral Treatment (HAART). 

   

This is dfined as a combination treatment with at least three antiretroviral drugs including at least 

one protease inhibitor (PI) (Taffe et al 2002). The introduction of HAART has made a tremendous 

improvement in the treatment of HIV patients in the developed part of the world. The so-called 

antiretroviral cocktail, which consists of 3 or more antiretroviral drugs, are able to suppress the 

virus to a remarkable level. Wherever there is access to HAART, the rate of death has decreased to 

a significant level. However, these drugs cannot completely remove the virus from the human 

body and hence the disease cannot be cured. 
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The main disadvantage of HAART is their price. The antiretroviral cocktail cost about 25 USD per 

patient per day which is an exorbitant amount to patients in the developing part of the world. 

Inability of these patients to afford this cocktail enhances the increment in the incidence and the 

rate of death resulting from HIV/AIDS. Another disadvantage is the side effects experienced by 

HIV patients from the antiretroviral drugs which have made treatment of HIV infection to become 

a complicated balancing act between the benefits of durable HIV suppression and the risk of drug 

toxicity (Hoffmann, Rockstroch and Kamps 2006). Serious side effects that are infrequently 

encountered by HIV patients are gastrointestinal side effect, Nausea and vomiting, diarrhea, 

hepatotoxicity, pancreatitis, renal problems, CNS disorder to mention but a few. 

 

The best time to start HAART is still subject to controversy. The risk of AIDS must be weighed 

against the risks of long-term toxicity and viral resistance. These risks and the realization that 

eradication cannot be achieved have led to less rigid guideline. The initial "hit hard and early" 

dogma of 1996, which recommended therapy from the earliest stages of infection, has since been 

discarded. Also, old idea of treating HIV patients with viral load above 10,000 copies/ml, 

independent of CD4 cell counts, is similarly no longer a common practice.   

 

Harrington (2000) proposed more appealing new idea (motto) known as “hit hard but when 

necessary”. There is worldwide agreement that all symptomatic patients as well as patients with 

less than 200 CD4+ T-cell/µl should be treated. 

 

The high costs of HAART and the frequent, serious side effects have led investigators to explore 

the possibility of interrupting HAART in a controlled manner (Structured Treatment Interruption, 

STI). Several studies have been published on patients who stopped HAART and were 

subsequently carefully followed up. These patients had an undetectable plasma viral load at 

treatment interruption, but very quickly, plasma HIV RNA levels rose again to pre-treatment 

levels. In addition, the results of past studies of patients who stopped their treatment show that 

these patients are worse off in terms of morbidity and mortality than patients who are on 

continuous treatment. This study focuses on patients who have their treatments interrupted for 3 

months or more. 

1.3 Research Questions 

The research questions for this study were as follow: 

1. What are the outcomes of patients with chronic HIV-1 infection who stop their highly 

active antiretroviral treatment for reasons other than treatment failure, in terms of  
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i. Rebound of plasma viral loads 

ii. Decrease in CD4 cell counts or percentages 

2. Which factors are predictive of “good control” of infection (i.e. slow rebound of plasma 

viral load and slow decrease in CD4 cell counts). 

 

This report is organized as follows; section two describes the data and the study design, section 

three broadly describes the methodology used in the report which is follow by results of the 

analysis in section four. In section five, there is detail discussion of results and conclusions arrive 

at from the analysis while section six contains the list of references for further reading. SAS 

version 9.1.3, and R are the software used in the analyses presented in this report and all tests are 

carried out at 5% level of significance. 

 

2.0 The Data 

The data used in this study were obtained from the clinical department of the Institute of Tropical 

Medicine (ITM), Antwerp, Belgium. These data were gathered from a cohort study of patients with 

chronic HIV-1 infections with age higher than 18 years old and being placed on HAART for at 

least one year. Also the eligibility criteria specify that the patients should have had undetectable 

viral load at treatments interruption and have their treatments interrupted for at least 3 months. 

There were 4 different set of data collected which are patients data that consist of patients baseline 

information like sex, age, sex preference and origin (country of origin). The second one contain 

different drugs (HAARTS) that each patient is being placed on, next is the CD4 interruption which 

has information on the date at which patients were placed on drug holiday and when they resumed 

back to drug usage with their respective CD4 counts. It also has information on the date of entry 

into the study and the last date of visitation to the clinic, these similar information are contained in 

the fourth dataset which are on patients viral load during interruption (or drug holiday). All these 

data are merged into two distinct data known as viral load interruption data and CD4 interruption 

data with full information on the patients and are then used in the analyses considered in this study.  

 

2.1 Definition of Terms 

In this study, several variables are used as predictors and therefore have to be explained for proper 

understanding. These are outcome variables as well as predictor variables which shall be explained 

in detail in the next subsections. A treatment interruption is refers to as the absence of any 

antiretroviral drug during at least three months in a patient who was previously receiving HAART. 
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The end of interruption was defined as the time when the patients start receiving the treatment 

again, even if it was not with HAART (Taffe et al 2002). Patients were censored when they are 

observed not to have failed due to high viral load or low CD4 cell counts. 

2.1.1 Outcome Variables 

The outcome variables used in this report are the time to viral and immunological failures which 

are: 

 rebound of   plasma viral load defined as an increase of 100 copies/ml 

 decrease in absolute CD4 cell count defined as decrease of 25% compared with baseline 

value at treatment interruption or a CD4 count < 200/µl 

 

2.1.2  Predictor Variables 

Several predictors are considered in this study and they are given in detail in the subsection below 

 Age: the age of the patients at the start of HAART 

 Sex: the gender of the patients which can either be male or female as defined in the dataset 

 Sex preference: the sexual preference of the patients with zero stands for unknown sex 

preference; 1 stands for bisexual; 2 for homosexual and 3 stand for heterosexual 

 Ethnic origin: Every patient has a country of origin which are categorized into continent of 

origin based on the fact that some country have few patients that it may not be easy 

modeling with such few observation to avoid convergence problem. This variable is 

classified into 0 = Asia; 1 = South America; 2 = Africa and 3 = Europe. This variable is 

abbreviated continent in the report. 

 Disease duration: the difference between the date when patients start treatment interruption 

and the date he/she is tested positive of HIV. It is abbreviated as trtdur in the report. 

 Duration of follow-up: defined as difference between the date patient start treatment 

interruption and the date of first consultation. This is abbreviated as fulpdur in this report. 

 Duration of interruption: the duration that patient spent in the treatments interruption is 

also considered as predictor since it can also be a recon factor that predict the outcome. It is 

refers to as intduration in the report. 

 CD4nadir: the lowest CD4 at the start of interruption. 

 CD4HAART: the CD4 at start HAART. 

 CD4 lab value: This is the last CD4 before treatment interruption. This is abbreviated as 

labval in the report. 

 VLHAART: the viral load at start HAART. 
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 Viral load lab value: Similar to what is obtained in CD4, it is the last viral load before start 

treatment interruption and it is abbreviated as vlabval. 

 PATID: the patient‟s unique identification number. 

 VLHigh: This is the highest viral load before starting HAART and always taken to be 

VLHAART. 

 

3.0 Methodology 

The background of this report is the analysis of time-to-event. That is, data are related with the 

individual time elapse in certain situation or state. Example of these kinds of data comes from 

various fields of study like medicine, biology, engineering, economics, public health etc. The main 

characteristic of these data is the issue of censoring which occurs when the periods of time for 

some individuals cannot be completely observed. The presence of censoring makes these data 

unsuitable to analyze with traditional regression method and hence, calls for appropriate or specific 

techniques and analyses, usually called Survival Analysis (Hosmer (Jnr) and Lemeshow 1998). 

 

Survival analysis consists of a set of specialized statistical techniques used to study response time 

data. In analyzing such data, the main objects are to determine the length of time interval spent in a 

state and the transition probabilities from the current state to the entered state (Berenger 2001).  

 

The interest of this statistical tool is mainly focused on two distinguishing features of time data. 

Firstly, duration times are non-negative values usually exhibiting highly skewed distribution and 

therefore assumption of normality may be violated. Secondly, the true duration is not always 

observed or known. 

 

3.1 Censoring and Truncation 

The time period confinement for survival data gives rise to considerations specific to survival 

analysis, censoring and truncation. Censoring arises when survival time of an individual did not 

extend to the end of the study (Persson 2002). If death from a specific disease is anticipated, death 

from another source other than disease under consideration is dealt with as censoring, implying an 

intension of studying death from the specific disease had not the subject died from some other 

cause (Clayton and Hills 1993). According to Hosmer (jnr) and Lemeshow (1998), a censored 

observation is one whose value is incomplete due to random factors for each subject. 

Censoring can appear in various forms and the most common forms are explained below: 
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(i) Right Censored: An observation is said to be right censoring if it is recorded from its 

beginning until a well defined time before its end time. For instance, if a HIV-1 patient 

is followed until he has a viral load high than 1000 copies/µl and is followed without 

experiencing this scenario until the end the observation period, and then this patient is 

known to be right censored. In other words, an observation is said to be right censored 

if it begins at time t = 0 and terminate before the outcome of interest is observed. 

(ii) Left Censored: An observation is said to be left censored if all that is known is that the 

individual developed the event of interest prior to the beginning of the study. An 

observation is said to be left censored if the event of interest has already occurred when 

observation begins (Hosmer (jnr.) and Lemeshow 1998). This situation is less common 

in survival studies and is often not a focus. 

(iii) Interval Censored: An observation is categorized into interval censored if it is only known 

that the event of interest occurs within an interval of time without the knowledge of 

when exactly it occurs. 

Truncation can be defined as a way to include into a study only those patients who meet certain 

criteria. One might have left truncation, when only individuals who survive a certain time before 

the start of the study are included, or right truncation, where the ones who have experienced the 

event by certain time are included (Persson 2002). In this study, right truncation is used with 

patients that have already been tested positive to HIV by 2000 being included in the study. 

 

3.2 Analysis of Survival Data 

Suppose X is the variable describing the event of interest which is known as time taken to some 

event of interest. There are basically four functions that characterize the variable X; the survival 

functions, the probability density function, the hazard function and the mean  residual life at time 

x. If one of these functions is known then, the rest can be uniquely determined. 

 

The survival function is interpreted as the probability that an individual survives for a time 

greater than or equal to time x (Collet 1994). This function can be estimated by the empirical 

survivor function, given by 

                           (i) 

The estimated survivor function   is assumed to be constant between two adjacent death times, 

and so a plot of  against x is a step-function (Collet 1994), the empirical survivor function is 

equal to unity for values of x before the first death time, and zero after the final death time. 
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The survival function is connected to the probability density function through the alternative 

definition of the survival function given as  

   (ii) 

Where  is the empirical distribution function, that is the ratio of the total number of 

individuals alive at time x to the total number of individuals in the study and subsequently we have  

                       (iii) 

 

The hazard function is also known as failure rate, force of infection, force of mortality, conditional 

failure rate, intensity function, or simply hazard rate and it is defined as the probability that an 

individual dies at time x, conditional on the fact that he or she has survived to that time. It 

therefore, represents the instantaneous death rate for an individual surviving to time x.   For 

, the hazard ratio is defined thus: 

 

                                 (iv) 

 

If x is continuous, then  

 

      (v) 

The cumulative hazard function is defined by 

     (vi) 

 

For modeling survival data, a suitable distribution for the survival times is chosen, or equivalently, 

a hazard functions. This can be achieved in different ways. One way is to assume that the survival 

time has parametric distribution while another choice is non-parametric where survival times are 

estimated through the observed survival distribution. The latter is the basis for Kaplan-Meier 

which is considered in the next subsection. There is semi-parametric approach in which one does 

not specify any distribution apart from assuming hazard function changes in steps which occur at 

the observed event. This is the basis for Cox-proportional hazard model (Olsson 2002). 
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3.3 Estimate of Survivorship Function 

The repercussions of the time confinement employed when collecting survival data are censoring 

and truncation. The differences in survival experience between two groups receiving different 

treatments can be tackled from different angles; often times, a researcher will be interested in how 

long an individual of certain age will live or perhaps how long after the exposure will the disease 

occur; the incubation period. In addition, to these aims, traditional statistical methods do not 

suffice, instead there are whole arsenal of methods developed solely for purposes of estimation of 

various angles of approach to survival data taken censoring and truncation into account. 

 

3.3.1 The Non-Parametric Kaplan-Meier Product Limit Estimates 

The Kaplan-Meier estimator estimates the survival function from life-time data. In medical or 

biological research, it might be used to measure the fraction of patients living for a given amount 

of time after surgical operation. A plot of this estimate of the survival function is a series of 

horizontal steps of declining magnitude which, when a large enough sample is taken, approaches 

the true survival function for that population. The value of the survival function between 

successive distinct sampled observations is assumed to be constant. One way to measure survival 

is to make use of actual survival times confined to a certain interval of time. Cumulative survival is 

then estimated as the proportion of survivors among these patients over these intervals of time. 

One major advantage of Kaplan-Meier estimates is that the method can take into account 

“censored” data. That is, since it look unwise to overlook the survival experience of patients with 

whom one loses contact and the more recently recruited patients who have not yet completed their 

entire follow-up time. The simple cohort-based methods have been modified to take these patients 

into consideration. The result is called complete method and the most widely used complete 

method is called Kaplan-Meier survival estimator. 

 

3.3.1.1  Comparison of Survival Curves Using Different Methods 

In medical research, it is often the case to compare the survival curves of two groups of 

individuals. The groups will defer with respect to a certain (prognostic) factor like treatments, age, 

sex, stage of disease, etc., and it is the effect of this factor on survival which is of interest. The 

simplest way of comparing survival time obtained from two groups of individuals is to plot the 

corresponding estimates of two survivor functions on the same axes (Collet 1994). However, this is 

an exploratory method which may not be concluded upon, and hence, the need for formal 

statistical method to assess whether the two groups are different with respect to their survival time. 

In the comparison of two groups of survival data, there are a number of methods which can be 
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used to quantify the extent of between-group differences. Two non-parametric approaches that are 

commonly used in practice are log rank test and Wilcoxon test. 

 

3.3.1.2  The Log-Rank Test and Wilcoxon Test 

The log-rank test (also called the Mantel-Haenszel test or Mantel-Cox test) is a hypothesis test to 

compare the survival distributions of two samples. It is a non-parametric test and appropriate to 

use when the data are right censored (technically, the censoring must be non-informative). The 

log-rank test statistic compares estimates of the hazard functions of the two groups at each 

observed event time. It is constructed by computing the observed and the expected number of 

events in one of the groups at each observed event time and then adding these to obtain an overall 

summary across all time points where there is an event (Hosmer (Jnr) and Lemeshow 1998). 

 

Let j be the number of distinct times of events. For j = 1, . . ., J, and let Oj be the observed number 

of events in the first group, let Ej and Vj respectively be  the expected value and variance  of Oj 

given the number of events at this time and the number of patients “at risk” (neither censored nor 

had event) in both groups under the null hypothesis. Oj conditionally has a hypergeometric 

distribution. Ej is the number of events times the fraction of the total number at risk that are in 

group 1. That is, from sample; 

                (ix)                                                  

so that e1j is the expected number of individual who die at time tj in group 1. Taking o1j as d1j, then 

the deviation between the expected death and the observed death from 2 x 2 tables constructed for 

each event time is then combined and given as; 

      (x) 

Since death times are independent of one another, the variance of UL is simply the sum of the 

variances of d1j. Now since d1j has a hypergeometric distribution, the variance of d1j is given as; 

 

    and              (xi) 

 

UL is considered to be approximately normally distributed, when the number of „death‟ is not too 

small (Collet 1994). It then follows that    has a normal distribution with mean zero and 

unit variance, denoted as N(0,1). We therefore write  
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                     (xii) 

Therefore the square of a standard normal random variable has a chi-square distribution on one 

degree of freedom and so we have  

                        (xiii) 

Where WL implies Wald test. 

Because this approach of combining information over several 2 x 2 tables was proposed by Mantel 

and Haenszel (1959), it is then called Mantel-Haenszel procedure. The test based on this statistic 

has several names, including Mantel-Cox and Peto-Mantel-Haenszel, but it is probably best known 

as log-rank test. The test is known to have high power when the proportional hazard model holds. 

 

The Wald statistic summarizes the extent to which the observed survival times in the two groups of 

data deviate from those expected under the null hypothesis of no group difference. The larger the 

value of this statistic, the greater the evidence against the null hypothesis. 

 

This test can be generalized to accommodate other tests that are equally used sometime in practice 

such as Generalized Wilcoxon test, Tarone-Ware test, and Peto-Peto Prentice test. Each of these 

tests uses different weight to adjust for censoring that is often encountered in survival data. 

Suppose that our UL  is defined as; 

 

                           (xiv) 

and  

 

                         (xv)                   

Then WL is as defined in equation xiii 

When the weight is 1, we have log-rank test, generalized Wilcoxon test uses weights equal to the 

number at risk which puts relatively more weight on the differences in survivorship function at 

smaller values of time. The log-rank test will place more emphases on differences in survivor 

function at larger values of time than generalized Wilcoxon test since it makes use of weight 

equals 1. Tarone and Ware (1977) suggested assigning weight that is intermediate between log-

rank and generalized Wilcoxon and hence proposed . On the part of Peto and Peto 

(1972) and Prentice (1978), they suggested using a weight function that depends more explicitly on 

the observed survival experience of the combined sample. The weight is then given as 
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              (xvi) 

Harrington and Fleming (1982) suggested a class of test that incorporates features of both log-rank 

and the Peto-Prentice tests. They suggested using the Kaplan-Meier estimator raised to a power, as 

the weight, namely 

                              (xvii) 

When ρ = 0 then, wj = 1 and the test is the log-rank test. However, if ρ = 1, then the weight is the 

Kaplan-Meier estimator at the previous survival time, a weight similar to that of Peto and Prentice 

test. The principle advantage of Peto-Prentice and Harrington-Fleming tests over the generalized 

Wilcoxon test is that they weight relatively to the overall survival experience. 

 

A problem can occur if the estimated survivorship functions cross one another. This implies that in 

some time interval, one group will have a more favorable survival experience, while in other time 

intervals the other group will have the more favorable experience (Collet 1994). This is similar to 

having interaction present when applying Mantel-Haenszel method to a stratified contingency 

table. 

 

3.4 Regression Models for Survival Data 

In most medical studies which give rise to survival data, supplementary information is collected on 

each individual so that the relationship between the survival experience of individuals and various 

explanatory variables may be investigated. A variety of models and methods have been developed 

for doing this sort of survival analysis – some parametric and some semi-parametric. Semi-

parametric models are models that parametrically specify the functional relationship between the 

lifetime of an individual and his characteristics (demographic, socio-economic, etc.) but leave the 

actual distribution of lifetimes arbitrary. The most popular of the semi-parametric models is the 

proportional hazards model, which has the property that ratio of the hazards of two individuals at 

time t can depend on the values of their explanatory variables, say  but does not depend 

on time t. 

 

3.4.1 The Semi-Parametric Cox-Proportional Hazard Model 

Sir David Cox (1972) proposed a distribution-free (semi-parametric) proportional hazards model to 

cater for covariate effects for single event failures (lifetime data) in a non-repairable system. This 

model is valid under the assumption of proportional hazards which implies that effect parameters 

multiply hazards, for instance, if taking drug X halves your hazard at time 0, it also halves your 
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hazard at time 1, or time 0.5, or time t for any value of t. Cox (1972) observed that if proportional 

hazards assumption holds (or is assumed to hold), then it is possible to estimate the effect 

parameter(s) without any consideration of the hazard function. 

 

The Cox proportional hazards model is generally given by;  

 

                  (xviii) 

where h0(t) is the baseline hazard function at time t, Zj(t) is a vector of measured covariates for the 

i
th

 individual at time t, and β is a vector of unknown regression parameters that are assumed to be 

the same for all individuals in the study. The data available in regression problems for right-

censored time data are independent observations on the triple (X, ð, Z), where X is the minimum of 

death and censoring time pair (T, U),  is the indicator of whether or not a „death‟ has been 

observed (censoring indicator), and Z = ( Z1, Z2, . . ., Zp)
1
 is a p dimensional column vector of 

covariates. The vector Z may be a function of t, but the only requirement is that Z(t) can be 

determined from the observations up to time t. 

  

The Cox proportional hazards model can equally be regarded as linear model for the logarithm of 

the hazard ratio given by  

 

                                 (xix) 

From this hazard function, we obtained estimated cumulative hazard function and given by: 

                                 (xx) 

Consequently, from the proportional hazard function, we obtained the estimated survivor function 

for the ith individual which is given by: 

                                    (xxi) 

 

for  ,  with r set of observed death time (Collet 1994). 

 

The explanatory variables included in the model might be covariates which are assumed to be 

continuous such as age, height, weight, and so on, or factor(s) which are in categorical form such 

as sex (with male = 0,, female = 1), disease stage (stage1 = 0, stage2 = 1, etc.), and so on. In 

estimating factor variables in the model, for instance, if factor A has a levels, (a-1) dummy 



 15 

 

variables have to be created, each has two levels 0 or 1 indicating the presence of a level or not. In 

addition, an interaction term may be needed in a model. This is often the case when terms 

corresponding to more than one factor are to be included in the model, sets of indicator variables 

can be defined for each factor in a manner that each dummy variable created has two levels, 0 or 1. 

In this situation, it may be appropriate to include a term in the model which corresponds to effects 

for each combination of levels two or more factors. Such effects are known as interaction (Collet 

1994). 

3.4.2 Parametric Proportional Hazards Models 

Other proportional hazards models exist in form of parametric which assume that the proportional 

hazards assumption holds, but in addition, assume that the hazard function follows a know form. 

There are two major form of this parametric hazard model that are commonly used in practice 

known as Exponential and Weibull models for survival data.  

 

The Exponential and Weibull Models for Survival Data 

The simplest model for the hazard of an event of interest is to assume that it is constant over time. 

The hazard of experiencing event of interest at any time after the time origin of the study is then 

the same, irrespective of the time elapsed. The estimated hazard and survivor functions under this 

model which is assumed to follow exponential distribution are obtained and given respectively by; 

                                (xxiia) 

and 

                               (xxiib) 

 

In practice, the assumption of a constant hazard function, or equivalently of exponentially 

distributed survival times, is rarely tenable (Collet 1994). Therefore a more general form of 

estimated hazard function is such that 

                               (xxiic) 

for   and with corresponding estimated survivor function given by; 

                                    (xxiii) 

where  is Weibull‟s scale parameter and  is its shape parameter. This model assumed that the 

survival times of n individuals are now taken to be a censored sample from a Weibull distribution. 

The two parameters are estimated using maximum likelihood which are obtained by differentiating 

log likelihood with respect to each of these parameters and solve the nonlinear equations resulted 

from the differentiations to obtain the estimate of the parameters.  
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In comparing two groups using the Weibull distribution model, under the proportional hazards 

model, the estimated hazard of death at time t for individual i is given by; 

                (xxiv)           

The estimated hazard function for individuals in group 1 is given as we have in equation xxviii by; 

                                                  (xxv) 

 

We hence have result that if the survival times of individuals in one group have a Weibull 

distribution with shape parameter , and the hazard of event of interest at time t for an individual 

in the second group is proportional to that of an individual in the first group, the survival times of 

those in the second group will also have a Weibull distribution with shape . This distribution is 

then said to have a proportional hazards property. When assuming the proportion hazards function 

to be the Weibull, hazard function gives the Weibull proportional hazards model (in which the 

survival times follows a Weibull distribution). The estimated survivor function for the i
th

 

individual in the study is given by; 

 

                        (xxvi) 

 

3.4.3 Analysis of Interval – Censored Data  

Both parametric and non-parametric methods are available for the analysis of interval censored 

data when observations are assumed to be independent (Bellamy et al 2004). In this study, analysis 

of interval-censored data is done using conventional interval-censored data analysis methods 

implemented in some popular software like SAS, STATA, and R/S-Plus. With interval-censored 

data, instead of Ti (i = 1, . . ., n), a random variable recording the duration time of the ith patient in 

the study, we observe intervals [Li, Ri], where Li ≤ Ti ≤ Ri. This does not rule out exactly observed, 

right-censored, left-censored data for which Li = Ri = Ti, Ri = ∞ and Li = 0, respectively. Often, 

additionally a vector  of covariates (i =1, . . ., n) with typical question of whether the distribution 

of Ti relies on the covariates (Lessafre et al. TR068). 

In the method of analyzing interval-censored survival data, information about whether or not viral 

failure occurs at different examination schedules is taken into account. Adopting a proportional 

hazards model for the recurrence times, the hazard of experiencing viral failure at time tj in the i
th

 

individual can be expressed as  

 

                          (xxvii) 
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Where h0(t) is the baseline hazard at time tj, and (Zjβ) is the risk score for the i'th individual. This 

assumption is less restrictive to the one obtained in Cox-proportional hazard model because it only 

assumes that hazards need only to be proportional at the schedule time tj, and not at intermediate 

times. Corresponding survivor function for interval-censored data can be obtained from the hazard 

function given as  

                   (xxiii) 

This is a linear model for complementary log-log transformation of , in which , j = 1, 2, . . .,k  

are associated with the k time intervals. The model is fitted using standard method for binary data 

which is similar to fitting logistic regression and assessment of model inadequacy that are 

applicable to logistic regression are also applicable to this interval-censored analysis. 

 

3.4.4 Model Building 

Before any model could be fitted, it is a statistical tradition to investigate which variable(s) goes 

into the model either by using conventional selection procedure like forward, backward, stepwise 

which are in a class of automatic selection procedures or follows a specific intuition that is 

statistically acceptable. Model building in Survival analysis is similar to what is obtained in a 

classical regression (Hosmer (Jnr) and Lemeshow 1998). Any of the standard approaches describe 

in any statistical text can be adopted in selecting the variables that goes into final model because 

they are likelihood based ad because standard testing procedures like the score test can be used to 

compare models except if there is (are) specific variables that need to be forced into the model 

because of its biological interest. 

 

In this study, model building starts from univariate analysis as suggested by Collet (1994). All 

variables that are significant at 25% level from one explanatory univariate regression model are 

taken into multivariable model where backward selection approach is used with 10% significant 

level of stay in the model. Variables that are selected at this stage are taken to stage three where 

variables that are not significant in stage one are added one at a time and forward selection 

procedure is used with 10% significant level of entry into the model. The fourth stage involves 

combination of all variables that are significant at stage three in addition with their possible 

interactions using stepwise selection procedure with 10% significant level of entry and stay in the 

model. The final variables selected at this stage are then pruned to have the final model. 
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3.5 Assessment of Model Adequacy 

Model-based inferences depend completely on the fitted statistical model. For these inferences to 

be “valid” in any sense of the word, the fitted model must provide an adequate summary of the 

data upon which it is based. Some of the methods for the assessment of a fitted proportional 

hazards model can equally used for parametric regression models. There are basically four 

requirements for model adequacy considered in this study. They are (i) methods for testing the 

assumption of proportional hazards. This is an assessment of how extent the two curves are 

equidistant over time. (ii) Goodness-of-fit can be assessed using R
2 

similar to what is obtained in 

linear regression proposed by Cox and Snell (1989) and given by  

             (xxx) 

where LL0 is the (partial) log likelihood for zero model, LLβ is the (non) parametric model as 

appropriate, N is the number of time-intervals in the event sequence (Klein and Moeschberger 

2003). (iii) Subject-specific diagnostic statistics that extends the notions of leverage and influence 

to the proportional hazards model and (iv) testing for non-linearity in Cox-Proportional regression 

model (Hosmer & Lemeshow 1998).  

 

Under this model adequacy, residuals play a central role. The following residual diagnostics are 

considered in assessing model adequacy in this study; (i) Scale Schoenfeld residuals which is 

expected to show no trend in addition to its smooth plot if the proportional hazard assumption is 

satisfied, (ii) the score residual which is a weighted average of the distance of the value, zij, to the 

risk set means, zwjk, with the weights taken as the change in the martingale residual,  that is used in 

assessing subject-specific diagnostic by observing how large the deviation is. The larger the 

deviation the more distant the residual is to the mean. (iii) Martingale residual proposed by 

Hosmer (jnr) and Lemeshow (1989) to assess goodness-of-fit by partitioning the data into G 

groups based on the ranked values of the estimated risk score, z
′
β. The test sums up the martingale 

residuals within each group and it compares the observed number of events in each group to the 

model-based estimate of the expected number of events (Hosmer (Jnr) & Lemeshow 1998). 

 

 

4.0  Results 

4.1 Exploratory Data Analyses  

In exploring the data, we make use of descriptive statistics for the continuous variables and 

frequency tables for categorical variables. In addition, chi square test in form of Fisher‟s exact test  

or Pearson Chi-square is used in assessing if the categorical variables are independent of each 
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other or not whereas t-test with assumption of normality is used to compare categorical variables 

with only two levels and general linear model for categorical response variables with more than 

two levels. Variables are summarized using descriptive statistics is with respect to age, sex, sex 

preference, and continent of origin. Graphical illustrations are also used to visually assess the level 

of each variables considered in this study. Some of the graphical displays are histogram, box plot 

and bar-charts. 

 

4.1.1 Missingness Assessment 

In these data, there are some missing observations in some of the covariates that call for attention.  

We investigate the proportion of missingness in these covariates before proceeding to the analysis. 

From Table 1, we found that for highest viral load before starting HAART, there is 57% 

missingness, whereas there is 19% missingness in the highest CD4 before starting HAART. We 

decided to include variables that are having less than 30% missingness in the analysis to avoid 

loosing much information in the analysis, though we observe that this is going to have influence in 

the analysis since information will be lost on some of the patients in the dataset. The missing data, 

as observed from the software, are handled by using complete case in fitting the proposed models. 

The influence of missing observations on the results shall be investigated in due course. The 

following variables are not included in the analysis due to their high proportion of missingness: 

vlhaart and Vlhigh. 

 

Table 1: Distribution of missingness in the viral load and CD4 data for patients with chronic HIV-1 

infection who interrupt their highly antiretroviral treatments at ITM, Antwerp, Belgium 

Variable Number of missing Percentage of missing 

CD4haart 28 19% 

Vlhaart 82 57% 

Vlhigh 82 57% 

 

4.1.2 Descriptive Statistics  

There are 1296 patients in the cohort study out of which 148 patients have their treatment 

interrupted not due to treatment failure and 1148 are without drug holiday. The mean age of those 

that have treatment interruption is 36 years while mean age of those without treatment interruption 

is found to be 37 years. The box plot shown in Figure 1 (left panel) shows that there is relatively 

little difference in the age distribution of the two groups. The statistical t-test confirms that there is 

no significant difference between the age of patients with treatment interruption and those without 

interruption (p-value = 0.1506).  There are 876 males in the study out of which 94 (11%) are in the 
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treatment interruption category and 782 (89%) are in the non-interruption group. Among 419 

females in the study, there are 54 (13%) in interruption arm and 365 (87%) in non-interruption. 

Figure 1 (panel b) shows the bar-chart that depicts the sex distribution according to patients‟ 

situation in the study. 

 

Considering the distribution of patients‟ situation according to continent of origin shows that there 

are 37 (3%) patients from Asia out of which 1 is being classified into treatment interruption arm 

and 36 are classified into non-interruption arm. South America records a total of 18 (1%) patients 

that have 3 patients in interruption category and 15 in non-interruption category. Similarly, there 

are 433 (33%) patients from Africa with 42 in interruption arm and 391 in the other arm. This 

continent recorded second largest number of patients in the study. The highest percentage of 

patients comes from Europe, which has a total of 808 (62%) patients in the study with 102 are 

among those patients who have their treatments being interrupted and 706 are not. The information 

presented above is presented graphically in Figure 3 (rigt panel) in the Appendix and in Table 1. 

The remaining descriptive statistics focuses on patients with treatments interruption, while the 

information about both groups can be found in Table1. The average age of females in this arm is 

34years while the average age of males is 37years. Figure 3 (left panel) in the appendix shows the 

box plot of age against sex. This plot shows that there is difference between average age of male 

and that of the female patients in the study. This can be observed clearly from the plot through the 

mean level. The mean level in the box plot for male is higher than that of the female. However, a 

formal test using t-test reveals that there is no significant difference between the gender (p-value = 

0.1719). 

 

Age Distributions 

Age distribution in terms of continent of origin (Table 1) reveals on the one hand that the mean 

ages of patients from South America, Africa, Asia and Europe, who have their treatment 

interrupted, are respectively 38, 33, 38, and 37years. On the other hand, the mean age of patients 

who are not on drug holiday from the aforementioned continents are respectively 31 years, 35 

years, 34 years and 39 years. Statistical test for age difference in the continent of origin among 

patients with interruption using GLM shows that there is no significant difference among the age 

distributions of the patients (p-value = 0.0506). However, for patients without interruption, we 

observed that there is high significant difference in the age distribution according to the continent 

of origin (p-value < 0.0001). Bar-chart illustrating these distributions is shown in Figure 3. 
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Table 2: Descriptive statistics of chronic HIV-1 patients who interrupt their highly active antiretroviral 

treatment (HAART) data obtained at ITM, Antwerp, Belgium 

Patients with interruption Patients without interruption 

 N (%) Mean 

(st.dev) 

normality 

test 

N (%) Mean 

(stdev) 

Normality 

test 

Age  148 (11.4%) 36 (8.85) < 0.0001 1148 (89%) 37 (9.65) < 0.0001 

t-test for group difference (p-value = 0.1506) 

Sex 

 N (%) Mean 

(st.dev) 

t-test/ 

GLM 

N Mean 

(stdev) 

t-test/GLM 

Male 94 (64%) 37 (8.8) 0.0323 782 (68%) 39 (9.7) < 0.0001 

Female 54 (36.5%) 34 (8.6) 366 (32%) 33 (8.6) 

Continent of origin 

Asia 1(0.7%) 38 ( - ) 0.0510 36 (3%) 31 (6.03) <.0001 

S.America 3 (2.03%) 38 (13.9) 15 (1.3%) 33.5 (7.8)  

Africa 42 (28.4%) 33 (8.4) 392 (34%) 33 (7.8)  

Europe 102 (69%) 37 (8.69) 706 (61.5%) 39 (10.0)  

Sexual Preference 

unknown 1 (0.7%) 32 (-) <0.4901 12 (1.04%) 38 (13.4) < 0.0001 

Bisexual 2 (1.4%) 41 (4.24) 31 (2.7%) 42 (10.96) 

Homosexual 60 (40.5%) 35 (7.2) 476 (41.4%) 38 (9.3) 

Heterosexual 85 (57.4%) 37 (9.9) 630 (54.8%) 36 (9.6) 

 

 

Figure 1: Box plot showing age distribution between patient with interruption and without interruption (left 

panel) and bar-chart showing percentage of sex according to patients’ situation(right panel) 
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The age distribution of patients with interruption of their treatments is skewed to the right. From 

this graph, it shows that there are more young people than older people in the study. Similar 

observation is made from the age distribution of the patients without interruption in their 

treatments. This can be clearly observed from Figure 2 (right panel).  

 

 

Figure 2: Histogram showing age distribution of patients with interruption (left panel) and without 

interruption (right panel) from chronic HIV-1 infected patients at ITM, Antwerp, Belgium 

 

In addition, distribution of sex in terms of continent of origin from patients who have their 

treatment interrupted shows that there are 29 (19.6%) females from Africa whereas there are only 

24 (16.2%) from Europe in general. These two continents account for largest proportion of females 

in the group. South America accounts for only 1 female patient while no female patient is recorded 

for Asia continent. In terms of male participants, there are more males reported from Europe (78 

(52.7%)) against Africa (13 (8.8%)). There are 2 (1.4%) male patients from South America and 

1(0.7%) male patient from Asia. Fisher‟s exact test shows that there is an association between 

continent of origin and sex with p-value < 0.0001. In general, there are 102 (68.3%) patients from 

Europe, 42 (28%) patients from Africa, 3 (2%) from South America and 1(0.7%) from Asia in this 

study. The distribution is similar with what we observed in non-interruption group. This is 

displayed in Table 2 for detailed information about the group. Chi-square test shows that there is 

significant association between sex and continent of origin in both groups (p-value < .0001). 
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Table 3: Distribution of sex and sex preference according to continent of origin for data obtained from 

chronic HIV-1 patients who interrupt their highly active antiretroviral treatments at ITM, Antwerp, Belgium 

Continent of Origin 

Continent 

(%) 

With interruption Without Interruption 

Female Male Total Exact-

test 

Female Male Total Exact test 

Asia 

 

0 

(0%) 

1 

(0.1%) 

1 

(0.1%) 

< 0.0001 21 

(1.6%) 

14 

(1.1%) 

35 

(2.7%) 

< 0.0001 

South 

America 

1 

(0.1%) 

2 

(0.2%) 

3 

(0.2%) 

3 

(0.2%) 

12 

(0.9%) 

15 

(1.2%) 

Africa 29 

(2.2%) 

13 

(1%) 

42 

(3.2%) 

245 

(19%) 

147 

(11.3%) 

392 

(30%) 

Europe 24 

(1.9%) 

78 

(6%) 

102 

(7.9%) 

97 

(7.5%) 

609 

(47%) 

706 

(54.5%) 

Sex Preference 

Unknown 0 

(0%) 

1 

(0.1%) 

1 

(0.1%) 

< 0.0001 3 

(0.2%) 

9 

(0.7%) 

12 

(0.9%) 

< 0.0001 

Bisexual 0 (0%) 2 

(0.2%) 

2 

(0.2%) 

1 

(0.1%) 

30 

(2.3%) 

31 

(2.4%) 

Homosexual 0 (0%) 60 

(4.6%) 

60 

(4.6%) 

8 

(0.6%) 

467 

(36%) 

475 

(36.6%) 

Heterosexual 54 

(4.2%) 

31 

(2.4%) 

85 

(6.6%) 

354 

(27.3%) 

276 

(21.3%) 

630 

(48.6%) 

 

Sex by Sex Preference 

Analysis of sex by sex preference shows that all the 54 female participants in treatment 

interruption are heterosexual. However, among males, 60 patients are homosexual while 31 

patients are heterosexual. 2 male patients are having bisexual and the sex preference of 1 patient is 

unknown. The test of association (i.e. Fisher‟s exact test) indicates that there is an association 

between sex preference and gender (p-value < 0.0001). Similarly, we found that there is uneven 

distribution of sex according to sex preference in non-interruption group with 7 male patients are 

of unknown sex preference; 30 are bisexual; 467 male patients are practicing homosexual and the 

remaining 276 male patients are heterosexual. For female, a clear indication emerges from the 

distribution which reflects that 353 patients are heterosexual; 8 are homosexual; 1 has bisexual 

preference while there are two patients with untraced sexual preference. This is shown in Figure 3 

using bar – chart to illustrate the distribution for the two groups. 

 

Analysis of sex preference according to continent of origin shows that 42 patients from Europe are 

heterosexual, 58 patients are homosexual, 1 is bisexual and 1 is of unknown sexual preference. 

Also, 41 patients from Africa are found to be heterosexual, none is homosexual and 1 patient is 

known to be bisexual. Only 1 patient from Asia is found to be homosexual whereas from South 
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America, 2 patients are found to be heterosexual and 1 patient is found to be homosexual. In the 

same vein, Fisher‟s exact test confirms that there is significant statistical association between sex 

preference and continent of origin (p-value <0.0001). Table 4 and Figures 3 and 4 provide the 

details about this information. 

 

 

Table 4: Distribution of Sex preference according to sex by patients’ situation for patients with chronic 

HIV-1 infection who interrupt their highly active antiretroviral treatments at ITM, Antwerp, Belgium 

Continent With interruption Without Interruption 

0 1 2 3 Exact-test 0 1 2 3 Exact-test 

Asia 0  0  1  0  < 0.0001 1 2 10 23 < 0.0001 

South 

America 

0  0  1  2  0 0 10 5 

Africa 0  1  0  41  3 1 16 372 

Europe 1  1  58  42 8 28 440 630 

0 = unknown; 1 = Bisexual; 2 = Homosexual; 3 = Heterosexual 

 

From Figures 3 and 4, we observed that there are more male in both bisexual and homosexual 

classes than female patients but there are more female in heterosexual class than male counterpart. 

These observations are similar in the two groups (i.e. both with and without interruption). 

 

 

Figure 3: Bar-charts showing the number of patients with respect to sex preference for patients with 

chronic HIV-1 infection with(left panel) and without (right panel) treatments interruption at ITM, Antwerp, 

Belgium 
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4.2 Survival Analysis of Viral Load Data 

From these data, in order to be able to carry out right-censored survival analysis, although we are 

not analyzing survival rather we are focusing on failure time. Meanwhile, the „Survival time‟ used 

in this report is referring to failure time. The data are structured to have one observation per patient 

instead of multiple observations recorded per patient due to the timing of viral load measurement 

experienced by patients during the treatments interruption. The whole dataset are used for interval-

censored survival analysis that shall be dealt with later in this study. 

 

The Kaplan Meier survival Plot, Figure 4 indicates that the failure time of patients with viral load 

less than 1000 copies/ul is small. This is indicated by the median failure time to be 3 months (95 % 

CI, 2 – 5 months). The 75th percentile is found to be 4 months (95% CI, 3 – 5 months), while 25th 

percentile is estimated to be 1 month (95% CIs, 1 – 2 months). The plot shows that there are more 

events at an early part of interruption time which implies that there are more patients who have 

their viral load more than 1000 copies/ul and these is gradually going down as interruption time is 

increasing. The end-point in this case is time to viral load failure i.e. having viral load rebound 

above 1000 copies/µl. 

 

4.2.1 Comparison of Sex, Sex Preferences and Continent of Origin 

In order to investigate if there is significant difference between the time to viral failure of sex, 

Kaplan-Meier survivor estimates are differently estimated for the group and their plots are overlaid  

so that the difference, if it exists, can be visually investigated. Figure 4 shows that the curves are 

not much different from each other indicating that the time to viral failure for the male and female 

patients may not be different significantly.  Statistical confirmation is made by using log-rank test 

and this shows that there is no statistical significant difference between the gender with respect to 

time to viral failure (Chi-square = 0.1 at 1 d.f., p-value = 0.5542). The median survival time for 

female and male patients is 2 months, (95% CI,  2 – 3 months). 

 

Similar information is investigated from patients‟ sex preference if there is any difference worth 

noting from the data. From Figure 4, we found that for unknown sex preference, and bisexual sex 

preference, there seem to be early event in great number which may be due to few patients in these 

classes, for the homosexual and heterosexual patients, it indicates that graphically, there is little 

difference in their curves. The median time to viral failure for both homosexual and heterosexual 

patients who have their treatments interrupted is found to be 2 months (95% CI, 1 – 3 months). 

Using log-rank test to investigate the difference statistically shows that there is no significant 
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difference in the failure time of the sex preference groups, (Chi-square = 3.282, d.f. = 3, p-value = 

0.35). 

 

Similar analysis is performed for continent of origin to investigate differences in their time to viral 

failure among the different continents. Based on the fact that there are very few patients recorded 

for Asia and South America, observation from the Kaplan-Meier curves shows that these patients 

quickly experience the event, however, the interpretation should be taken with caution based on 

the fact that there are few patients from these continents. Considerable number of patients is 

recorded for both Africa and Europe. Therefore, we use the information provided by the Kaplan-

Meier “survival” estimate and log-rank test to conclude on the differences. The null hypothesis is 

that there is no significant difference between the times to viral failure for the four continents. The 

curves overlap each other indicating that there may not be any serious difference in the Kaplan-

Meier curves for African and Europe indicating that time to viral failure may be the same for the 

two continents and therefore, there may not be evidence against the null. The median failure time 

for Africa and Europe each is estimated to be 2 months (95% CI, 2 – 3 months). Log-rank test 

shows that there is no evidence against the null hypothesis of no difference in failure time with 

Chi-square value of 2.6077 at 3 degrees of freedom (p-value = 0.4561). 
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Figure 4: Kaplan Meier survivor estimates for categorical variables (i.e. sex, sex preference and continent 

of origin) 

 

4.3 Semi-Parametric Cox – Proportional Hazard Model 

4.3.1 Univariate Analysis 

To start with, univariate analysis is first used in assessing the relationship between failure time and 

some covariates of interest that are defined in Section 2.1. In handling ties in the covariates, 

Efron‟s method is adopted in case there may be many tied failure time. All significant variables at 

univariate level are included in Multivariate survival model. Table 5 below shows the results of the 

univariate analysis with -2loglikelihood, AIC and p-value resulted from the analysis. When all the 

covariates were used as they were in the dataset, all of them are insignificant at 10% level. Some 

of them are log transformed and modeled which yields some significant outcome in association 

with failure time. Variables that are log transformed are the highest viral load before HAART 

(vlHAART), duration of the disease (ldisdur), and duration of viral failure (lfail). The detail results 
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are presented in Table 5 and it is observed that only logarithm transformation of highest viral load 

before starting HAART, and logarithm transformation of duration of HIV+ infection are 

significant at 5% level. 

 

Table 5: Univariate analysis of viral load data for chronic HIV-1 patients who interrupt their highly active 

antiretroviral treatments at ITM, Antwerp, Belgium 

Variable d.f. AIC -2loglikelihood p-value 

Sex 1 466.051 464.051 0.5530 

Age 1 466.320 464.320 0.7730 

log (highest Viral load bef. HAART) 1 454.495 452.495 0.0026 

CD4 HAART 1 373.428 371.428 0.1980 

Sex preference  1 465.988 463.988 0.5170 

Log(disease duration) 1 460.769 456.769 0.0185 

Log( follow-up duration) 1 466.400 464.400 0.9512 

Duration of  interruption 1 465.258 463.258 0.2978 

Continent of origin  1 466.264 464.264 0.7080 

 

4.3.2 Multivariable Model 

In selecting variables for the Cox-proportional model, different methods of model selection are 

employed. Automatic selection methods like forward, backward and stepwise selection methods 

are explored and they all yield the same covariates to be finally included in the model. When 

Collet‟s method is equally used, we come up with those variables that were obtained using 

automatic selection procedure. Interaction terms considered show no significant effects and were 

removed from the model. The final model is presented in Table 6 with significant covariates at 5% 

level. 

 

Table 6: Parameter estimates (standard error), hazard ratio and 95% confidence interval of Cox-

proportional hazards model for chronic HIV-1 patients who interrupt their highly active antiretroviral 

treatments at ITM, Antwerp Belgium (Viral Load data) 

Variable Estimate (s.e.) p-value Haz. 

Ratio 

95% CIs for HR 

log(disease duration) 1.156 (0.206) <.0001 3.175 [2.120, 4.756] 

log(viral lab value) 0.196 (0.049) <.0001 1.217 [1.106, 1.339] 

CD4HAART -1.535 (0.742) 0.0386 0.215 [0.050, 0.922] 

Interruption duration -0.063 (0.014) <.0001 0.939 [0.914, 0.965] 

 



 29 

 

4.3.3 Model Diagnostics 

As in the case for a linear or generalized linear model, it is desirable to determine whether a fitted 

Cox regression model adequately describes the data. In this study, four kinds of diagnostics: for 

violation of the assumption of proportional hazards; for goodness-of-fit; for outlying (or 

influential) observations; and for nonlinearity in the relationship between the log hazard and the 

covariates shall be considered in the following subsections. 

 

(a) Checking Proportional Hazards and Goodness-of-fit 

In assessing the adequacy of the fitted model, the assumption of proportional hazards for each 

covariate in the model is checked. This is done by calculate tests of the proportional-hazards 

assumption for each covariates using cox-zph method implemented in R software. A significant 

result of this test at 5% level indicates violation of this assumption by the covariate. From Table 1 

in the Appendix, it shows that assumption of proportional hazards is met by all the covariates and 

the global test (on 4 degrees of freedom) is statistically nonsignificant indicating that there is 

general validity of the proportional hazards assumption. Scaled Schoenfeld residuals plot against 

log(time) can also be used to check for proportional hazards assumption. Systematic departures 

from a horizontal line are indicative of non-proportional hazards. There is confirmation of non-

violation of the assumption from the plot (Figure 5(a)) with smoothing line approximately zero. 

Goodness-of-fit test also estimate R
2 

to be 0.35 implying that the model is able to describe 35% 

variability in the data which is biologically plausible, hence confirming acceptability of the model. 

 

(b) Identification of Influential and Poorly Fit Subjects 

Furthermore, a thorough evaluation of regression diagnostic statistic to identify, if any, subjects: 

have undue influence on the estimates of the Cox regression parameters, or have an unusual 

configuration of the covariates, or have an undue influence on the fit of the model is carried out 

using score residuals. Leverages, similar to what is obtained in logistic regression, are also adapted 

into proportional hazards regression through the score residuals as defined by Hosmer (Jnr) and 

Lemeshow (1998), to examine if there are subjects with undue influence on the fit. This is done 

through the index plot shown on Figure 5 (b). This plot compares the magnitudes of the largest 

dfbeta values to the regression coefficients and suggests that none of the observations is terribly 

influential in the study. From the plot we observed that some patients have a large spike and these 

patients are suspected to have undue influence on the parameter estimates. They are therefore 

removed one at a time and model refitted without any large change in the model, hence these 

patients are not influential outliers and then retained in the final model. 
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(a)       (b) 

Figure 5: Plots of scaled Schoenfeld residuals against transformed log time for each covariate in the model 

fitted to the viral load data. The solid line is a smoothing-spline fit to the plot, with the broken lines 

representing a ± 2- standard-error band around the fit (a). Dfbetas plotted against patients’ ID to identify 

patients with undue influence (b) 

 

(c) Nonlinearity Assessment 

Nonlinearity, that is, an incorrectly specified functional form in the parametric part of the model, is 

a potential problem in Cox regression as it is in linear and generalized linear models (Fox 2002). 

The Martingale residuals are plotted against covariates to detect nonlinearity. From Figure 3 in the 

Appendix, we observed that log transformation of viral load at starting HAART and highest 

CD4HAART do not deviate much from linearity but there is high deviation from linearity on the 

part of duration of treatments interruption (intdur) and log transformation of disease duration 

variables (ldisd). In this case, it may be appropriate to log transform the interruption duration to 

correct for its nonlinearity. 

 

4.3.4 Model Interpretation 

We found four main effects that are statistically significantly associated with the hazard of having 

viral load higher than 1000 copies/ul. The four main effects are log transformation of the highest 

viral load before starting HAART (log(viral lab val)), CD4HAART at starting HAART 

(CD4HAART), log transformation of disease duration (log(disd)) and duration of interruption 

(intduration). The CD4 at starting HAART decreases the hazards of experiencing viral failure by a 

factor e
-1.535

 = 0.215- that is, by 78 percent when adjusting for other effects in the model for patient 

with a unit increase in CD4 at starting HAART. Similarly, the duration of interruption has a 
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negative effect on hazard of having viral failure by a factor e
-0.063

 = 0.939 – that is, decreases the 

hazard of having viral failure by 6 percent when adjusting for other effects for a patient with a unit 

increase in duration of treatments interruption. Also, the viral load value at the start of interruption 

increases the hazards of having viral failure by a factor e
0.196

 = 1.217, that is, by 22 percent for a 

patient with a unit increase in viral load value at starting HAART adjusting for other covariates 

and finally, duration of disease on log transformation scale increases the hazards of having viral 

failure when adjusting for other effects by a factor e
1.156

 = 3.175 – that is, by more than 100 percent 

for a patient with a unit increase in disease duration. 

 

The Cox-proportional hazards model is given by: 

 

 

4.4 Interval – Censored Data Analysis 

Analysis of interval-censored survival data was carried out by making use of the interval in which 

the patients‟ treatments are interrupted since we do not know when exactly the viral rebound 

occurs. According to Hosmer (jnr) and Lemeshow (1998) and Collet (1994), it is the most 

frequently encountered type of survival data in practice and also categorized as one of many 

sources of incomplete observation of survival times that can involve left and right censoring as 

well as truncation. In order to be able to analyze this type of survival data, the interval given in the 

data are being made use with the event of interest. That is, the exact failure time is unknown but 

the interval for each patient is being used. In fitting interval-censored survival, parametric 

approach, using R-software with survreg(Surv(time=begin, time2=end, event, type = “interval”)), 

is used with the failure times as intervals. The results of univariate analysis presented in Table 3 in 

the appendix were used to select variables for multivariate analysis using Collet‟s method (Collet 

1994). Parametric proportional hazard models are fitted into the data, using likelihood ratio test to 

choose the best one among several models fitted. Table 4 (Appendix) shows the models fitted with 

their respective -2loglikelihood and corresponding p-values. When Weibull model is fitted into the 

dataset, it reduces the log likelihood drastically, hence this model is preferred to the Exponential 

model based on likelihood ratio test. Other models compared with Weibull model shows no 

improvement over the log likelihood and final model is based on Weibull model. The parameter 

estimates (standard error) are given in Table 7.  
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Table 7: Estimated coefficients (standard error), Hazard ratio, 95% confidence intervals and p-value for 

Interval-censored survival analysis of chronic HIV-1 patient with treatment interruption from ITM, Antwerp 

Belgium (Viral load data) using Weibull parametric regression model 

Variable Estimate (s.e.) Hazard Ratio 95% CIs for Hazard Ratio P - value 

log(vlab value)      -0.011(0.0016  )    1.011 [1.0079, 1.0142] < 0.0001 

log(dis.duration)         0.012 (0.0042   )    0.988 [0.978; 0.996] 0.0035 

Interruptionduration  -0.0018 (0.0003  )   1.002 [1.001; 1.003] < 0.0001 

Log(scale)   -3.236 (0.0675)    < 0.0001 

- log    6.396 (0.0173)     < 0.0001 

 

4.4.1 Diagnostics of Interval-Censored Survival Data 

The same methods used in assessing model adequacy for semi-parametric Cox proportional hazard 

regression are also employed for Weibull parametric proportional hazard regression in this study. 

Though for interval-censored data, these diagnostics are not straight forward as we have in Cox 

model due to interval failure time that is assumed. However, some residuals plots like dfbetas and 

deviance are used and visual impressions are used in assessing the adequacy of the model and 

proper remedial measures are taken where necessary. 

 

To start with, we check for model adequacy which is carried out using goodness-of-fit test by 

given R
2
 equals 0.53 indicating that the model is able to explain 53% variability in the data. This 

implies that the model biologically describes the data well. 

 

Further, assessment of patients with undue influence on the model is done with the help of dfbetas, 

the deviations of individual‟s effect on the coefficients are plotted against their index number and 

presented in Figure 6 (a). It is noted that patients with ID numbers 65982, 279972, 357200, are 

having a large spike with respect to highest viral load before starting HAART, disease duration on 

log transformaton scale and duration of interruption. These patients are removed one at a time and 

model refitted without a considerable change in the parameter estimates.  

 

For linearity, we plotted deviance residual which is assumed to approximate martingale residual as 

we have in Cox proportional model, with lowess smooth. We observed that linearity assumption is 

violated by highest viral load before starting HAART on log transformation scale, however, the 

other two variables seem to satisfy the linearity assumption since the lowess smooth is 

approximate zero line. 
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Figure 6: Index plot (a) for dfbetas to identify influential patients and deviance residuals with lowess 

smooth from local regression to assess linearity on the covariates for Viral load data for chronic HIV-1 

patients who interrupt their active antiretroviral treatment at ITM, Antwerp, Belgium 

 

4.4.2 Model Interpretation 

From the model, we found that there are three predictors that are significantly associated with the 

failure time. They are highest viral load before starting HAART on log transformation scale, this 

variable increases the monthly hazard of having viral failure by a factor (exp - (-0.011) = 1.011) – 

that is, by 1 percent adjusting for other covariates. This means that the hazard of having viral load 

failure for a patient that has a unit increase in viral load at starting HAART with equal level of 

other covariates is increase by 1 percent. Similarly, the duration of interruption is found to have 

small positive impact on failure time. That is, this duration have increase in hazard of viral failure 

for a patient with a unit increase in the duration of interruption compare to other patients at the 

same level of other covariates. The duration of viral failures on log transformation scale decreases 

the hazard of viral failure by a factor (exp -(0.012)) = 0.988, that is by 2 percent. This implies that 

the hazard of viral load failure for a patient with a unit increase in duration of experiencing the 

failure is reduced by 2 percent when adjusting for other covariates. 

 

4.5 Analyses of CD4 Data for Patients with Treatments Interruption 

4.5.1 Survival Analysis of CD4 Data 

Analysis of CD4 is carried out in this section to examine those patients who have their treatments 

interrupted not as a result of treatment failures. The analyses are done using Kaplan-Meier 

survivorship estimator, Log-rank test of comparison in categorical variables, Cox proportional 
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hazard regression model for right-censored data and Weibull proportional regression model for 

interval-censored data analysis. 

4.5.2 Kaplan-Meier for Comparison of Sex, Sex Preferences and Continent of   

 Origin 

The Kaplan-Meier survival estimator is used in assessing the failure time of patients with respect 

to CD4 counts. It is observed that the median failure time for CD4 patients who had their highly 

active antiretroviral treatments interrupted is 3 months, with 95% confidence intervals of 3 – 5 

months, which is the same with that of viral load data. The curve is presented in Figure 7 (left 

panel). From the curve, it shows that there are more events at the beginning of interruption than 

witnessed towards the end of interruption.  

 

In order to investigate if there is any difference between the failure time for male and female, 

separate Kaplan-Meier curve are plotted for each sex and this is given in Figure 7 (right panel). 

From the plot (right hand panel, Figure 7), it seems as if there is no clear difference between the 

failure time for male and female patients. The median failure time for female is estimated to be 3 

months with 95% confidence interval of 2 – 7 months. Male has a median failure of 3 months with 

95% confidence interval of 2 – 5 months indicating that median failure time for female and male 

are the same but female has wider interval than male. 

  

Figure 7: Kaplan-Meier survivor estimates for overall and for sex comparison using CD4 data of chronic 

HIV-1 patients who interrupt their highly activey antiretroviral treatments at ITM, Antwerp, Belgium 

The survivorship estimate curve for sex preference (Figure 5, in the appendix) shows that there 

seems not to be difference in the failure times for homosexual and heterosexual patients since these 

curves overlap each other. The median failure time for homosexual patients is found to be 3 
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months (95% CIs 3 – 5 months) while that of heterosexual patients is estimated to be 3 months 

(95% CIs, 3 – 6). Comparing the continent of origin using Kaplan-Meier survivorship estimates 

shows that patients from Europe experience higher survival time than patients from African 

(Figure 5 appendix). The median failure time for Africa and Europe patients are respectively 3 

months (95% CIs, 3 – 6 months) and 3 months (95% CIs, 3 – 5 months). The next section is 

devoted to Log-rank test to ascertain what is noted from Kaplan-Meier survivorship function using 

non-parametric approach.  

 

4.5.3 Log-Rank Non-parametric test of comparison of survivorship estimates 

A non-parametric test for the null hypothesis of equal median survivorship is carried out using log-

rank test. We first conducted a test for equality of failure time between male and female. The test 

shows that there is no significant difference in failure time between male and female patients (p-

value = 0.814). Similarly, it is found that statistically, there is no significant difference in failure 

time of homosexual patients and heterosexual patients (p-value = 0.771). For the continent of 

origin, similar result is obtained indicating that the failure times for patients from different 

continents, most especially between Africa and Europe patients, are not significantly different at 

5% level (p-value = 0.593).   

 

4.5.4 Cox-Proportional Hazards Regression Model for CD4 Data 

Since log-rank test is a non-parametric procedure of testing significant difference between two or 

more prognostic factors in survival data, this test has a set-back that it cannot accommodate other 

covariates of interest. Therefore, it serves as marginal (or univariate) approach to testing 

significant difference between two or more prognostic factor. Cox-proportional regression is a 

semi-parametric way of assessing the contribution of each prognostic factor to failure time in the 

presence of other covariates. 

 

After using different methods of model selection, we finally come up with the following covariates 

as risk factors explaining time CD4 failure; percent change in CD4; duration of drug holiday and 

duration of disease on log transformation scale. The final model is given in Table 8. Therefore, the 

Cox-proportional hazards model is given by; 

 

 

Where h0(t) is the baseline hazards 



 36 

 

Table 8: Estimated coefficients (standard error), Hazard ratio, 95% confidence intervals for Hazard ratio 

and p-value for Interval-censored survival analysis of chronic HIV-1 patient with treatment interruption 

from ITM, Antwerp Belgium (CD4 load data) using Cox proportional Hazards model 

Variables Estimate (s.e.) Hazard 

Ratio 

P - value 95% CIs 

for Hazard ratio 

Percent Change       -0.042 (0.00712) 0.959 < .0001 [0.946 , 0.972] 

Interrupt duration  -0.122 (0.02178) 0.885 < .0001 [0.848, 0.924] 

log(disea. duration)         1.588 (0.257  ) 4.892 < .0001 [2.956, 8.096] 

 

4.5.5 Assessment of Cox Proportional Hazards Model Adequacy 

Checking for Proportional hazards Assumption: In assessing the validity of proportional hazards 

assumption, cox-zph is used and the test shows that the assumption is valid for all the variables, p-

value for each variable is not significant at 5% level and GLOBAL test also validates general 

acceptability of the proportional hazard assumption (p-value = 0.411). These variables are plotted 

with scaled Schoenfeld residuals against transformed failure time and overplayed with lowess 

smooth to graphically investigate the proportional hazard assumption. From Figure 8 (a), we 

observed that there is no departure from horizontal line in the lowess smooth validating the 

proportional hazard assumption. In addition, time-dependent covariates model which consists of 

interaction between log failure time and those variables in the model, but the interactions are not 

significant at 5% level indicating the validity of proportional hazard assumption (Table 4 in the 

appendix).  

 

Checking for Influential Observations: Index plot of dfbetas against the patients‟ index numer for 

CD4 data is used to identify individuals that may highly influence the study. From the plot in 

Figure 8 (b), we observe that there are some patients with large spike (e.g. patients with ID = 

10783, 411049 and 244581 with respect to percentage change in CD4 counts) in the plot indicating 

that these individuals may have undue influence in the analysis. The remedial measure taken by 

removing these patients one at a time and regression model refitted shows no considerable change 

in the parameter estimates. These patients are considered not to be influential and included in the 

final model.  
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  (a)      (b) 

Figure 8: Plots of scaled Schoenfeld residuals against transformed time (a) and dfbetas plot to identify 

influential patients (b) for each covariate in Weibull model fit to chronic HIV-1 patients who interrupt their 

active antiretroviral treatment at ITM, Antwerp Belgium 

Checking for Linearity Assumption: In order to assess the linearity assumption on the part of the 

covariates, we plot Martingale residuals against each of the covariate and overplayed with lowess 

smooth produced from local linear regression and we found that there are signs of nonlinearity in 

the three continuous covariates (Figure 9(b)) indicating that the assumption of linearity is slightly 

unsatisfied. Therefore, transformation of these variables may be recommended to linearise them or 

stratify them to change them to categories (Fox 2002). 

 

(a)        (b) 

Figure 9: Martingale residuals (a) and component-plus-residual plots (b) for the covariates Pctchange, 

intduration, and disease duration on log transform scale. The broken lines on the residual plots (b) are at 

the vertical value 0, and on the component-plus-residuals plot are fit by linear least-squares; the solid lines 

are fit by local regression (lowess) 
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4.5.6 Model Interpretation 

The hazards of having CD4 below 20% for a patient with a unit increase in percentage change in 

CD4 count is less by 4% when adjusting for other covariates in the model. In addition, for a patient 

with a unit increase in drug holiday, the hazard of CD4 failure is reduced by 12% whereas for a 

patient with a unit increase in duration of disease on log transformation scale, the hazard of CD4 

failure is increased in multiple folds, that is more than 100% times. 

 

4.6 Interval-Censored Survival Analysis of CD4 Data 

The interval-censored survival data fitted into the data using survreg procedure in R with two time 

points, stophaart and failtime which are times when patients resume drug holiday and when he/she 

tested to CD4 below 20% respectively. The result of univariate analysis is presented in Table 4 in 

the Appendix. After univariate analysis, all variables that are significant at 20% level are included 

in multivariate analysis and Collet‟s method of model selection is followed to select the variables 

for potential final model. The variables that are significant at the final selection are presented in 

Table 9. 

 

Table 9: Parameter Estimates, hazards ratio, 95% confidence interval and p-value  for interval-censored 

survival data for CD4 data of chronic HIV-1 patients who interrupt their active antiretroviral treatment at 

ITM, Antwerp, Belgium 

Variable Estimate (s.e.) Haz 

Ratio 

95%CIs for Haz 

Ratio 

p-value 

CD4 LABVAL            0.033 (0.0145) 0.968 [0.94, 0.995] 0.0219 

PCT CHANGE        0.0013 (0.000167) 0.999 [0.998, 1.000] < 0.0001 

Inter. duration      -0.0014  (0.000204) 1.001 [1.000, 1.0014] < 0.0001 

Trt. duration             0.00024 (0.0000917) 1.000 [.999,  1.0005] 0.0094 

South America   0.0856 (0.0492 ) 0.918 [0.834, 1.011] 0.0818 

Africa   0.0812 (0.0353) 0.922 [0.860, 0.988] 0.0214 

Europe   0.0648 (0.0352) 0.937 [0.875, 1.004] 0.0653 

Log(scale)    log(λ) -3.369 (0.0691)   < 0.0001 

-log(γ) 6.267  (0.0357)   < 0.0001 

 

4.6.1 Model Diagnostics 

Assessment of model adequacy in interval-censored data in survival analysis is not straight 

forward as we have in right-censored survival analysis. In the first instance, model adequacy in 

terms of goodness-of-fit is examined using R
2
 that is analogous to linear regression analysis 
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measure of goodness-of-fit that was proposed by Cox and Snell (1989) to assess goodness-of-fit 

for the Cox proportional hazard model. This is given to be  

 

Where the log likelihood for the Weibull proportional hazard model is,  is the log 

likelihood for model without any covariate and N is the number of time interval in the event 

sequence. Therefore, for this model, the final R
2
 is 0.437, thus the Weibull model seems to 

describe the data well (Li et al. 2006). 

In assessing if there are any outlying patients, we use dfbetas residuals as proposed by Hosmer 

(Jnr) and Lemeshow (1998), from Figure 10 (a), we found that some patients are having large 

deviance with respect to all the continuous covariates. This brings suspicion on these patients, they 

are deleted one at a time and Weibull parametric regression refitted without any significant 

noticeable change in the model, and hence these patients are considered not to be outliers and 

included in the model. Also we check for linearity of the continuous covariates using deviance 

residuals with lowess smooth being overlaid. From Figure 10 (b), it was observed that nonlinearity 

is not apparent since the lowess smooth has not deviated much from zero in all covariates. 

 

(a)       (b) 

Figure 10: Index plot of dfbetas (a) for each patient to identify influential subjects in the analysis and 

deviance residual plot(b) to assess the linearity of the covariates in Weibull proportional hazards model for 

chronic HIV-1 patients who interrupt their highly active antiretroviral treatments at ITM, Antwerp, Belgium 
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4.6.2 Model Interpretation 

The final model is therefore given as we have in Table 9. From the model, we observed that the hazard of 

CD4 failure for a patient with a unit less in highest CD4 before starting HAART is reduce by 3% when 

adjusting for other covariates. Also the hazard of CD4 failure is almost the same with that of patient with a 

unit increase in percentage change in CD4 counts when adjusting for other covariates in the model. 

However, for a patient with a unit increase in duration of interruption, the hazard of CD4 failure is slightly 

increase by approximately 1%. In the case of treatment period, there is no difference in hazard of CD4 

failure for all the patients at that duration level when adjusting for other covariates. Considering patients 

from continent of origin perspective, we found that the hazard of CD4 failure is reduced by 8% for a patient 

from South America to that of patient from Asia, irrespective of the level of other covariates. Similarly, 

there is also a reduction of 8% and 6% respectively for patients from Africa and Europe compare with 

patient from Asia who is at the same level of other covariates.  

4.7 Assessing the Impact of Missingness in Viral load data Analysis 

In the viral load data, we observed some missingness in one of the covariates that are significantly 

associated with failure time. In order to assess the impact of missingness on the parameter 

estimates, multiple imputation technique with 5 imputations is used in imputing for the missing 

values in the variable CD4HAART and Cox-regression model refitted and the result compared. 

Table 10 consists of Cox-proportional regression parameters with missing values and with 

imputation. The parameter estimates are found to be different indicating that the missingness has 

impact on the estimates. The impact shows that analysis with missingness over-estimates the 

hazard ratio meaning that the parameter estimates are equally over-estimated. Since none of the 

variables selected for interval-censored analysis are with missingness, the assessment is not 

necessary in that regard. 

 

Table 10: Comparison of Cox proportional regression model with missingness (N = 120) and without 

missingness (N = 148) for viral load data analysis of chronic HIV-1 patients who interrupt their treatments 

at ITM, Antwerp, Belgium 

Variable Est. (s.e.) 

(with missing) 

Hazard 

Ratio 

p-value Multiple 

 imputation 

Hazard 

Ratio 

p-value 

log(dis. duration) 1.155(0.206) 3.175 <.0001 0.903 (0.185) 2.467 <.0001 

log(viral labval) 0.196 (0.049) 1.217 <.0001 0.164 (0.043) 1.178 0.0001 

CD4HAART -1.535 (0.742) 0.215 0.0386 -0.595 (0.868) 1.813 0.5042 

Inter. duration -0.063 (0.014) 0.939 <.0001 -0.057 (0.012) 0.945 <.0001 
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4.7 Model Validations using Non-Parametric Bootstraps 

In order to make the model acceptable, it is always of scientific interest to validate it using other 

dataset or part of the available data. In survival analysis, some papers use bootstrap method 

proposed by Efron (Efron and Tibshrani 1993) to validate a proposed model, either in a parametric 

way or non-parametric depending on the model fitted. Since Cox proportional hazard model is 

„distribution free‟, therefore, it is appropriate to use nonparametric bootstrap for its validation but 

parametric method, being preferred to nonparametric in a case whereby the model assumes a 

specific distribution, is adopted for Weibull proportional hazards model in this study. 

 

Nonparametric bootstrap for Cox proportional hazards regression model as shown in Table 11 are 

the estimates obtained from the Cox proportional hazard model and those of 500 and 1000 

nonparametric bootstrap estimates for viral load data. From Table 11, we observed that the 

bootstrap estimates closely approximate those of the real estimates. Figure 11 shows the 

histograms for the bootstrap estimates for each variable in the model. These graphs show that the 

bootstrap samples are approximately normal. However, the estimates from the parametric Weibull 

regression model are not approximate those of the real values and call for more attentions. 

 

Table 11: Bootstrap samples for Cox proportional hazards regression model with bootstrap sample of 500 

and 1000 for viral load data  

Variable Actual 

 Estimate (s.e.) 

500 Bootstrap 

Estimate (s.e.) 

1000 Bootstrap 

Estimate (s.e.) 

ldisd 1.155 (0.206) 1.220 (0.208) 1.205 (0.191) 

llabval 0.196 (0.049) 0.202 (0.043) 0.202 (0.0416) 

CD4HAART -1.535 (0.742) -1.739 (1.025) -1.623 (0.968) 

intduration -0.063 (0.014) -0.065 (0.0148) -0.065 (0.0137) 
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(a)       (b) 

Figure 11: Histograms for the 500(a) and 1000(b) bootstrap samples for validation of Cox 

proportional hazards regression model for viral load data obtained from chronic HIV-1 patients 

who interrupt their highly active antiretroviral treatment at ITM, Antwerp, Belgium 

 

4.8 Model Comparison 

The two major models fitted to the data used in this study worth being compared. It is observed 

that in the analysis of viral load failure, the risk factors that are significantly associated with the 

failure time are viral load at start of HAART on log transformation scale, disease duration on log 

transformation scale, duration of interruption for Weibull regression model and addition of CD4 at 

start HAART for Cox proportional regression model. The main difference noted from these 

models is that for most of these variables there hazards ratio are in opposite direction in the two 

models except for viral load at HAART that has the same effect but smaller in Weibull model than 

in Cox proportional hazards model. Similar difference is noticed from the analysis of CD4 

immunological failure. This difference may result from the fact that Cox proportional hazards 

model is not following any given distribution and estimates its parameters by maximizing partial 

log likelihood whereas Weibull model has a full distribution and estimates its parameters by 

maximizing log likelihood. Another reason for the differences may be due to the fact that the right-

censored analysis using Cox regression uses exact time point which is the relative difference 

between starting date of interruption and fail date whereas the interval-censored analysis uses the 

two endpoints. 
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5.0 Discussion and Conclusion 

The development and introduction of highly active antiretroviral treatments (HAART) have led to 

a dramatic drop in mortality among HIV infected patients, at least in those regions in the world 

where the majority of patients are accessible to HAART. HAART suppresses viral replication and 

allows the immune system to recover, as measured by increase in CD4 cell counts. It is however, 

generally accepted that HAART cannot eradicate the infection and as such needs to be taken life-

long. The high cost of HAART and the frequent, serious, side effects have led investigators to 

explore the possibility of interrupting HAART in a controlled manner (structured treatment 

interruption, STI).  

The main objects of this study were to examine the outcome of patients with chronic HIV-1 

infection whom their treatments were stopped for reasons other than treatment failure through their 

rebound of plasma viral load, decrease in CD4 cell count and clinical events. Also it was meant to 

explore and come up with factors that are predictive of „good control‟ of the infection.  

The data obtained contain 1296 patients in total with 148 (11%) patients having their viral loads 

recorded and 133 being record on CD4 percentage. We observed that the mean age of the patients 

in interruption group and those of non-interruption group are respectively 36 years and 37 years. 

Statistical test shows that there is no significant difference in the age of the two groups (p-value = 

0.1506). In addition there are 876 male patients accounting for 68% of the patients in the study and 

in general, majority of the patients are from Europe (62%). In terms of sexual preference, there are 

715 patients in heterosexual group which is 55% out of 1296 patients showing that majority are 

heterosexual in nature. 

Kaplan-Meier survivorship estimate is used to explore the differences in sex, sexual preference and 

continent of origin with respect to viral and CD4 failures. From the estimates, we found that 

median time to viral failure is generally 3 months but for all sex, sexual preference groups and 

continent of origin, their median failure time is 2 months. Log-rank test performed to examine if 

there are differences in the risk groups for all the three categorical variables show that there is no 

significant difference in each of the risk group separately. 

Analysis of right-censored data is carried out with Cox regression model where univariate analysis 

shows that only VLHAART, CD4HAART and duration of the disease are the risk factors predicting 

the viral load rebound in the patients. These variables were used in the multivariate analysis with 

inclusion of other non-significant variables and we finally have four variables that are risk factors 

that jointly serve as predictive of „good control‟ of slow rebound of plasma viral load. These 
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variables are disease duration on log transformation scale, which increases hazard of having viral 

failure by more than 100% for a patient with a unit less in the duration of the disease. Also we 

have the viral load at the beginning of interruption having 22% percent increases in hazard of 

having viral failure. Also is the CD4HAART and duration of treatment interruption with reduction 

of 79% and 9% respectively in hazard of having viral load failure. Interval-censored analysis is 

fitted using Weibull distribution proportional hazard model since the actual failure time is 

unknown and we found that all the variables discovered when using Cox regression are equally 

found associated with viral failure except CD4HAART. The influence of these variables on failure 

time is not difference from what we obtained using right-censored data but in small magnitudes. 

From the Kaplan-Meier „survivorship‟ estimates conducted for CD4 data, there shows that the 

median time for all the risk groups (sex, sex preference and continent of origin) are 3 months for 

each of them. Log-rank test shows that there is no significant difference in each of the risk groups 

with highly non-significant p-values. These indicate that the risk groups are not predictive of „good 

control‟ with respect to CD4 failure. Cox proportional hazards model reveals that the following 

variables are predictive of „good control‟ on CD4 failure; percentage change in CD4, duration of 

treatment interruption, duration of treatment, and continent of origin. When these variables are 

introduced into multivariable model and other non significant variables are tested along with them, 

we  finally found three variables that are significantly associated with the CD4 failure which are 

percentage change in CD4 with a decrease contribution to hazard of CD4 failure (4%), in addition 

we found duration of treatment interruption also reduces month hazard of having CD4 failure by 

12% and duration of disease on a log transformation scale which increase monthly hazard of CD4 

failure by more than 100%. 

Weibull proportional hazards regression model, being a parametric proportional model for 

interval-censored survival analysis at initial univariate stage shows that only three variables are 

risk factors for CD4 failure which are percentage change in CD4 cell counts, CD4 lab values, and 

duration of treatment. These variables are multivariably modeled and all of them in addition to 

interruption duration and continent of origin are found to be significantly associated with CD4 

failure. All these variables are found to have a small magnitude decrease in monthly hazards of 

CD4 failure with average of 8% except interruption duration and treatment duration which have no 

contribution to monthly hazard of having CD4 failure. 

Since CD4HAART is a variable associated with viral failure with significant amount of 

missingness, implication of these missing observations is investigated with multiple imputation 

technique and we found that there is over-estimation in parameter estimates with missingness 
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compare to complete data as well as hazards ratios being over-estimated. Model validation carried 

out using 500 and 1000 nonparametric bootstrap samples show close approximation in the 

parameter estimation with those obtained at the initial analysis using Cox regression model. 

In conclusion, we found in this analysis that patients with treatment interruption experience viral 

failure as well as CD4 failure at an early stage since interruption. This implies that they experience 

high rise in viral load rebound and considerable decrease in CD4 counts at an early stage of the 

interruption which may be detrimental to their living. This means that if they continue on this drug 

holiday, there may be loss of life on the part of those that stopped their treatments. It is therefore 

essential for these patients to continue using their treatments as recommended by medical experts 

in order to continue living a normal life. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 46 

 

6.0 Reference 

[1] Ahmed, F.E., Vos, P.W., and Holbert D. (2007) Modeling survival in colon cancer: a 

 methodological review. Molecular Cancer, 6, 15 [http://  www.molecular-

 cancer.com/content/6/1/15. Assessed on the 16
th

 August, 2007]. 

[2] Ahrens, W, and Pigeot, (2005) Handbook of Epidemiology. Springer. 

[3] Bellamy, S.L., Li, Y., Ryan, L.M., Lipsitz, S., Canner, M.J., and Wright, R. (2004). 

 Analysis of clustered and interval censored data from a community-based study in 

 asthma. Statistics in Medicine, 23, 3607 – 3621. 

[4] Bongiovanni, M., Camilla, M., Tincati, C., and Monforte, A.A. (2006). Treatment 

 interruptions in HIV-infected subjects. Journal of Antimicrobial Chemotherapy, 58, 

 502 – 505. 

[5] Cecere, S., Jara, A. and Lessafre, E.  Analyzing the emergence times of permanent 

 teeth:  an example of modeling the covariance matrix with interval-censored data. 

 Technical Report 0608. 

[6] Christensen, K.B., Andersen, P.K., Smith-Hansen, L., Nielsen, M.L., and Kristensen, 

 T.S. (2007) Analyzing sickness absence using statistical models for survival data. 

 Scandinavia Journal of Work, Environment and Health, 33 (3), 233 – 239. 

[7] Clark, T.G., Bradburn, M.J., Love, S.B. and Altman, D.G. (2003) Survival analysis part I: 

 Basic concepts and first analyses. British Journal of Cancer, 89, 232 – 238.  

[8] Collet, D. (1994) Modeling Survival Data in Medical Research. 1
st
 edition, Chapman 

 & Hall, London, UK. 

[9] Cox, D.R., and Snell, E.J. (1989) The Analysis of Binary Data. 2
nd

 edition, Chapman and 

 Hall, Londin, UK. 

[10] Efron, B. and Tibshirani, R.J. (1993) An Introduction to the Bootstrap. CRC Press. 

[11] Fang, H-B., Sun, J., and Lee, M-L.T. (2002) Nonparametric survival comparisons for 

 interval-censored continuous data. Statistica Sinica, 12, 1013 – 1083.  

[12] Florence, E., Lundgren, J., Dreezen, C., Fisher, M., Kirk, O., Blaxhult, A., Panos, 

 G.,Kahana, C., Vella, S., and Phillips, A. (2003) Factors associated with a reduced CD4 

 lymphocytes count response to HAART despite full viral suppression in the EuroSIDA 

 study. HIV Medicine, 4, 255 – 262. 

[13] Fox, J. (2003) Cox proportional hazards regression for survival data: appendix to an R 

 and S-Plus companion to Applied Regression. 

 [http://socserv.mcmaster.ca/jfox/Books/Companion/appendix-cox-regression.pdf]. 

[14] Goetghebeur, E., and Ryan, L. (2000) Semiparametric regression analysis of interval-

 censored data. Biometrics, 56, 1139 – 1144.  



 47 

 

[15] Goggins, W.B., and Finkelstein, D.M. (2000) A proportional hazards model for 

 multivariate interval-censored failure time data. Biometrics, 56, 940 – 943. 

[16] Hedeker, D., Siddiqui, O., and Hi, F.B. (2000) Random-effects regression analysis of 

 clustered group-time survival data. Statistical Methods in Medical Research, 9 (2), 161 – 

 179.  

[17] Hoffmann, C., Rockstroh, J.K. and Kamps, B.S. (2006) HIV Medicine.  

 (http://www.hivmedicine.com/textbook/nw.htm, assessed on the 15th July, 2007). 

[18] Hosmer (Jnr), D.W. and Lemeshow, S. (1998) Applied Survival Analysis: Regression 

 Modeling of Time to Event Data. Wiley Series in Probability, New York, NY. 

[19] Jones, G., and Rocke, D.M. (2002) Multivariate survival analysis with doubly-censored 

 data application to the assessment of Accutane treatment for fibrodysplasia ossificans 

 progressva. Statistical in Medicine, 21, 2547 – 2562.  

[20] Klein, J.P., and Moeschberger, M.L. (2003) Survival Analysis: Techniques for Censored 

 and Truncated Data. Springer-Verlag, New York, NY. 

[21] Kutner, M.H., Nachtsheim, J.C., Neter, J., and Li, W. (2005) Applied Linear 

 Statistical Models. 5
th

 edition. McGraw-Hill, Singapore. 

[22] Li, Z., Zhou, S., Choubey, S., and Sievenpiper, C. (2007) Failure event using Cox 

 eruptional hazard model driven by frequent failure signature. IIE Transactions, 39, 303 – 

 315.    

[23] Mwamburi, D.M., Ghosh, M., Fauntleroy, J., Gorbach, S.L., and Wanke, C.A. (2005) 

 Predicting CD4 count using total lymphocyte count: a sustainable tool for clinical  decisions 

 during HAART use. America Journal of Tropical Medicine, 73 (1), 58 – 62. 

[24] Sadler, A., and Lang, L. (2006) Using survival analysis to predict sample retention rates. 

 U.S. Department of Labour, Bureau of Labour Statistics 

 [http://www.bls.gov/ore/abstract/st/st060060.htm, assessed on 19
th

 August, 2007]. 

[25] Sakamoto, J., Teramukai, S., Nakazato, H., Ohashi, Y. (1997) A re-analysis of a 

 randomized clinical trial for gastric cancer using interval censoring. Japan Journal of 

 Clinical Oncology, 27 (6), 445 – 446. 

[26] Shechter, S.M., Schaefer, A.J., Braithwaite, R.S., and Robert, M.S. (2004) Modeling 

 the progression and treatment of HIV. Proceedings of the 2004 Winter Simulation 

 Conference, 2039 – 2045. 

[27] Stein, D.S., and Drusano, G.L. (1997) Modeling of the change in CD4 lymphocyte counts 

in patients before and after administration of the human immunodeficiency virus protease 

inhibitor indibavir. Antimicrobial Agent and Chemotherapy, 41 (2), 449 – 453. 

[28] Tableman, M. and Kim, J-S. (2004) Survival Analysis with S: Analysis of Time-to- Event 

 Data. Chapman & Hall, Boca Raton, Florida. 

http://www.hivmedicine.com/textbook/nw.htm


 48 

 

[29] Taffe, P., Rickenbach, M., Hirschel, B., Opravil, M., Hansjakob, F., Janin, P., Bugnon, 

 F., Ledergerber, B., Wagels, T., Sudre, P., and the Swiss HIV Cohort Study. (2002) 

 Impact of occasional short interruptions of HAART on the progression of  HIV infection: 

 results from a cohort study. AIDS, 16 (5), 747 – 755. 

[30] Taktak, A.F.G., Setzkorn, C. and Damato, B.E. (2006) Double-blind comparison of 

 survival analysis models using bespoke web system. Proceedings of the 28
th

 EMBS 

 Annual International Conference, New York City, USA, FrB03.3, 2466 – 2469. 

[31] Vaida, F. (2007) Survival Data Analysis. Hasselt University, Diepenbeek, Belgium. 

[32] Zhou, M. (1989). Use Software to do Survival Analysis and Simulation, A Tutorial. 

 http://www.math.unm.edu/~bedrick/PIBBS/Rsurv.pdf assessed on 20th August, 2007. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.math.unm.edu/~bedrick/PIBBS/Rsurv.pdf


 49 

 

7.0 Appendix 

 

Figure1: Bar-Chart showing the percentage of patients according to continent of origin 

 

Figure2: Bar-Chart showing the percentage of patients according to sex preference 

 

 

Table1: Test for Proportional hazard assumption using Cox zph model 

                rho chisq p-value 

llabval     -0.2323 2.825 0.0928 

CD4HAART      0.0968 1.085 0.2975 

ldisd        -0.1607 2.821 0.0931 

intduration   0.0428 0.221 0.6379 

GLOBAL            NA 5.648 0.2270 
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Figure 3: Box plot showing the distribution of age between the male and female patients who interrupt their 

treatments and Bar-Chart showing the distribution of patients with and without treatment interruption 

according to Continent of origin at ITM, Antwerp, Belgium 

    

Figure 4: Plot of Martingale residuals against continuous variables to check linearity in viral load data 

using Cox proportional hazards model 

Table 2: Selection of best distribution for the Analysis of Viral load data using interval-censored survival 

for chronic HIV-1 patients who interrupt their treatments at ITM, Antwerp, Belgium 

Model -2Loglikelihood 

Exponential 2226.4 

Weilbull 1442.4 

Lognormal 1457.8 

Gaussian 1455.8 

loglogistic 1462.6 

Logistic 1461.4 
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Table 3: Univariate analysis of Viral load data using interval-censored survival 

 Weibull Model 

Variable loglikelik p-value 

Sex   

Sex pref -775.2 0.017 

CD4HAART -605 0.904 

Age -777.9 0.00015 

Log fail duration -727.4 0.0252 

Log disease duration -777.2 0.202 

log labvalue -736.2 < 0.0001 

Duration of interruptio -777.3 0.0004 

Log follow up duratn -775.4 0.0151 

Treatment duration -777.4 0.342 

Continent of origin -777.3 0.261 

 

 

Survival analysis of CD4 Data Analysis 

Table 4: Univariate Analysis of CD4 data of chronic HIV-1 patients who interrupt their active 

antiretroviral treatment at ITM, Antwerp, Belgium 

 Cox-Proportional Model Weibull Model 

Variable AIC -2loglikelihood p-value loglikelik p-value 

Sex 572.508 570.508 0.817 -768.6 0.837 

Sex pref 572.485 570.485 0.7836 -768.5 0.655 

CD4HAART 407.381 405.381 0.6038 -583.3 0.665 

Age 571.878 569.878 0.4187 -768.6 0.799 

Log fail duration 550.981 548.981 0.5991 -721.5 0.331 

Log disease duration 571.595 569.595 0.3271 -768.6 0.724 

CD4 interruption 563.713 561.713 0.0018 -768.3 0.43 

CD4 nadir 572.251 570.251 0.5749 -768 0.272 

percentage Change 559.954 557.954 0.0007 -697.3 < .0001 

CD4labvalue 572.548 570.548 0.9107 -744.2 < .0001 

Duration of interruptio 568.120 566.120 0.0502 -764.8 0.0021 

Log follow up duratn 572.358 570.358 0.6506 -768.4 0.546 

Treatment duration 568.661 566.661 0.0415 -764.6 0.0047 

Continent of origin 571.878 566.661 0.0415 -768.5 0.699 
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Figure 5: Kaplan-Meier survival estimator of failure time of chronic HIV-1 patients with treatment 

interruptions at ITM, Antwerp, Belgium 

 

Figure 6:  Kaplan-Meier survivorship estimates for sex preference and continent of origin for chronic HIV-

1 patients who interrupt their actively antiretroviral treatment at ITM, Antwerp, Belgium 
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Figure 7:  Plot of log(-log(SDF)) versus log of failure time for continent of origin (left panel) and sex 

preference (right panel) in CD4 data 
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Figure 8: Graphical (Scaled Schoenfeld residuals for each variable against transformed time)  test for 

proportional hazard assumption for CD4 data of chronic HIV-1 patients who interrupt their highly active 

antiretroviral treatment at ITM, Antwerp, Belgium and estimated survival function for CD4 data 

 

Table 4: Statistica test for proportional hazard assumption for CD4 data of chronic HIV-1 patients who 

interrupt their highly active antiretroviral treatment at ITM, Antwerp, Belgium 

Variable Estimate (s.e.) p-value HR 

PCTCHANGE -0.056 (0.012) <.0001 0.945 

intduration -0.1001(0.032) 0.0015 0.904 

Logdis.durat 1.885 (0.440) <.0001 6.584 

Logt*pctch 0.011(0.010) 0.2614 1.011 

Logt*intdurat -0.027 (0.031) 0.3847 0.974 

Logt*ldisdur -0.163 (0.351) 0.6422 0.850 

  

 

 50 bootstrap sample    250 bootstrap sample 

Figure 8: Bootstrap Estimates for Cox regression Validation for Viral load data 
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