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Abstract. Professional association football athletes have a relatively
high risk of sustaining injuries when compared to other sports. More-
over, injuries are the most common reason for a player’s unavailability in
training and matches. Injuries result in high economic costs for both the
players and the teams, therefore injury prevention is of utmost impor-
tance. It has been suggested that computational approaches like machine
learning can assist the medical staff in determining the risk of injury of
a player and therefore improve injury prevention. However, predicting
injuries is a complicated problem due to high class imbalance and com-
plex interplay between many variables. Despite this complexity, recent
research has proven that machine learning applications can be of use in
injury prevention. This paper attempts to extend current injury predic-
tion applications by proposing a two model approach that attempts to
better utilise the days leading up to an injury. The results found in this
study indicate that this is a promising approach worth further investi-
gating.

Keywords: Predictive modelling · Non-contact injuries · LSTM Au-
toencoder · Tree-based models · Football · Soccer · Imbalanced data ·
Rare events

1 Introduction

Association football is one of the most popular sports with up to 43% of the
world’s population being involved by either watching or playing [27]. It is a
team contact sport which requires intense physical demands, as such both pro-
fessional and amateur athletes have a relatively high risk of sustaining injuries
[9, 10, 13, 19, 20]. Injuries are the most common reason for a player’s unavailabil-
ity in training and matches [19] and therefore impose a high economic cost on
football teams [11, 21]. These are made up from direct costs like the salary of
the player and rehabilitation cost [11], but also from indirect costs like the po-
tential loss of a match [8, 12, 19]. Although the exact cost of individual injuries
are difficult to quantify, Eliakim et al. (2020) have estimated that injuries cost
an English Premier League team upwards of 45 million pound sterling per sea-
son [10]. Due to these high cost, injury prevention is of utmost importance [9,
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10, 21]. Within sport science, non-contact and soft tissue intrinsic injuries are
considered largely preventable, whereas contact and collision extrinsic injuries
are considered generally unavoidable [13, 35]. The last decade has seen a growth
of supervised machine learning (ML) applications in order to predict these pre-
ventable injuries [6]. Supervised machine learning is a computational approach
that trains a model to learn patterns within a dataset to then predict an out-
come [5]. The predictions from ML models can be seen as a more evidence-based
approach to injury prevention, and can help the medical staff to better assess the
risk of injury of their players [6, 8]. However, predicting injuries is a complicated
problem due to a high class imbalance between injuries and non-injuries, and
complex interplay between many variables. Several studies have found that linear
models (e.g. logistic regression) are sub-optimal since they are unable to capture
the complex, non-linear interplay between multiple input features [8, 20, 21, 28,
31, 35]. More recent attempts that utilise non-linear algorithms like tree-based
models have proven to be significantly better at predicting injuries [20, 31, 35].
For example, Rossi et al. (2018) were able to predict 80% of the injuries with
a precision of 50% by using a decision tree algorithm [31]. These are promising
results for the application of machine learning for injury prevention, but several
challenges still remain to be resolved [6]. The majority of the current machine
learning applications aggregate the workload of players over a time window. Al-
though these aggregations capture the load put onto the players, the potentially
important sequence property of the time series is lost. This sequence may be
crucial to accurately predict an injury [7, 24, 29].

This paper contributes to literature by assessing whether better utilising
the days leading up to an injury can improve the predictive accuracy of ML
models. Two separate ML models will be used. The first model is responsible
for compressing a time sequence down to a single vector. In theory, this single
vector should contain information of the different time-steps of the sequence as
well as potentially capture the trend over the sequence. On this single vector, a
second ML model can then be trained to predict injuries.

The remainder of this paper is structured as follows: section 2 will highlight
related work, section 3 will discuss the materials and methods used in this paper,
section 4 will contain the results, section 5 will discuss these results and lastly
section 6 will contain the main conclusions of this article.

2 Related work

This section will provide an overview of what has already been researched in the
field of data-oriented injury prediction in football and will end with the current
research challenges within this field.

Monitoring the load placed on athletes in both training and competition is
essential for determining whether athletes are adapting to their training pro-
gram, assessing fatigue and minimizing the risk of injury [2, 13, 16]. In literature,
this load is often divided into external and internal load. External load is the
work completed by the athlete (e.g., power output, speed, accelerations, decel-
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erations, etc.) and is usually measured through global positioning system (GPS)
wearables. Internal load is what it takes from the player to put out the external
load (e.g. Rate of Perceived Exertion (RPE), heart rate, lactate, etc.) [2, 4, 27,
32]. Both internal and external load features will be used in this study as input
features for the different models.

A recent literature review study by Claudino et al. (2019), shows that litera-
ture on injury risk assessment in team sports is scarce [6]. Furthermore, the vast
majority of existing studies rely on an explanatory analysis approach utilising
linear models and only focusing on a small number of variables. Whilst these
studies are important for the development of sports injury research, their pur-
pose is mostly to explain or understand data or phenomena of interest and not
predicting injuries [20]. Linear models seem unsuitable for predicting injuries as
they are unable to capture complex, non-linear interplay between multiple input
features [8, 20, 21, 28, 30, 31, 35]. Non-linear models, especially tree-based models,
have proven to be a much more effective way of predicting injuries [20, 30, 31,
35]. Rossi et al. (2018) were the first to prove that non-linear models based on
external load data significantly outperform traditional linear models [31]. Val-
lance et al. (2020) extended this work by predicting injuries on both internal and
external load data [35]. Interestingly, they also found that internal load features
contained more predictive power than external load features. This could be of
value for professional teams that cannot outfit players with GPS sensors, since
predicting injuries solely on more subjective internal load features can achieve
reasonably good results [35].

Lövdal et al. (2021) point out an important limitation in the field of injury
prediction. In their study, they state that the majority of the current research
applications express workload as some form of aggregation (e.g. taking the aver-
age distance ran by a player over a week). Although such aggregations capture
the accumulated load put on the athlete, the potentially important sequence
property of that time series is lost [24]. This sequence property could be crucial
for explaining the occurrence of an injury [7, 24, 29]. In the study from Lövdal
et al. (2021), they address this limitation by constructing a feature vector that
expresses the week before the injury or healthy event as a series of days described
by the features of each day.

We concur with this remark from Lövdal et al. (2021) however, our approach
to address this limitation will deviate from the approach used in their study. In-
stead of combining the sequence into a single vector, we will train a model that
compresses sequences down to a single vector. By limiting the amount of infor-
mation the model can store in this single vector, it is forced to extract the most
valuable information from the sequence. The resulting vector therefore consists
of information from the entire sequence, but also potentially has information
of the trend over the sequence. On these compressed vectors, a tree-based ML
model will be trained to perform the injury prediction.
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3 Materials and methods

This section will start out by discussing the dataset. Then the different methods
that were used, as well as the assumptions that were made will be highlighted.
Finally, how the models were optimized as well as how they were evaluated will
be explained.

3.1 Dataset

The dataset was provided by a company that offers Business Intelligence solu-
tions for professional football clubs. On request of the company, the dataset will
only be discussed on a high level.

The dataset can be defined as a longitudinal dataset since it tracks multiple
subjects (football players) over a period of time [23]. The players in this dataset
are athletes from a first league professional football team in Belgium. For each
player there are 57 features, these features can be categorized into three groups.
Firstly, there are player specific features like the age of the player and the position
of the player. Secondly, there are external load features derived from GPS data
like the distance ran, accelerations and decelerations in a session. Thirdly, there
are internal load features that are measured through rating of perceived exertion
questionnaires.

There are 26 distinct players each with daily observations. However, the
amount of data points per player vary heavily, with a minimum of 36 days, a
maximum of 133 days and a median of 119.5 days with in total 2730 observations.
An overview of the distribution of data points can be seen in figure 1a.

(a) (b)

Fig. 1: Distribution of observations (a) and predictable injuries (b)

Out of the 50 injuries present in the dataset, 39 of them are non-contact
intrinsic injuries and therefore considered predictable. Though again the distri-
bution varies heavily. As visible from figure 1b, 12 of the 26 players do not sustain
a predictable injury, six players sustain one predictable injury etc. But, it is also



Injury prediction in professional football using a two model approach 5

visible that one player alone is responsible for eight predictable injuries. This is
substantial since this player accounts for 20 percent of all predictable injuries.

Among the 57 features, there does seem to be some redundancy. This can be
seen from figure 2 that plots the correlations. Red color boxes indicate positive
correlations whilst blue indicate negative correlations. Noticeably there seem to
be groups of features having strong positive correlations. A standard approach
would be to perform feature selection on the strongly correlated features to re-
duce the dimensionality whilst retaining most of the variance. That said, the
first model used in this study performs feature extraction similar to a principal
component analysis and therefore removing the correlated features is unneces-
sary. Feature extraction differs from feature selection in the sense that it creates
new features that are a combination of the original features [15].

Fig. 2: Correlations between features

3.2 Assumptions

During this study, some assumptions/decisions were made. This section will
highlight those assumptions and provide reasoning into why this was chosen.

Definition of injury This study focuses on predicting non-contact and soft
tissue intrinsic injuries since these are considered largely preventable by liter-
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ature [13, 35]. Furthermore, the actual day of injury will not be predicted, as
this is considered to be ”too late”. In this study, the injuries have been shifted
up three days, and the actual day of injury was removed prior to training the
second model that predicts the injuries. The reasoning behind shifting the in-
juries three days upwards is to increase the number of predictable injuries and
therefore slightly decreasing the class imbalance. The downside of this choice
is that an assumption is made that there is already an increase of injury risk
present three days prior to the injury.

Data preprocessing Before the data was split into training, validation and test
sets, missing data was forward filled. Meaning that when a player had missing
data for a feature, the value from the previous day was taken to fill this in. If
data was missing on a day where the player did not play, the values for features
that measure session data like for example distance ran, were set to zero.

After the filling in of missing values, the dataset was transformed into a
3D array consisting of samples, timesteps and features. This is required for the
first model since it takes sequences as an input. For the timesteps, a period
of seven days was chosen since this includes the training days and a match
day. One constraint set during the transformation was that the days had to be
consecutively. If for example a player has observations from Monday to Sunday
but Wednesday was missing, than this sample was discarded as the sequence is
not consecutively. This constraint resulted in a loss of 62 samples (2.6%).

The resulting array is of shape array = (2307, 7, 57), which means that it
consists of 2307 samples, with 7 timesteps and 57 features. This array was then
split into training, validation and test set. The training set contained 64% of the
data (0.8 * 0.8), the validation set contained 16% (0.8 * 0.2) of the data and
the test set contained 20% of the data. Then the data was standardized using
Scikit-learn’s StandardScaler [26]. This was done by fitting the scaler on only
the training set, and then transforming all of the sets.

3.3 Model construction & validation

This study utilises two models. The first model is a long short-term memory
(LSTM) autoencoder [18] responsible for compressing a sequence of seven vectors
(each vector consisting of information of one day with seven in total for the
sliding window) down to a single vector. This single vector should in theory
contain the most important information from all seven days. The second model
then uses this single vector as input for training to predict injuries. Multiple
tree-based models were tested for the second model. In what follows, a basic
understanding of both models is given as well as how their hyperparameters
were tuned, and how they were evaluated.

Model 1: LSTM autoencoder Hochreiter and Schmidhuber (1997) first pro-
posed the long short-term memory model. LSTM is a type of Recurrent Neural
Network (RNN) that allows the network to retain dependencies between data
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from previous timesteps. It takes a sequence of vectors as input with each vector
containing features from that timestep [25]. For more technical details on the
LSTM model, we refer to the work of Hochreiter and Schmidhuber (1997) [18].

An autoencoder is a type of neural network that tries to learn the best
encoding-decoding scheme from data. It consists of an input layer, an output
layer, an encoder neural network, a decoder neural network, and a latent space
[25]. By restricting the latent space to a single vector, the autoencoder model is
forced to learn important patterns in the data so that the majority of information
can be reconstructed from the reduced dimension [25].

The LSTM autoencoder model is trained solely on the training set, and
training is interrupted when the model performance on the validation set stops
increasing. Then the features from the latent space are extracted by using the
encoder model to predict the latent representation of the features. This feature
extraction from the latent space is done for the training, validation and test set,
which effectively reduces the sequence of seven vectors down to a single vector.

Model 2: Tree-based learner The second model used in this study is respon-
sible for the injury prediction and is trained on the encoded training samples
from the first model. Three popular tree-based ensemble models were tested:
Extreme Gradient Boosting (XGBoost)[5], Random Forests [3] and Extremely
Randomized Trees [14]. XGBoost works by sequentially adding weak decision
trees, where each new tree tries to correct the errors made by the previous tree
thus leading to a strong model [5]. Random Forests work by using a random
subset of the features to train weak trees. The idea behind Random Forests is
that ”good” trees will likely agree on the same prediction, whilst ”bad” trees
will likely disagree on different ones [3]. Extremely Randomized Trees are sim-
ilar to Random Forests but make each tree even more random. This attempts
to make the trees even less correlated which could lead to better results than
Random Forests [14]. For more technical details on XGBoost, Random Forests
and Extremely Randomized Trees, we refer to the work of Chen and Guestrin
(2016), Breiman (2001) and Geurts et al. (2006) respectively.

The class distribution is highly imbalanced since there are 1418 non-injury
samples and 45 to predict injury samples in the training set, this can result in
the model discarding the injuries as noise [15]. To account for this imbalance,
two methods commonly used for imbalanced learning were tried [15]. With the
first method the injuries were oversampled by using adaptive synthetic sampling
(ADASYN). ADASYN artificially creates new injuries that are similar to the ex-
isting injuries until there are as many injuries as non-injuries. For more technical
details, we refer to the work of He et al. (2008) [17]. The oversampling was done
by utilising the ADASYN function from the Python package imbalanced-learn
[22]. The second method utilises cost-sensitive approach. By assigning a higher
cost to wrongly predicting injuries, the model is less likely to discard them as
noise. The cost value of misclassifying an injury was set by dividing the number
of non-injury samples by the number of injury samples [15].
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For each of the three models, the two techniques to combat the class imbal-
ance were tried thus resulting in a total of six models.

Hyperparameter tuning Hyperparameters are parameters that are not learned
by the algorithm. Instead they have to be defined prior to training. Since they
affect how the model learns, it is important to find a set of hyperparameters that
lead to good results. This is known as hyperparameter optimization [37]. The
optimization of the hyperparameters for both models was done using Bayesian
optimisation from the package scikit-optimize. Bayesian optimization uses past
evaluation results to choose the next set of parameters to evaluate. It chooses
these next hyperparameter set based on those that have done well in the past
[37]. The hyperparameters that achieved the highest score on the holdout vali-
dation set are given in appendix A.

Table 1: Metrics used to evaluate model 2

Metric Formula Explanation

Precision TP
TP+FP

How many predicted
injuries are actually injuries

Recall TP
TP+FN

Of all injuries how many
are correctly predicted

F1 2 ∗ Precision∗Recall
Precision+Recall

Harmonic mean of precision
and recall

PR AUC Trade-off(Precision/Recall) Average precision score for
each recall threshold

Evaluation The first model will be evaluated by calculating the mean squared
error (MSE) between the original feature values and the predicted outcome. The
lower the MSE, the better the model is able to reconstruct the original features
[25].

The second model will be evaluated by its predictions on the test set. Table
1 gives an overview of the metrics used, as well as their formula and a brief
explanation. A sample in the test set will be classified as an injury when the
probability outputted by the model is greater than a threshold. This threshold
was set to the one that maximizes the F1-score based on the hold-out validation
set. The metrics that were chosen are commonly used in injury prediction [20,
30, 31, 35] and are robust against class imbalance [15, 34].

4 Results

This section presents the results that were found for each of the models. First
the reconstruction error of the LSTM autoencoder on the hold-out validation
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and test set will be shown. Then the performance of the second models on the
hold-out test set will be presented.

(a) Validation set reconstruction error (b) Test set reconstruction error

Fig. 3: Reconstruction errors of the validation and test set

Figure 3 shows box-plots of the reconstruction error on the holdout validation
and test set. On the x-axis a zero indicates a non-injury, whilst a one indicates an
injury. The y-axis gives the mean squared error, with a higher value indicating
that the model was less able to reconstruct the sample.

Table 2: Performance of the different models over the various metrics

Model F1 Precision Recall PR AUC

XGBoost CS 0.67 0.8 0.57 0.76

XGBoost OS 0.58 0.53 0.64 0.62

Random Forests
CS

0.59 0.62 0.57 0.69

Random Forests
OS

0.4 0.67 0.29 0.47

Extremely
Randomized

Trees CS

0.67 0.69 0.64 0.78

Extremely
Randomized

Trees OS

0.64 0.64 0.64 0.72

Table 2 gives an overview of the results of the different models on the hold-
out test set. Each of the three models was tested for both cost-sensitive (CS)
learning as well as using oversampling (OS). A seed was set at each instance
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where random numbers are used, being at the splitting of the datasets, before
initiating and training of the LSTM autoencoder, at the oversampling and prior
to training the second models. This was done to ensure the reproducibility of
the results.

5 Discussion

This section will start out by discussing the results that were found for both
models. Then the limitations of this study will be addressed as well as how these
limitations could be improved upon in future research.

5.1 Model 1

The goal of the first model was to compress the sequence of seven vectors (one
for each day) down to a single vector. Current research applications aggregate
or combine prior observations to a single vector, but by letting a model handle
this compression, minimal assumptions are made as to what is important in each
sequence. In this study we chose a sliding window of seven days, however other
sliding windows can be chosen. A downside of this approach is that encoded
features at the latent space are a ”black-box” since these are a combination of
the original features from each of the seven days. This result in less transparent
predictions.

Figure 3 showcases the reconstruction error of the LSTM autoencoder for the
holdout validation and test set. The reconstruction error of both sets seem to be
fairly similar. Whilst the mean validation error of non-injuries is slightly lower
than the test set (0.14 and 0.16 respectively), this can be considered normal since
the hyperparameters were optimized for the validation set. Secondly, injuries
have a slightly higher reconstruction error in both the validation and test set
when compared to non-injuries. This could be due to the high class imbalance
between injuries and non-injuries, resulting in the model being less trained to
reconstruct them. Thirdly, there appear to be a considerable amount of outliers
for non-injuries samples in both the validation and test set. This is not the case
with injury samples. It could be worth exploring whether removing extreme
outliers in the training set could improve the performance of the second model.
Lastly, it is difficult to say whether the achieved reconstruction error is good or
bad. Increasing the latent space of the model will most likely result in a better
reconstruction error, but it comes at the expense of the model being less forced
to learn important patterns within the data which can in turn lead to over-fitting
on the training set.

5.2 Model 2

The goal of the second model is to predict injuries as accurately as possible.
Table 2 showcases the results that were found in this study. A comparison of our
results to other research applications is not entirely valid since it does not take
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into account the difference in datasets, nevertheless it can give a general idea of
how our results compare to other studies. Rossi et al. (2018) were the first to
apply tree-based models in football, and achieved a mean F1 score of 0.64 with
their decision tree algorithm. Vallance et al. (2020) extended Rossi et al. (2018)’s
study by including internal load features and claim to improve precision, whilst
not lowering recall. This suggests that their F1 score is higher, although they
do not give a F1 score in their study. Rommers et al. (2020) predicted injuries
in elite youth football and were able to achieve an F1 score of 0.85 with their
XGBoost algorithm. The best achieved result in this study was a F1 score of
0.67, indicating that our results are similar to the aforementioned studies.

Since the idea of better utilising the sequence leading up to an injury was
partly inspired by the study of Lövdal et al. (2021), it would be interesting
to compare our results with theirs. That said, their study uses area under the
receiver operator curve (ROC AUC) as their main metric. This study uses a
different area under the curve, being the area under the precision-recall curve
since this metric is better suited for evaluating imbalanced datasets than ROC
AUC [34]. Moreover, their study focuses on predicting injuries within competitive
runners and not football. Due to these discrepancies, no comparison was made
to their study.

Finally, it is notable that in this study cost-sensitive learning outperforms
oversampling with all models. But it would be incorrect to draw a conclusion
that cost-sensitive learning will consistently outperform oversampling in injury
prediction. Weiss et al. (2007) found that cost-sensitive learning only consistently
outperforms oversampling in datasets with more than 10.000 training examples
[36].

5.3 Limitations and future directions

This study has some limitations, however these may be possible opportunities
for future research.

A limitation that is not unique to this study is the small sample size [8, 31,
35]. Having a larger dataset that tracks players of various teams over multiple
seasons will most likely increase the predictive power of the models and improve
generalization. This is due to both neural networks and tree-based learners being
sensitive to dataset size, as shown by a study from Althnian et al. (2021) [1]. A
second limitation is that the hyperparameters for both models were optimized
separately. This is not ideal since an increase of neurons in the latent space will
result in a smaller reconstruction error for the first model, but an increase in
dimensionality for the second model. This trade-off can be addressed by taking
a more global approach to model optimization. Finally, neural networks are
generally considered to be a black-box. However this box can be ”looked into”
by making the model predict artificial samples and then analyzing what the
model predicted [33]. Analyzing how the first model compresses the sequence
can help better understand what is important in the days leading up to an
injury.
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6 Conclusion

This study investigated whether a two model approach could lead to better injury
prediction results. The first model was a LSTM autoencoder that compressed a
sequence of seven days down to a single vector, and was able to achieve an average
mean squared error of 0.16 on samples from the test set. The second model was
responsible for doing the injury prediction and was trained on the compressed
vector outputted by the first model. For this second model, three tree-based
models were tested being: Extreme Gradient Boosting, Random Forests, and
Extremely Randomized Trees. The best achieved result was a F1-score of 0.67
which was achieved by both the Extreme Gradient Boosting and the Extremely
Randomized Trees algorithm. This result seems to be on par with current re-
search applications, indicating that a more explicit use of the sequence leading
up to an injury is worth further exploring.
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Appendix A

Table 3: Optimal hyperparameters found

Model Hyperparameter Value

LSTM autoencoder hidden layers 1
neurons 300

neurons latent space 150
input dropout 0.20
learning rate 1e-4

batch size 16
activation ELU

early stopping 10

XGBoost cost-sensitive Learning rate 0.01
max depth 15

gamma 0
colsample bytree 0.1
scale pos weight 31
early stopping 50

XGBoost over-sampled learning rate 0.14
max depth 7

gamma 0
column sample by tree 0.1

early stopping 50

Random Forests n estimators 1496
cost-sensitive criterion entropy

max features 0.05
min samples split 2

class weight balanced subsample

Random Forests n estimators 1038
over-sampled criterion gini

max features 0.40
min samples split 2

Extremely Randomized n estimators 2000
Trees cost-sensitive criterion entropy

max features 0.20
min samples split 3

class weight balanced

Extremely Randomized n estimators 1000
Trees over-sampled criterion gini

max features 0.12
min samples split 3
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