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Abstract  
 

Treatment of lung cancer is still a challenge, partly due to late-stage diagnosis of patients. 

Focusing on non-small cell lung cancer (NSCLC), metabolic biomarkers from blood plasma 

(metabolomics) and features from medical images (radiomics) are examined. This study 

combines metabolomics and radiomics datasets from NSCLC patients, unravels the underlying 

correlations and generate discriminative models based on radiomics features. 

Two patient cohorts of (i) 39 patients and (ii) 85 patients were used. All patients were 

diagnosed with early-stage, locally advanced NSCLC and underwent a chirurgical resection of 

the lung tumor. PET/CT images of all patients were collected and segmented. From each 

volume of interest, 483 parameters are extracted. From 39 patients, 238 metabolic 

parameters representing 62 plasma metabolites are determined using proton nuclear 

magnetic resonance (1H-NMR) spectroscopy. A correlation test is used on the total omics-

dataset of 39 patients. Logistic regression is used to generate the discriminative models based 

on radiomics parameters from 85 patients.  

The correlation matrices show that glucose and glycerol are strongly correlated with specific 

radiomics features. These results suggest new insights in PET/CT interpretation and that more 

plasma metabolites might be correlated with features out of PET/CT images. The 

discriminative models are built using two radiomics features and can distinguish between 

malignant/non-malignant PET-positive lung nodules, and between adenocarcinoma/ 

squamous cell carcinoma. 

  



 
 

 
  



 
 

Abstract (in Dutch) 
 

De behandeling van longkanker is en blijft een uitdaging, deels doordat de diagnose laattijdig 

wordt gesteld. Gefocust op niet-kleincellige longkanker worden metabole biomarkers vanuit 

het bloedplasma (metabolomics) en parameters van medische afbeeldingen (radiomics) 

onderzocht. Dit onderzoek combineert metabolomics en radiomics datasets om correlaties te 

ontdekken en genereert discriminerende modellen op basis van radiomics parameters. 

 

Twee patiëntengroepen van (i) 39 patiënten en (ii) 85 patiënten zijn gediagnosticeerd met 

niet-kleincellige longkanker en ondergingen een chirurgische verwijdering van de longtumor. 

PET/CT beelden worden verzameld en gesegmenteerd. Uit elke volume of interest worden 

483 parameters geëxtraheerd. Bij 39 patiënten worden 238 metabole parameters, 

representatief voor 62 plasma metabolieten, bepaald door proton nucleaire magnetische 

resonantie (1H-NMR) spectroscopie. Een correlatietest is gebruikt op de twee omics-datasets 

van 39 patiënten. Logistische regressie is toegepast om de modellen te genereren op basis van 

de radiomics dataset van 85 patiënten. 

 

De correlatiematrices tonen dat glucose en glycerol sterk gecorreleerd zijn met specifieke 

radiomics parameters. Deze resultaten suggereren nieuwe inzichten in interpretatie van 

PET/CT beelden en dat meerdere plasma metabolieten correleren met parameters uit PET/CT 

beelden. De discriminerende modellen worden gebouwd op basis van twee radiomics 

parameters, en kunnen maligne/benigne longletsels en adenocarcinoom/spinocellulair 

carcinoom onderscheiden. 

 

  



 
 

  



 
 

1 Introduction 
 

One of the most common causes of cancer death for men and women worldwide is lung 

cancer, with almost 25% of all cancer deaths (1). This is partly due to the late-stage diagnosis, 

which makes the treatment of lung cancer challenging (2). This Master's thesis will focus on 

the most common type of lung cancer, named non-small cell lung cancer (NSCLC) and, more 

specifically, stage I-IIIA NSCLC.  

This research is part of the ProLUNG study, which is a study at the hospital Ziekenhuis Oost-

Limburg (ZOL) in cooperation with UHasselt and funded by ‘Kom op tegen kanker’. The 

ProLUNG study focuses on patients with NSCLC who undergo surgery to remove the primary 

lung tumor, specifically a lobectomy, as part of their standard-of-care treatment plan.  

This study examines the discriminative potential of combining specific metabolic biomarkers 

from blood plasma (metabolomics) with features out of medical images (radiomics). This way, 

metabolomics and radiomics might be at the base of developing a more personalized 

treatment plan for lung cancer patients. This research aims to combine metabolomics and 

radiomics datasets from NSCLC patients, unravel the underlying correlations between these 

techniques, and use the radiomics features to generate models to discriminate between 

malignant and non-malignant lung lesions, and between the pathology of an adenocarcinoma 

and a squamous cell carcinoma.  

To find the correlations between metabolomics and radiomics, a patient cohort was formed 

with 39 patients, all diagnosed with early-stage and locally advanced NSCLC. All these patients 

underwent a lobectomy. PET/CT images were collected from these patients using 18F-FDG and 

the Biograph Horizon camera from Siemens Healthineers. The PET/CT images of all patients 

were collected and saved in the Picture Archiving and Communications Systems (PACS). 

These PET/CT images were then all segmented using a semi-automatic tool (ACCURATE), 

creating specific volumes of interest (VOIs) of the lung lesions for each patient. By loading the 

VOIs into the second tool (RADIOMICS), 483 radiomics parameters were extracted from each 

VOI. The research team of Prof. dr. Boellaard (Amsterdam, VUmc) developed both tools. The 

segmentation was done in three different ways. Simultaneously, 238 metabolic parameters 

representing 62 plasma metabolites were determined from the same patients using proton 

nuclear magnetic resonance (1H-NMR) spectroscopy. A correlation coefficient test was used 

on the total omics dataset to find correlations between these two sets of parameters.  

 

For the second goal, generating the models to discriminate between a malignant lung lesion 

and a non-malignant lung lesion, and between the pathology of an adenocarcinoma and a 

squamous cell carcinoma based on radiomics features, a second patient cohort was used. This 

cohort consisted of 85 NSCLC patients who also underwent lobectomy and had a PET/CT scan 

using 18F-FDG with the same camera. To generate the model based on adenocarcinoma and 

squamous cell carcinoma, the patients with a different diagnosis were excluded from this 

dataset. The resulting dataset contained 66 patients.
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The same method for segmentation of the lung lesions as in the first patient cohort was used: 

483 parameters per VOI per patient were extracted from the PET/CT images. A Spearman 

correlation test was used on the radiomics data from the 85 NSCLC patients to determine 

which parameters can be excluded from the dataset. The threshold for this exclusion is 0.9. 

This parameter reduction is necessary before building the model.  

After the exclusion, 56 radiomics features remained in the dataset. The dataset is split into a 

75% training dataset and a 25% test dataset. This is done for all 85 patients and for the 66 

patients diagnosed with adenocarcinoma and squamous cell carcinoma. First, forward 

selection regression is used on the training dataset with a threshold of 0.2 to build the model 

one variable at a time. After this, backwards stepwise selection regression is used on this 

model with a threshold of 0.05 to refine it. With these logistic regression methods, the new 

model differentiates between malignant and non-malignant lung lesions, and between the 

pathology of an adenocarcinoma and a squamous cell carcinoma.  After building this model 

with the training dataset, the test dataset is used to test the accuracy of the models. 

To understand this research, there must be an understanding of what cancer is, how the 

metabolism in a normal cell differs from that in a tumor cell, and which role this plays in 

diagnosing cancer. This is explained in chapters two to four.  

Chapter five will focus on non-small cell lung cancer, the diagnosis and treatment of NSCLC, 

and the difficulties that arise with NSCLC. 

Chapters six and seven describe the most used imaging techniques for diagnosing NSCLC, PET 

and CT. The physical process, the tracer, detector, scintillator, and important parameters are 

explained in the chapter about PET. Then, the link between a PET image and NSCLC is 

described. The chapter about CT handles the x-ray production, x-ray tube, the data acquisition 

with some important CT parameters and reconstruction of the images. A short explanation is 

given as to why combining these two techniques is useful for diagnosis.   

In chapter eight, radiomics is discussed thoroughly. After a short introduction to this topic, the 

paper gives an overview of the results obtained with radiomics in oncological and non-

oncological applications. After this, the whole process of radiomics is explained. 

Chapter nine and ten both describe statistic methods to reduce parameters and how they 

work. These methods are respectively Factor Analysis and Principal Component Analysis. The 

next chapter handles the Pearson test and the used correlation test, the Spearman correlation 

test. The statistics and use of this method are clarified in this chapter. Chapter twelve will 

focus on the Chi-square test, used to give an indication of the deviation between two sets. To 

close the literature study of this research, chapter thirteen describes the logistic regression 

method to obtain the discriminative model for NSCLC patients.  
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After this, the transition is made to the actual research, starting with the ProLUNG study. 

Chapter fourteen explains the study as a whole and focuses on the study’s research goals, 

followed by the section describing the materials and method. The patient cohort, inclusion 

and exclusion criteria, the specifications of the Biograph Horizon PET/CT camera from Siemens 

Healthineers and the used 18F-FDG PET/CT protocol are explained.  

Next, the radiomics parameters and used tools are discussed, together with the correlation 

test, used methods for data reduction and the building of the discriminative models. The 

datasets, which are divided into the datasets for the correlations and the datasets for the 

discriminative models, are discussed last.  

Chapter sixteen shows the results of the research, beginning with the data from all patients. 

The correlation results are discussed for data from the segmentation of the lung lesions on 

PET/CT images with a poorly lined lesion on the CT. These results are then compared with the 

data from the segmentation of the lung lesions on PET/CT images with a properly lined lesion 

on the CT and the segmentation of the lung lesions based on only the PET images of the 

patients. There will be looked at the similarities and differences between the three correlation 

matrices. 

Then, the results of the discriminative models are shown. The accuracy and precision of the 

discrimination between malignant and non-malignant lesions, and between the pathology of 

an adenocarcinoma and a squamous cell carcinoma are discussed.  

Chapter seventeen discusses the possibility to extend this research, the problems, and 

potential solutions for these problems. At last, chapter eighteen contains the conclusion of 

this research. 
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2 The origin of Cancer 
 

Cancer is a disease mainly characterized by uncontrolled cell division and leads to abnormal 

tissue growth (3). 

The two large categories when looking at tumor types are benign tumors and malignant 

tumors. Between these two, the most apparent difference is that a benign tumor does not 

spread to or invades other parts of the tissue. This means that this type of tumor is not life-

threatening in most cases.  

The other type, a malignant tumor, does invade and destroy surrounding tissue, another 

typical characteristic of cancer. It even spreads to different tissues in the body, a process called 

metastasis, and can become life-threatening (4). 

Cancer cells are derived from normal cells in the body. There are multiple ways that cancer 

can be established, but cells also have multiple systems to prevent cancer from forming.  

The evolution of cancer, carcinogenesis, is influenced by several disruptions such as 

interferences in growth factors or resistance to apoptosis (5). Carcinogenesis is a multi-step 

process that can be summarized by several Hallmarks, as shown by figure 1.  We will take a 

deeper look into one of these hallmarks for this research: the deregulation of cellular 

energetics or the metabolism (6). One of the primary roles of the metabolism that appears in 

a cell is to convert nutrients into energy. 

 

 

Figure 1: The Hallmarks of Cancer. This figure shows the hallmarks obtained by most tumors (7). 
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3 Metabolism in a cell 
 

Cells obtain energy through their metabolism. Food that we eat is converted into cellular 

energy or adenosine triphosphate (ATP). Figure 2 shows one of the most essential and well-

known pathways that leads to ATP production in cells (5).  

 

 

Figure 2: The metabolism in a cell. This figure displays how cellular energy is formed from metabolism (5). 

 
 

3.1 Glycolysis 
 

First, a deeper look into the glycolysis that takes place in the human body is needed. At first, 

carbohydrates are broken down to glucose. This is converted to pyruvate and then oxidizes to 

acetyl-coenzyme A (acetyl CoA). The pathway that comprises the complete conversion of 

glucose to pyruvate is called glycolysis. Glycolysis is mainly an energy provider for other 

metabolic pathways, such as nucleic acid synthesis or protein synthesis (5, 8). The oxidation 

of pyruvate to acetyl CoA is the link between glycolysis and the Krebs cycle. A small amount 

of ATP is formed during glycolysis. Figure 3 shows the production of pyruvate and lactate via 

glycolysis in a tumor cell (8). As shown in this figure, glycolysis can be explained in ten steps. 

The first five steps displayed all use ATP, and the last five all produce ATP (8, 9). 

In the first step, the enzyme hexokinase (HK) uses ATP as a source for phosphates and forms, 

together with glucose, glucose-6-phosphate (G-6P). Secondly, this molecule is converted into 

one of its isomers, fructose-6-phosphate. This happens with the help of an isomerase, an 

enzyme that enables the conversion of a molecule in an isomer of that specific molecule (5, 

9). 

Using another enzyme, phosphofructokinase, and another ATP molecule, fructose-1,6-

biphosphate is produced. In the fourth step, the 1,6-biphosphate molecule is split into two 

three-carbon isomers: dihydroxyacetone-phosphate and glyceraldehyde-3-phosphate. The 

last step of this first part of glycolysis is converting the dihydroxyacetone-phosphate molecule 

into another glyceraldehyde-3-phosphate (GAPDH) molecule (5, 9). 
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In this first part, two ATP molecules are used. The following five steps start with two 

glyceraldehyde-3-phosphate molecules. These two molecules are oxidized and then 

phosphorylated. The product of this step is 1,3-bisphosphoglycerate. High-energy electrons 

are extracted from the sugar (glyceraldehyde-3-phosphate) and picked up by nicotinamide-

adenine-dinucleotide (NAD+) during the oxidation. This reduces the molecule and thus forms 

NADH. 

1,3-bisphosphoglycerate then gives a high-energy phosphate to adenosine diphosphate (ADP) 

molecule, forming one ATP molecule. This reaction takes place with the help of another 

specific enzyme, phosphoglycerate. In the same step, a carbonyl group on the 1,3-

bisphosphoglycerate molecule is oxidized to a carboxyl group. The product of this oxidation is 

3-phosphoglycerate.  

The eighth step shows the formation of 2-phosphoglycerate by moving the phosphate group 

in 3-phosphoglycerate to the second carbon, using a mutase, which is also an isomerase.  

Next, 2-phosphoglycerate dehydrates to produce phosphoenolpyruvate (PEP) as a product of 

this step. Enolase is the enzyme used in this step (5, 8, 9).  

Lastly, a second ATP molecule is produced by phosphorylation of PEP with the enzyme 

pyruvate kinase (PK), and a pyruvate molecule is formed. Pyruvate is a critical metabolite of 

glycolysis when looking at the metabolism of a normal cell versus a cancer cell. In cancer cells, 

pyruvate preferably forms lactic acid or lactate catalyzed by lactate dehydrogenase (LDH) in 

cells (5, 8, 9). 

 

 

Figure 3: Glycolysis in a normal cell (8). The terms shown in orange are enzymes that catalyze the different steps in 
glycolysis. The pathway starting from glucose to lactate is shown in this scheme. The last step is more prominently used in a 

tumor cell.  
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3.2 Krebs cycle 
 

The glycolysis is only the start of the energy metabolism. The following mechanism is the Krebs 

cycle. The formed acetyl CoA is then metabolized to the Krebs cycle, also known as the citric 

acid cycle or the tricarboxylic acid cycle (TCA) (10). The remaining energy from the original 

glucose molecule will be extracted in this cycle. Acetyl CoA enters the TCA cycle and is 

converted into citric acid during the first step by combining oxaloacetic acid. 

Citric acid is oxidized during several steps, and oxaloacetic acid is again generated. During the 

oxidation steps, CO2 and H2O are formed. Other products of the TCA cycle are NADH, the 

hydroquinone form of flavin adenine dinucleotide (FADH2), and  ATP or guanosine 

triphosphate (GTP) (depending on the cell type) (10, 11). Figure 4 shows the schematic 

representation of the citric acid cycle. 

 

 

Figure 4: The tricarboxylic acid cycle. The acetyl group from acetyl CoA is attached to a four-carbon oxaloacetate molecule 
to form a six-carbon citrate molecule. This citrate is then oxidized through multiple steps (14). 

 

While some ATP is produced directly during this cycle, it produces ATP indirectly through 

NADH and FADH2. These two molecules are electron carriers and pass their electrons into the 

electron transport chain. In this chain, electrons are transferred through a series of electron 

acceptors. During each transfer, energy is released (11, 12). 

This energy is used to create an electrochemical gradient across the membrane in the next 

step, chemiosmosis. Due to this gradient, ions can flow across the membrane. In ATP 

formation, hydrogen ions flow across this membrane throughout cellular respiration (13). 

Then, ATP is generated through the stored energy in the gradient (12). This process, the 

electron transport chain and chemiosmosis, is called oxidative phosphorylation.   
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4 Metabolism in a cancer cell 
 

In a tumor cell, the same metabolic pathways generate ATP, but the pathways are 

reprogrammed to meet the requirements for tumor cell proliferation and survival. A tumor 

cell needs larger amounts of ATP, NADPH, and NADH to survive (14). 

One of the main alterations of the pathways occurs during glycolysis. Tumor cells enhance 

glycolysis to generate more ATP, and they produce lactate despite the abundant presence of 

oxygen to oxidize the glucose completely. During this process, the formed pyruvate is 

converted to lactate. A tumor cell uses the same process as displayed in figure 3. In figure 3, 

the last step shows the conversion from pyruvate to lactate. A tumor cell produces more 

lactate than a normal cell. This particular phenomenon is called the Warburg effect or aerobic 

glycolysis (8).  

Figure 5 compares the metabolism of a normal cell (left) and the metabolism of a tumor cell 

(right). It is visible that the glucose in a tumor cell does not fully oxidize and therefore produces 

lactate and pyruvate (14). 

 

 

Figure 5: Comparison between the metabolism of a normal cell and a tumor cell. In a tumor cell, more lactate is formed 
compared to in a normal cell (14). 

 

The ATP yield is less during glycolysis than during the Krebs cycle, but tumor cells still choose 

this process and make up for the inefficiency by going through the glycolysis much faster than 

normal cells. One of the consequences of this is that tumor cells need more glucose import 

(8).  

To meet these requirements for a tumor cell, specific transporters are overexpressed. 

Examples of these transporters are glucose transporters (GLUTs), like GLUT1 and GLUT 3. Both 

GLUT1 and GLUT3 have a high preference for glucose, 2-deoxyglucose, and 2-[18]F 

fluorodeoxyglucose (18F-FDG) (15). Further, in this literature study, it will become clear that 

one reason for using positron emission tomography (PET) to stage cancers is that PET 

measures the FDG uptake in vivo (16). Pyruvate transport in a tumor cell is less than in a 

normal cell because a tumor cell focuses more on aerobic glycolysis instead of the Krebs cycle.  
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In conclusion, a tumor cell uses the same metabolic pathways as a normal cell but focuses 

more on glycolysis. A couple of metabolites, succinate, itaconate, fumarate, 2-

hydroxyglutarate (2-HG), and acetyl-CoA, which occur in the Krebs cycle, are further 

investigated by Ryan et al. (17). This research shows that these play a vital role in the disrupted 

metabolism of a cancer cell.  Vanhove et al. researched the important metabolite glutamate 

(16). Their research proves that this metabolite seems indispensable for lung tumors and is 

also overexpressed to meet their metabolic requirements. Thus, the main consequence of the 

disturbed metabolism in a cancer cell is that the concentration of specific metabolites in the 

pathways and the concentration of certain end products will differ in a cancer cell compared 

to a normal cell. In the next section, this knowledge will be applied on the topic of non-small 

cell lung cancer. 
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5 What is lung cancer? 
 

Lung cancer is still one of the most common causes of cancer death for men and women 

worldwide. In Belgium alone, 14.4% of the newly reported cancer cases for men and 8.3% for 

women were due to lung cancer in 2018 (18). Several risk factors for lung cancer are identified, 

with smoking being the most important (19). 

Primary lung cancer starts in the lungs and can metastasize further in the body to other organs. 

Lung cancer can be divided into two large groups, small cell lung cancer (SCLC) and non-small 

cell lung cancer (NSCLC). The last one is the most common type of lung cancer, which is the 

type of focus in this research (20).  

NSCLC can be subdivided into different types: squamous cell carcinoma, large cell carcinoma, 

and adenocarcinoma being the three most common ones (19).  

NSCLC can exist in different stages (stage 0 to stage IV). The stage is determined by TNM 

staging, where T stands for 'size and extent of the primary tumor,' N stands for 'involvement 

of lymph nodes in the region of the lungs,' and M stands for 'metastatic involvement or spread 

to distant organs’ (21). The M category can be subdivided into M0 and M1. In subcategory M1, 

cancer has metastasized to distant organs or tissues. Subcategory M0 means that cancer has 

not spread out to different organs or tissues (22). This research focuses solely on subcategory 

M0 tumors.  

The diagnosis of lung cancer can be determined in different ways, depending on the situation. 

For example, the patients can undergo a biopsy, where fluid is retracted from a dubious area 

or the area surrounding the lung, using a needle or surgery. Another way is to examine the 

secretions of the lung. A PET/CT examination is of crucial importance in the process of lung 

cancer diagnosis (23-25). 

The standard-of-care treatment for patients with early-stage and locally advanced lung cancer 

(TNM I - TNM IIIA) diagnosis is surgery or lobectomy. During this operation, a whole lobe of 

the lung that contains the tumor is removed, like shown in figure 6  (19, 26, 27).  

Figure 6: The process of surgery called a lobectomy. A part of the lung lobe that contains the tumor and a small part of 

healthy tissue surrounding the tumor is removed. 
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A common problem that arises with the diagnosis and treatment of lung cancer patients is the 

heterogeneity of tumors. A big reason for the different responses of every patient to 

treatments is the molecular heterogeneity between lung cancer patients diagnosed with the 

same histology (28).  

The survival rate over five years for patients diagnosed with NSCLC overall is 14% (29). When 

looking at the different stages of NSCLC, the survival rate can differ drastically. For a patient 

diagnosed with stage I NSCLC and where the tumor is surgically removed, the survival rate 

over five years goes up to 70%. In contrast to this, when a patient is diagnosed with an 

inoperable NSCLC, the survival duration drops to nine months. 

It is essential to get an early diagnosis of NSCLC before the tumor metastasizes. Only in this 

stage, an operation is helpful for the patient and will increase the patients' survival rate (27).   
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6 PET 
 

One of the many Positron Emission Tomography (PET) applications, a functional imaging 

technology, is to obtain a non-invasive method for lung cancer imaging. Before a PET 

examination, compounds labeled with short-living positron-emitting radioisotopes are 

injected intravenously. Depending on the carrier molecule (isotopic labeling), the injected 

isotope will distribute to different tissues. External detectors orientated in various directions 

will detect the radiation emitted from these injected radiopharmaceuticals (30).  

 

 

6.1 Physical process 
 

More specifically, the injected radiopharmaceutical will undergo positron decay, also known 

as beta plus decay. A proton will be converted into a neutron during this process and release 

a positron, also known as a beta particle, and an electron neutrino. Formula 1 describes the 

process of beta plus decay.  

  𝑝1
1  →  𝑛0

1  +  𝑒+1
0  +  𝜈  + energy    (1) 

This physical conversion occurs particularly for proton-rich isotopes, such as 102Pd, to correct 

the imbalance between protons and neutrons (31).  

The created positron will interact with a surrounding electron. This complete annihilation will 

create energy in the form of two photons that speed off in opposite directions (32). The two 

photons both carry an energy of 511 keV and will be measured by a ring of detectors around 

the patient during the PET examination. The origin of the photons can be determined using 

the direction of the annihilation photons; hence, the radioactive decay process that created 

them can be localized. This process is visualized in figure 7 (33).   

 

 

Figure 7: Positron emission tomography process. This figure visualizes the physical process that occurs during a PET-scan. 

The positron annihilation is shown in yellow, with two photons of each 511 keV that speed in opposite directions. 

Furthermore, the atomic structure of fluorodeoxyglucose is described. 
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The annihilation of the positron depends mainly on the range of the positron, which is affected 

by the electron density of the medium. The typical range of positrons emitted from 

radionuclides used in PET is about one to two millimeters. Here, the medium is considered 

water because a significant part of biological tissue consists of water (34). As discussed, 18F is 

a proton-rich isotope, which is one reason it is generally used as a tracer in PET examinations. 

Sequentially, it will be explained how this isotope can be used as a tracer in the next section. 

This will first be described in general and then specific for NSCLC. 

 

 

6.2 Tracer (18F-FDG) 
 
18F-labeled FDG (18F-FDG) is a commonly used radiopharmaceutical in nuclear medicine and is 

thus also used during a PET-scan in the nuclear medicine department of the hospital of Genk. 
18F-FDG will undergo positron decay for 97% (35). The half-life of 18F-FDG is 110 minutes (30). 

It is noteworthy that the half-life is relatively short to limit radioactivity in the patient but is 

long enough to obtain a medically qualified pet scan. 

The atomic structure of 18F-FDG is approximately the same as the atomic structure of glucose, 

and both are represented in figure 8. The difference is that a fluor-18 atom replaces one 

hydroxyl group of glucose. Because the difference in the atomic structure is small, the 

characteristics of the chemical components are very similar (36, 37). 

 

 

Figure 8: Atomic structure glucose and FDG. This figure gives the atomic structure of both glucose and fluorodeoxyglucose.  

 

Normal cells have a lower glucose consumption than malignant cells. Thus, a typical 

characterization of malignant cells is a higher uptake of glucose with the consequence that 

those cells also have a higher uptake of FDG (38). 18F-FDG PET has the significant advantage 

that a change in cellular metabolism is visible more quickly than a change in tumor size (39). 

Small compact medical cyclotrons are created to produce most positron-emitting isotopes, 

such as 18F-FDG, by starting from [18O]water (40). The energy required to create these isotopes 

is relatively moderate, and that way less than 20 MeV for protons (35). In a cyclotron and 

other accelerators, both a magnetic field and an electric field are used. The electric field will 

accelerate the ions, and the magnetic field is applied to make the ions move in a preferable 

direction.  
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The amount of 18F-FDG that is injected is a vital parameter to obtain a medically qualified PET-

scan. Another necessary characteristic of 18F-FDG is that it is nontoxic, or it does not harm the 

patient. Besides, 18F-FDG is chemically incorporated into the specific physiological process, but 

it will not influence or modify this metabolic process (41).  

In the European Association of Nuclear Medicine (EANM), clinical guidelines are published 

based on standards for the doses of specific radiotracers and their specific applications (36). 

The dosage of 18F-FDG depends on the used system and the patient's weight (42). The amount 

of 18F-FDG that is injected into the patient's body, injection administration (IA), is calculated 

by Boellaard et al. by the following formula 2 (42): 

𝐼𝐴 =  7.2 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔) / 𝑠𝑐𝑎𝑛 𝑡𝑖𝑚𝑒 (𝑚𝑖𝑛)  ±  10     (2)  

In this research, the injected 18F-FDG dose in the hospital ZOL of Genk is described by the 

following formula 3. Here, the dose is first expressed in millicurie and multiplied by 37 to 

obtain the dose in megabecquerel. The weight of the patient is, in both formulas, an 

indispensable parameter. 

𝐷𝑜𝑠𝑒 =  (𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔) /10)  −  1 ∙  37                                  (3) 

To optimize the image quality, the patient will undergo a complete fasting for a minimum of 

6 hours before the scan, whereby only drinking plain water should be allowed (43). This 

fastening aims to minimize the competition between glucose out of food and the 18F-FDG 

uptake (43). Furthermore, high-intensity activities should be avoided for a minimum of 24 

hours before the injection (43).  
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6.3 FDG and a cancer cell 
 

The localization of biological mechanisms visible with the help of 18F-FDG and other 

synthesized radiopharmaceuticals is known as metabolic trapping. This principle is based on 

the metabolic activity of the tissues in the human body (44). Together with the uniform 

distribution of 18F-FDG, specific organs have a significantly higher uptake level than others. For 

example, the brain and heart both have a higher uptake after two hours past injection 

compared to the lungs (45). In general, this can be summarized by the phosphorylation of 

glucose, as explained in section 'Glycolysis' (45). 

As explained in the section 'Metabolism in a cancer cell', the same metabolic pathways as in a 

normal cell are used to generate ATP. The difference is that the pathways are reprogrammed 

for a tumor cell (14).  

Furthermore, glycolysis appears to happen much faster in a tumor cell than in a normal cell. 

As explained, this results in a higher need for glucose to optimize the working of a tumor cell 

(8). Because of the similar anatomic structure and the corresponding similar characteristics of 

glucose and 18F-FDG, a higher glucose uptake will also lead to a higher 18F-FDG uptake (36). 

Another reason why 18F-FDG is used for the staging and imaging of cancer is that specific 

transporters have a high preference for 18F-FDG, par example, GLUT1, and GLUT3 (15, 16). 

Kaira et al. concluded that the uptake and accumulation of 18F-FDG within lung cancer cells is 

determined by the metabolism of glucose, hypoxia, and angiogenesis (46).  

This leads to a further specification of FDG and non-small cell lung cancer. 

 
 

6.4 FDG and NSCLC 
 

As explained in the section 'Cancer' and the section 'Lung cancer,' the three main subtypes of 

NSCLC are squamous cell carcinoma, adenocarcinoma, and large cell carcinoma (20). Smoking 

history and squamous cell carcinoma are predominantly associated with each other (47). The 

subtypes differ in their cell of origin, location in the lung, and growth pattern (48). An essential 

difference between those three major subtypes of NSCLC is reflected in the 18F-FDG uptake. 

This uptake of the radiopharmaceutical tracer is related to the SUVmean. De Geus-Oei et al. 

have shown that the 18F-FDG uptake is the highest in squamous cell carcinomas, followed by 

adenocarcinomas with significantly higher uptake in 18F-FDG than large cell carcinoma (49). 

Furthermore, the plasma glutamate concentration seems to have a complementary role. With 

the help of the plasma glutamate concentration, a differentiation can be made between 

inflammation and cancer in the lung (50). 1H-NMR spectroscopy can be used as a tool to 

determine this difference in concentration. Vanhove et al. showed that a relative glutamate 

level, in PET-positive patients, less than or equal to 0.31 indicates lung cancer diagnosis, and 

a level above 0.31 is correlated to inflammation (50). 

In the following sections, the device of a PET scanner, the processing of an image, and data 

acquisition to obtain a medically qualified PET scan will be explained more in detail. 
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6.5 Device and image processing/ data acquisition 

6.5.1  Detector 
 

Around the patients, a ring of detectors made of lutetium oxyorthosilicate crystals will detect 

the photons emitted back-to-back from the positron annihilation.  

The detectors are all electronically coupled with each other. That way, opposite detectors 

simultaneously identify a pair of emitted photons using coincidence detection circuits (30). 

Alignment is obtained due to the electronic coincidence detection, which results in no need 

to use collimators. This is why PET has a better detection efficiency than single-photon 

emission tomography (SPECT) (34). The first step of four for data acquisition of PET is to 

generate a list mode of the two detectors that measure a photon. A pair of detectors 

registering a coincidence will be included in an event list or list mode (51). 

A line can connect two detectors that measure a pair of photons simultaneously, and this line 

is called a line of response (LOR). This is the second step for data acquisition. On this line, the 

annihilation must have occurred. 

The annihilation will be localized along the LOR in conventional PET, but there is no 

information about where the annihilation has occurred. This indicates an even distribution of 

events along the LOR and adds noise to the image (52). That is why modern PET scanners rely 

on the effect of time-of-flight (ToF), where information about the time is directly incorporated 

to reconstruct the image. ToF was for the first time identified around 1980 (53).  

The correlation of two physical events is an essential part of the reconstruction of an image. 

This will be done with the help of a coincidence window. First, a detected photon will be linked 

to a specific detector and detection time (53). This is done for all the detected photons. The 

difference between two detected photons will be compared to a set coincidence window of 

540 picoseconds (54). If this difference in time is more significant than the coincidence 

window, the two detected photons are considered physically uncorrelated. If the difference 

in time is smaller, the two events are correlated (53). 
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Characterization of the LOR is the smallest angle between the LOR and the center of the gantry 

(55). This characterization can be visualized in a graph and is known as the third important 

step in the process of data acquisition, where the x-axis is known as the shortest distance 

between the line of response and the center of the gantry, while the angle is plotted on the y-

axis (51, 55). Figure 9A is a visual representation of four LORs. 

 

Figure 9: Sinogram formation. Each LOR of coincidence events is plotted as a function of its angular orientations and its 
displacement from the gantry center. In part A of the figure, the gantry center is marked by a cross (X). The 4 LORS are 

plotted where the angular orientation is plotted on the y-axis, and the displacement from the center of the gantry is plotted 
on the x-axis. Half of a sine wave is displayed if all possible LORs pass through the point where the 4 LORs are crossing. 

When this is plotted for many LORs from the same point or pixel, half of a sine wave can be 

obtained. This resulting figure is known as a ‘sinogram’, where PET data are directly acquired 

and is visualized in figure 9B (55).  

A sinogram consisting of a significant number of sine waves overlapping is the result of a more 

complex object and is visualized in figure 10. The sum of parallel LORs at a specific angle is a 

projection and is represented by a specific horizontal row in the sinogram. The sinogram of a 

PET will take into account all the projection angles and represent the data acquired per slice 

(55). This indicates that raw PET can be represented as a series of sinograms or as a series of 

projections, this for respectively a sinogram per slice and a separate view per projection angle. 

Step four of the data acquisition indicates that the transverse images are reconstructed with 

the help of the PET system's computer from the sinogram of projection data (30). 

 

Figure 10: Complicated sinogram. This figure visualizes a series of sinograms of more complicated objects. This results in 
many overlapping sine waves. This is an example of a sinogram from a brain scan. 
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6.5.2  Scintillator 
 

PET detectors are mostly inorganic scintillators. Around the scintillation crystal, an optical 

reflector is located to optimize the amount of interaction within the crystal. Rayleigh, 

Compton, and photoelectric effects will cause interaction of the annihilation photons within 

the scintillator. A PET scan will focus on events based on Compton and photoelectric effects 

due to the more considerable energy released in these effects (34). The photoelectric effect 

appears when a photon collides with a bound orbital electron and ejects the electron from 

the atom, and the Compton effect appears when a photon interacts with a loosely bound 

electron (56). A part of the energy from the initial photon is imparted to the electron, and the 

initial photon is scattered (56). If the annihilation energy is deposited in one location, it is 

known as the photoelectric effect. In contrast to Compton interactions, where the energy is 

deposited in several points of the crystal block (34). Because both effects are related to the 

atomic number, a crystal block with a high atomic number is preferred. 

 

The scintillation process is based on the absorbed energy of the annihilation that results in a 

higher state of the crystal lattice. This characteristic state will emit lower-energy photons, also 

known as the scintillation photons, due to the decay that has taken place after a characteristic 

time (34). A photomultiplier tube (PMT) photocathode detects the scintillation photons, 

whose amplitude is a linear relationship with the electronic signal. At the front-end, 

electronics, such as pre-amplifiers, are located to process the signal further. Other properties 

will influence the detector's efficiency, such as the detector's energy resolution (34, 51). 

 

Figure 11: Electronics of a PET detector. A visualization of the electronica in a PET detector. As main parts the scintillation 
crystal, photomultiplier, pre-amplifier, and other electronics. 

During a PET scan, essential parameters can be extracted and analyzed for further research. 
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6.5.3  PET parameters 
 

An essential parameter during a PET is the relative measure of 18F-FDG uptake, referred to as 

the Standard Uptake Value (SUV) (56). This is known as the ratio of the activity concentration 

measured by the PET scan relative to the initial injected activity of 18F-FDG that is decay 

corrected. This initial activity is divided by the mass of the patient expressed in milliliter (42, 

51). Formula 4 describes the ratio that SUV defines. This parameter is dimensionless. 

 

𝑆𝑈𝑉 =  
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝐸𝑇 [𝐵𝑞/𝑚𝑙]

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 [𝐵𝑞] / 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 [𝑚𝑙]
   (4) 

 

The SUVmean is defined as the average of the SUV in a region of interest. Because of image 

noise and a limited resolution, defining the boundaries of the region over which the average 

is computed will be challenging (56). Due to this challenge, simply taking the average of the 

SUV for a region of interest (ROI) is not a reasonable estimate for the SUVmean (56). Accurate 

measurements of the SUVmean are only good when the central region of a relatively large 

lesion is used. In addition, a uniform SUV is needed over the region of interest (56). 

This leads to a need for a more accurate value, the SUVmax. In contrast to the SUVmean, the 

SUVmax is invariant to a slight shift of the region of interest. That way, the SUVmax is more 

stable than the SUVmean. However, a single value of a pixel will bias the SUVmax and lead to 

more noise than the SUVmean (56). 

18F-FDG represents the whole body total metabolic tumor volume (MTV) and thus represents 

the volume of tumor tissue. More specifically, it is a quantitative measurement of tumor cells. 

Higher glycolytic activity is an evident characteristic of tumor cells (57). It is a commonly used 

parameter to give information about the tumor. 

The product of the SUVmean and the MTV is known as the total lesion glycolysis (TLG) (58). 

This is an exciting parameter because it combines the volumetric as the metabolomic 

information of the patient obtained by a PET/CT-scan (57). Several studies have shown the 

importance and usefulness of TLG, especially for the treatment response, not only for lung 

cancers (59-61). After the explanation of PET and the corresponding parameters, the next 

chapter will focus on CT. 
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7 Computed tomography 
7.1 X-ray production 

 

X-rays result from converting the kinetic energy of accelerated charged particles into 

electromagnetic radiation by multiple collisions with a target (62). 

Bremsstrahlung falls under the category of electromagnetic radiation and is released when a 

charged particle (e.g., an electron) loses energy due to collisions with atomic particles (63). 

This phenomenon is shown below in figure 12, where multiple electrons are deflected by a 

nucleus and lose kinetic energy together with the emission of energy (bremsstrahlung photon) 

(63). The output that is generated is a continuous spectrum of different x-ray energies (62).  

 

Figure 12: X-ray production. Numbers 1,2, and 3 show incident electrons that interact nearby the nucleus. This results in 

bremsstrahlung production. Number 4 shows characteristic radiation emission (62). 

 

Another interaction of the accelerated electrons with the atomic shell that can occur, is the 

ejection of an inner shell electron. This is also shown in figure 12. A K-shell electron has the 

highest binding energy and lowest number of electrons on the shell. When an incident 

electron removes a K-shell electron, a vacancy is created. This vacancy is then quickly filled 

with an electron from a lesser bound shell. During this process, characteristic energy is 

released. Figure 13 shows the resulting output spectrum of both bremsstrahlung and 

characteristic radiation. The continuous spectrum of bremsstrahlung is visible, and the 

characteristic radiation is represented by the monoenergetic spikes on the continuous 

bremsstrahlung spectrum (62).  

 

 

 

 

 

Figure 13: Radiation spectrum with bremsstrahlung and characteristic radiation for a tungsten anode (64). 
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7.2 X-ray tube 
 

Computed tomography (CT) is a computerized x-ray imaging procedure (65). An x-ray tube is 

used as the source for x-rays. The x-ray tube is shown in figure 14.  

 

 

 

Figure 14: X-ray tube equipment (66). 

 

The two most important parts of the tube are the filament and the target. The filament 

(cathode) is electrically heated and generates electrons, due to this heat. These electrons are 

accelerated towards the target (anode) through a high voltage tube. The target is a high 

atomic number material (e.g., tungsten), so that much bremsstrahlung is produced when the 

electrons from the heated filament hit the target (67-69).  

The collision of electrons from the cathode with the anode is called the focal spot (70). The 

intensity or electron flow in the x-ray tube is expressed as a current in units of milliamperes 

(mA).  

A vacuum chamber is placed around the filament and target. This makes sure that the 

electrons can travel from the filament to the target without disappearing by reacting with the 

air molecules. 

The window is used to focus the x-ray beam that leaves the tube. A lead casing surrounds this 

whole structure to ensure minimal unwanted exposure from the x-ray beam to the 

environment and for extra filtration (68, 69). 

The following section discusses the acquisition of data, followed by the reconstruction of an 

image. Last, the combination of PET and CT will be shortly discussed. 
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7.3 Data acquisition 
 

When using x-ray beams for CT imaging of a patient, a couple of other elements are necessary 

between the x-ray tube and the patient, like a collimator to shape the beam and a detector 

for dose validation.   

An x-ray tube's image is created due to a difference in attenuation between different tissues 

inside the patient (67).   

The attenuation of the x-ray beam is associated with the density of that specific tissue. When 

the density of tissue is high, the possibility of detecting a photon by the detectors is lower, 

then when the density of tissue is low. This is because the probability of interaction with the 

atoms in the tissue rises linearly with the density of the tissue (71).  

The attenuation in a specific tissue is expressed by its attenuation coefficient μ and is also 

directly related to the density of the tissue. This is, however, not the only factor where μ 

depends on. Two other factors are the thickness of the respective tissue and the energy of the 

x-ray beam (71).  

With computed tomography, the x-ray tube is installed in the gantry, where multiple detectors 

are installed. This is illustrated in figure 15.  

 

 

Figure 15: Schematic figure of a CT scanner (72). 

 

During a CT scan, μ is measured in each detector at a certain angle of the gantry to get a 

projection at this specific angle. Then, the gantry is rotated over a small angle, and the 

measurements are done again to get another projection at this angle. The combination of all 

these projections forms a sinogram, as explained in the section about PET.  
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7.4 Reconstruction 
 

Image reconstruction aims to map the attenuation coefficient distribution of a specific tissue 

through a volume. The first step of reconstruction is to calculate the CT-number, expressed in 

Hounsfield units (HU). It can be calculated with the following formula: 

𝐶𝑇 𝑛𝑢𝑚𝑏𝑒𝑟 [𝐻𝑈] =  
𝜇𝑡𝑖𝑠𝑠𝑢𝑒 − 𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟
× 1000 

As displayed in this formula, the calculated CT-number is the relative attenuation compared 

to the attenuation in water, set to 0 HU (70). 

A crucial reconstruction technique within this field is the filtered back-projection (FBP). This is 

an analytical technique. By back-projecting each available attenuation measurement for each 

point in space, an image is obtained. It is also called the convolution method since it applies a 

convolution filter to remove the blurring present in the image with the conventional back-

projection method (70, 73).  

Since the computational power increased over the last few years, iterative reconstruction 

techniques were implemented to reconstruct images. The basic idea of this technique is that 

various reconstructions are necessary to obtain a more accurate image (64, 70). A general 

flowchart of how these algorithms may look, is shown in figure 16. The first step of this 

technique is to start with an estimate of the image. Then, the projections are calculated and 

compared with the actual projections. Last, the result of the calculations is used to modify the 

current estimate (67). This technique is currently not efficient enough to replace the FBP 

technique.  

 

 

 

 

 

 

 

 

Figure 16: Visualization of the iterative reconstruction algorithm (64). 

 

There can be many artifacts when an image is reconstructed from a CT scan. There are two 

big categories: physics artifacts and patient-based artifacts. Most of them are fixed with 

filtration, calibration correction, and correction software use (67). 
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A combination of positron emission tomography and computed tomography has the 

significant advantage of collecting, in one scanning, both anatomic analyses and metabolomic 

or functional images in vivo (74). CT, PET, and their parameters lead to the central part of this 

research, radiomics. 
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8 Radiomics 
 

In 2012 the concept of radiomics was presented by Lambin et al. (75). The extraction and 

analysis of quantitative medical imaging features with high throughput is known as radiomics. 

A medical image can carry much information. This information can reflect underlying 

pathophysiology with the help of quantitative image analysis (72). Digital clinical images are 

obtained for almost every cancer patient, a significant strength of radiomics because all these 

images are potential radiomics databases (72). These digital images might be the foundation 

of a specific discriminative clinical model, in this case, for NSCLC. 

The main goal of radiomics is to create mineable databases to develop descriptive and 

predictive models for valuable diagnostic, prognostic, or predictive information (76). This 

means that these systems provide support to make the best clinical decisions to optimize the 

individual treatment. Combining radiomics data and other patient characteristics may lead to 

the development of evidence-based clinical decision support tools and models (72).  

Radiomics is a reasonably fast-growing, recent, and multidisciplinary technique that will play 

an increasingly important role in the medical world by combining data, most of all obtained 

out of images, in combination with genetics and bioinformatics (75). In the next section, an 

overview of results in radiomics will be explained for both oncological and non-oncological 

applications. 

 
 

8.1 Overview results radiomics in oncological and non-oncological applications  

8.1.1 Non-oncological applications  
 

Radiomics can have some non-oncological applications. For example, when characterizing 

damage in the lung due to radiation pre-radiotherapy and post-radiotherapy, CT scans can be 

used. More specifically, the variation in texture features and corresponding values between 

those CT scans are used (77). 

Imaging features are also often used in neurological applications. This way, Alzheimer's and 

multiple sclerosis can be diagnosed, staged, or prognosed with the help of imaging features 

(78, 79). Computed tomographic angiography has been used to analyze textures, more 

specifically after endovascular prostheses, to predict endovascular leak (80). 
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8.2 Oncological applications 
 

Several studies have hypothesized a link between tumor characteristics at the cellular level, 

genetic level, and the phenotypic pattern (81-83). This link can be captured by medical 

imaging, such as PET and CT (75).  

If we take a better look at studies done with 18F-FDG and a PET scan, it is proposed that a non-

uniform distribution of 18F-FDG is linked to tumor heterogeneity (81, 84, 85). This gives better 

insights into the volume and treatment of a tumor. 

 

 

8.2.1  Breast 
 

Genomic features as microRNA expressions were associated with radiomics phenotypes by a 

radiogenic study (86). More specifically, the radiomics features showed associations with 

microRNA expressions and transcriptional activities of pathways (72). These microRNAs 

expressions were linked to the size of the tumor (87). 

The combination of genomics and radiomics data of magnetic resonance imaging (MRI) 

resulted in a significant improvement in prediction performance compared to analyses done 

by genomics or radiomics alone (88). 

 

  

8.2.2  Glioblastoma (GBM) and prostate 
 

Immunohistochemically identified protein patterns of glioblastoma multiforme (GBM), which 

were predicted with the help of radiomic features obtained from magnetic resonance MR (82). 

Radiomics features were correlated with a compelling prognostic factor for prostate cancer, 

the Gleason score. Furthermore, these radiomics features were also related to biochemical 

recurrence following prostate radiotherapy (89). 

 
 

8.2.3  Vulvar cancer 
 

In 2019, Collarino et al. examined vulvar cancer based on radiomics with the help of 18F-FDG 

PET/CT images (90). These radiomics features were identified by principal component analysis 

(PCA) for 40 women with a primary tumor of at least 2.6 cm in diameter. Furthermore, each 

woman received an 18F-FDG PET/CT scan followed by surgery. The study concluded that PCA 

could be used to perform dimensionality reduction for radiomics. This statistical step is 

essential when a large radiomics database is extracted from PET or CT images. Only the 

parameters that significantly contribute to the predictive model should be considered and, 

therefore, be identified using PCA. PCA goes further than radiomics features used in the 

present clinical workspace (e.g., SUVmean or Grey levels) (90). In this study, the PCA analysis 

showed that both known (e.g., SUVmean) and unknown parameters (e.g., Moran's I) are 

essential for the creation of this predictive model (90).  
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8.2.4  Lung 
 

NSCLC is broadly studied and characterized with the help of radiomics (87). The focus to obtain 

the images needed for radiomics until now is CT, which is also helpful in treating a patient. 

Studies show that these radiomics features are related to the tumor stage and histopathology 

(79, 91).  

Conventional, radiomics and combined features are based on multivariate predictive models 

to create, at the time of surgery, predicting pathological response to neoadjuvant 

chemoradiation assessed (88).  

A radiomics signature as a combination of four features was built by Aerts et al. (92). This 

combination of features consists of 'statistics energy,' which gives more information about the 

overall density of the tumor. A second feature is the ‘shape compactness,' which indicates 

how compact the tumor is. The third feature is a measure of wavelet and heterogeneity and 

is described in 'gray level non-uniformity.' The last feature describes the intra-tumor 

heterogeneity and is known as 'gray level non-uniformity HLH.' Importantly, this last feature 

can only be extracted after decomposing the images in mid-frequencies (87). The most stable 

features were selected by using the RIDER dataset on a set of 422 lung cancer patients (87). 

Aerts et al. concluded that the radiomics signature was predictive for survival due to a 

confidence interval of 0.65. 

Furthermore, the signature was successfully tested on different cancers, such as lung, head, 

and neck cancer (92). Out of multi-center data of 201 patients, Ohri et al. published a 

predictive radiomics model (93). With the help of the Lasso procedure, one textural feature 

was identified. This feature was calculated from GLCM and SumMean to predict overall 

survival, complementary to MTV with an optimal cut point of 9.3 cm (93). 

The general process of radiomics, explained in the next section, will provide insight into how 

these radiomics features related to specific organs can be obtained. 
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8.3 Process 
 

This process can be defined in several steps, starting 

with the acquisition of images. This step is followed by 

segmenting volumes, such as a tumor located in the 

lungs, as will be performed in this study. Out of these 

essential features, more specific radiomics-image 

properties are extracted. The last step includes 

developing, analyzing, and validating models obtained 

by this process (75). The basic idea is to collect as 

much data and information as possible at the front 

end and use databases to identify radiomics features 

of which the prognostic value is the highest (72). This 

philosophy leans on process engineering. A more 

detailed overview of this process can be found in 

figure 17 (76). 

In general, the first step is to obtain clinical images of 

study patients. This study is done with the help of 

PET/CT. Information about tumor phenotype and 

microenvironment can be extended from image 

features such as intensity, shape, size, volume, and 

texture (72). The detailed information about the 

PET/CT images can be found in the sections describing 

PET and CT. The images are obtained by using a 

standard protocol.  

Furthermore, the obtained images must be de-

identified; this is done by anonymizing the images 

linked to one patient by a specific code.  

The second step, including segmentation of images 

into volumes of interest (VOIs), is crucial. This is a very 

challenging step because the borders of tumors are 

often indistinct. Segmentation of the VOIs should be 

accurate and reproducible to be time-efficient and 

reduce the interaction of operators, such as medical 

experts or doctors (76). 

  

Figure 17: The process of Radiomics. This 
scheme visualizes the four essential steps 
starting from the image data, followed by 
image segmentation, feature extraction, and 
qualification, and ending with analysis and 
database; Picture Archiving and 
Communications Systems (PACS).  
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The third step is feature extraction and qualification, where semantic and agnostic features 

are extracted. On the first hand, the features that are commonly used to describe regions of 

interest are semantic. On the other hand, the features which describe lesion heterogeneity 

are known as agnostic features. The potential of radiomics to measure intra- and intertumoral 

quantitative heterogeneity is a central driver for radiomics research (76). 

The most systematic approach is first to identify redundant features (76). The extracted 

features are often visualized in a covariance matrix, where highly correlated features are 

indicated in the same color. Figure 18 shows an example of 219 features extracted from CT 

scans in 143 patients diagnosed with NSCLC (64, 76). Highly correlated features can form 

clusters and can be collapsed into one representative feature. Aerts et al. further ranked 

features based on different agnostic and semantic classes of features (92). Models can be built 

out of the two or three features of each class with the highest priority. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Radiomics features in a covariance matrix. This matrix is an example of 219 features that were extracted from 

NSCLC tumors in 235 patients. With the help of regression analysis, the features were compared, and correlation coefficients 

(R²) were generated. Features with high correlation were clustered and plotted along both axes and shown in red. 
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The last step of the process is to construct these models and analyze the outcoming results. 

Important in this step is to minimalize the risk of overfitting (75). When this is the case, this 

will lead to models that are only specific for the given set of data, and those models will not 

perform well on a new, independent set of data. Data mining is known as discovering patterns 

in large data sets and is necessary to develop a model (75). This can be done via artificial 

intelligence, machine learning, or with the help of a statistical approach (72). 

Notably, the model must be validated before it can be used in a clinical setting. Thus, it is 

essential to test the model using an independent validation dataset and document the 

statistics methods carefully (75). An overview of the different steps of radiomics is given in 

figure 19 (64). 

 
Figure 19: Flowchart of a Radiomics process. Medical images obtain information about the patients. Secondly, the region of 

interest is identified. Afterward, these are segmented with operator edits and eventually rendered in three dimensions. From 

these rendered volumes, quantitative features can be extracted. Finally, these data are ready for developing, predicting, or 

prognostic models; Region of Interest (ROI). 

 

 

 

  



53 
 

9  Factor analysis 
 

To reduce and correlate the parameters obtained from radiomics techniques, Factor Analysis 

(FA) is often used. It is a statistical tool to observe a correlation between the initial parameters 

and combine and reduce these by representing a common factor (94). With the help of factor 

analysis, the dimensions and structures within the data are also identified. 

The technique is based on finding a common variable (e.g., factor I). This factor is responsible 

for creating two or more variables (e.g., S1, S2, and S3). This indicates that factor I is the reason 

behind the correlations and association between S1, S2, and S3 (94). Figure 20 gives a 

visualization of the common factor, variables, and the relationship between these two. Here, 

factor I and factor II are the common factors, introducing three variables (respectively S1, S2, 

S3 and S4, S5 and S6). The three variables are reciprocally correlated, indicating a line between 

the variables (94). 

 

Figure 20: Common factors, variables, and underlying correlation. The common factors are named factor I and factor II. 
Furthermore, the variables are named from S1 up to and including S6. The correlation between the variables is indicated 

with a line between the concerned variables. An arrow between the factor and variable indicates that this factor introduces 
these variables. 
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Identifying a common factor starts from the correlation matrix, which is filled by variables. 

The common factor that will be determined first is the one that will explain the most 

correlation in the matrix with variable. This way, the common factor is generated by a 

theoretical procedure (94). The correlation matrix can be expressed in the form of a heat map. 

This is represented in figure 21 (95). 

 

 

Figure 21: Heat map of the absolute values of the correlation matrix. If the absolute value of correlation increases, the spot 
will be a deeper red. If the correlation between the variables is less, the spot will turn into a soft spot of red. 
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10  Principal Component Analysis 
 

Because Principal Component Analysis (PCA) is also often used in literature to reduce 

parameters, an explanation is given in this section. 

PCA, a mathematical algorithm known as Karhunen-Loeve expansion, is based on orthogonal 

transformations where a conversion of a set of possibly correlated variables into a set of 

values that are linear correlated occurs (96, 97). The reduction of parameters can be 

accomplished by identifying directions, which are named principal components (PCs) (97). 

These principal components are directed to where the variance in data is maximum. That way, 

PCA requires knowledge of linear algebra and statistics (96). 

PCA is based on Eigen vectors and Eigen values. An Eigen vector is a type of vector that does 

not change after a transformation is applied (98). PCA calculates the Eigen vectors of the 

covariance matrix. These project the original data onto a feature space with lower dimensions. 

Eigen vectors define this space with large Eigen values (99). An Eigen value is a scalar that 

transforms an Eigen vector, and this can be visually seen by stretching the Eigen vector with 

an own direction and magnitude. In other words, the new Eigen vector is a scaled version of 

the original vector (98). Figure 22 illustrates an Eigen vector (x), Eigen value (λ), and matrix A 

(100). 

Figure 22: Visualization of an Eigen vector and Eigen value. A is a matrix that stretches the Eigen vector X. There is no 
change in direction, only in the scale of the Eigen vector. 

 

Relatively few numbers can represent a set of relatively large values by using a few 

components. After that, the remaining parameters will be plotted to visually asses similarities 

and differences and determine whether parameters can be grouped together or not (97). 
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The principal component that is chosen first is the one that minimizes the total distance 

between the original data and their projection onto the principal component. A 

minimalization in this distance results in a maximization of the variance of the projected points 

(101).  The second and subsequent components are selected the same way. Each time,  there 

is one additional requirement for these principal components, which indicates that they are 

not correlated with all the previous PCs (101). Figure 23 provides a visual representation of 

the data set before and after the principal component analysis (102). 

Figure 23: Example of Principal Component Analysis. The left graph represents the original date, and on the right, 
the transformed dataset is graphically represented. In this example, the PCA is performed on five points.  

PCA; Principal component analysis. 

 

Like any other statistical technique, PCA has its advantages and drawbacks. A couple 

advantages are low noise sensitivity and decreased used memory and increased efficiency, 

both are logical consequences of the smaller dimensions of the data after PCA (99, 103). 

Furthermore, a lack of redundancy of the data given the orthogonal components is a key 

advantage. Another essential advantage of PCA is the switch from a difficult evaluation of the 

covariance matrix to a visual representation accurately. A disadvantage is that the training 

data explicitly needs every information of the simplest invariance. Otherwise, this invariance 

could not be captured (99, 103). 

When using radiomics to build predictive or discriminative models, PCA can be used right 

before the actual data analysis. This step is called 'Post Processing.' With the help of PCA, the 

original features are combined through the transformations explained above, to form new 

features. These new features are then processed into a model during the actual data analysis 

(104). 

A difference with FA is that in the PCA technique, the common variance, represented by factor 

I in figure 20, becomes maximized and is not unique for each variable (94). In contrast to FA, 

where there is assumed that there are a substantial number of unique variances. 
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11  Correlation tests 
11.1 Pearson correlation test 

 

A frequently used method to examine a correlation between two normal continuous 

distributed datasets is the Pearson correlation coefficient. This statistical method is known as 

a linear correlation technique (105).  

Karl Pearson defined formula 6 as Pearson's correlation coefficient, whereby X and Y are two 

normal continuous distributed parameters of two different datasets. Random samples of size 

n for variables X and Y are denoted, respectively 𝑋1,…, 𝑋𝑛, 𝑌1,…, 𝑌𝑛 and �̅� and �̅� (106). 

                                         𝑟 =  
∑ (𝑋𝑖−�̅�)(𝑛

𝑖=1 𝑌𝑖−�̅�)

√[∑ [(𝑋𝑖−�̅�)𝑛
𝑖=1

2
][∑ (𝑌𝑖−�̅�)𝑛

𝑖=1
2

]

                                                 (6) 

The solution of the Pearson correlation analysis is a numerical value that indicates how well 

all variables of the different datasets are correlated two by two (107). 
 

The Pearson correlation coefficient can take a value starting from -1 to +1. Where a perfect 

positive correlation is known as +1, and a negative correlation is represented by -1. A 

correlation value of 0 equals to no correlation between the two variables (108). 

 
 

11.2 Spearman correlation test  
 

If the two datasets are not normally distributed, another method is needed to obtain a 

correlation coefficient based on the datasets. An often-used method is the Spearman 

correlation test. This method is based on the ranked values for each variable and, that way, 

not based on the raw, original data (109).  

No assumptions of the distribution of the data are known and carried by the Spearman 

correlation test. In addition, it needs an ordinal scale of variables to run the correlation 

analysis (110). 

The Spearman rank correlation is calculated with the help of formula 7. In this formula, 𝜌 

stands for the Spearman rank correlation, 𝑑𝑖 for the difference between the ranks of 

corresponding variables and the number of observations is denoted as n. 

                                                           𝜌 = 1 −  
6 ∑ 𝑑𝑖

2

𝑛 (𝑛2 − 1)
                                                      (7) 

Like the Pearson correlation test, the Spearman correlation test returns a value from -1 to 

+1. A perfect positive correlation is denoted by +1, a perfect negative correlation is linked to 

a correlation value of -1, and when there is no correlation, the correlation value is similar to 

0 (111). 
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12  The Chi-square test 
 

A statistical test that was used during this study is the Chi-square (𝜒²) test. This method is a 

nonparametric statistical analysis, that is often used to decide if the classifications of two 

samples is dependent or not. That way, the result of a Chi-square test is an indication of the 

deviation or distance between two sets (112).   

 

To use a chi-square test, the following requirements need to be fulfilled (113): 

1. The measurements levels of all variables need to be nominal or ordinal. 

2. The sizes of the sample of the study groups are not equal and the groups of 𝜒² may be 

equally or unequally sized.  

3. The original data are measured at an interval or ratio level, but violate one assumption 

of a parametric test, which are listed below: 

a. The researcher uses a distribution free statistical analysis instead of a 

parametric analysis, due to a seriously peaked or skewed distribution. 

b. The condition of an equal variance or homoscedasticity could not be met. 

c. The data are no longer a ratio or interval, because the continuous data are 

collapsed into a smaller number of categories. 

 

The method to look at the association between datasets is based on the difference between 

the observed and expected frequencies, respectively O and E (114). The actual count of cases 

is equal to the observed frequencies. The expected value is determined with the help of the 

row marginal for that cell 𝑀𝑅, the column marginal for that cell 𝑀𝐶  and the total sample size 

𝑛. Formula 8 represent the expected value and formula 9 describes the Chi-square test (113, 

114).  

 

 

𝐸 =  
𝑀𝑅 × 𝑀𝐶  

𝑛
                                                                (8) 

 

𝜒² =  ∑
(𝑂 − 𝐸)²

𝐸
                                                             (9) 
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13  Logistic Regression 
 

To go from the dataset with parameters to a discriminative model based on these parameters, 

a logistic regression model is often used. This is a statistical method used on parameters to 

classify a malignant lung tumor and a non-malignant lung tumor, or to classify two histology’s, 

based on these parameters. This method is chosen because of its success in prediction and 

diagnosis in medicine (115). 

 

The logistic function used in this logistic regression model is defined by formula 10. 

 

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜂) =  
1

1 + exp (−𝜂)
                                                             (10) 

 

The output of this logistic regression model is probabilities between 0 and 1. The equation to 

interpret these probabilities is given by formula 11. 

The term in the log() function describes the probability of an event divided by the probability 

of no event (116). This way, every feature that is used to base the model on gets a certain 

weight. 

 

log ( 
𝑃(𝑦 = 1)

1 − 𝑃(𝑦 = 1)
) = log ( 

𝑃(𝑦 = 1)

𝑃(𝑦 = 0)
) = 𝛽0 + 𝛽1𝑥1 + ⋯ 𝛽𝑝𝑥𝑝                  (11) 

 

In the case of discrimination between a non-malignant lung lesion and a malignant lung lesion, 

the logistic regression model works with two classes or possible scenarios, the two types of 

lesions. One is labeled 0, and the other is labeled 1, or respectively ‘no event’ and ‘event’ 

(117). The same method can be used when building a discriminative model for two histology 

types, where one of the types is labeled ‘0’, and the other one is labeled ‘1’. 

Another frequently used predictive algorithm is linear regression, but a logistic regression 

model is chosen in this study. This because a linear regression model can only represent linear 

correlations. The interpretation of the outcomes of a linear regression model is often more 

complex since one feature depends on all other features. For the goal of this study, a logistic 

regression model works best to make the classification between a non-malignant lung lesion 

and a malignant lung lesion, and between the pathology of an adenocarcinoma and a 

squamous cell carcinoma (116, 118).  
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14  The ProLUNG Study 
 

This research on non-small cell lung cancer (NSCLC) patients using radiomics is part of a study 

named the ProLUNG study, which has two main branches: metabolomics and radiomics. In 

this ongoing research, metabolomics is used to predict the therapy response of patients with 

phase I-IIIA NSCLC. More specifically, this means that with the help of a blood sample and 

proton nuclear magnetic resonance (1H-NMR) spectroscopy, specific metabolites are 

analyzed. The main goal of the ProLUNG study that focuses on metabolomics is to develop a 

biomarker based on the metabolism, a so-called metabolic profile, which may predict a 

possible relapse after surgery for a specific patient. This can optimize the treatment of NSCLC 

and make it more specific for the patient as an individual. This part of the study is visualized 

in the central part of figure 24. 

 

 

 

 

 

 

 

 

 

Figure 24: Schematic representation of the ProLUNG study. This scheme visualizes an overview of the different aspects that 
are being studied in the ProLUNG study. The focus is on radiomics (left) and metabolomics (right). 

The patient cohort in the metabolomics study exists of 142 patients. These patients have been 

diagnosed with stage I-IIIA lung cancer or early-stage and locally advanced NSCLC. The tumor 

has not metastasized in these stages and all patients received a lobectomy as part of their 

standard-of-care treatment plan. 

 

This research focuses on the radiomics part of the ProLUNG study, as displayed in the left part 

of figure 24. The first goal of this research is to find underlying correlations between the 

metabolomics data of the patients and the radiomics data of these same patients. Another 

aim of this study is to see if radiomics can provide specific markers to generate models to 

discriminate between malignant and non-malignant lung lesions, and between the pathology 

of an adenocarcinoma and a squamous cell carcinoma and optimize the patient treatment 

plan (e.g., is an operation necessary, does the patient need chemotherapy afterward). This 

part aims to examine if a combination of metabolomics and radiomics can obtain a better 

discriminative model. The main goal of metabolomics and radiomics in the ProLUNG study is 

the same. The main difference between these two research fields is that radiomics uses 

parameters extracted from PET/CT images of the patients instead of extracted parameters out 

of the plasma metabolic profile of the patients.  

 

 

1H-NMR Spectroscopic analysis 

Multivariate statistical analysis 

Blood sampling PET-scan Analysis  
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15  Materials and method 
 

Two patient cohorts are used in this study. The first patient cohort consists of 39 patients, and 

the second cohort consists of 85 patients. All patients are diagnosed with NSCLC stage I-IIIA. 

The patients' tumor has not metastasized, so the TNM-staging is M0 for all the patients 

included in this research. Furthermore, all the patients underwent a lobectomy as part of their 

standard-of-care treatment plan. The included patients underwent treatment in Ziekenhuis 

Oost-Limburg (ZOL), located in Genk, and gave written informed consent. A patient can drop 

out of the study at any time.  

To limit external influences on the study, exclusion criteria are also introduced. The inclusion 

and exclusion criteria for the ProLUNG study are shown in table 1.  

 
Table 1: Inclusion and exclusion criteria of the ProLUNG study 

Inclusion criteria Exclusion criteria 

Stage I-IIIA NSCLC tumor  No fasting starting 6 hours before PET/CT 

Lobectomy Medication intake in the morning of PET/CT 

Signed written informed consent Fasting blood glucose concentration ≥ 200 mg/dl in the 
morning of PET/CT  
History of cancer during the past five years  
Treatment for cancer during the past five years 

 

All included patients had a PET/CT scan, according to the European Association of Nuclear 

Medicine (EANM). All the patients were imaged using a Biograph Horizon PET/CT scanner from 

Siemens with a 16 slice CT in this research. The CT scans are used to correct the PET images 

for attenuation.  

This specific PET/CT scanner uses lutetium oxyorthosilicate (Lu2(SiO4)O, LSO) crystals. These 

crystals have very high stopping power, high light yield, fast decay time, and good radiation 

hardness against gamma rays (54, 119). There are other crystals available, but LSO crystals 

provide better image quality (54).  

The Biograph Horizon detectors use 4 mm LSO crystals, placed with no gap between two 

detector blocks to guarantee high spatial resolution and lesion visualization (54). 

Due to the high-quality LSO crystals, ToF is supported, which improves the signal-to-noise ratio 

and the speed of the scans. Not only this, the injected dose is lowered, which is an excellent 

quality when looking at the ALARA principle (54). 

In the software of the CT technology of Siemens, SAFIRE3 is included to lower the dose by 

60%, and iMAR3 reduces metal artifacts of the CT images (54). 

Technical specifications are listed in table 2. All the images obtained from the scan are saved 

in the Picture Archiving and Communications Systems (PACS). 
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Table 2: Specifications PET/CT Biograph Horizon from Siemens Healthineers 

Gantry 

Bore diameter 70 cm 

Tunnel length 130 cm 

Table capacity 227 kg 

CT 

Generator power 55 kW 

Rotation times 0.48, 0.6, 1.0 and 1.5 s 

Tube voltages 80, 110, and 130 kV 

Iterative reconstruction SAFIRE 

Metal artifact reduction iMAR 

Slices 16, 32 

PET 

Axial field of view 16.4, 22.1 cm 

Crystal size 4 x 4 x 20 mm 

Time of flight performance 540 
 
 
 

15.1 18F-FDG PET/CT protocol 
 

The radiopharmaceutical is delivered by UZ Leuven, where the production of 18F-FDG is 

performed. With the help of an autoinjector, more specifically an Iris automated multidose 

injection system from Comecer, 18F-FDG is injected in the patient to limit the radiation dose 

to the present medical staff. The medical images of all the included patients were obtained 

one hour after the administration of 18F-FDG. After presetting and determining the imaging 

field, a CT (25 mA, 130 kV) was performed. This CT ranged from the midthighs to the base of 

the skull. A 512-512 matrix was reconstructed with the obtained CT images. Next, a PET-scan, 

which covers the same axial field as the CT-scan, was performed for 15 to 20 minutes. The 

emission time per bed position ranged from one to two minutes depending on the concerned 

patient's body mass index (BMI) (120). More specifically, a patient with a weight less than 50 

kg, a weight between 50-80 kg and a patient with a weight above 80 kg are scanned 

respectively one minute, a minute and half and two minutes. 
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Figure 25: Examples of the 'Accurate' tool and segmentation of a lung lesion. 

15.2 Radiomics and metabolomic parameters 
 

First, the obtained PET/CT images of the included patients are retrieved from the PACS and 

made anonymous. Then, the images are loaded into the Accurate tool, developed by the 

research team of Prof. dr. R. Boellaard (Amsterdam, VUmc). After this step, the segmentation 

is done in the Accurate tool with the semi-automatic help of the tool itself and afterward 

controlled and corrected by doctor Mesotten of the nuclear medicine department of ZOL 

Genk. Examples of this tool and segmentation process are given in figure 25. In the last step 

of this part, the volumes of interest (VOIs) are saved. These are the VOIs based on the first 

segmentation method. This method of segmentation is only used for the first patient cohort, 

consisting of 39 patients. 

These steps are then repeated to create new VOIs, based on the same PET/CT images. The 

difference with the previous VOIs is that the lesion was lined differently by doctor Mesotten 

on the CT image to fit the lung lesion's outline better. These VOIs are saved again. These are 

the VOIs based on the second segmentation method. This segmentation method is used for 

the two patient cohorts. 

All the steps are done a third time, now only focusing on the PET-images of the patients. The 

segmentation to create the VOIs is done only on the PET images, and the VOIs are saved. These 

are the VOIs based on the third segmentation method. This method of segmentation is only 

used for the first patient cohort, consisting of 39 patients. 

These saved VOIs are then loaded into a second tool, named Radiomics, which was also 

developed by the research team of Prof. dr. R. Boellaard (Amsterdam, VUmc). After the 

analysis of the VOI, new radiomics parameters are extracted from each VOI. These 483 

parameters per VOI are saved in an Excel file per patient. After the 483 parameters are 

extracted for all the patients in the cohort, they are put together in one Excel file per method 

for segmentation. 

 

Simultaneously, 238 metabolic parameters representing 62 plasma metabolites were 

determined from the same patients using proton nuclear magnetic resonance (1H-NMR) 

spectroscopy. These parameters were also saved in an Excel file. 

 
 

  
Confidential Confidential 
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15.3 Datasets 

15.3.1 Correlations 
 

Per method of segmentation, the datasets are created the same way. First, the metabolomics 

dataset and the radiomics dataset of the first patient cohort were used to look at any 

underlying correlation between the metabolomics data and the radiomics data. The dataset 

contained 721 parameters (483 radiomics and 238 metabolomics). The Spearman correlation 

coefficient test was used on the total omics-dataset to measure the underlying statistical 

correlations between the radiomics parameters and the metabolomics dataset. This was done 

for the datasets created out of the three methods of segmentation. 

The correlation between the radiomics and metabolomics data were examined and the 

difference in correlation between the data for three methods of segmentation was analyzed. 

After this, the dataset with only the 483 radiomics parameters of 85 patients and the dataset 

with the 483 radiomics parameters of the 66 patients diagnosed with adenocarcinoma and 

squamous cell carcinoma, based on the second type of segmentation, were used to see any 

correlation between these parameters. The Spearman correlation coefficient test was used 

on these datasets to find the correlations.  If the correlation between two parameters is more 

than 90%, one of the two correlated parameters could be removed without loss of 

information. When all the correlated parameters were removed, the residual dataset was 

saved as a new Excel file.   

 
 

15.3.2 Discriminative models 
 

The dataset with the 483 radiomics parameters of 85 patients and the dataset with 483 

radiomics features of 66 patients are used to create discriminative models. The next step to 

achieve this is to reduce the parameters to a more usable number. This was done in two ways, 

the first one being with factor analysis and executed in RStudio, with a script created with the 

help of the research team of Prof. dr. Boellaard (Amsterdam, VUmc). The factor analysis for 

this dataset is performed for three, four, five, and ten outcome factors. These resulting factors 

were also saved as an Excel file.  The FA reduction method was only used on the dataset with 

85 patients. 

The second way to reduce the dataset with the 483 radiomics parameters of 85 patients used 

the Spearman correlation coefficient test on this data set. Then, a threshold of 0.9 was chosen 

in the resulting correlation matrix, and for every two features that showed a correlation above 

this threshold, one was removed from the correlation matrix. These features were then 

removed from the dataset with the 483 radiomics parameters, resulting in a dataset of 85 

patients with 56 features. These resulting features were also saved as an Excel file.  

Every patient in both resulting datasets of the 85 patients with a malignant lung lesion was 

labeled as ‘1’ in a column ‘Event,’ and every patient in the dataset with a non-malignant lung 

lesion was labeled as ‘0’ in the ‘Event’ column.  
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Every patient in the resulting dataset of the 66 patients with an adenocarcinoma was labeled 

as ‘1’ in a column ‘Event,’ and every patient in the dataset with a squamous cell carcinoma 

was labeled as ‘0’ in the ‘Event’ column.  All three datasets underwent a forward selection and 

backward stepwise selection regression to generate the discriminative models. This logistic 

regression model was built in RStudio. The manually reduced datasets were split into a 75% 

training dataset, to build the model, and a 25% test dataset, to test the accuracy of the model. 
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16  Results  
16.1 Correlation between metabolomics and radiomics 

16.1.1 Included patients  
 

For the first goal of this research, the correlation of metabolomics and radiomics features, 39 

patients were included. The most significant part of this group, 70%, consisted out of men. 

More than 50% of the patients confirm being a current smoker, which is a strong risk factor 

for lung cancer development (121).  

In table 3, the complete patient cohort is shown in more detail. A specification of the types of 

lung tumors is represented in table 4, more specifically for adenocarcinoma, squamous cell 

carcinoma, and neuroendocrine lung tumors. Table 5 provides a comparison between the 

malignant and the non-malignant lesions. Figures 26-33 show an overview of this patient 

cohort. 

Table 3: Specifications of the patient cohort (N=39) used to correlate metabolomics and radiomics. 

Variable 
 

Total patients 39 

Sex (N, (%)) Men 27 (69.2) 

Women 12 (30.8) 

Diabetes (N, (%)) Yes 4 (10.2) 

No 35 (89.8) 

 
Smoking status (N, (%)) 

Current smoker 20 (51.3) 

Ex-smoker 18 (46.2) 

Non-smoker 1 (2.5) 

 
 

Packyears (y) 

Median 40  

Average 44 ± 31 

Range 0 - 139 

Unknown 3 

 
Age (y) 

Median 71  

Average 71 ± 8  

Range 49 - 84 

 
BMI (kg/m²) 

Median 26.04  

Average 26.64 ± 5.65  

Range 14.69 - 51.00 

 
Diameter (mm) 

Median 23  

Average 30.38 ± 22.45 

Range 11 - 120 

 
Plasma glucose (mg%) 

Median 97.5  

Average 98.23 ± 16.48 

Range 76 - 164 

 
FEV1 absolute value (l) 

Median 2.27  

Average 2.28 ± 0.71 

Range 1.09 - 4.25 
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Table 4: Specifications of the different types of malignant lung lesions (N=35) used to correlate metabolomics and radiomics. 

 
Adenocarcinoma Squamous cell 

carcinoma 
Neuroendocrine 

lung tumor 

Total patients 24 8 3 

Sex (N, (%)) Men 15 (62.5) 5 (62.5) 3 (100.0) 

Women 9 (37.5) 3 (37.5) 0 (0.0) 

Diabetes (N, (%)) Yes 4 (16.7) 0 (0.0) 0 (0.0) 

No 20 (83.3) 8 (100.0) 3 (100.0) 

 
Smoking status (N, (%)) 

Current smoker 11 (45.8) 4 (50.0) 2 (66.6) 

Ex-smoker 12 (50.0) 4 (50.0) 1 (33.3) 

Non-smoker 1 (4.2) 0 0 (0.0) 

 
 

Packyears (y) 

Median 35 40  38  

Average 40 ± 30 40 ± 13 45 ± 19 

Range 0 - 75 15 - 61 26 - 70 

Unknown 1 1 0 

 
Age (y) 

Median 71  73  75 

Average 71 ± 7 72 ± 9 75 ± 3 

Range 49 - 78 55 - 83 71 - 79 

 
BMI (kg/m²) 

Median 25.43  27.35  27.29  

Average 26.91 ± 6.33 28.10 ± 2.91 25.81 ± 3.67 

Range 19.00 - 51.00 25.00 - 34.89 20.76 - 29.38 

 
 

Lobe 

Right upper 6 3 1 

Right middle 6 3 0 

Right lower 7 2 1 

Left upper 2 0 1 

Left under 3 0 0 

 
Diameter (mm)  

Median 19  32  32  

Average 32.75 ± 26.54 29.29 ± 7.46 35.67 ± 14.52 

Range 11 - 55 13 - 35 20 - 55 

 
Resection margin 

Positive 2 1 0 

Negative 22 7 3 

Visceral pleural invasion Yes 5 3 0 

No 19 5 3 

Lymph vascular invasion Yes 7 4 2 

No 17 4 1 

Positive nodes Yes 7 0 0 

No 17 8 3 

 
Plasma glucose (mg%) 

Median 97  103  85  

Average 99.16 ± 18.44 101.88 ± 11.53 86.33 ± 6.60 

Range 76 - 164 83 - 118 79 - 95 

 
FEV1 absolute value (l) 

Median 2.27  2.02 2.35 

Average 2.37 ± 0.78 1.93 ± 0.51 2.28 ± 0.43 

Range 1.09 - 4.25 1.16 - 2.60 1.72 - 2.77 
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  Adenocarcinoma Squamous cell 
carcinoma 

Neuroendocrine 
lung tumor 

 
 

 
T 

1b 9 1 1 

1c 2 1 0 

2a 7 2 1 

2b 0 1 0 

3 4 0 1 

4 2 2 0 

 
N 

0 19 6 3 

1 5 1 0 

2 0 1 0 

M 0 23 8 3 

1a 1 0 0 

R 0 23 7 3 

1 1 1 0 
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Table 5: Comparison between malignant and non-malignant lung lesions (N=39) used to correlate metabolomics and 
radiomics. 

  Malignant Non-malignant 

Total patients 35 4 

Sex (N, (%)) Men 23 (65.7) 4 (100.0) 

Women 12 (34.3) 0 (0.0) 

Diabetes (N, (%)) Yes 4 (11.4) 0 (0.0) 

No 31 (88.6) 4 (100.0) 

Smoking status (N, (%)) Current smoker 17 (48.6) 3 (75.0) 

Ex-smoker 17 (48.6) 1 (25.0) 

Non-smoker 1 (2.8) 0 

 
 

Packyears (y) 

Median 38  80 

Average 40 ± 26 91 ± 35 

Range 0 - 130 55 - 139 

Unknown 2 1 

 
Age (y) 

Median 72 65 

Average 71 ± 8 62 ± 10 

Range 49 - 84 52 - 80 

 
BMI (kg/m²) 

Median 26.57  24.44  

Average 27.09 ± 5.57 22.81 ± 4.88  

Range 19.00 - 51.00 14.69 - 27.90 

 
 

Lobe 

Right upper 10 2 

Right middle 9 0 

Right lower 10 2 

Left upper 3 0 

Left under 3 0 

Diameter (mm) 
  

Median 25    

Average 31.61 ± 23.03   

Range 11 - 120   

Plasma glucose (mg%) Median 97  90  

Average 98.69 ± 16.82 96.5 ± 12.42 

Range 76 - 164 76 - 108 

FEV1 absolute value (l) Median 2.25 2.62 

Average 2.26 ± 0.73 2.55 ± 0.29 

Range 1.09 - 4.25 2.17 - 2.86 
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Figure 26: Pie chart of sex of the patients’ radiomics features correlated with metabolomics. 

 

Figure 27: Pie chart of diabetes of the patients’ radiomics features correlated with metabolomics. 

 

Figure 28: Pie chart of different types of NSCLC of the patients’ radiomics features correlated with metabolomics. 
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Figure 29: Pie chart of the smoking status of the patients’ radiomics features correlated with metabolomics. 

 

Figure 30: Pie chart of the location of the tumor of the patients’ radiomics features correlated with metabolomics. 
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Figure 31: Bar chart of the age of the patients’ radiomics features correlated with metabolomics. 

 

Figure 32: Bar chart of the BMI of the patients’ radiomics features correlated with metabolomics. 
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Figure 33: Bar chart of the diameter of the tumor of the patients’ radiomics features correlated with metabolomics. 
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16.1.2 Radiomics features 

 

Out of the radiomics tool, image features were extracted based on the PET/CT images of the 

included patients. In total, 483 image features per patient were obtained and divided into 

eleven subgroups.  

 

These subgroups of features are morphological, local intensity, intensity-based statistical, 

intensity histogram, intensity- volume histogram, gray-level co-occurrence based, grey level 

run length based, grey level size zone-based, grey level distance zone-based, neighborhood 

grey tone difference based, and neighborhood grey level dependence based features (122).  

In these eleven subgroups, there are multiple features, including volume, mean, and variance. 

In this section, the radiomics features that showed correlation with the metabolites are 

explained further. The 13 radiomics features that are important for this study are described 

in the following pages. Parameters that are highly correlated to each other and divided into 

the same subgroup are not described. The parameter with the highest correlation to 

metabolomics was chosen. This was done for the features quarter coefficient and zone 

distance non-uniformity, respectively related to the features small zone grey level and 

dependence count described in the following pages. 

 
 

16.1.3 Radiomics features: Moran’s I index 

 
A positive correlation is noticed by the Moran’s I index radiomics feature, classified into the 

subgroup morphological features. This feature indicates spatial autocorrelation. Formula 12 

describes the Moran’s I index feature. 

 𝐹𝑚𝑜𝑟𝑝ℎ.𝑚𝑜𝑟𝑎𝑛.𝑖 =  
𝑁𝑣,𝑔𝑙

∑ ∑ 𝑤𝑘1,𝑘2

𝑁𝑣,𝑔𝑙
𝑘2=1

𝑁𝑣,𝑔𝑙
𝑘1=1

 
∑ ∑ 𝑤𝑘1,𝑘2

𝑁𝑣,𝑔𝑙
𝑘2=1

𝑁𝑣,𝑔𝑙
𝑘1=1 (𝑋𝑔𝑙,𝑘1−𝜇) (𝑋𝑔𝑙,𝑘2−𝜇)

∑ (𝑋𝑔𝑙,𝑘1−𝜇)² 
𝑁𝑣,𝑔𝑙 
𝑘=1

 𝑎𝑛𝑑 𝑘1 ≠ 𝑘2      (12)  

To understand formula 12, specific parameters need to be known. First, the number of voxels 

in the intensity mask is represented by 𝑁𝑣,𝑔𝑙 and the corresponding intensity’s is denoted by  

𝑋𝑔𝑙. Furthermore, the mean of  𝑋𝑔𝑙 is represented by 𝜇 and a weight factor is represented by 

𝑤𝑘1,𝑘2
. This weight factor is equal to the inverse Euclidean distance between the 

corresponding voxels 𝑘1 and 𝑘2 of the region of interest intensity mask (123). 

The Moran’s I index can range between 1.0 and -1.0. A value close to zero means no spatial 

autocorrelation, a value close to 1.0 indicates a high spatial autocorrelation, and a value close 

to -1.0 indicates a high spatial anti-autocorrelation (122). 
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16.1.4 Radiomics features: Grey level non-uniformity 
 

The radiomics feature grey level non-uniformity is divided in the subgroup grey level run length 

based features and measures the distribution of runs over the levels of grey values. A low grey 

level non-uniformity indicates that there is an equal distribution of runs along with grey levels. 

Formula 13 describes the grey level non-uniformity feature. 𝑁𝑠 represents the total number 

of zones in the region of interest and 𝑁𝑔 is a fixed number of the discretized intensities into 

bins. The marginal sum of runs for a certain grey level i over run lengths j is denoted by 𝑟𝑖 

(122). 

                                               𝐹𝑟𝑙𝑚.𝑔𝑙𝑛𝑢 =  
1

𝑁𝑠
 ∑  𝑟𝑖

2

𝑁𝑔

𝑖 = 1

                                                            (13) 

 

 

16.1.5 Radiomics features: Inverse difference  
 

The radiomic feature named inverse difference is dived into the subgroup grey level co-

occurrence-based features and measures the homogeneity in the region of interest (124).  

A significant difference in grey levels co-occurrences results in a lower weight. This leads to a 

lower total feature value. The inverse difference feature is maximal when all the grey levels in 

the region of interest have all the same value and are described by formula 14. 

 

𝑝𝑖𝑗 refers to a probability, more specifically, it corresponds to the probability of common grey 

level co-occurrence present in the grey level co-occurrence matrix, with grey level i, that is 

discretized, and size j (122). 

                                            𝐹𝑐𝑚.𝑖𝑛𝑣.𝑑𝑖𝑓𝑓 =  ∑ ∑
𝑝𝑖𝑗

1 + ∥ 𝑖 −  𝑗 ∥

𝑁𝑔

𝑗 = 1

𝑁𝑔

𝑖 = 1

                                                (14) 
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16.1.6 Radiomics features: Area density AABB 
 

The area density axis-aligned bounding box feature is divided into the subgroup of 

morphological radiomics features and is described by formula 15. This feature is a ratio of the 

surface area 𝐴  of the considered region of interest and the surface area of the axis-aligned 

bounding box 𝐴𝑎𝑎𝑏𝑏 that encloses the region of interest mesh (122).  

The axis-aligned bounding box (AABB) is the smallest box enclosing the vertex set and must 

be in line with the reference frame axes. A vertex set is a group of vertices, points where 

multiple curves, edges, or lines come together (125).   

 

                                            𝐹𝑚𝑜𝑟𝑝ℎ.𝑎.𝑑𝑒𝑛𝑠.𝑎𝑎𝑏𝑏 =  
𝐴

𝐴𝑎𝑎𝑏𝑏
                                                           (15) 

 

 

16.1.7 Radiomics features: The first measure of information correlation 
 

The radiomics feature named the first measure of information correlation, is classified in the 

subgroup grey level co-occurrence-based features. This feature uses two different measures 

and is described by formula 16 (126).  

To understand this radiomics feature, the following variables need to be known: 𝐻𝑋𝑌, 𝐻𝑋𝑌1 

and 𝐻𝑋. The entropy for the joint probability is represented by 𝐻𝑋𝑌, in formula 17. 𝐻𝑋𝑌1 is a 

specific type of entropy and is represented by formula 18. The entropy of the row marginal 

probability is known as 𝐻𝑋 and described by formula 19. As a result of symmetry, the entropy 

of the row marginal probability is equal to the column’s marginal probability entropy (122). 

                                          𝐹𝑐𝑚.𝑖𝑛𝑓𝑜.𝑐𝑜𝑟𝑟.1 =  
𝐻𝑋𝑌 − 𝐻𝑋𝑌1

𝐻𝑋
                                                          (16) 

                        𝐻𝑋𝑌 =  − ∑ ∑ 𝑝𝑖𝑗 log2(𝑝𝑖𝑗)

𝑁𝑔

𝑗 = 1

𝑁𝑔

𝑖 = 1

                                                  (17) 

                              𝐻𝑋𝑌1 =  − ∑ ∑ 𝑝𝑖𝑗 log2(𝑝𝑖.𝑝𝑗.)

𝑁𝑔

𝑗 = 1

𝑁𝑔

𝑖 = 1

                                              (18) 

                                                            𝐻𝑋 =  − ∑ 𝑝𝑖 log2(𝑝𝑖)

𝑁𝑔

𝑖 = 1

                                                        (19) 
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16.1.8 Radiomics features: coefficient of variation 
 

The correlation test between the radiomics and metabolomics datasets leads to a high 

negative correlation value for the radiomics feature named coefficient of variation. This 

feature is divided into the intensity-based statistical features subgroup.  

This feature is linked to the dispersion of the corresponding voxel intensities, denoted 𝑋𝑔𝑙, 

where the intensities are again discretized to a fixed number of 𝑁𝑔 bins, based on the fixed 

bin number method. Formula number 20 describes the coefficient of variance feature 

𝐹𝑠𝑡𝑎𝑡.𝑐𝑜𝑣. 

                                                                  𝐹𝑠𝑡𝑎𝑡.𝑐𝑜𝑣  =  
𝜎

𝜇 
                                                                    (20) 

The standard deviation 𝜎 is known as the square root out of 𝐹𝑠𝑡𝑎𝑡.𝑣𝑎𝑟 and 𝜇 is equal to the 

mean of the intensity distribution and is represented by  𝐹𝑠𝑡𝑎𝑡.𝑚𝑒𝑎𝑛. 

The feature 𝐹𝑠𝑡𝑎𝑡.𝑣𝑎𝑟 is known as the intensity variance of 𝑋𝑔𝑙 and is calculated with formula 

21. The mean intensity of the corresponding voxels is computed with formula 22. 𝑁𝑣 denotes 

the set of intensities of voxels included in the concerned region of interest (122). 

 

                                                 𝐹𝑠𝑡𝑎𝑡.𝑣𝑎𝑟 =  
1

𝑁𝑣
 ∑ (𝑋𝑔𝑙,𝑘  −

𝑁𝑣

𝑘 = 1

𝜇  )²                                                  (21) 

 

                                                𝐹𝑠𝑡𝑎𝑡.𝑚𝑒𝑎𝑛 =  
1

𝑁𝑣
 ∑ 𝑋𝑔𝑙,𝑘 

𝑁𝑣

𝑘 = 1

                                                         (22)  

 

 

16.1.9 Radiomics features: Small zone low grey level emphasis 
 

In the subgroup grey level size zone-based features, the radiomics feature small zone 

emphasis is present. The small zone emphasis feature is described by formula 23, where the 

maximum size of a zone of any group linked voxels is represented by 𝑁𝑧. The number of zones 

with a size j and independent of a certain grey level is denoted by 𝑠.𝑗 (122). 

                                               𝐹𝑠𝑧𝑚.𝑠𝑧𝑒 =  
1

𝑁𝑠
 ∑  

𝑠.𝑗

𝑗2

𝑁𝑧

𝑗 = 1

                                                            (23) 
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16.1.10 Radiomics features: Minimum histogram gradient 
 

The minimum histogram gradient is classified in the subgroup intensity histogram features. To 

understand this feature, it is needed to know what an intensity histogram is. This histogram is 

generated based on the discretizing of the original intensity distribution. That way 𝑋𝑔𝑙 is 

divided into intensity bins.  

To calculate the histogram gradient of the intensity histogram, formula 24 needs to be 

executed.  

𝐻𝑖
′  =  {

𝑛2 −  𝑛1                                          𝑖 = 1
(𝑛𝑖+1 −  𝑛𝑖−1)/2                            1 < 𝑖 <  𝑁𝑔 

𝑛𝑁𝑔  −  𝑛𝑁𝑔−1                                     𝑖 =  𝑁𝑔 

 

 

The minimum histogram gradient is afterward described by formula 25 (122). 

                                              𝐹𝑖ℎ.𝑚𝑖𝑛.𝑔𝑟𝑎𝑑 =   𝑚𝑖𝑛(𝑯′)                                                      (25)  

 

 

16.1.11 Radiomics features: Coarseness 
 

The radiomic feature named coarseness is divided into the subgroup neighbourhood grey tone 

difference-based features and calculated by formula 26. Due to large-scale patterns, the 

different grey levels in coarse textures are, most of the time, relatively small. To indicate the 

spatial rate of change in intensity, often, a sum of the differences in grey levels is obtained. 

This is done with the radiomic feature coarseness (127).  

Note that the sum in the denominator can lead to zero as a result. That way, the maximum 

value of the coarseness feature is set to 106, an arbitrary number (122). 

 

                                            𝐹𝑛𝑔𝑡.𝑐𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 =  
1

∑  𝑝𝑖 𝑠𝑖 
𝑁𝑔 

𝑖=1

                                                               (26) 

 

  

(24) 
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16.1.12 Radiomics features: Small distance emphasis 

 

The small distance emphasis is divided in the subgroup grey level distance zone based on all 

the radiomics features described by formula 27. The number of zones with grey level i that is 

discretized, independent of a certain distance j, is denoted by 𝑑.𝑗 and 𝑁𝑑 stands for the largest 

distance of any zone (122). 

                                              𝐹𝑑𝑧𝑚.𝑠𝑑𝑒 =  
1

𝑁𝑠
 ∑  

𝑑.𝑗

𝑗2

𝑁𝑑

𝑗 = 1

                                                           (27) 

 
 

16.1.13 Radiomics features: Dependence count energy 
 

The dependence count energy is divided into the subgroup neighbouring grey level 

dependency-based features and is named the second moment by Sun and Wee (128). 

 

This feature is described by formula 28, where 𝑝𝑖𝑗  =  𝑠𝑖𝑗/𝑁𝑠. The number of zones with a 

discretization of grey level i and a size j is represented by 𝑠𝑖𝑗 and 𝑁𝑠 represents the total 

number of zones in the region of interest (122). 

                             𝐹𝑛𝑔𝑙.𝑑𝑐.𝑒𝑛𝑒𝑟𝑔𝑦 = ∑ ∑ 𝑝𝑖𝑗
2

𝑁𝑛

𝑗 = 1

𝑁𝑔

𝑖 = 1

                                                     (28) 

 

 

16.1.14 Radiomics features: Surface to volume ratio 
 

The surface-to-volume ratio radiomics feature is divided into the subgroup morphological 

features. This feature is relatively simple and is the ratio of the surface A and the volume V of 

the region of interest. Formula 29 describes the surface-to-volume feature (122). 

 

                                                                𝐹𝑚𝑜𝑟𝑝ℎ.𝑎𝑣  =  
𝐴

𝑉
                                                                    (29) 

 

 

 

 

 

  



85 
 

 

16.1.15 Radiomics features: Joint maximum 
 

The radiomics feature joint maximum is linked to a probability, more specifically, it 

corresponds to the most common grey level co-occurrence present in the grey level co-

occurrence matrix (GLCM). This matrix shows how discretized intensities, also named grey 

levels, are combined with neighbouring pixels or voxels within a 3D volume, and in that way, 

distributed along with one of the directions of the image. Formula 30 represents the joint 

maximum feature divided in the subgroup grey level co-occurrence-based features (122). 

                                                    𝐹𝑐𝑚.𝑗𝑜𝑖𝑛𝑡.𝑚𝑎𝑥  =  𝑚𝑎𝑥(𝑝𝑖𝑗)                                                        (30) 

 

 

16.1.16 Radiomics features: Angular second moment 
 

The energy of  𝑃∆ is represented by the angular second moment. Like the joint maximum 

feature, this feature is divided into the subgroup grey level co-occurrence-based features. The 

angular second momentum is represented by formula 31. Synonyms of this feature are named 

energy or uniformity (122). 

𝐹𝑐𝑚.𝑒𝑛𝑒𝑟𝑔𝑦 =  ∑ ∑ 𝑝𝑖𝑗
2

𝑁𝑧

𝑗 = 1

𝑁𝑔

𝑖 = 1

                                                              (31) 
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16.1.17 Results 
 

The Spearman correlation coefficient test was performed on three datasets. Each dataset 

consisted of 721 parameters (238 metabolomics parameters and 483 radiomics features), and 

each was based on a different segmentation method. Segmentation methods one and two 

were based on the PET/CT images, and segmentation method three was based on only the 

PET images of the patients.  

 

The 238 metabolomics parameters (obtained by 1H-NMR spectroscopy analysis of blood 

plasma samples) in each dataset have a named variable and a corresponding number to make 

it easier to work with during the data reduction (e.g., Var001). One variable of the 

metabolomics dataset represents a metabolite or a combination of multiple metabolites.  

 

The significant correlation values found between the radiomics and metabolomics parameters 

in each correlation matrix showed R2 values between 0.3 and 0.7 (positive correlation) or 

between -0.3 and -0.7 (negative correlation). The positive correlations found in the 

metabolomics dataset were mainly related to the concentration of plasma glucose. The 

radiomics features positively correlated to glucose were identified as Morans I, inverse 

difference normalized, grey level non-uniformity GLSZM, grey level non-uniformity GLDZM, 

area density AABB, and first measure of information correlation. 

 

The negative correlations found in the metabolomics dataset were mainly related to glycerol. 

The radiomics features that were negatively correlated to these metabolites were identified 

as a coefficient of variation, quartile coefficient, small zone low grey level emphasis, low 

dependence low grey level emphasis, the surface to volume ratio, minimum histogram 

gradient, coarseness, zone distance non-uniformity normalized GLDZM, small distance 

emphasis GLDZM, dependence count energy, joint maximum, angular second moment and 

grey level non-uniformity normalized. 

The correlation output matrices suggested more or less the same correlations between the 

metabolomics variables and the radiomics features for each segmentation method used. Only 

the strength of correlation differs between the segmentation methods. 
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Table 6 shows some of the metabolomics variables that are linked to the concentration of 

plasma glucose. Table 7 shows some of the metabolomics variables related to glycerol. These 

metabolomics variables were chosen because there is more certainty that other metabolites 

do not influence plasma glucose and glycerol in these specific variables. The complete 

assignment of all 238 metabolomics variables is out of the scope of this thesis. 

 

Table 6: Metabolomic variables (N=20) related to plasma glucose 

METABOLOMIC VARIABLES  

Var026 Var029 Var057 Var064 Var065 

Var070 Var071 Var074 Var076 Var094 

Var095 Var097 Var098 Var099 Var100 

Var101 Var104 Var107 Var108 Var122 

 

Table 7: Metabolomic variables (N=12) related to glycerol 

METABOLOMIC VARIABLES 

Var068 Var069 Var070 Var071 Var080 Var081 

Var082 Var083 Var084 Var091 Var092 Var093 
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First segmentation method (PET/CT) 

 

By studying the correlation coefficient trend of these metabolomic variables, the correlation 

matrix of the radiomics and metabolomics features created using the first segmentation 

method shows a correlation between 10 of the 20 studied metabolomic variables related to 

plasma glucose and 12 of the 45 radiomics features.  

 

When looking at the metabolomics variables related to plasma glucose concentration, the 

correlations with four radiomics features are positive, and the R2-values lie between 0.3 and 

0.36. 

For glycerol, all 12 metabolomic variables have a negative correlation with eight radiomics 

features between -0.5 and -0.3. 

 

Table 8 shows the variables related to plasma glucose correlated to the described radiomics 

features using the first segmentation method in green and those not correlated in grey. 

 

All the metabolomic variables related to glycerol (N=12), displayed in table 7, are correlated 

to radiomics features. 

 
Table 8: The metabolomic variables related to plasma glucose. The variables colored in green (N=10) are positively 

correlated to radiomics features after using the first segmentation method. 

METABOLOMIC VARIABLES  

Var026 Var029 Var057 Var064 Var065 

Var070 Var071 Var074 Var076 Var094 

Var095 Var097 Var098 Var099 Var100 

Var101 Var104 Var107 Var108 Var122 

 

The correlation output matrix shows that metabolomic variable VAR071 (related to plasma 

glucose) has the highest correlation with the radiomics features. 

For the variables related to glycerol, the correlation output matrix shows that metabolomic 

variable VAR093 has the highest correlation with the radiomics features.  

A heatmap is shown in figure 25. This heatmap shows a summary of the correlations between 

the 10 metabolomics variables and 12 radiomics features.  

 

 

 

 

 

 



89 
 

  

 

 

 

term
V

ar0
2

9
V

ar0
5

7
V

ar0
6

5
V

ar0
6

8
V

ar0
6

9
V

ar0
7

0
V

ar0
7

1
V

ar0
8

0
V

ar0
8

1
V

ar0
8

2
V

ar0
8

3
V

ar0
8

4
V

ar0
9

1
V

ar0
9

2
V

ar0
9

3
V

ar0
9

8
V

ar0
9

9
V

ar1
0

0
V

ar1
0

8
V

ar1
2

2

M
o

ran
s.I

0
.3

2
3

1
2

1
0

.1
9

5
5

3
6

0
.2

2
1

5
7

8
0

.0
0

1
8

6
0

.0
0

1
8

6
0

.1
7

8
4

6
6

0
.0

9
5

9
6

2
-0

.0
6

6
6

4
-0

.1
1

2
5

9
-0

.0
4

1
9

1
-0

.1
1

5
-0

.1
7

6
2

8
-0

.1
6

7
5

2
-0

.2
9

8
8

3
-0

.4
0

7
1

6
0

.3
0

7
1

4
5

0
.2

0
0

1
3

1
0

.3
3

6
4

7
0

.3
0

3
4

2
5

0
.3

0
1

8
9

3

in
verse.d

ifferen
ce.n

o
rm

alised
5

9
0

.2
1

3
7

0
.3

5
4

8
5

3
0

.2
8

4
1

6
7

0
.3

1
4

8
0

5
0

.3
0

7
8

0
2

0
.3

0
3

2
0

6
0

.3
6

0
1

0
5

0
.2

8
5

0
4

2
0

.2
6

9
9

4
2

0
.2

7
1

4
7

4
0

.3
1

1
3

0
3

0
.2

8
3

5
1

0
.3

1
6

5
5

5
0

.2
5

1
5

5
9

0
.3

5
9

8
8

6
0

.2
3

9
0

8
5

0
.3

2
5

7
4

7
0

.2
2

4
6

4
2

0
.2

2
2

8
9

1
0

.2
8

8
9

8
1

G
rey.level.n

o
n

.u
n

ifo
rm

ity.G
LSZM

2
0

.1
6

5
3

4
4

0
.2

9
3

4
8

4
0

.3
0

1
3

6
2

0
.2

8
2

8
5

4
0

.2
3

6
8

9
7

0
.3

0
2

1
2

8
0

.3
6

8
3

3
2

0
.3

5
1

5
7

0
.3

6
9

2
9

6
0

.3
3

5
8

1
4

0
.3

4
9

3
8

2
0

.2
9

7
9

5
4

0
.3

6
8

8
5

9
0

.3
2

6
4

0
3

0
.2

5
6

5
9

3
0

.1
8

2
5

2
4

0
.2

0
5

9
4

2
0

.1
8

6
4

6
4

0
.1

9
3

4
6

7
0

.2
3

5
3

7
8

G
rey.level.n

o
n

.u
n

ifo
rm

ity.G
LD

ZM
2

0
.1

6
5

3
4

4
0

.2
9

3
4

8
4

0
.3

0
1

3
6

2
0

.2
8

2
8

5
4

0
.2

3
6

8
9

7
0

.3
0

2
1

2
8

0
.3

6
8

3
3

2
0

.3
5

1
5

7
0

.3
6

9
2

9
6

0
.3

3
5

8
1

4
0

.3
4

9
3

8
2

0
.2

9
7

9
5

4
0

.3
6

8
8

5
9

0
.3

2
6

4
0

3
0

.2
5

6
5

9
3

0
.1

8
2

5
2

4
0

.2
0

5
9

4
2

0
.1

8
6

4
6

4
0

.1
9

3
4

6
7

0
.2

3
5

3
7

8

C
o

efficien
t.o

f.variatio
n

-0
.1

4
0

6
1

-0
.2

8
1

1
-0

.2
1

2
8

2
-0

.4
2

4
2

3
-0

.4
2

4
8

8
-0

.2
2

9
2

4
-0

.2
4

2
5

9
-0

.3
5

9
2

3
-0

.3
6

1
8

6
-0

.3
2

9
0

3
-0

.3
8

3
9

6
-0

.4
2

6
4

1
-0

.3
7

6
9

6
-0

.4
4

7
6

4
-0

.5
3

6
4

9
-0

.1
6

3
8

-0
.2

4
8

2
8

-0
.1

3
2

2
9

-0
.1

4
9

3
6

-0
.0

6
6

4
2

Q
u

artile.co
efficien

t
-0

.1
7

6
0

6
-0

.3
1

6
5

6
-0

.2
3

0
9

9
-0

.4
6

1
4

3
-0

.4
7

8
0

6
-0

.2
5

6
8

1
-0

.2
5

5
9

4
-0

.4
0

0
5

9
-0

.3
9

0
5

2
-0

.3
6

1
2

-0
.4

0
7

5
9

-0
.4

5
0

9
2

-0
.4

1
0

4
4

-0
.4

5
5

0
8

-0
.5

4
8

9
7

-0
.1

9
2

6
9

-0
.2

7
6

0
7

-0
.1

6
0

0
8

-0
.1

7
6

5
-0

.0
9

2
2

4

C
o

efficien
t.o

f.variatio
n

1
7

-0
.1

5
8

7
7

-0
.2

9
6

8
6

-0
.2

2
3

1
1

-0
.4

3
2

7
6

-0
.4

3
4

7
3

-0
.2

4
0

8
4

-0
.2

4
9

3
7

-0
.3

5
9

4
5

-0
.3

5
5

2
9

-0
.3

2
7

2
8

-0
.3

8
1

5
5

-0
.4

2
8

6
-0

.3
7

8
7

1
-0

.4
4

8
3

-0
.5

4
1

9
6

-0
.1

8
-0

.2
6

4
0

3
-0

.1
4

7
3

9
-0

.1
6

2
7

1
-0

.0
7

8
6

7

Q
u

artile.co
efficien

t18
-0

.1
8

4
7

6
-0

.3
0

9
3

9
-0

.2
0

8
7

4
-0

.4
4

8
3

6
-0

.4
6

3
8

-0
.2

5
6

3
8

-0
.2

3
6

1
2

-0
.3

6
2

6
1

-0
.3

1
3

6
6

-0
.3

0
6

5
4

-0
.3

4
4

2
1

-0
.3

7
6

7
4

-0
.3

2
8

4
4

-0
.3

3
2

9
3

-0
.4

3
9

0
5

-0
.2

1
3

4
5

-0
.3

0
5

4
4

-0
.1

7
2

2
7

-0
.1

9
4

3
9

-0
.1

1
3

1
3

Sm
all.zo

n
e.lo

w
.grey.level.em

p
h

asis
-0

.1
4

9
8

-0
.2

5
5

5
-0

.3
1

6
5

6
-0

.3
6

6
8

9
-0

.3
0

1
0

2
-0

.3
2

5
0

9
-0

.3
1

4
8

-0
.3

1
9

1
8

-0
.3

7
1

4
8

-0
.3

6
6

8
9

-0
.4

2
1

6
-0

.4
2

1
6

-0
.5

0
2

1
3

-0
.4

3
8

8
9

0
.1

0
6

4
6

7
-0

.1
8

3
9

4
-0

.1
6

1
6

2
-0

.1
9

9
9

1
-0

.2
1

5
2

3
-0

.1
7

6
7

2

Sm
all.zo

n
e.lo

w
.grey.level.em

p
h

asis2
2

9
-0

.0
9

6
4

-0
.2

0
7

7
9

-0
.2

7
0

3
8

-0
.3

2
9

4
7

-0
.2

5
6

5
9

-0
.2

7
4

5
4

-0
.2

6
7

1
-0

.3
2

4
-0

.3
8

3
3

-0
.3

6
1

2
-0

.4
1

9
8

5
-0

.4
1

3
0

6
-0

.4
8

9
6

6
-0

.4
1

6
3

5
0

.1
3

4
9

1
6

-0
.1

3
9

0
7

-0
.1

1
0

8
4

-0
.1

5
5

7
1

-0
.1

6
9

7
1

-0
.1

3
6

0
1

Sm
all.zo

n
e.lo

w
.grey.level.em

p
h

asis2
4

5
-0

.1
8

2
4

1
-0

.2
5

5
5

-0
.3

0
7

8
-0

.3
4

5
4

4
-0

.3
0

8
4

6
-0

.3
1

9
8

4
-0

.2
7

8
4

8
-0

.2
3

0
5

5
-0

.2
5

6
3

7
-0

.2
7

6
5

1
-0

.3
1

4
3

7
-0

.3
1

6
3

4
-0

.3
8

4
4

-0
.3

0
3

2
1

0
.2

1
6

5
4

4
-0

.2
2

2
8

9
-0

.1
8

3
2

8
-0

.2
4

2
8

1
-0

.2
5

9
-0

.2
1

0
4

2

Lo
w

.d
ep

en
d

en
ce.lo

w
.grey.level.em

p
h

asis3
2

4
-0

.0
5

7
2

3
-0

.1
9

4
4

4
-0

.2
2

2
4

5
-0

.3
5

3
9

8
-0

.2
7

0
1

6
-0

.2
2

5
9

5
-0

.2
1

7
6

4
-0

.3
3

6
6

9
-0

.3
5

9
4

5
-0

.3
6

0
3

2
-0

.4
0

6
0

6
-0

.4
0

0
1

5
-0

.4
2

9
4

8
-0

.3
7

7
6

1
-0

.0
0

2
0

8
-0

.1
0

6
6

9
-0

.1
0

1
2

1
-0

.1
1

1
2

8
-0

.1
1

5
8

8
-0

.0
6

7
7

3

term
V

ar057
V

ar065
V

ar068
V

ar069
V

ar070
V

ar071
V

ar080
V

ar081
V

ar082
V

ar083
V

ar084
V

ar091
V

ar092
V

ar093
V

ar094
V

ar099
V

ar104
V

ar107

area.den
sity.A

A
B

B
0.323777

0.373454
0.31371

0.276288
0.303206

0.313054
0.258343

0.287668
0.269285

0.325966
0.290294

0.32334
0.311303

0.110844
0.288544

0.210855
0.300799

0.276288

inverse.differen
ce.no

rm
alised

.2
0.418317

0.326184
0.439326

0.368859
0.342817

0.349382
0.413065

0.439107
0.407375

0.453988
0.425539

0.488565
0.409345

0.246964
0.333844

0.330124
0.284604

0.30058

G
rey.level.no

n.unifo
rm

ity.G
LSZM

.2
0.348288

0.356166
0.355509

0.262501
0.343692

0.393588
0.379363

0.445016
0.399059

0.437575
0.397089

0.495787
0.435387

0.018054
0.30255

0.231863
0.253529

0.255498

G
rey.level.no

n.unifo
rm

ity.G
LD

ZM
.2

0.348288
0.356166

0.355509
0.262501

0.343692
0.393588

0.379363
0.445016

0.399059
0.437575

0.397089
0.495787

0.435387
0.018054

0.30255
0.231863

0.253529
0.255498

Surface.to
.vo

lum
e.ratio

-0.14936
-0.15505

-0.24609
-0.14498

-0.10887
-0.17124

-0.3299
-0.34741

-0.30342
-0.34435

-0.28285
-0.37871

-0.30627
-0.01499

-0.09837
-0.03775

-0.05679
-0.07123

Q
uartile.co

efficien
t

-0.33559
-0.28067

-0.33144
-0.37783

-0.2776
-0.31218

-0.28592
-0.29861

-0.25637
-0.30496

-0.28767
-0.30561

-0.3426
-0.40256

-0.25769
-0.2776

-0.25659
-0.25309

M
inim

um
.histo

gram
.gradien

t
-0.19715

-0.0908
-0.30668

-0.32673
-0.10756

-0.16977
-0.31709

-0.3161
-0.28751

-0.29441
-0.25279

-0.26616
-0.30832

-0.4644
-0.08784

-0.12519
-0.06846

-0.07284

co
arsen

ess.1-0.23383
-0.24062

-0.32334
-0.259

-0.23055
-0.29095

-0.35726
-0.39884

-0.37411
-0.38265

-0.33144
-0.39052

-0.39009
-0.17584

-0.18416
-0.11828

-0.13973
-0.14608

co
arsen

ess.2-0.23164
-0.22792

-0.29817
-0.23143

-0.21326
-0.26863

-0.34325
-0.39206

-0.35223
-0.37061

-0.32246
-0.39031

-0.3844
-0.17146

-0.17409
-0.10887

-0.1336
-0.14104

sm
all.distance.em

phasis.G
LD

ZM
-0.13557

-0.18897
-0.2555

-0.13229
-0.14345

-0.18547
-0.34172

-0.38046
-0.32925

-0.36448
-0.32815

-0.42641
-0.36558

0.088303
-0.10472

-0.0163
-0.06883

-0.08962

Zo
ne.distance.no

n.unifo
rm

ity.no
rm

alized
.G

LD
ZM

-0.1266
-0.17759

-0.26403
-0.15855

-0.14433
-0.1916

-0.33428
-0.37324

-0.32268
-0.36295

-0.32028
-0.4065

-0.3612
0.056352

-0.09465
-0.01477

-0.05788
-0.08108

sm
all.distance.em

phasis.G
LD

ZM
.1

-0.16468
-0.19554

-0.27891
-0.14783

-0.15549
-0.18416

-0.37608
-0.41241

-0.37302
-0.41569

-0.3879
-0.475

-0.37761
0.10581

-0.13317
-0.036

-0.09552
-0.10712

Zo
ne.distance.no

n.unifo
rm

ity.no
rm

alized
.G

LD
ZM

.1
-0.15724

-0.18678
-0.27038

-0.13732
-0.1487

-0.17912
-0.37389

-0.41438
-0.37389

-0.41635
-0.38396

-0.4739
-0.37499

0.115658
-0.12638

-0.0279
-0.08721

-0.10012

sm
all.distance.em

phasis.G
LD

ZM
.2

-0.08776
-0.15123

-0.23789
-0.13066

-0.0929
-0.10702

-0.31187
-0.32609

-0.32576
-0.32259

-0.30355
-0.41035

-0.29753
0.197188

-0.09542
0.022761

-0.05296
-0.06095

Zo
ne.distance.no

n.unifo
rm

ity.no
rm

alized
.G

LD
ZM

.2
-0.08995

-0.14576
-0.24599

-0.13109
-0.09356

-0.10636
-0.31734

-0.33594
-0.33715

-0.3331
-0.31449

-0.42151
-0.30848

0.193686
-0.08864

0.025387
-0.04662

-0.05198

dep
en

den
ce.C

o
unt.Energy.2

-0.22289
-0.2555

-0.28898
-0.1638

-0.23602
-0.24084

-0.33516
-0.37521

-0.36207
-0.37871

-0.33231
-0.43714

-0.32378
0.220046

-0.18941
-0.10143

-0.15483
-0.16577

Fig
u

re 3
4

: A
 h

ea
tm

a
p

 o
f th

e co
rrela

tio
n

s b
etw

een
 1

0
 m

eta
b

o
lo

m
ics va

ria
b

les a
n

d
 1

2
 ra

d
io

m
ics fea

tu
res o

b
ta

in
ed

 u
sin

g
 th

e first seg
m

en
ta

tio
n

 m
eth

o
d

. 

Fig
u

re 3
5

: A
 h

ea
tm

a
p

 o
f th

e co
rrela

tio
n

s b
etw

een
 8

 m
eta

b
o

lo
m

ics va
ria

b
les a

n
d

 1
6

 ra
d

io
m

ics fea
tu

res o
b

ta
in

ed
 u

sin
g

 th
e seco

n
d

 seg
m

en
ta

tio
n

 m
eth

o
d

. 



90 
 

Second segmentation method (PET/CT) 

 

The correlation output matrix created with the second segmentation method describes a 

correlation between eight of the 20 studied metabolomics variables related to plasma glucose 

and 16 of the 45 studied radiomics features. 

 

For the eight metabolomics variables related to plasma glucose concentration, the 

correlations with four radiomics features are positive, and the R2-values lie between 0.3 and 

0.41. Fewer variables are correlated with radiomics features using the second segmentation 

method than with the first segmentation method, but those correlated show a higher R2-value 

using the second segmentation method. 

All 12 metabolomic variables related to glycerol are correlated to 12 radiomics features, and 

all the variables have several negative correlations to the radiomics features. With these 

negative correlations, the R2-values lay between -0.57 and -0.3. These negatively correlated 

variables with radiomics features show an increase in R2-value when using the second 

segmentation method compared to using the first segmentation method. 

 

Table 9 shows the variables related to plasma glucose correlated to the described radiomics 

feature after the second segmentation method in green and those not correlated in grey. 

 

All the metabolomic variables related to glycerol (N=12), displayed in table 7, are correlated 

to radiomics features. 

 
Table 9: The metabolomic variables related to plasma glucose. The variables colored green (N=8) are positively correlated to 

radiomics features after using the second segmentation method. 

METABOLOMIC VARIABLES  

Var026 Var029 Var057 Var064 Var065 

Var070 Var071 Var074 Var076 Var094 

Var095 Var097 Var098 Var099 Var100 

Var101 Var104 Var107 Var108 Var122 

 

For the variables related to plasma glucose, the correlation output matrix shows that 

metabolomic variable VAR057 has the highest correlation with the radiomics features. 

 

For the variables related to glycerol, the correlation output matrix shows that metabolomic 

variable VAR093 has the highest correlation with the radiomics features. 

A heatmap is shown in figure 26. This heatmap shows a summary of the correlations between 

the 8 metabolomics variables and 16 radiomics features.  
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Third segmentation method (PET) 
 

The correlation output matrix created with the third segmentation method describes a 

correlation between all 20 of the metabolomics variables related to plasma glucose and 17 of 

the 45 studied radiomics features. 

 

For the 20 metabolomics variables related to plasma glucose concentration, the correlations 

with two radiomics features are positive, and the R2-values lie between 0.3 and 0.5. All the 

metabolomic variables related to glucose plasma correlated to radiomics features. All the 

correlated variables show a higher R2-value using the third segmentation method than the 

two previous methods. 

All 12 metabolomic variables related to glycerol are correlated to 15 radiomics features, and 

all the variables have several negative correlations to the radiomics features. With these 

negative correlations, the R2-values lay between -0.53 and -0.3. The R2-values obtained using 

the third segmentation method are very close to the R2-values obtained using the second 

segmentation method, but the overall trend shows lower values using the third segmentation 

method. 

 

Table 10 shows the variables related to plasma glucose correlated to the described radiomics 

feature after the third segmentation method in green and those not correlated in grey. 

All the metabolomic variables related to glycerol (N=12), displayed in table 7, are correlated 

to radiomics features. 

 
Table 10: The metabolomic variables related to plasma glucose. The variables colored green (N=20) are correlated positively 

to radiomics features after using the third segmentation method. 

METABOLOMIC VARIABLES  

Var026 Var029 Var057 Var064 Var065 

Var070 Var071 Var074 Var076 Var094 

Var095 Var097 Var098 Var099 Var100 

Var101 Var104 Var107 Var108 Var122 
 

For the variables related to plasma glucose, the correlation output matrix shows that 

metabolomic variable VAR026 has the highest correlation with the radiomics features. For 

the variables related to glycerol, the correlation output matrix shows that metabolomic 

variable VAR091 has the highest correlation with the radiomics features. 

A heatmap is shown in figures 27 and 28. This heatmap shows a summary of the correlations 

between the 20 metabolomics variables and 17 radiomics features.  

Although out of the scope of this thesis, it is noteworthy that these variables are linked to a 

single metabolite (VAR026 for glycerol) and only two metabolites (glucose and a small link 

with another metabolite). This contrasts with the results from the previous segmentation 

methods, where the variables with the highest correlations represent a combination of 

multiple metabolites. 
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16.2 Discriminative model 
 

For the second goal of this research, building the discriminative models, 85 patients were 

included.  

In table 11, the complete patient cohort is shown in more detail. A specification of the types 

of lung tumors is represented in table 12, more specifically for adenocarcinoma, squamous 

cell carcinoma, and neuroendocrine lung tumors. Table 13 provides a comparison between 

the malignant and the non-malignant lesions. Figures 38-45 show an overview of this patient 

cohort. 

 
 

16.2.1 Included patients 
 

Table 11: Specifications total patient cohort (N=85) for the discriminative radiomics model. 

Variable 
 

Total patients 85 

Sex (N, (%)) Men 53 (62.4) 

Women 32 (37.6) 

Diabetes (N, (%)) Yes 10 (11.8) 

No 75 (88.2) 

 
Smoking status (N, (%)) 

Current smoker 39 (45.9) 

Ex-smoker 44 (51.8) 

Non-smoker 2 (2.3) 

 
 

Packyears (y) 

Median 37  

Average 40 ± 24 

Range 0 - 139 

Unknown 8 

 
Age (y) 

Median 69  

Average 68 ± 9  

Range 40 - 84 

 
BMI (kg/m²) 

Median 26.02  

Average 26.30 ± 4.89  

Range 14.69 - 51.00 

 
Diameter (mm) 

Median 25  

Average 31.03 ± 19.70 

Range 9 - 120 

 
Plasma glucose (mg%) 

Median 97  

Average 99.75 ± 16.76 

Range 76 - 168 

 
FEV1 absolute value (l) 

Median 2.27  

Average 2.38 ± 0.75 

Range 1.09 - 4.65 
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Table 12: Specifications of the malignant lung lesions (N=72) for the discriminative radiomics model. 

 
Adenocarcinoma Squamous cell 

carcinoma 
Neuroendocrine 

lung tumor  

Total patients 46 21 5 

Sex (N, (%)) Men 25 (54.3) 14 (66.7) 5 

Women 21 (45.7) 7 (33.3) 0 

Diabetes (N, (%)) Yes 7 (15.2) 2 (9.5) 1 (20.0) 

No 39 (84.8) 19 (90.5) 4 (80.0) 

 
Smoking status (N, (%)) 

Current smoker 21 (45.7) 7 (33.3) 3 (60.0) 

Ex-smoker 23 (50.0) 14 (66.7) 2 (40.0) 

Non-smoker 2 (4.3) 0 0 

 
 

Packyears (y) 

Median 35  40  38  

Average 36 ± 23 40 ± 21 41 ± 16 

Range 0 - 130 0 - 80 26 - 70 

Unknown 4 1 0 

 
Age (y) 

Median 70  70  75 

Average 69 ± 8 70 ± 8 75 ± 4 

Range 49 - 84 55 - 83 71 - 80 

 
BMI (kg/m²) 

Median 25.63  26.85  27.29  

Average 26.31 ± 5.60 26.74 ± 3.31 26.30 ± 3.18 

Range 16 .00 - 51.00 19.72 - 34.89 20.76 - 29.38 

 
 

Lobe 

Right upper 19 3 1 

Right middle 3 1 2 

Right lower 5 4 2 

Left upper 12 7 1 

Left under 12 6 0 

 
Diameter (mm)  

Median 22  30  32  

Average 31.07 ± 22.96 30.70 ± 12.47 37.60 ± 12.97 

Range 9 - 120 12 - 60 20 - 55 

 
Resection margin 

Positive 4 1 1 

Negative 42 19 4 

Unknown 0 1 0 

Visceral pleural invasion Yes 10 8 0 

No 36 13 5 

Lymph vascular invasion Yes 10 7 2 

No 36 14 3 

Positive nodes Yes 10 2 0 

No 36 19 5 

 
Plasma glucose (mg%) 

Median 96  100  95  

Average 99.80 ± 18.20 102.81 ± 14.03 101.20 ± 20.75 

Range 76 - 168 83 - 141 79 - 137 

 
FEV1 absolute value (l) 

Median 2.22  2.32 2.35 

Average 2.35 ± 0.74 2.26 ± 0.71 2.63 ± 0.80 

Range 1.09 - 4.49 1.16 - 3.94 1.72 - 4.08 
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  Adenocarcinoma Squamous cell 
carcinoma 

Neuroendocrine 
lung tumor 

 
 
 

T 

1a 2 1 0 

1b 13 7 2 

1c 9 2 0 

2a 13 5 1 

2b 0 2 1 

3 9 2 1 

4 2 3 0 

 
N 

0 37 17 5 

1 8 4 0 

2 1 1 0 

M 0 45 22 5 

1a 1 0 0 

R 0 44 21 4 

1 2 1 1 

 

Note: due to the COVID-19 crisis, the lobectomy of the last patient is not fulfilled. This means 

that the type of tumor and other tumor related features are unknown. Demography features 

of this patients are included. 
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Table 13: Comparison between malignant and non-malignant lung lesions (N=85) for the discriminative radiomics model. 

  Malignant Non-malignant 

Total patients 73 12 

Sex (N, (%)) Men 44 (60.3) 9 (75.0) 

Women 29 (39.7) 3 (25.0) 

Diabetes (N, (%)) Yes 10 (13.7) 0 (0.0) 

No 63 (86.3) 12 (100.0) 

Smoking status (N, (%)) Current smoker 32 (43.8) 7 (58.3) 

Ex-smoker 39 (53.5) 5 (41.7) 

Non-smoker 2 (2.7) 0 

 
 

Packyears (y) 

Median 37  48 

Average 38 ± 22 51 ± 38 

Range 0 - 130 8 - 139 

Unknown 6 2 

 
Age (y) 

Median 70 61 

Average 70 ± 8 61 ± 11 

Range 49 - 84 40 - 80 

 
BMI (kg/m²) 

Median 26.57  24.44  

Average 26.47 ± 4.87 25.27 ± 4.86 

Range 16.00 - 51.00 14.69 - 33.00 

 
 

Lobe 

Right upper 23 6 

Right middle 6 2 

Right lower 10 2 

Left upper 19 2 

Left under 18 1 

Diameter (mm) 
  

Median 25    

Average 31.43 ± 19.94   

Range 9-120   

Plasma glucose (mg%) Median 97  90  

Average 100.66 ± 17.25 94.25 ± 12.04 

Range 76 - 168 76 - 120 

FEV1 absolute value (l) Median 2.25 2.31 

Average 2.34 ± 0.74 2.60 ± 0.82 

Range 1.09 - 4.49 1.71 - 4.65 
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Figure 38: Pie chart of sex of the patients with radiomics features. 

 

Figure 39: Pie chart of diabetes of the patients with radiomics features. 

 

Figure 40: Pie chart of different types of NSCLC of the patients with radiomics features. 

  

53

32

Sex

Men Women

10

75

Diabetes

Yes No

46

21

5

12 1

Type of NSCLC

Adenocarcinoma Squamous cell carcinoma Neuroendocrine Inflammation Unknown



98 
 

 

Figure 41: Pie chart of the smoking status of the patients with radiomics features. 

 

Figure 42: Pie chart of the location of the tumor of the patients with radiomics features. 
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Figure 43: Bar chart of the age of the patients with radiomics features. 

 

 

Figure 44: Bar chart of the BMI of the patients with radiomics features. 
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Figure 45: Bar chart of the diameter of the tumor of the patients with radiomics. 
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16.2.2 Results 
 

The obtained dataset with radiomics features of the 85 included patients is used in this part 

of the study, together with a dataset that contains 66 of these 85 patients, diagnosed with 

adenocarcinoma and squamous cell carcinoma. The datasets were obtained using the second 

type of segmentation (PET/CT). First, the largest dataset was reduced in two ways: Spearman 

correlation coefficient test combined with manual data reduction, and FA. The dataset of 66 

patients was only reduced using the Spearman correlation coefficient test combined with 

manual reduction. 

All features that showed a correlation of at least 90% were excluded from the dataset. 

Afterwards, only 56 features remained per patient. FA was executed multiple times in such a 

way that 3,4,5 and 10 factors per patient remained in the output matrices. The distribution of 

the radiomics features into the factors is shown by figure 46 for the FA performed with three 

factors. The distribution for the FA with 4, 5 and 10 factors can be found in the annex (S1-S3). 

Every patient in both resulting datasets of the 85 patients with a malignant lung lesion was 

labeled as ‘1,’ and every patient with a non-malignant lung lesion was labeled as ‘0’ in the 

‘Event’ column. Both datasets underwent a forward selection and backwards stepwise 

selection regression to generate the discriminative models using the two different data 

reduction methods. The regression was executed in RStudio. The manually reduced dataset 

was split into a 75% training dataset and a 25% test dataset. The regression methods were 

used on the training dataset. The exact same method was used for the manually reduced 

dataset containing radiomics features of 66 patients. Every patient in this dataset with 

adenocarcinoma was labeled as ‘1,’ and every patient with squamous cell carcinoma was 

labeled as ‘0’ in the ‘Event’ column. 

The forward logistic regression was used first, with a threshold of 0.2. For the datasets that 

were reduced manually, the models started with zero variables. A Chi-squared test was used 

to determine which parameter with the lowest p-value was added to the model first. After 

this variable was added to the model, another Chi-squared test was used to determine which 

parameter with the lowest p-value must be added next. This was done until no other variables 

were significant enough to add to the model. After these steps, a model based on eight 

radiomics features was built for the dataset of 85 patients. For the dataset of 66 patients, the 

model was build based on seven radiomics features. 

The next step for these models is to refine to a threshold of 0.05. This is done with a backwards 

stepwise logistic regression, which started from the model build on respectively eight or seven 

features. Then a z-test was ran on this model, and, based on the p-value, the feature above 

the threshold of 0.05 was removed from the model. This was done until it was not significant 

anymore to remove features from the model. At the end of this step, the refined model was 

built based on two radiomics features for the dataset of 85 patients; inverse difference 

normalized and quartile coefficient.  
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For the other dataset, the model was also built on two radiomics features; inverse difference 

normalized and zone distance variance GLDZM. The test datasets were used after this to 

determine the accuracy of the model.   

 

Table 14 and 15 shows the results of these tests, respectively for the model build based on 

dataset of 85 patients and based on the dataset of 66 patients.  

The patients that were labeled with ‘1’ in ‘Events’ in the 25% test dataset of the 85 patients 

were placed correctly for 94.74% (sensitivity) using the model generated with the 75% training 

dataset. Unfortunately, the patients that were labeled with ‘0’ in ‘Events’ (specificity) were 

never placed correctly using this model. This phenomenon can be explained by the 

unbalanced distribution of the patients with malignant and non-malignant PET-positive lung 

nodules. For the datasets that were created with FA, the logistic regression did not give a 

significant result for any of the four created datasets. After going through the forward logistic 

regression with the threshold of 0.2, a model was generated consisting of only one radiomics 

feature.  

 
Table 14: Summary of the results from the discriminative model for malignant and non-malignant PET-positive lung nodules. 

Accuracy 0.8182 

95% CI (0.5972, 0.9481) 

P-Value [Acc > NIR] 0.8283 

Sensitivity 0.9474 

Specificity  0.0000 
 
 

Table 15: Summary of the results from the discriminative model for adenocarcinoma and squamous cell carcinoma. 

 

 

 

 

 

The patients that were labeled with ‘1’ in ‘Events’ in the 25% test dataset of the 66 patients 

were placed correctly for 40.00% (sensitivity) using the model generated with the 75% training 

dataset. The patients that were labeled with ‘0’ in ‘Events’ were placed right using this model 

in 91.67% of the cases (specificity).  Again, the reason for this very low sensitivity will probably 

be due to the small patient cohort. 

Accuracy 0.7647 

95% CI (0.501, 0.9319) 

P-Value [Acc > NIR] 0.4093 

Sensitivity 0.4000 

Specificity 0.9167 
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Figure 46: Distribution of the radiomics features after Factor Analysis with an output of three factors. 
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17  Discussion 
 

This study reports the unique methodology of combining two techniques, metabolomics from 

plasma samples and radiomics from PET/CT images in NSCLC. We show that metabolomics 

and radiomics data from patients diagnosed with early-stage and locally advanced NSCLC are 

correlated and that discriminative models based on radiomics features can be built. The 

combination of these two techniques leads to our main findings:  

 

1. Correlations are found between radiomics data and metabolomics data of the included 

NSCLC patients. Increased plasma glucose uptake correlates significantly positively 

with six radiomics features, whereas 13 radiomics features are negatively correlated 

with decreased plasma glycerol. 

2. A discriminative model based on radiomics features distinguishes between a non-

malignant and a malignant lesion, and between the pathology of an adenocarcinoma 

and a squamous cell carcinoma. 

 

The first findings show positive as well as negative correlations between radiomics features 

and metabolomics variables. It is crucial to notice that metabolites might be more or less 

dominant in plasma samples of cancer cells due to the reprogramming of these cells, 

compared to cells in a healthy person (129). These effects can be represented in the metabolic 

data. Next to the metabolic data, radiomics features are obtained with the help of PET/CT 

imaging and are evaluated if they could lead to better insights in the understanding of patients 

with NSCLC. 

 

The positive correlations found in the total omics-datasets are mainly related to the 

concentration of plasma glucose. The six radiomics features positively correlated to glucose 

are identified as Morans I, inverse difference normalized, grey level non-uniformity GLSZM, 

grey level non-uniformity GLDZM, area density AABB, and first measure of information 

correlation 1. 

The negative correlations found in the total omics-datasets are mainly related to glycerol and 

phospholipids. The 13 radiomics features that were negatively correlated to the metabolites 

are identified as coefficient of variation, quartile coefficient, small zone low grey level 

emphasis, low dependence low grey level emphasis, surface to volume ratio, minimum 

histogram gradient, coarseness, zone distance non-uniformity normalized GLDZM, small 

distance emphasis GLDZM, dependence count energy, joint maximum, angular second 

moment and grey level non-uniformity normalized.  

Smolle et al. already showed that the glycolysis and gluconeogenesis processes are highly 

activated in tumor cells of patients with NSCLC (130). PET/CT imaging is used in this study due 

to the high glucose uptake revealed by PET imaging (131). It is essential to notice that cancer 

cells need a higher glucose uptake to support the increased glycolysis cycle.  
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Vanhove et al. previously suggested that a high glucose level in plasma is needed for cancer 

cells to survive. Cancer cells support the ongoing glycolysis, and therefore, the compensatory 

role of gluconeogenesis is crucial (132). This compensatory role indicates that more glucose is 

made in other cells of the human body by gluconeogenesis. The glucose formed from this 

process is transported within the blood plasma to sustain the glycolysis process within tumor 

cells to provide energy. An increase in glucose uptake leads to a decrease in glycerol due to 

the need for glycerol to form glucose. The hypothesis of Vanhove et al. is confirmed by our 

independent study based on the correlations found between the radiomics and metabolomics 

datasets. 

Louis et al. already showed that lung cancer patients have an increased plasma glucose and 

lactate level, which is clearly in line with the result of this study. In addition, it confirms the 

supporting role of gluconeogenesis in normal non-cancer cells (133). Interestingly, decreased 

phospholipid levels are also detected in the plasma of lung cancer patients (133). This 

decrease is accordant to an enhanced membrane synthesis in cancer cells (134-136). 

In summary, increased plasma glucose uptake correlates significantly positively with six 

radiomics features, whereas 13 radiomics features are negatively correlated with decreased 

plasma glycerol. 

 

The impact of the method of segmentation on these results is not negligible. As shown in the 

'Results' section, the correlation coefficient variation depends on the segmentation method 

of the lung lesion to obtain the volume of interest. Therefore, a suitable segmentation method 

is crucial. Lu et al. examined the influence of segmentation methods and the impact of the 

used tracer. They concluded that slight differences in segmentation methods and the used 

tracers, 18F-FDG and 11C-choline, are present (137). The segmentation method using PET (third 

segmentation method as discussed in ‘Results’) shows the most and strongest correlations 

between the metabolomics variables related to the concentration of plasma glucose in blood. 

This method is the easiest to use when looking at underlying correlations between radiomics 

features and metabolic parameters. This result is in line with our expectations. Since we are 

looking at variables related to the glucose plasma uptake in blood, it is logical that higher 

correlation values are obtained using only PET images (131). 

 

The second part of this research consists of building the discriminative models based on the 

radiomics features extracted from PET/CT images. Two types of data reduction methods are 

used on the large radiomics datasets, manual reduction, and FA. The two different methods 

for data reduction were used to see if this difference was also visible in the resulting models.  

 

However, the models built based on the factors are unsuccessful. The one generated based 

on the manually reduced dataset of 85 patients shows better results, although still far from 

optimal. The sensitivity of this model is 0.9474, the specificity is 0.00. Table 14 suggests that 

the generated model and results of the discriminative model are too fragile for both reduction 

methods, due to the small patient cohort. Despite these results, the method to generate this 

discriminative model is correct.   
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The model that was generated based on the manually reduced dataset of 66 patients also 

gave a similar result. The patients labeled with ‘1’ in ‘Events’ in the 25% test dataset are placed 

correctly for 40% using the model generated with the 75% training dataset. The patients 

labeled with ‘0’ in ‘Events’ in the 25% training dataset are placed correctly for 91.67%. 

Again, these results also show that a small dataset is far from optimal when building a 

discriminative model. It was evident that, although the used method is correct, the results 

would not be optimal because this test dataset only consisted of 17 patients. Independently 

of the method used for data reduction, the small patient cohort remains a problem. 

 

Following methodological biases can have influenced our results; the small patient cohort, the 

heterogeneity of lung cancer images on PET/CT, the impact of the PET/CT camera itself, and 

the focus from mainly plasma glucose and glycerol (and not, for example, glutamine and 

glutamate (16)). Future research is necessary to verify the concluded results. 

 

The first step to achieve this goal is to enlarge the patient cohort to increase the reliability of 

this study. Although the included patient cohort is homogeneous, heterogeneity within the 

patient cohorts is still present. This heterogeneity is made visible in the section named 

'Results' with the help of pie charts of the included patients (figures 75-78, 97-100). 

 

A solution to tackle the problem of cancer heterogeneity with a patient is a quantitative 

scoring system of the characteristics of the tumor on PET/CT images. This system was already 

executed as part of this study for four characteristics of the tumor. First, the heterogeneity or 

homogeneity was scored on an observer-based scale from one to five. A score of five indicated 

a fully heterogeneous tumor, and one indicated a very homogeneous tumor. Secondly, a score 

from one to three was given to the shape of the tumor, a score of one was a very nodular 

shape of the tumor, and a score of three for a fanciful shape. Thirdly, the presence of retro-

obstructive pneumonia in the lung lesion was scored. Lastly, the presence of central necrose 

was evaluated. However, this scaling solution has to be validated by its inter-rater reliability 

(e.g., Cohens’ kappa coefficient (138)) and its usefulness in understanding radiomics before it 

can be used in further research.  

 

Another possible bias we can not exclude in our results is the impact of the used PET/CT 

camera. We used a Biograph Horizon from Siemens but could not compare it with another 

PET/CT camera. The research group has already collected metabolic parameters from another 

300 patients. These patients all have PET/CT images made with a different camera, specifically 

a GEMINI TF Big bore from Philips.  The results obtained using the PET/CT camera we used, 

and the results obtained using this camera could be examined and compared to each other. 

Our hypothesis is that a different PET/CT camera will not lead to significant results. Minor 

differences might be visible from the radiomics tool, but there will not be a different outcome. 
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Looking at the long-term goals of this study, the results are auspicious.  

In the nearby future, further research could compare healthy lung tissue and tissue out of a 

lung tumor. Metabolomics features are parameters out of the blood plasma and radiomics 

features are parameters out of tissues. Because of the chirurgical resection of the tumor from 

the included patients, tissue out of a lung tumor is already collected. Combining the results of 

healthy lung tissue and tissue out of a lung tumor with the metabolomics of the patients could 

give a good insight into possibly change in tissue (radiomics) that could lead to any changes in 

the parameters of the blood plasma (metabolomics), or the other way around. This research 

hypothesizes that the metabolism in the blood will adapt to the metabolism in the tissue if it 

changes and vice versa. 

 

In the far future, this whole process could be automated. The PET/CT images of a patient could 

be loaded into a program that would automatically extract relevant radiomics features. 

Concurrently with the processing of images, blood samples of that patient could be taken and 

analyzed, focusing on specific metabolites that show an underlying correlation with the 

radiomics features of the PET/CT image. The automated process could immediately show if 

specific important metabolic parameters and features of the PET/CT images impact patients’ 

clinical outcome.  

 

To this day, several patients underwent surgery that was not necessary. This type of surgery 

happens in up to 11% of the cases with lung cancer (139). If this automatization and 

correlation between radiomics features and metabolic parameters could be linked directly to 

a diagnosis, unnecessary treatment and operations could be avoided, and the patient could 

get an earlier diagnosis.  
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18  Conclusion 
 

For the first goal of this research, the correlation of metabolomics and radiomics features, 39 

patients were included. Three different types of segmentation of the lung lesions were used 

to create VOIs. Out of every VOI, 483 radiomics features were extracted. Simultaneously, 238 

metabolic parameters representing 62 plasma metabolites were determined from the same 

patient cohort using proton nuclear magnetic resonance (1H-NMR) spectroscopy. On each 

dataset, the Spearman correlation coefficient was used to examine the underlying 

correlations between the radiomics features and the metabolic parameters, using a threshold 

of 0.3 (or -0.3).  

 

Our research suggests that metabolic parameters of NSCLC patients are correlated to features 

of the PET/CT images of those patients. In all three segmentation methods combined, high 

glucose uptake is in line with the six radiomics features significantly positively correlated to 

increased plasma glucose. In contrast, 13 radiomics features are negatively correlated with 

decreased plasma glycerol, proving the supporting role of gluconeogenesis. The third 

segmentation method (PET) shows the strongest correlations with metabolomics.  

 

The second aim of our research was to generate a model that could discriminate between a 

non-malignant lesion and a malignant lesion, and between an adenocarcinoma and a 

squamous cell carcinoma for NSCLC patients based on radiomics features. However, the 

models based on the two reduction methods proved to be not helpful when only a small 

patient cohort could be obtained.  

 

Based on the datasets reduced with FA, this method did not give a useful model. The model 

generated based on the manually reduced dataset of 85 patients gave a specificity of 0.00 and 

a sensitivity of 0.9474. The model generated based on the manually reduced dataset of 66 

patients had a specificity of 0.9167 and a sensitivity of 0.40. The models are too fragile to build 

further conclusions due to the small patient cohort. 

  



110 
 

  



111 
 

References 
 
1. society Ac. Key statistics for lung cancer 2021 [Available from: 
https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html. 
2. Burotto M, Thomas A, Subramaniam D, Giaccone G, Rajan A. Biomarkers in early-stage non-
small-cell lung cancer: current concepts and future directions. J Thorac Oncol. 2014;9(11):1609-17. 
3. Compton C. Cancer: The Enemy From Within: Springer Nature Switzerland AG; 2020 [cited 
2021. 
4. Dubois L. Tumor Biology. 2020. 
5. Kalyanaraman B. Teaching the basics of cancer metabolism: Developing antitumor strategies 
by exploiting the differences between normal and cancer cell metabolism. Redox Biol. 2017;12:833-
42. 
6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-
74. 
7. El-Tanani M, Dakir el H, Raynor B, Morgan R. Mechanisms of Nuclear Export in Cancer and 
Resistance to Chemotherapy. Cancers (Basel). 2016;8(3). 
8. Fadaka A, Ajiboye B, Ojo O, Adewale O, Olayide I, Emuowhochere R. Biology of glucose 
metabolization in cancer cells. Journal of Oncological Sciences. 2017;3(2):45-51. 
9. College O. Cellular Respiration: Oxidation of pyruvate and the citric acid cycle. 2013. In: 
Biology [Internet]. [214-7]. Available from: 
https://cnx.org/contents/GFy_h8cu@9.85:weAHBat1@7/Oxidation-of-Pyruvate-and-the-Citric-Acid-
Cycle. 
10. Clark MA, Douglas M, Choi J. Oxidation of Pyruvate and the Citric Acid Cycle.  Biology 2e. 2 
ed. Houston, Texas: OpenStax; 2018. p. 206-9. 
11. Khan S. The citric acid cycle 2009 [Available from: 
https://www.khanacademy.org/science/biology/cellular-respiration-and-fermentation/pyruvate-
oxidation-and-the-citric-acid-cycle/a/the-citric-acid-cycle. 
12. Rye C, Wise R, Jurukovski V, DeSaix J, Choi J, Avissar Y. Cellular respiration: oxidative 
phosphorylation. 2017. In: Biology [Internet]. [213-7]. 
13. Lee O, O’Brien PJ. Modifications of Mitochondrial Function by Toxicants. 2010. In: 
Comprehensive Toxicology [Internet]. Elsevier. 1. [411-45]. Available from: 
https://www.sciencedirect.com/science/article/pii/B9780080468846001196. 
14. Romero-Garcia S, Lopez-Gonzalez JS, Baez-Viveros JL, Aguilar-Cazares D, Prado-Garcia H. 
Tumor cell metabolism: an integral view. Cancer Biol Ther. 2011;12(11):939-48. 
15. Martinez CAS, Claudio. Heterogeneity of Glucose Transport in Lung Cancer. Biomolecules. 
2020;10(868). 
16. Vanhove K, Derveaux E, Graulus G-J, Mesotten L, Thomeer M, Noben J-P, et al. Glutamine 
Addiction and Therapeutic Strategies in Lung Cancer. International Journal of Molecular Sciences. 
2019;20(252). 
17. Ryan DG, Murphy MP, Frezza C, Prag HA, Chouchani ET, O'Neill LA, et al. Coupling Krebs cycle 
metabolites to signalling in immunity and cancer. Nature Metabolism. 2019;1:16-33. 
18. Cancer IAfRo. Cancer Today 2020 [Available from: https://gco.iarc.fr/today/home. 
19. Institute NC. PDQ Non-Small Cell Lung Cancer Treatment 2020 [updated 12/3/2020. Available 
from: https://www.cancer.gov/types/lung/patient/non-small-cell-lung-treatment-pdq. 
20. Prevention CfDCa. What is Lung Cancer? 2020 [Available from: 
https://www.cdc.gov/cancer/lung/basic_info/what-is-lung-cancer.htm. 
21. Stöppler MC. What Is Non-Small-Cell Lung Cancer (NSCLC)?2020. Available from: 
https://www.emedicinehealth.com/non-small-
cell_lung_cancer/article_em.htm#what_are_the_stages_of_non-small-cell_lung_cancer. 
22. Society AC. Cancer staging2020. Available from: 
https://www.cancer.org/treatment/understanding-your-diagnosis/staging.html. 
23. Society AC. Lung Cancer Early Detection, Diagnosis, and Staging2019. 

https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html
https://cnx.org/contents/GFy_h8cu@9.85:weAHBat1@7/Oxidation-of-Pyruvate-and-the-Citric-Acid-Cycle
https://cnx.org/contents/GFy_h8cu@9.85:weAHBat1@7/Oxidation-of-Pyruvate-and-the-Citric-Acid-Cycle
https://www.khanacademy.org/science/biology/cellular-respiration-and-fermentation/pyruvate-oxidation-and-the-citric-acid-cycle/a/the-citric-acid-cycle
https://www.khanacademy.org/science/biology/cellular-respiration-and-fermentation/pyruvate-oxidation-and-the-citric-acid-cycle/a/the-citric-acid-cycle
https://www.sciencedirect.com/science/article/pii/B9780080468846001196
https://gco.iarc.fr/today/home
https://www.cancer.gov/types/lung/patient/non-small-cell-lung-treatment-pdq
https://www.cdc.gov/cancer/lung/basic_info/what-is-lung-cancer.htm
https://www.emedicinehealth.com/non-small-cell_lung_cancer/article_em.htm#what_are_the_stages_of_non-small-cell_lung_cancer
https://www.emedicinehealth.com/non-small-cell_lung_cancer/article_em.htm#what_are_the_stages_of_non-small-cell_lung_cancer
https://www.cancer.org/treatment/understanding-your-diagnosis/staging.html


112 
 

24. Research MFfMEa. Lung cancer - Diagnosis. Available from: 
https://www.mayoclinic.org/diseases-conditions/lung-cancer/diagnosis-treatment/drc-
20374627?p=1. 
25. Oncology ASoC. Lung Cancer - Non-Small Cell: Diagnosis2020. Available from: 
https://www.cancer.net/cancer-types/lung-cancer-non-small-
cell/diagnosis#:~:text=Often%2C%20the%20radiologist%20uses%20a,for%20diagnosis%20and%20m
olecular%20testing. 
26. Association AL. Lobectomy 2020 [updated 2/19/2020. Available from: 
https://www.lung.org/lung-health-diseases/lung-procedures-and-tests/lobectomy. 
27. Service NH. Lung Cancer 2019 [Available from: https://www.nhs.uk/conditions/lung-cancer/. 
28. Marino FZ, Bianco R, Accardo M, Ronchi A, Cozzolino I, Morgillo F, et al. Molecular 
heterogeneity in lung cancer: from mechanisms of origin to clinical implications2019; 16:[981-9 pp.]. 
29. Oncology ASoC. Lung Cancer - Non-Small Cell: Statistics2021. Available from: 
https://www.cancer.net/cancer-types/lung-cancer-non-small-
cell/statistics#:~:text=The%205%2Dyear%20survival%20rate%20for%20NSCLC%20is%2024%25%2C,a
nd%20the%20stage%20of%20disease. 
30. Omami G, Tamimi D, Branstetter BF. Basic principles and applications of (18)F-FDG-PET/CT in 
oral and maxillofacial imaging: A pictorial essay. Imaging Sci Dent. 2014;44(4):325-32. 
31. S. KK. Introductory Nuclear Physics: Wiley; 1987. 
32. Groves AM. Non-[18F]FDG PET in clinical oncology. The lancet oncology. 2007;8:822-30. 
33. Jiang W, Chalich Y, Deen MJ. Sensors for Positron Emission Tomography Applications. 
Sensors (Basel). 2019;19(22). 
34. Humm JL, Rosenfeld A, Del Guerra A. From PET detectors to PET scanners. Eur J Nucl Med 
Mol Imaging. 2003;30(11):1574-97. 
35. Le Bars D. Fluorine-18 and medical imaging: Radiopharmaceuticals for positron emission 
tomography. Journal of Fluorine Chemistry. 2006;127(11):1488-93. 
36. Zheng X, Yu CL, Sha W, Radu C, Huang SC, Feng D. Study of an image-derived SUV and a 
modified SUV using mouse FDG-PET. Nucl Med Biol. 2011;38(3):353-62. 
37. Bury T, Dowlati A, Paulus P, Corhay JL, Hustinx R, Ghaye B, et al. Whole-body 18FDG positron 
emission tomography in the staging of non-small cell lung cancer. Eur Respir J. 1997;10(11):2529-34. 
38. Saunders CAB, Dussek JE, O’Doherty MJ, Maisey MN. Evaluation of Fluorine-18-
Fluorodeoxyglucose whole body PET imaging in the staging of lung cancer. The Society of Thoracic 
Surgeons. 1999. 
39. Hicks RJ. Role of 18F-FDG PET in assessment of response in non-small cell lung cancer. J Nucl 
Med. 2009;50 Suppl 1:31S-42S. 
40. Zigler SS. Production and Quality Control of 18F-FDG. 
41. Alsanea E, Alhalabi W. Prediction of radioactive injection dosage for PET imaging. Soft 
Computing. 2021. 
42. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG 
PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 
2015;42(2):328-54. 
43. Surasi DS, Bhambhvani P, Baldwin JA, Almodovar SE, O'Malley JP. (1)(8)F-FDG PET and PET/CT 
patient preparation: a review of the literature. J Nucl Med Technol. 2014;42(1):5-13. 
44. Joanna S. Fowler JL, Nora D. Volkow, Gene-Jack Wang, Robert R. MacGregor, , Ding Y-S. 
Monoamine Oxidase: Radiotracer Development and Human Studies. 
45. Brian M. Gallagher JSF, Neal I. Gutterson, Robert R. MacGregor,, Chung-NanWan APW. 
Metabolic Trapping as a Principle of Radiopharmaceu 

tical Design: Some Factors Responsible for the 

Biodistribution of [18F]2-Deoxy- 

2-Fluoro-D-Glucose. THE JOURNAL OF NUCLEAR MEDICINE. 

https://www.mayoclinic.org/diseases-conditions/lung-cancer/diagnosis-treatment/drc-20374627?p=1
https://www.mayoclinic.org/diseases-conditions/lung-cancer/diagnosis-treatment/drc-20374627?p=1
https://www.cancer.net/cancer-types/lung-cancer-non-small-cell/diagnosis#:~:text=Often%2C%20the%20radiologist%20uses%20a,for%20diagnosis%20and%20molecular%20testing
https://www.cancer.net/cancer-types/lung-cancer-non-small-cell/diagnosis#:~:text=Often%2C%20the%20radiologist%20uses%20a,for%20diagnosis%20and%20molecular%20testing
https://www.cancer.net/cancer-types/lung-cancer-non-small-cell/diagnosis#:~:text=Often%2C%20the%20radiologist%20uses%20a,for%20diagnosis%20and%20molecular%20testing
https://www.lung.org/lung-health-diseases/lung-procedures-and-tests/lobectomy
https://www.nhs.uk/conditions/lung-cancer/
https://www.cancer.net/cancer-types/lung-cancer-non-small-cell/statistics#:~:text=The%205%2Dyear%20survival%20rate%20for%20NSCLC%20is%2024%25%2C,and%20the%20stage%20of%20disease
https://www.cancer.net/cancer-types/lung-cancer-non-small-cell/statistics#:~:text=The%205%2Dyear%20survival%20rate%20for%20NSCLC%20is%2024%25%2C,and%20the%20stage%20of%20disease
https://www.cancer.net/cancer-types/lung-cancer-non-small-cell/statistics#:~:text=The%205%2Dyear%20survival%20rate%20for%20NSCLC%20is%2024%25%2C,and%20the%20stage%20of%20disease


113 
 

46. Kaira K, Serizawa M, Koh Y, Takahashi T, Yamaguchi A, Hanaoka H, et al. Biological 
significance of 18F-FDG uptake on PET in patients with non-small-cell lung cancer. Lung Cancer. 
2014;83(2):197-204. 
47. Langer CJ, Besse B, Gualberto A, Brambilla E, Soria J-C. The evolving role of histology in the 
management of advanced non-small-cell lung cancer. Clin Oncol. 2010. 
48. Pikor LA, Ramnarine VR, Lam S, Lam WL. Genetic alterations defining NSCLC subtypes and 
their therapeutic implications. Lung Cancer. 2013;82(2):179-89. 
49. de Geus-Oei LF, van Krieken JH, Aliredjo RP, Krabbe PF, Frielink C, Verhagen AF, et al. 
Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer. 2007;55(1):79-87. 
50. Vanhove K, Giesen P, Owokotomo OE, Mesotten L, Louis E, Shkedy Z, et al. The plasma 
glutamate concentration as a complementary tool to differentiate benign PET-positive lung lesions 
from lung cancer. BMC Cancer. 2018;18(1):868. 
51. Reniers B. Les 4 PET-SPECT. 2020. 
52. Ullah MN, Pratiwi E, Cheon J, Choi H, Yeom JY. Instrumentation for Time-of-Flight Positron 
Emission Tomography. Nucl Med Mol Imaging. 2016;50(2):112-22. 
53. Conti M. State of the art and challenges of time-of-flight PET. Phys Med. 2009;25(1):1-11. 
54. Healthineers S. Biograph Horizon 2020 [Available from: https://www.siemens-
healthineers.com/molecular-imaging/pet-ct/biograph-horizon. 
55. Fahey FH. Data acquisition in PET imaging. Nucl Med Technol. 2002;30. 
56. Kinahan PE, Fletcher JW. Positron Emission Tomography-Computed Tomography 
Standardized Uptake Values in Clinical Practice and Assessing Response to Therapy. Seminars in 
Ultrasound, CT and MRI. 2010;31(6):496-505. 
57. Chung HH, Kim JW, Han KH, Eo JS, Kang KW, Park NH, et al. Prognostic value of metabolic 
tumor volume measured by FDG-PET/CT in patients with cervical cancer. Gynecol Oncol. 
2011;120(2):270-4. 
58. Chen HHW, Chiu N-T, Su M-C, Guo H-R, Lee B-F. Prognostic Value of Whole-Body Total Lesion 
Glycolysis at Pretreatment FDG PET-CT in Non–Small Cell Lung Cancer. Radiology. 2012. 
59. Erdi YE, Macapinlac H, Rosenzweig KE, Humm JL, Larson SM, Erdi AK, et al. Use of PET to 
monitor the response of lung cancer 

to radiation treatment. European Journal of Nuclear Medicine. 2000;27. 
60. Benz MR, Allen-Auerbach MS, Eilber FC, Chen HJ, Dry S, Phelps ME, et al. Combined 
assessment of metabolic and volumetric changes for assessment of tumor response in patients with 
soft-tissue sarcomas. J Nucl Med. 2008;49(10):1579-84. 
61. Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L, Van Den Eynde M, et al. 
Multimodality imaging can predict the metabolic response of unresectable colorectal liver 
metastases to radioembolization therapy with Yttrium-90 labeled resin microspheres. Phys Med Biol. 
2008;53(22):6591-603. 
62. Seibert AJ. X-Ray Imaging Physics for Nuclear Medicine Technologists. Part 1: Basic Principles 
of X-Ray Production. 2004. In: Nuclear Medical Technology [Internet]. [139-47]. Available from: 
https://tech.snmjournals.org/content/jnmt/32/3/139.full.pdf. 
63. L'Annunziata MF. Nuclear radiation, its interaction with matter and radioisotope decay. 
2003. In: Handbook of Radioactivity Analysis [Internet]. [1-121]. Available from: 
https://click.endnote.com/viewer?doi=10.1016%2Fb978-012436603-
9%2F50006&token=WzMyMDAzOTYsIjEwLjEwMTYvYjk3OC0wMTI0MzY2MDMtOS81MDAwNiJd.MN
O2wieKfXjT8wv8tUD9fBNVYUk. 
64. Lalush DS, Wernick MN. Iterative Image Reconstruction. 2004. In: Emission Tomography 
[Internet]. [443]. Available from: 
https://www.sciencedirect.com/science/article/pii/B9780127444826500247. 
65. Bioengineering NIoBIa. Computed Tomography (CT)  [Available from: 
https://www.nibib.nih.gov/science-education/science-topics/computed-tomography-
ct#:~:text=How%20does%20CT%20work%3F,-
Unlike%20a%20conventional&text=During%20a%20CT%20scan%2C%20the,opposite%20the%20x%2
Dray%20source. 

https://www.siemens-healthineers.com/molecular-imaging/pet-ct/biograph-horizon
https://www.siemens-healthineers.com/molecular-imaging/pet-ct/biograph-horizon
https://tech.snmjournals.org/content/jnmt/32/3/139.full.pdf
https://click.endnote.com/viewer?doi=10.1016%2Fb978-012436603-9%2F50006&token=WzMyMDAzOTYsIjEwLjEwMTYvYjk3OC0wMTI0MzY2MDMtOS81MDAwNiJd.MNO2wieKfXjT8wv8tUD9fBNVYUk
https://click.endnote.com/viewer?doi=10.1016%2Fb978-012436603-9%2F50006&token=WzMyMDAzOTYsIjEwLjEwMTYvYjk3OC0wMTI0MzY2MDMtOS81MDAwNiJd.MNO2wieKfXjT8wv8tUD9fBNVYUk
https://click.endnote.com/viewer?doi=10.1016%2Fb978-012436603-9%2F50006&token=WzMyMDAzOTYsIjEwLjEwMTYvYjk3OC0wMTI0MzY2MDMtOS81MDAwNiJd.MNO2wieKfXjT8wv8tUD9fBNVYUk
https://www.sciencedirect.com/science/article/pii/B9780127444826500247
https://www.nibib.nih.gov/science-education/science-topics/computed-tomography-ct#:~:text=How%20does%20CT%20work%3F,-Unlike%20a%20conventional&text=During%20a%20CT%20scan%2C%20the,opposite%20the%20x%2Dray%20source
https://www.nibib.nih.gov/science-education/science-topics/computed-tomography-ct#:~:text=How%20does%20CT%20work%3F,-Unlike%20a%20conventional&text=During%20a%20CT%20scan%2C%20the,opposite%20the%20x%2Dray%20source
https://www.nibib.nih.gov/science-education/science-topics/computed-tomography-ct#:~:text=How%20does%20CT%20work%3F,-Unlike%20a%20conventional&text=During%20a%20CT%20scan%2C%20the,opposite%20the%20x%2Dray%20source
https://www.nibib.nih.gov/science-education/science-topics/computed-tomography-ct#:~:text=How%20does%20CT%20work%3F,-Unlike%20a%20conventional&text=During%20a%20CT%20scan%2C%20the,opposite%20the%20x%2Dray%20source


114 
 

66. Reid JD. Sarcoidosis in coroner's autopsies: a critical evaluation of diagnosis and prevalence 
from Cuyahoga County, Ohio. Sarcoidosis, vasculitis, and diffuse lung diseases : official journal of 
WASOG. 1998;15(1):44-51. 
67. Reniers B. X-ray, Computed Tomography and cone beam CT. 2019. 
68. Munro L. Basics of Radiation Protection for Everyday Use: World Health Organization; 2004. 
Available from: 
https://apps.who.int/iris/bitstream/handle/10665/42973/9241591781_eng.pdf;jsessionid=0DC8DCE
ECBD9C8F65FEE18AD94CFF118?sequence=1. 
69. Bell DJ, Nadrljanski MM. X-ray tube  [Available from: https://radiopaedia.org/articles/x-ray-
tube-1. 
70. Nieman K, Coenen A, Dijkshoorn M. Computed Tomography. 2015. In: Advanced Cardiac 
Imaging [Internet]. [97-125]. Available from: 
https://click.endnote.com/viewer?doi=10.1016%2Fb978-1-78242-282-2.00005-
6&token=WzMyMDAzOTYsIjEwLjEwMTYvYjk3OC0xLTc4MjQyLTI4Mi0yLjAwMDA1LTYiXQ.YHakqsSMpl
bMla9D09R6e1u0AYs. 
71. Pelberg R. Basic Principles in Computed Tomography (CT). In: Cardiac CT Angiography Manual 
[Internet]. [19-58]. 
72. Robert J. Gillies PEK, Hedvig Hricak. Radiomics Images Are More than pictures, they are 
data.pdf. Radiology. 2016;278. 
73. Bernal J, Sanchez J. Use of Filtered Back projection Methods to Improve. 2009. 
74. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 
2009;50 Suppl 1:11S-20S. 
75. Leijenaar RTH, Jong EECd, Larue RTHM, Timmeren JEv, Lambin P. Radiomics: de toekomst in 
medische 

beeldvorming. NED TIJDSCHR ONCOL. 2017. 
76. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: the process 
and the challenges. Magn Reson Imaging. 2012;30(9):1234-48. 
77. Cunliffe A, Armato SG, 3rd, Castillo R, Pham N, Guerrero T, Al-Hallaq HA. Lung texture in 
serial thoracic computed tomography scans: correlation of radiomics-based features with radiation 
therapy dose and radiation pneumonitis development. Int J Radiat Oncol Biol Phys. 2015;91(5):1048-
56. 
78. Zhang J, Yu C, Jiang G, Liu W, Tong L. 3D texture analysis on MRI images of Alzheimer's 
disease. Brain Imaging Behav. 2012;6(1):61-9. 
79. Ganeshan B, Abaleke S, Young RC, Chatwin CR, Miles KA. Texture analysis of non-small cell 
lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour 
glucose metabolism and stage. Cancer Imaging. 2010;10:137-43. 
80. Garcia G, Maiora J, Tapia A, De Blas M. Evaluation of texture for classification of abdominal 
aortic aneurysm after endovascular repair. J Digit Imaging. 2012;25(3):369-76. 
81. Henriksson E, Kjellen E, Wahlberg P, Ohlsson T, Wennerberg J, Brun E. 2-Deoxy-2-[18F] 
fluoro-D-glucose uptake and correlation to intratumoral heterogeneity. ANTICANCER RESEARCH. 
2007;27:2155-60. 
82. Diehn M, Nardini C, Wang DS, McGovern S, Jayaraman M, Liang Y, et al. Identification of 
noninvasive imaging surrogates for brain tumor gene-expression modules. PNAS. 2008;105:5213-8. 
83. Basu S, Kwee TC, Gatenby R, Saboury B, Torigian DA, Alavi A. Evolving role of molecular 
imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and 
metastatic sites, a plausible explanation for failed attempts to cure malignant disorders. Eur J Nucl 
Med Mol Imaging. 2011;38(6):987-91. 
84. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor 
heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response 
to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52(3):369-78. 
85. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour 
heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 
2013;40(1):133-40. 

https://apps.who.int/iris/bitstream/handle/10665/42973/9241591781_eng.pdf;jsessionid=0DC8DCEECBD9C8F65FEE18AD94CFF118?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/42973/9241591781_eng.pdf;jsessionid=0DC8DCEECBD9C8F65FEE18AD94CFF118?sequence=1
https://radiopaedia.org/articles/x-ray-tube-1
https://radiopaedia.org/articles/x-ray-tube-1
https://click.endnote.com/viewer?doi=10.1016%2Fb978-1-78242-282-2.00005-6&token=WzMyMDAzOTYsIjEwLjEwMTYvYjk3OC0xLTc4MjQyLTI4Mi0yLjAwMDA1LTYiXQ.YHakqsSMplbMla9D09R6e1u0AYs
https://click.endnote.com/viewer?doi=10.1016%2Fb978-1-78242-282-2.00005-6&token=WzMyMDAzOTYsIjEwLjEwMTYvYjk3OC0xLTc4MjQyLTI4Mi0yLjAwMDA1LTYiXQ.YHakqsSMplbMla9D09R6e1u0AYs
https://click.endnote.com/viewer?doi=10.1016%2Fb978-1-78242-282-2.00005-6&token=WzMyMDAzOTYsIjEwLjEwMTYvYjk3OC0xLTc4MjQyLTI4Mi0yLjAwMDA1LTYiXQ.YHakqsSMplbMla9D09R6e1u0AYs


115 
 

86. Zhu Y, Li H, Guo W, Drukker K, Lan L, Giger ML, et al. Deciphering Genomic Underpinnings of 
Quantitative MRI-based Radiomic Phenotypes of Invasive Breast Carcinoma. Sci Rep. 2015;5:17787. 
87. Avanzo M, Stancanello J, El Naqa I. Beyond imaging: The promise of radiomics. Phys Med. 
2017;38:122-39. 
88. Guo W, Li H, Zhu Y, Lan L, Yang S, Drukker K, et al. Prediction of clinical phenotypes in 
invasive breast carcinomas from the integration of radiomics and genomics data. J Med Imaging 
(Bellingham). 2015;2(4):041007. 
89. Gnep K, Fargeas A, Gutierrez-Carvajal RE, Commandeur F, Mathieu R, Ospina JD, et al. 
Haralick textural features on T2 -weighted MRI are associated with biochemical recurrence following 
radiotherapy for peripheral zone prostate cancer. J Magn Reson Imaging. 2017;45(1):103-17. 
90. Collarino A, Garganese G, Fragomeni SM, Pereira Arias-Bouda LM, Ieria FP, Boellaard R, et al. 
Radiomics in vulvar cancer: first clinical experience using (18)F-FDG PET/CT images. J Nucl Med. 2018. 
91. Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. Non_Small Cell Lung Cancer_ 
Histopathologic Correlates for Texture Parameters at CT. Radiology. 2013;266. 
92. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding 
tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 
2014;5:4006. 
93. Ohri N, Duan F, Snyder BS, Wei B, Machtay M, Alavi A, et al. Pretreatment 18F-FDG PET 
Textural Features in Locally Advanced Non-Small Cell Lung Cancer: Secondary Analysis of ACRIN 
6668/RTOG 0235. J Nucl Med. 2016;57(6):842-8. 
94. Kim H-J. Common Factor Analysis Versus Principal Component Analysis: Choice for Symptom 
Cluster Research. Asian Nursing Research. 2008;2. 
95. Software NS. Factor Analysis. NCSS. 
96. Karamizadeh S, Abdullah SM, Manaf AA, Zamani M, Hooman A. An Overview of Principal 
Component Analysis. Journal of Signal and Information Processing. 2013;04(03):173-5. 
97. Ringnér M. What is principal component analysis. Nature biotechnology. 2008;26. 
98. Malik F. What are Eigenvalues and Eigenvectors 2019 [Available from: 
https://medium.com/fintechexplained/what-are-eigenvalues-and-eigenvectors-a-must-know-
concept-for-machine-learning-80d0fd330e47. 
99. Asadi S, Rao DCDVS, V.Saikrishna. A Comparative study of Face Recognition with Principal 
Component Analysis and Cross-Correlation Technique. International Journal of Computer 
Applications. 2010;10. 
100. Kumar H. A visual introduction to eigenvectors and eigenvalues 2018 [Available from: 
https://kharshit.github.io/blog/2018/05/11/a-visual-introduction-to-eigenvectors-and-eigenvalues. 
101. Lever J, Krzywinski M, Altman N. Principal component analysis. Nature Methods. 
2017;14(7):641-2. 
102. Brems M. A One-Stop Shop for Principal Component Analysis 2017 [Available from: 
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c. 
103. Phillips PJ, Flynn PJ, Scruggs T, Bowyer KW, Chang J, Hoffman K, et al. Overview of the Face 
Recognition Grand Challenge. Proceedings of the 2005 IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition. 2005. 
104. Bianconi F, Palumbo I, Spanu A, Nuvoli S, Fravolini ML, Palumbo B. PET/CT Radiomics in Lung 
Cancer: An Overview. Applied Science. 2020. 
105. Xu H, Deng Y. Dependent Evidence Combination Based on Shearman Coefficient and Pearson 
Coefficient. IEEE Access. 2018;6:11634-40. 
106. Dutilleul P, Stockwell JD, Frigon D, Legendre P. The Mantel Test versus Pearson's Correlation 
Analysis: Assessment of the Differences for Biological and Environmental Studies. Journal of 
Agricultural. 2000. 
107. Mansson R, Tsapogas P, Akerlund M, Lagergren A, Gisler R, Sigvardsson M. Pearson 
correlation analysis of microarray data allows for the identification of genetic targets for early B-cell 
factor. J Biol Chem. 2004;279(17):17905-13. 
108. statisctics L. Pearson Product-Moment Correlation 2018 [Available from: 
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php. 

https://medium.com/fintechexplained/what-are-eigenvalues-and-eigenvectors-a-must-know-concept-for-machine-learning-80d0fd330e47
https://medium.com/fintechexplained/what-are-eigenvalues-and-eigenvectors-a-must-know-concept-for-machine-learning-80d0fd330e47
https://kharshit.github.io/blog/2018/05/11/a-visual-introduction-to-eigenvectors-and-eigenvalues
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php


116 
 

109. Thirumalai C, Chandhini SA, M V. Analysing the Concrete Compressive Strength  

using Pearson and Spearman. International Conference on Electronics, Communication and 
Aerospace Technology. 2017. 
110. Solutions S. Correlation (Pearson, Kendall, Spearman) 2021 [Available from: 
https://www.statisticssolutions.com/correlation-pearson-kendall-spearman/. 
111. to Sh. Spearman Rank Correlation (Spearman’s Rho): Definition and How to Calculate it 2021 
[Available from: https://www.statisticshowto.com/probability-and-statistics/correlation-coefficient-
formula/spearman-rank-correlation-definition-calculate/. 
112. Zibran MF. CHI-Squared Test of Independence. 
113. McHugh ML. The chi-square test of independence. Biochem Med (Zagreb). 2013;23(2):143-9. 
114. Pandis N. The chi-square test. Am J Orthod Dentofacial Orthop. 2016;150(5):898-9. 
115. Chhatwal J, Alagoz O, Lindstrom JM, Kahn ECJ, Shaffer AK, Burnside SE. A Logistic Regression 
Model Based on the National Mammography Database Format to Aid Breast Cancer Diagnosis2009. 
116. Molnar C. Interpretable Machine Learning 2021. Available from: 
https://christophm.github.io/interpretable-ml-book/index.html. 
117. Hoffman IEJ. Logistic Regression. 2019. In: Basic Biostatistics for Medical and Biomedical 
Practitioners [Internet]. Available from: 
https://reader.elsevier.com/reader/sd/pii/B9780128170847000334?token=B58C84E5725EE5CC809E
37977EE5340353AE16E22C98E30E2776DD40006DD9E634CCAC2A1E5F0A83126FF5668BD62893&ori
ginRegion=eu-west-1&originCreation=20210520124255. 
118. Holdnack AJ, Millis S, Larrabee JG, Iverson LG. Assessing Performance Validity with the ACS. 
2013. In: WAIS-IV, WMS-IV, and ACS: Advanced Clinical Interpretation [Internet]. Available from: 
https://reader.elsevier.com/reader/sd/pii/B9780123869340000079?token=3E665F1FEAB92528B153
8C39423500998617F4DC5A45500E7A62FB7CB902C1C3A56FD838E3101A4EEEBB0DC28C996600&ori
ginRegion=eu-west-1&originCreation=20210520125252. 
119. Mao R, Zhang L, Zhu R-Y. LSO/LYSO Crystals for Future HEP Experiments. Journal of Physics: 
Conference Series. 2011;293. 
120. Vanhove K, Thomeer M, Derveaux E, Shkedy Z, Owokotomo OE, Adriaensens P, et al. 
Correlations between the metabolic profile and (18)F-FDG-Positron Emission Tomography-Computed 
Tomography parameters reveal the complexity of the metabolic reprogramming within lung cancer 
patients. Sci Rep. 2019;9(1):16212. 
121. Loeb LA, Emster VL, Warner KE, Abbotts J, Laszlo J. Smoking and Lung Cancer: An Overview. 
1984. 
122. Zwanenburg A, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, et al. Image 
biomarker standardisation initiative. 2016. 
123. da Silva EC, Silva AC, de Paiva AC, Nunes RA. Diagnosis of lung nodule using Moran’s index 
and Geary’s coefficient in computerized tomography images. Pattern Analysis and Applications. 
2007;11(1):89-99. 
124. Clausi DA. An analysis of co-occurrence texture statistics as a function of grey level 
quantization. Canadian Journal of Remote Sensing. 2014;28(1):45-62. 
125. Nykamp DQ. Vertex definition: Math Insight;  [Available from: 
https://mathinsight.org/definition/graph_vertex. 
126. Haralick RM, Shanmugam K, Dinstein IH. Textural Features for Image Classification. IEEE 
Transactions on Systems, Man, and Cybernetics. 1973;SMC-3(6):610-21. 
127. Peerlings J, Woodruff HC, Winfield JM, Ibrahim A, Van Beers BE, Heerschap A, et al. Stability 
of radiomics features in apparent diffusion coefficient maps from a multi-centre test-retest trial. Sci 
Rep. 2019;9(1):4800. 
128. Sun C, Wee WG. Neighboring gray level dependence matrix for texture classification. 1982. 
129. Marien N. H-NMR based metabolomics for earlier diagnosis of NSCLC: analysis of pH-
dependent chemical shifts: University of Hasselt; 2019. 
130. Smolle E, Leko P, Stacher-Priehse E, Brcic L, El-Heliebi A, Hofmann L, et al. Distribution and 
prognostic significance of gluconeogenesis and glycolysis in lung cancer. Mol Oncol. 
2020;14(11):2853-67. 

https://www.statisticssolutions.com/correlation-pearson-kendall-spearman/
https://www.statisticshowto.com/probability-and-statistics/correlation-coefficient-formula/spearman-rank-correlation-definition-calculate/
https://www.statisticshowto.com/probability-and-statistics/correlation-coefficient-formula/spearman-rank-correlation-definition-calculate/
https://christophm.github.io/interpretable-ml-book/index.html
https://reader.elsevier.com/reader/sd/pii/B9780128170847000334?token=B58C84E5725EE5CC809E37977EE5340353AE16E22C98E30E2776DD40006DD9E634CCAC2A1E5F0A83126FF5668BD62893&originRegion=eu-west-1&originCreation=20210520124255
https://reader.elsevier.com/reader/sd/pii/B9780128170847000334?token=B58C84E5725EE5CC809E37977EE5340353AE16E22C98E30E2776DD40006DD9E634CCAC2A1E5F0A83126FF5668BD62893&originRegion=eu-west-1&originCreation=20210520124255
https://reader.elsevier.com/reader/sd/pii/B9780128170847000334?token=B58C84E5725EE5CC809E37977EE5340353AE16E22C98E30E2776DD40006DD9E634CCAC2A1E5F0A83126FF5668BD62893&originRegion=eu-west-1&originCreation=20210520124255
https://reader.elsevier.com/reader/sd/pii/B9780123869340000079?token=3E665F1FEAB92528B1538C39423500998617F4DC5A45500E7A62FB7CB902C1C3A56FD838E3101A4EEEBB0DC28C996600&originRegion=eu-west-1&originCreation=20210520125252
https://reader.elsevier.com/reader/sd/pii/B9780123869340000079?token=3E665F1FEAB92528B1538C39423500998617F4DC5A45500E7A62FB7CB902C1C3A56FD838E3101A4EEEBB0DC28C996600&originRegion=eu-west-1&originCreation=20210520125252
https://reader.elsevier.com/reader/sd/pii/B9780123869340000079?token=3E665F1FEAB92528B1538C39423500998617F4DC5A45500E7A62FB7CB902C1C3A56FD838E3101A4EEEBB0DC28C996600&originRegion=eu-west-1&originCreation=20210520125252
https://mathinsight.org/definition/graph_vertex


117 
 

131. Christen T, Sheikine Y, Rocha VZ, Hurwitz S, Goldfine AB, Di Carli M, et al. Increased glucose 
uptake in visceral versus subcutaneous adipose tissue revealed by PET imaging. JACC Cardiovasc 
Imaging. 2010;3(8):843-51. 
132. Vanhove K, Graulus GJ, Mesotten L, Thomeer M, Derveaux E, Noben JP, et al. The Metabolic 
Landscape of Lung Cancer: New Insights in a Disturbed Glucose Metabolism. Front Oncol. 
2019;9:1215. 
133. Louis E, Adriaensens P, Guedens W, Bigirumurame T, Baeten K, Vanhove K, et al. Detection of 
Lung Cancer through Metabolic Changes Measured in Blood Plasma. J Thorac Oncol. 2016;11(4):516-
23. 
134. Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 2012;279(15):2610-23. 
135. Baenke F, Peck B, Miess H, Schulze A. Hooked on fat: the role of lipid synthesis in cancer 
metabolism and tumour development. Dis Model Mech. 2013;6(6):1353-63. 
136. Currie E, Schulze A, Zechner R, Walther TC, Farese RV, Jr. Cellular fatty acid metabolism and 
cancer. Cell Metab. 2013;18(2):153-61. 
137. Lu L, Lv W, Jiang J, Ma J, Feng Q, Rahmim A, et al. Robustness of Radiomic Features in 
[(11)C]Choline and [(18)F]FDG PET/CT Imaging of Nasopharyngeal Carcinoma: Impact of 
Segmentation and Discretization. Mol Imaging Biol. 2016;18(6):935-45. 
138. Jans M, Soffer P, Jouck T. Building a valuable event log for process mining: An experimental 
exploration of a guided process2019. Available from: 
https://click.endnote.com/viewer?doi=10.1177%2F001316446002000104&token=WzMyMDAzOTYsIj
EwLjExNzcvMDAxMzE2NDQ2MDAyMDAwMTA0Il0.jHPwnvy2zKfOnXVdY1Sy5-adoYc. 
139. R. F, T. B, R. A, S. A, L. K, B. S, et al. Balancing curability and unnecessary surgery in the 
context of computed tomography screening for lung cancer. The Journal of thoracic and 
cardiovascular surgery. 2014:10. 

 

  

https://click.endnote.com/viewer?doi=10.1177%2F001316446002000104&token=WzMyMDAzOTYsIjEwLjExNzcvMDAxMzE2NDQ2MDAyMDAwMTA0Il0.jHPwnvy2zKfOnXVdY1Sy5-adoYc
https://click.endnote.com/viewer?doi=10.1177%2F001316446002000104&token=WzMyMDAzOTYsIjEwLjExNzcvMDAxMzE2NDQ2MDAyMDAwMTA0Il0.jHPwnvy2zKfOnXVdY1Sy5-adoYc


118 
 

  



119 
 

Annex 
 
 
 

 
Figure S1: Distribution of the radiomics features after Factor Analysis with an outcome of four factors. 
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Figure S2: Distribution of the radiomics features after Factor Analysis with an outcome of five factors. 
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Figure S3: Distribution of the radiomics features after Factor Analysis with an outcome of 10 factors. 
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Supplementary code: 

 
############################################################################### 
#DATA PARTITIONING 
############################################################################### 
library(dplyr)  
library(stringr)  
library(caTools)  
library(caret)  
library (MASS) 
radiomics_ds <- read.csv(file=file. choose (), header=TRUE) 
#In the dialog window select the file Radiomics_data_totaal_Hasselt_tweedeCT_reductie.csv 
colnames(radiomics_ds) 
 
## 75% of the sample size 
smp_size <- floor (0.75 * nrow(radiomics_ds)) 
 
## set the seed to make the partition reproducible 
set. seed(123) 
train_ind <- sample(seq_len(nrow(radiomics_ds)), size = smp_size) 
 
trainSet <- radiomics_ds [train_ind, ] 
testSet <- radiomics_ds [-train_ind, ] 
 
############################################################################### 
#LOGISTISCHE REGRESSIE: MANUEEL GEREDUCEERDE DATA 
############################################################################### 
 
# Fit the model with intercept only 
model_null <- glm (Events ~1, data = trainSet, family = binomial) 
summary(model_null) 
ds_vars <- trainSet [,-c(1, 57)] 
add1(model_null, scope=ds_vars, test="Chisq") 
 
model_one <- glm (Events ~ first.measure.of.information.correlation.3, data = trainSet, family = 
binomial) 
summary(model_one) 
add1(model_one, scope=ds_vars, test="Chisq") 
 
model_two <- glm (Events ~ first.measure.of.information.correlation.3+busyness , data = trainSet, 
family = binomial) 
summary(model_two) 
add1(model_two, scope=ds_vars, test="Chisq") 
 
model_three <- glm (Events ~ 
first.measure.of.information.correlation.3+busyness+volume.at.int.fraction.10 , data = trainSet, 
family = binomial) 
summary(model_three) 
add1(model_three, scope=ds_vars, test="Chisq") 
 
model_four <- glm (Events ~ 
first.measure.of.information.correlation.3+busyness+volume.at.int.fraction.10+Large.zone.low.grey.l
evel.emphasis.2   , data = trainSet, family = binomial) 
summary(model_four) 
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add1(model_four, scope=ds_vars, test="Chisq") 
 
model_five <- glm(Events ~ 
first.measure.of.information.correlation.3+busyness+volume.at.int.fraction.10+Large.zone.low.grey.l
evel.emphasis.2 + inverse.difference.normalised.2  , data = trainSet, family = binomial) 
summary(model_five) 
add1(model_five, scope=ds_vars, test="Chisq") 
 
model_six <- glm(Events ~ 
first.measure.of.information.correlation.3+busyness+volume.at.int.fraction.10+Large.zone.low.grey.l
evel.emphasis.2 + inverse.difference.normalised.2+Quartile.coefficient , data = trainSet, family = 
binomial) 
summary(model_six) 
add1(model_six, scope=ds_vars, test="Chisq") 
 
model_seven <- glm(Events ~ 
first.measure.of.information.correlation.3+busyness+volume.at.int.fraction.10+Large.zone.low.grey.l
evel.emphasis.2 + 
inverse.difference.normalised.2+Quartile.coefficient+first.measure.of.information.correlation.2, data 
= trainSet, family = binomial) 
summary(model_seven) 
add1(model_seven, scope=ds_vars, test="Chisq") 
 
model_eight <- glm(Events ~ 
first.measure.of.information.correlation.3+busyness+volume.at.int.fraction.10+Large.zone.low.grey.l
evel.emphasis.2 + 
inverse.difference.normalised.2+Quartile.coefficient+first.measure.of.information.correlation.2+kurt
osis , data = trainSet, family = binomial) 
summary(model_eight) 
add1(model_eight, scope=ds_vars, test="Chisq") 
 
#model_nine <- glm(Events ~ 
first.measure.of.information.correlation.3+busyness+volume.at.int.fraction.10+Large.zone.low.grey.l
evel.emphasis.2 + 
inverse.difference.normalised.2+Quartile.coefficient+first.measure.of.information.correlation.2+kurt
osis +Grey.level.non.uniformity.GLSZM, data = trainSet, family = binomial) 
#summary(model_nine) 
#add1(model_nine, scope=ds_vars, test="Chisq") 
 
#model_ten<- glm(Events ~ 
first.measure.of.information.correlation.3+busyness+volume.at.int.fraction.10+Large.zone.low.grey.l
evel.emphasis.2 + inverse.difference.normalised.2+Quartile.coefficient+Quartile.coefficient+kurtosis 
+Grey.level.non.uniformity.GLSZM+inverse.difference.normalised.2, data = trainSet, family = 
binomial) 
#summary(model_ten) 
#add1(model_ten, scope=ds_vars, test="Chisq") 
 
 
###Remove variable 1 by 1 starting with less significant 
model_full<- glm(Events ~ 
first.measure.of.information.correlation.3+busyness+volume.at.int.fraction.10+Large.zone.low.grey.l
evel.emphasis.2 + 
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inverse.difference.normalised.2+Quartile.coefficient+first.measure.of.information.correlation.2+kurt
osis, data = trainSet, family = binomial) 
summary(model_full) 
 
#min volume.at.int.fraction.10 
model_min1 <- glm(Events ~ 
first.measure.of.information.correlation.3+busyness+Large.zone.low.grey.level.emphasis.2 + 
inverse.difference.normalised.2+Quartile.coefficient+first.measure.of.information.correlation.2+kurt
osis, data = trainSet, family = binomial) 
summary(model_min1) 
 
#min busyness 
model_min2 <- glm(Events ~ 
first.measure.of.information.correlation.3+Large.zone.low.grey.level.emphasis.2 + 
inverse.difference.normalised.2+Quartile.coefficient+first.measure.of.information.correlation.2+kurt
osis, data = trainSet, family = binomial) 
summary(model_min2) 
 
#min Large.zone.low.grey.level.emphasis.2 
model_min3 <- glm(Events ~ first.measure.of.information.correlation.3+ 
inverse.difference.normalised.2+Quartile.coefficient+first.measure.of.information.correlation.2+kurt
osis, data = trainSet, family = binomial) 
summary(model_min3) 
 
#min first.measure.of.information.correlation.2 
model_min4 <- glm(Events ~ first.measure.of.information.correlation.3+ 
inverse.difference.normalised.2+Quartile.coefficient+kurtosis, data = trainSet, family = binomial) 
summary(model_min4) 
 
#min first.measure.of.information.correlation.3 
model_min5 <- glm(Events ~ inverse.difference.normalised.2+Quartile.coefficient+kurtosis, data = 
trainSet, family = binomial) 
summary(model_min5) 
 
#min kurtosis 
model_min6 <- glm(Events ~ inverse.difference.normalised.2+Quartile.coefficient, data = trainSet, 
family = binomial) 
summary(model_min6) 
 
#min volume.at.int.fraction.10 
#model_min7 <- glm(Events ~ 
volume.at.int.fraction.90+Grey.level.non.uniformity.GLSZM.1+Quartile.coefficient, data = trainSet, 
family = binomial) 
#summary(model_min7) 
 
 
 
 
#Stop with model 6 
model_fin <- glm(Events ~ inverse.difference.normalised.2+Quartile.coefficient, data = trainSet, 
family = binomial) 
summary(model_fin) 
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############################################################################### 
#MODEL TESTEN 
############################################################################### 
 
probabs <- predict(model_fin, testSet, type='response')  
preds <- ifelse(probabs >= 0.5, 1, 0) 
 
confusionMatrix(factor(preds), factor(testSet$Events)) 
table(testSet$Events,preds) 
 
############################################################################### 
#LOGISTISCHE REGRESSIE: FACTOR ANALYSE  
############################################################################### 
 
factors_ds <- read.csv(file=file.choose(), header=TRUE) 
 
model_null <- glm(Events ~ 1, data = factors_ds, family = binomial) 
summary(model_null) 
ds_vars <- factors_ds[,3:7] 
add1(model_null, scope=ds_vars, test="Chisq") 
 
model_one <- glm(Events ~ Factor4, data = factors_ds, family = binomial) 
summary(model_one) 
add1(model_one, scope=ds_vars, test="Chisq") 
 
model_two <- glm(Events ~ Factor3+ Factor4, data = factors_ds, family = binomial) 
summary(model_two) 
add1(model_two, scope=ds_vars, test="Chisq") 


