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SUMMARY

Fitting models to incomplete categorical data requires more care than "tting models to the complete data
counterparts, not only in the setting of missing data that are non-randomly missing, but even in the familiar
missing at random setting. Various aspects of this point of view have been considered in the literature. We
review it using data from a multi-centre trial on the relief of psychiatric symptoms. First, it is shown how the
usual expected information matrix (referred to as naive information) is biased even under a missing at random
mechanism. Second, issues that arise under non-random missingness assumptions are illustrated. It is argued
that at least some of these problems can be avoided using contextual information. Copyright ( 1999 John
Wiley & Sons, Ltd.

1. INTRODUCTION

Missing data occur often and for a variety of reasons. Many methods have become available to
analyse incomplete data. Although most of the literature focuses on continuous outcomes,
incomplete categorical data are also well studied. For categorical outcomes, incomplete data
imply that a subject is not always classi"ed into a single outcome category but rather into a set of
categories.

When referring to the missing data mechanism we will use terminology of Little and Rubin1

(Chapter 6). A non-response process is said to be missing completely at random (MCAR) if the
missingness is independent of both unobserved and observed data and missing at random (MAR)
if, conditional on the observed data, the missingness is independent of the unobserved measure-
ments. A process that is neither missing completely at random nor missing at random is termed
non-random (MNAR). In the context of likelihood inference, and when the parameters describing
the measurement process are functionally independent of the parameters describing the missing-
ness process, MCAR and MAR are ignorable, while a non-random process is non-ignorable.

Work on incomplete categorical data has largely been in the context of partially classi"ed
contingency tables.2 Molenberghs et al.3 introduced a method for the analysis of longitudinal
ordinal data with non-random drop-out. The latter approach is based on Diggle and Kenward,4
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who treat non-random drop-out in continuous longitudinal data. The EM algorithm5 is exten-
sively used as a maximization tool, but other proposals have been made as well.6

This paper reviews several issues that require the modeller's attention, arising in the context of
incomplete categorical data. In the literature, several illustrations have been given using data
from a multi-centre trial, where the outcomes of interest (therapeutic e!ect and occurrence of
side-e!ects) are scored repeatedly on an ordinal scale.3,7~12 The data are introduced in Section 2.

Following the original work of Rubin and Little, there has evolved a general view that
&likelihood methods' that ignore the missing value mechanism are valid under an MAR process,
where likelihood is interpreted in a frequentist sense. This statement needs careful quali"cation,
however, which is the goal of Section 3. Indeed, Rubin13 has shown that MAR and parameter
distinctness (that is, the parameter space of the measurement and missing data processes is the
product of the individual parameter spaces) is necessary and su$cient to ensure validity of
direct-likelihood inference when ignoring the process that causes missing data, where direct-
likelihood inference is de"ned as resulting solely from ratios of the likelihood function for various
values of the parameter. However, the use of likelihood inference is often surrounded with
references to frequentist concepts, such as identifying and using the appropriate sampling
distribution. This is obviously relevant for determining distributions of test statistics, expected
values of the information matrix, and measures of precision. Apart from the categorical case,
Kenward and Molenberghs10 provide illustrations for normally distributed data and when
sampling is done subject to a stopping rule.

While the treatment of missing data that are missing at random requires some caution, one
needs to be even more careful with non-randomly missing data. This contradicts a common belief
that, with the availability of methods for incomplete data, "tting models is of the same level of
complexity as any other statistical model building exercise and that in fact routine testing for the
non-randomness of the non-response process is possible. However, many instances of the
contrary have been reported. A classical example is found in Little and Rubin1 (Section 11.6).
Several issues are discussed in Section 4. It is illustrated how models are identi"able by virtue of
model assumptions, which are usually impossible to verify merely on statistical grounds. In
addition to the potential occurrence of non-unique, boundary solutions, and solutions that
violate constraints, we show that models often yield the same or similar "ts to the observed
data, but produce qualitatively di!erent predictions for the unobserved data. Other issues are
presented in Molenberghs et al.11

2. THE FLUVOXAMINE TRIAL

The data come from a multi-centre study involving 315 patients that are treated by #uvoxamine
for psychiatric symptoms described as possibly resulting from a dysregulation of serotonin in the
brain. The data are discussed in Molenberghs and Lesa!re,7 Kenward et al.,8 Molenberghs et al.3
and Michiels and Molenberghs.12 After recruitment to the study, the patient was assessed at four
visits. The therapeutic e!ect and the extent of side-e!ects were scored at each visit on an ordinal
scale. The side-e!ect response is coded as: 1, none; 2, not interfering with functionality; 3, interfer-
ing signi"cantly with functionality; 4, side-e!ects surpass the therapeutic e!ect. Similarly, the
e!ect of therapy is recorded on a four point ordinal scale: (1), no improvement or worsening;
2, minimal improvement; 3, moderate improvement; 4, important improvement. Thus, a side-
e!ect occurs if new symptoms occur while there is therapeutic e!ect if old symptoms disappear.
A total of 299 patients have at least one measurement, including 242 completers. There is also
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baseline covariate information on each subject: sex; age; initial severity (scale 1 to 7), and duration
of actual mental illness.

3. LIKELIHOOD-BASED FREQUENTIST INFERENCE

It is generally believed that when the missing data are missing at random in the sense of Rubin,13
the statistical analysis is of the same complexity as the corresponding complete data problem. In
this section, we will illustrate that some caution is required.

Let the vector random variable Y correspond to the complete set of measurements on an
individual and R the associated missing value indicator. For a particular realization of this pair
(y, r) the elements of r take the values 1 and 0 indicating, respectively, whether the corresponding
values of y are observed or not. Let (y

0"4
, y

.*4
) denote the partition of y into the respective sets of

observed and missing data. We assume that the joint distribution of (Y, R) is regular.
We are concerned here with the sampling distributions of certain statistics under MCAR

and MAR mechanisms. These mechanisms were described in the introduction and can be
de"ned more formally as follows (Little and Rubin1). Under an MCAR mechanism
P (R"r Dy)"P (R"r) and the joint distribution of the observed data partitions as follows:
f (y

0"4
, r)"f (y

0"4
) f (r). Under an MAR mechanism Pr(R"r D y)"Pr(R"r Dy

0"4
) and again the

joint distribution of the observed data can be partitioned, f (y
0"4

, r)"f (y
0"4

; h) f (r D (y
0"4

; b) for
parameter vectors h and b. The corresponding log-likelihood function factors as

l (h, b; y
0"4

, r)"l
1
(h; y

0"4
)#l

2
(b; r). (1)

It is assumed that h and b are distinct (the assumption of separability). This partition of the
likelihood has usually been taken for granted to mean that, under an MAR mechanism,
likelihood methods based on l

1
alone are valid for inferences about h even when interpreted in the

broad frequentist sense. We now consider more precisely the sense in which the di!erent elements
of the frequentist likelihood methodology can be regarded as valid in general under the MAR
mechanism.

First we note that under the MAR mechanism r is not an ancillary statistic for h. Hence we are
not justi"ed in restricting the sample space from that associated with the pair (Y, R). In
considering the properties of frequentist procedures below we therefore de"ne the appropriate
sampling distributions to be that determined by this pair. We call this the unconditional sampling
framework. By working within this framework we do need to consider the missing value
mechanism. We shall be comparing this with the sampling distribution that would apply if r were
"xed by design, that is if we repeatedly sampled using the distribution f (y

0"4
; h). If this sampling

distribution were appropriate, this would lead directly to the use of l
1
( ) ) as a basis for inference.

We call this the naive sampling framework.
Certain elements of the frequentist methodology can be justi"ed immediately from (1). The

maximum likelihood estimator obtained from maximizing l
1
(h; y

0"4
) alone is identical to that

obtained from maximizing the complete log-likelihood function. Similarly the maximum likeli-
hood estimator of b is functionally independent of h and so any maximum likelihood ratio
concerning h, with common b, will involve l

1
( ) ) only. Because these statistics are identical whether

derived from l
1
( ) ) or the complete log-likelihood, it follows at once that they have the required

properties under the naive sampling framework.1,13,14
An important element of likelihood-based frequentist inference is the derivation of measures of

precision of the maximum likelihood estimators from the information. For this either the
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observed information, i
O
, can be used where i

O
(h

j
, h

k
)"!L2l ( ) )/Lh

j
Lh

k
or the expected informa-

tion, i
E
, where

i
E
(h

j
, h

k
)"EMi

O
(h

j
, h

k
)N . (2)

The use of the expected information matrix is more problematical. The expectation in (2) needs to
be taken over the unconditional sampling distribution (the unconditional information i

U
) and

consequently the use of the naive sampling framework (producing the naive information i
N
) can

lead to inconsistent estimates of precision. It is possible to calculate the unconditional informa-
tion by taking expectations over the appropriate distribution and so correct this bias. Although
this added complication is unnecessary in practice it does allow a direct examination of the e!ect
of ignoring the missing value mechanism on the expected information.

3.1. Bivariate binary data

Suppose that each member of the pair of observations (>
i1

, >
i2
), from unit i, i"1,2 , n, is

a binary random variable, with associated probabilities P (>
i1
"1)"j and P(>

i2
"1)"h. It is

assumed that an MAR mechanism is operating with respect to the second observation, that is, the
probability of >

i2
being missing depends on >

i1
alone. It follows that >

i1
is always observed. We

want to compare the naive information i
N

with the unconditional information i
U

for this set-up.
We express dependence between >

i1
and >

i2
through the conditional success probabilities of

>
i2

: h
1
"P (>

i2
"1 Dy

i1
"1) and h

0
"P (>

i2
"1 Dy

i1
"0).

The o!-diagonal elements of the observed information matrix are zero, so we need consider
only the information for one of h

0
and h

1
to contrast the naive and unconditional forms of the

expected information. Kenward and Molenberghs10 have shown that the naive information
equals

i
N
(h

1
, h

1
)"

mj
h
1
(1!h

1
)

(3)

with 0)m)n the number of complete observations. For the unconditional information they
obtained

i
U
(h

1
, h

1
)"

njg
1

h
1
(1!h

1
)
. (4)

From (3) and (4), it can be seen that conditions for E
R
(i
N
(h

1
, h

1
))"i

U
(h

1
, h

1
) and

E
R
(i
N
(h

0
, h

0
))"i

U
(h

0
, h

0
) are E

R
(m/n)"g

1
"g

0
and hence g"g

1
"g

0
, the requirement for an

MCAR mechanism to operate. It follows that the MCAR mechanism is both a necessary and
su$cient condition for the equivalence of the two forms of information.

3.2. The Fluvoxmine Trial

We will "rst study two dichotomized versions (category 1 versus higher categories 2, 3 and 4; and
categories 1 and 2 versus 3 and 4) of side-e!ects and therapeutic e!ects at the "rst and the last
measurement occasions. The data are shown in Table I. The model of the previous section is "tted
to all four tables, which is particularly illustrative because naive and unconditional standard error
estimates for j coincide, concentrating potential di!erences between both estimators in the
parameters h

0
and h

1
. For the "rst analysis of side-e!ects, there are only small di!erences and

inference at a common signi"cance level is una!ected. This is di!erent in setting 2. Indeed, the
naive signi"cance probability for H

0
: h

0
"0)5 is 0)0319 while the unconditional version is 0)1306.
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Table I. Fluvoxamine trial: dichotomized outcome at "rst and last measurement occasions

Setting Outcome Dichotomized (0, 0) (0, 1) (1, 0) (1, 1) (0, *) (1, *)

1 side-e!ect 1/234 89 13 57 65 26 49
2 side-e!ect 12/34 203 5 14 2 48 27
3 therapeutic 1/234 11 1 124 88 7 68
4 therapeutic 12/34 77 9 119 19 28 47

Table II. Fluvoxamine trial: analysis of the data in Table I. Parameter estimates (naive standard errors;
unconditional standard errors) are shown

Parameter Side-e!ect Side-e!ect Therapeutic Therapeutic
1/234 12/234 1/234 12/34

j 0)572 (0)029; 0)029) 0)144 (0)020; 0)020) 0)937 (0)014; 0)014) 0)619 (0)028; 0)028)
h
1

0)533 (0)044; 0)045) 0)125 (0)058; 0)083) 0)415 (0)034; 0)034) 0)138 (0)029; 0)029)
h
0

0)128 (0)034; 0)033) 0)024 (0)011; 0)011) 0)083 (0)073; 0)080) 0)105 (0)033; 0)033)
g
1

0)714 0)372 0)757 0)746
g
0

0)797 0)813 0)632 0)754

Note that h
1

is substantially di!erent from h
0
, and, more importantly, that the missingness

probabilities g
1
and g

0
are very di$cult. For therapeutic e!ect, neither of the two settings leads to

di!erences in standard errors of any importance (see Table II).
The analysis considered above is based on a simple Markov type model. It concentrates the

discrepancy between the naive and robust frameworks in the conditional probabilities h
j

( j"0, 1). Other parameterizations are less sensitive to the (mis)use of the naive framework. As an
illustration, we analyse side-e!ects at the "rst, the second, and the fourth measurement occasion,
on a three category scale (with original categories 3 and 4 combined). A trivariate odds ratio
model7 is adopted. Marginal cumulative logits for each outcome are combined with global
marginal log-odds ratios for the pairwise and third-order interactions in order to specify the joint
distribution. The marginal logits are assumed to depend on duration, whereas the log-odds ratios
are assumed constant. Molenberghs et al.3 observed that drop-out in the side-e!ects outcome
depends both on the previous measurement, as well as on the value of duration. We analysed the
set of 222 complete cases as well as all available data. Table III reports on the value of the (naive
and unconditional) Wald statistic for a number of hypotheses. Although not spectacular, the
di!erences between naive expected and observed information based tests is larger for the MAR
analysis than for the complete case analysis. In particular, the P-value for the hypothesis of no
duration e!ect (MAR) changes from 0)0049 with the naive information to 0)0110 with the
observed information. In this example it was seen consistently that in MAR analyses the observed
information yielded smaller test statistics than the naive information. For completers only
analyses, this was not always the case.

4. MODELLING THE MISSING DATA MECHANISM

Consider a two-way contingency table where a subset of subjects only has margins observed, as
discussed in Little.15 Several non-response models are displayed in Table IV. The data are
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Table III. Side-e!ects at times 1, 2 and 4. Wald test statistics for the completers only and for an MAR
analysis

Hypothesis Completer cases MAR

d.f. expected observed expected observed

Common duration e!ect 2 1)36 1)19 2)54 2)44
No duration e!ect 3 2)98 2)54 12)90 11)13
Common two-way association 2 10)70 9)99 11)48 9)13
Intercepts equal across times 4 28)73 28)83 34)96 33)44
Common di!erence between intercepts 2 0)16 0)16 2)07 1)48
Linear trend in "rst intercept 1 0)0099 0)0099 0)16 0)18
Linear trend in second intercept 1 0)020 0)018 1)15 0)85
Linear trend in both intercepts 2 0)034 0)033 1)18 0)91

reproduced in Table V. Decompose the cell probabilities as k
jk
/
r1r2 D jk

, where j, k"1, 2 index the
categorical outcome levels and r

1
, r

2
"0, 1 index the response pattern (1 indicating observed).

For the data in Table V, the pattern (r
1
, r

2
)"(0, 0) is absent. The problem of non-response

patterns for which there are no observations is a very common one and requires careful attention,
explaining why we will consider the pattern exhibited in Table V in detail.

Assuming that the missing data mechanism is MCAR (model I in Table IV), the missingness
probabilities reduce to /

r1r2
(r
1
, r

2
"0, 1). Note that the cell probabilities k

jk
are the same under

MCAR and MAR, but of course the missingness probabilities would be di!erent under MAR.
One may assume that /

00
,0 and hence drop it from the model. Alternatively, one can include

this parameter and estimate it. Then, /K
00
"0 will follow. Both approaches are equivalent in

terms of model "t, but might lead to di!erences in inference. Assuming /
00

is dropped, a set of
non-redundant parameters is given by (k

11
, k

12
, k

21
, /

11
, /

10
)@. Parameter estimates and stan-

dard errors are presented in Table VI. The estimated complete data counts are shown in Table
VII (model I). The fourth pattern in this table corresponds to the subjects without a single
measurement; the observed count corresponding to this pattern is zero. Observe that the standard
errors for the l parameters are slightly bigger than their complete data counterparts, re#ecting
the additional uncertainty.

Next we will consider several non-random missingness processes. Con"ning attention to the
three patterns observed, there are 7 degrees of freedom in the data, suggesting that we can use at
most four parameters for the missingness model, when the measurement model is left fully
general. Family II in Table IV belongs to the recursive models proposed by Fay,16 where: p

1
( j, k)

is the probability of being observed at the second occasion, given outcomes j and k; p
2
( j, k) is the

probability of being observed at the second occasion, given outcomes j and k, and given that
a measurement was obtained at the "rst occasion; and p

3
( j, k) is the probability of being observed

at the second occasion, given outcomes j and k, and given that the measurement at the "rst
occasion was missing. When missingness at one occasion does not depend on missingness at the
other occasion, p

2
( j, k),p

3
( j, k), and family III is obtained. In family II, similarly to family I, the

fact that there are only three out of four patterns observed is taken into account by setting
p
3
( j, k)"1. When family III is seriously considered for candidate models, one must explicitly

address the observations with pattern (0, 0). Below we discuss families II and III in turn.
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Table IV. Non-response models for binary two-way tables with supplemental margins

I /
11 D jk

"p
1/

10 D jk
"p

2/
01 D jk

"p
3

/
00 D jk

"1!p
1
!p

2
!p

3

II /
11 D jk

"p
1
( j, k)p

2
( j, k)

/
10 D jk

"p
1
( j, k) [1!p

2
( j, k)]

/
01 D jk

"[1!p
1
( j, k)p

3
( j, k)

/
00 D jk

"[1!p
1
( j, k)][1!p

3
( j, k)]

A logit p
1
( j, k)"a

1
#a

J
I( j"1)#a

K
I (k"1)

logit p
2
( j, k)"a

2
#a

J
I( j"1)#a

K
I (k"1)

logit p
3
( j, k)"a

3
B logit p

1
( j, k)"a

1
#a

J
I( j"1)

logit p
2
( j, k)"a

2
#a

K
I (k"1)

logit p
3
( j, k)"a

3
#a

K
I (k"1)

C logit p
1
( j, k)"a

1
#a

J
I( j"1)#a

K
I (k"1)

logit p
2
( j, k)"a

2
#a

J
I( j"1)#a

K
I (k"1)

logit p
3
( j, k)"a

3
#a

J
I( j"1)#a

K
I (k"1)

D logit p
1
( j, k)"a

1
logit p

2
( j, k)"a

2
#a

J
I( j"1)

logit p
3
( j, k)"a

3
#a

J
I( j"1)

E logit p
1
( j, k)"a

1
logit p

2
( j, k)"a

2
#a

K
I (k"1)

logit p
3
( j, k)"a

3
#a

K
I (k"1)

F logit p
1
( j, k)"a

1
logit p

2
( j, k)"a

2
#a

JK
[I ( j"1)!I(k"1)]

logit p
3
( j, k)"a

3
#a

JK
[I ( j"1)!I(k"1)]

G logit p
1
( j, k)"a

1
logit p

2
( j, k)"a

2
#a

JK
[I ( j"1)!I(k"1)]/2

logit p
3
( j, k)"a

3
#a

JK
[I ( j"1)!I(k"1)]/2

III /
11 D jk

"p
1
( j, k)p

2
( j, k)

/
10 D jk

"p
1
( j, k) [1!p

2
( j, k)]

/
01 D jk

"[1!p
1
( j, k)]p

2
( j, k)

/
00 D jk

"[1!p
1
( j, k)] [1!p

2
( j, k)]

A logit p
1
( j, k)"a

1
#a

J
I( j"1)

logit p
2
( j, k)"a

2
#a

K
I (k"1)

B logit p
1
( j, k)"a

0
#a

1
I( j"1)

logit p
2
( j, k)"a

0
#a

2
I(k"1)

C logit p
1
( j, k)"a

1
logit p

2
( j, k)"a

2
#a

J
I( j"1)

D logit p
1
( j, k)"a

1
logit p

2
( j, k)"a

2
#a

K
I (k"1)

IV logit /
11 D jk

"a
1
#a

J
I ( j"1)#a

K
I(k"1)

logit /
10 D jk

"a
2
#a

J
I ( j"1)#a

K
I(k"1)

/
01 D jk

"1!/
11 D jk

!/
10 D jk/

00 D jk
"0
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Table V. Two-way contingency table with two supplemental margins (Little15)

100

75

50

75

30

60
28 60

Table VI. Parameter estimates (standard errors) for models "tted to the data in TableV

Parameter I(MCAR) IIA IIB IIIA IV IV(EM)

k
11

0)280 (0)023) 0)263 (0)022) 0)209 (0)019) 0)236 (0)028) 0)362 (0)029) 0)312
k
12

0)174 (0)021) 0)168 (0)022) 0)167 (0)017) 0)141 (0)026) 0)253 (0)031) 0)200
k
21

0)239 (0)023) 0)231 (0)023) 0)216 (0)019) 0)243 (0)034) 0)181 (0)025) 0)227
k
22

0)308 (0)024) 0)338 (0)025) 0)408 (0)023) 0)380 (0)035) 0)204 (0)031) 0)262
/
11

0)628 (0)022)
/
10

0)188 (0)018)
/
01

0)184 (0)018)
a
1

0)942 (0)152) 0)870 (0)127) 0)870 (0)127) 1)198 (0)376) 0)543
a
2

0)596 (0)165) 0)329 (0)138) 1)054 (0)374) !1)059 (0)297) !1)521
a
J

0)559 (0)264) #R (!) #R(!) !1)546 (0)480) !0)515
a
K

0)795 (0)219) #R (!) 1)019 (1)245) 0)664 (0)144) 0)489

Odds ratio 2)071 (0)388) 2)295 (0)433) 2)367 (0)457) 2)621 (0)510) 1)613 (0)305) 1)809
Log-likelihood !971)872 !958)674 !959)384 !986)506 !958)674 !960)747
Model d.f. 5 7 7 7 7 7

In model IIA, missingness is allowed to depend on the outcome at both measurements. The
dependence is the same at both occasions, but the overall rate (see intercepts a

1
and a

2
) is allowed

to di!er.
Parameter estimates are shown in Table VI. The model is saturated in the sense that the

predicted and observed counts coincide and thus the likelihood ratio statistic G2"0. The
predicted probabilities for the hypothetical complete data all lie in the interior of the parameter
space. Further, estimated complete data counts are all positive, as shown in Table VII (IIA).
These add up to the observed counts in Table V. These properties are desirable, but will not
always obtain. Furthermore, they do not yield conclusive evidence for the plausibility of the
model. We will illustrate these points by changing the non-response model.

For model IIB, the probability of missingness in each outcome depends on its own values only,
and these probabilities are allowed to di!er at the two measurement occasions. Keeping p

3
,1,

the number of parameters in IIA and IIB is the same. Model IIB clearly saturates the degrees of
freedom and at the same time yields a non-zero deviance. This is also seen by inspecting the
imputed cell counts (Table VII (IIB)); expected counts for the "rst pattern are di!erent from the
observed ones, as are the relevant margins for the second and the third pattern.

The zero cells in Table VII (IIB) are a consequence of high values found for the parameters a
J

and a
K
, which are diverging to in"nity, implying that p

1
(1, k)"p

2
( j, 1)"1,

/
10

( j, 1)"/
01

(1, k)"0. In other words, a boundary solution is found. Should the same model
be "tted without constraints on the parameters (for example, by directly modelling missingness
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Table VII. Complete data counts for models "tted to Table V

(1, 1) (1, 0) (0, 1) (0, 0)

I(MCAR) 83)84 52)21 25)15 15)66 24)59 15)31 0 0
71)62 92)33 21)49 27)70 21)00 27)08 0 0

IIA 100)00 50)00 14)24 15)76 11)51 14)66 0 0
75)00 75)00 18)67 41)33 16)49 45)34 0 0

IIB 100)00 46)51 0)00 33)49 0)00 0)00 0 0
72)58 79)89 0)00 57)52 30)42 57)58 0 0

IIIA 100)00 50)00 12)58 17)42 0)00 0)00 0)00 0)00
72)58 95)13 9)13 33)15 30)42 39)87 3)82 13)89

IV 100)00 50)00 21)69 8)31 51)22 62)50 0 0
75)00 75)00 34)87 25)13 !23)22 !2)50 0 0

IV (EM) 100)00 50)00 21)13 8)87 28)00 36)23 0 0
75)00 75)00 33)57 26)43 0)00 23)77 0 0

probabilities), negative cell counts would be predicted. This phenomenon can be seen as evidence
against the model, a point also raised by Baker et al.17

Since model IIB saturates the degrees of freedom and yet yields a non-zero deviance, the
question is raised whether the model can be extended. Going one step further, one might include
two additional parameters in the model, by extending IIB to

logit p
1
( j, k)"a

1
#a

J1
I ( j"1)#a

K1
I(k"1)

logit p
2
( j, k)"a

2
#a

J2
I ( j"1)#a

K2
I(k"1).

This model is clearly overparameterized. For di!erent starting values, the maximization routine
will lead to di!erent solutions. The range of solutions thus obtained will reproduce the observed
data counts exactly. Of course, the corresponding information matrix is singular.

Family III will always assign mass to all four patterns. Thus, it di!ers from the previous families
in that the zero count in pattern (0, 0) has to be treated as a sampling zero. Model IIIA is similar
in spirit to model IIB, but family III assumes missingness at both occasions to be independent.
Complete data cell counts are displayed in Table VII (IIIA). Clearly, the "t of IIIA is inferior to
IIB. This shows by calculating the deviance, but also by considering the prediction for the
observed data counts. Note that this model predicts non-zero counts for pattern (0, 0), in spite of
the zero count observed for this pattern. Furthermore, IIIA shows a boundary solution as well,
albeit in one table only. This indicates that the assumption of independence is unrealistic.

The di!erence in "t between IIB and IIIA is expected from the di!erence in the observed data
log-likelihood. However, log-likelihoods for IIA and IIB are fairly close, but the predicted
complete data cell counts are radically di!erent as well. This fact points towards a general
problem with non-random missing data mechanisms. Indeed, we could decompose the full data
into two parts: the observed counts; the distribution of the observations over the missing cells,
given their observed margin. Models IIA and IIB are in good agreement on the "rst part, but very
di!erent on the second one (a reasonably balanced IIA versus a boundary IIB solution). This
follows from the fact that missingness in IIA depends on a combination of in#uences of both
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measurements, while in IIB missingness in a given outcome depends on its own realization only.
These are indeed radically di!erent assumptions. Some criticism applies to model IIA. Parameter
identi"cation is borrowed from equating the J and K e!ects at both times. Given the di!erence in
interpretation of p

1
(unconditional) and p

2
(conditional on the status of the "rst outcome), this

may be questionable.
Arbitrariness in distributing the observed counts over the missing cells is illustrated further by

considering the somewhat peculiar model IV, which is a special case of the model considered by
Baker.18 Parameter estimate are shown in Table VI. It saturates the degrees of freedom and has
a deviance of G2"0, properties shared with IIA. However, the imputed cell counts are radically
di!erent; the non-response model does not constrain the probabilities to lie in the unit interval,
and negative cell counts rather than a boundary solution are obtained under unconstrained
maximum likelihood estimation. Although models IIA and IV describe the observed data equally
well, there are large di!erences between both, exhibited by the (impossible) imputed values for the
complete cell counts (Table VII (IV)). It has to be noted that the negative counts are not the true
maximum likelihood estimates, which would be found by constraining the counts to be non-
negative. Using the EM algorithm overcomes this problem. This solution is also displayed in
Table VI, while the counts are given in Table VII (IV-EM). The "t for the completers does not
change and the "t for the second pattern is very similar. However, the complete counts for the
third pattern are drastically di!erent. The model is saturated in terms of degrees of freedom, but
the deviance is now positive. Baker et al.13 argue that, particularly in large samples, a negative
solution (and its corresponding boundary solution) can be viewed as evidence against the model
and hence it is not necessary to compute boundary solutions. Apart from these problems, another
point of criticism for model IV is that the missingness model treats the third pattern entirely
di!erently from the others; whereas the e!ect on the "rst and second pattern is linear on the logit
scale, the e!ect on the third pattern is highly non-linear, and not constrained to be non-negative.
Arguably, one has to think harder about formulating a missingness model such that (i) undesir-
able asymmetries are avoided and (ii) non-negative solutions are ensured (with the possibility of
having a boundary solution).

The fact that the predicted complete data counts can change dramatically with the non-
response mechanism does not imply that all quantities of interest will change accordingly. It was
noted for the models considered by Baker et al.17 that the odds ratio in the 2]2 table, collapsed
over all response patterns, is very stable and in fact, for many models, equal to the one in the
completers' table. Thus, it is interesting to compute the marginal odds ratio. Estimates for this
quantity (and standard errors, obtained with the delta method), have been calculated and are
displayed in Table VI. Knowing that the odds ratio for the completers' table equals 2)000 (0)476),
it is clear that the estimates for the models "tted are reasonably close, although the one for model
IV, obtained with the Newton}Raphson method, is on the opposite side of the value for the
completers than the other models. The value obtained for the boundary solution is again closer to
the completers' value.

4.1. The Fluvoxamine Data

In the previous section it was argued that several models can look equally plausible, when the "t
of the model to the observed data is considered as the sole criterion, even though the implications
for the complete (partly unobserved) data can be radically di!erent. It was argued that a real
life application often has the bene"t of subject matter background on the one hand, and the
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Table VIII. Data from psychiatric study

(a) Side-e!ects

89

57

13

65

26

49
2 0 14

(b) Therapeutic e!ect

11

124

1

88

7

68
0 2 14

(c) Side-e!ects, by sex

Time 1 Time 2

Completers Drop-outs

1 2 *

Males
1 34 6 10
2 12 19 23

Females
1 55 7 15
2 44 42 26

knowledge of a set of covariates on the other. In this section, several analyses of a real set of data
will try to illustrate how progress can be made using this extra information. We will illustrate this
point using the #uvoxamine study.

We study the occurrence of side-e!ects (no/yes) and the presence of therapeutic e!ect (no/yes),
outcomes which were to be evaluated at two doctor's visits. All four non-response patterns are
observed. The data are shown in Table VIII parts (a) and (b). Note that the data for side-e!ects
agree with those in Table I (setting 1), but now the additional patterns are used as well. Also, the
e!ect of sex and age on side-e!ects will be studied on the completers and on the patients that drop
out (excluding 2 patients that are observed at the second occasion only, as well as 14 patients
without measurements). The raw data, collapsed over age, are shown in Table VIII(c). The slight
discrepancy between the counts in Table VIII(a) and the summed counts in Table VIII(c) is due to
missing baseline information for a few patients.

To both Tables VIII(a) and (b), all models listed in Table IV are "tted (except for model IV).
This means that a few models have been added (IID}G and IIIC}D). These models re#ect a priori
information: (i) the data are collected in a time-ordered fashion and hence missingness at the
second time could possibly depend on the measurement at the "rst occasion while the reverse is
unlikely; (ii) missingness at the second occasion is much more frequent than at the "rst occasion.
Therefore, missingness at the "rst occasion could be considered purely accidental, while missing-
ness at the second occasion is likely to be data dependent. All models hold p

1
( j, k) constant.

A priori the family II models are considered more likely than the family III models since in
a longitudinal study, missingness is often dominated by drop-out, forcing dependence between
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Table IX. Model "t for side-e!ects (d.f. degrees of freedom; G2, likelihood ratio test statistic,
P-value and marginal odds ratio)

Model d.f. G2 P Odds ratio

I 6 4)52 0)1044 7)80 (2)39)
IIA 8 0)00 * 5)07 (1)71)
IIC 8 0)00 * 5)07 (1)71)
IID 7 1)52 0)2176 7)84 (2)35)
IIE 7 0)96 0)3272 7)70 (2)14)
IIF 7 2)04 0)1532 7)26 (2)25)
IIG 7 1)32 0)2506 7)98 (2)34)
IIIB 5 70)04 (0)0001 6)18 (2)04)
IIIC 6 27)88 (0)0001 7)81 (2)34)
IIID 6 27)88 (0)0001 7)81 (2)18)

non-response at the various occasions. This is re#ected by the association in the marginal
probabilities of falling in one of the four response patterns (0)71, 0)24, 0)0063 and 0)045,
respectively, yielding an odds ratio of 21)1). Let us describe the models in terms of the e!ect of the
measurements on missingness at the second occasion they assume. In models IIIC and IID,
non-response depends on the outcome at the "rst occasion only; in models IIID and IIE it
depends on the second occasion only; in model IIF it depends on the increment between both
measurements; and in model IIG it depends on the average of both measurements.

Let us discuss side-e!ects "rst. Results are shown in Table IX. First, some models are not
considered further since unconstrained maximization would yield negative expected complete
data counts, if a boundary solution is not ensured. This additional phrase is important since, due
to the sampling 0 in pattern (0, 1), some models (including several models that saturate the
degrees of freedom) yield a boundary solution even with unconstrained maximization. Models
that are not considered are IIB and IIIA. These two models are similar in the sense that they all
assume drop-out in an outcome to depend only on the realization of that outcome. Among the
remaining models, the ones belonging to family III are strongly rejected, which was anticipated
due to the dependence between non-response at both occasions. The other models would be
acceptable if goodness-of-"t were the only criterion considered. This includes MCAR (models I).
The best "t, among the non-saturated models, is given by IIE, but models IID and IIG are very
similar. These models assume constant non-response at the "rst occasion, and non-response at
the second occasion that depends on either the "rst outcome, or on the second outcome, or on the
average of both. Inspecting the complete data counts of these models, it is reassuring that all yield
similar conclusions (with a slightly inferior "t for MCAR). They are displayed in Table X. Thus,
the conclusion of our sensitivity analysis might be that missingness at the "rst occasion of
side-e!ects is constant, whereas missingness at the second occasion depends on side-e!ects itself
(immaterial whether measured at the "rst occasion, the second occasion, or both). Further, the
association between both side-e!ect measures is considerable, with an odds ratio around 7)8
(standard error around 2)2).

The results for therapeutic e!ect are shown in Table XI. The same models are excluded on the
basis of boundary values. Again, the "t of family III models is very poor. Among the remaining
non-saturated models, the only convincing "t is for IIE. In IIE, non-response at time 2 depends
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Table X. Complete data counts for models "tted to side-e!ects data

(1, 1) (1, 0) (0, 1) (0, 0)

I(MCAR) 84)00 12)12 28)13 4)06 0)74 0)11 5)26 0)76
60)21 67)67 20)16 22)66 0)53 0)60 3)77 4)23

IID 89)60 12)89 22)56 3)24 0)92 0)13 5)08 0)73
57)12 64)41 23)11 26)06 0)44 0)49 3)86 4)35

IIE 89)69 13)12 17)55 7)84 0)95 0)07 4)79 1)05
57)04 64)24 11)16 38)37 0)60 0)33 3)05 5)16

IIG 89)68 12)95 21)30 4)33 0)94 0)11 5)00 0)82
57)06 64)35 19)07 30)26 0)48 0)44 3)59 4)62

Table XI. Model "t for therapeutic e!ect (d.f., degrees of freedom; G2,
likelihood ratio test statistic, P-value and marginal odds ratio)

Model d.f. G2 P Odds ratio

I 6 5)08 0)0789 7)77 (6)44)
IIA 8 0)00 * 1)13 (0)49)
IIC 8 0)00 * 1)13 (0)49)
IID 7 3)62 0)0571 7)86 (6)39)
IIE 7 0)08 0)7773 8)25 (8)32)
IIF 7 4)74 0)0295 7)10 (5)31)
IIG 7 2)90 0)0886 8)20 (7)18)
IIIB 5 27)56 (0)0001 7)67 (5)98)
IIIC 6 29)84 (0)0001 7)81 (6)27)
IIID 6 29)84 (0)0001 8)25 (8)44)

on the time 2 measurement. Model IIG would still be acceptable, but far less so than the others
mentioned. Thus, the picture is much less clear than with side-e!ects. Even for the marginal odds
ratio, two of the saturated models show a relatively small value while the others are higher. Of
course, this e!ect is less severe than it appears due to the large standard errors. These are
undoubtfully in#uenced by the count 1 in the completers' table.

Again, inspecting complete data counts sheds some light on these "ndings (Table XII). In fact,
both models IIC and IIE yield boundary solutions for pattern (1, 0) while this does not need to be
the case, not even for a saturated model. Indeed, several model parameters are estimated to be
in"nity. In addition, the way in which this pattern is "lled in depends crucially on the model
assumptions. In model IIC, all drop-outs are assumed to have arisen in spite of a therapeutic
e!ect at the second occasion. In model IIE, the situation is exactly reversed. The conclusions for
pattern (0, 0) are similar. Clearly, imputation in model IIC is driven by the zero count in the
observed data of pattern (0, 1). This feature is less desirable and model IIC should be discarded.
Model IIE, on the contrary, is able to reverse the zero columns in patterns (1, 0) and (0, 1),
through two parameters at in"nity (a

2
and a

K
, with opposite signs). Model IIG is similar to but

less extreme than IIE, with some di!erences in pattern (0, 0). Retaining the picture behind IIE and
IIG, we might conclude that non-response at the second time is caused by a less favourable
evolution and/or situation of therapeutic e!ect.
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Table XII. Complete data counts for models "tted to therapeutic data

(1, 1) (1, 0) (0, 1) (0, 0)

IIC 11)00 1)00 0)00 7)00 0)00 0)11 0)00 4)96
124)00 88)00 0)00 68)00 0)00 1)89 0)00 9)04

IIE 11)57 1)00 6)43 0)00 0)00 0)02 0)96 0)03
123)43 88)00 68)57 0)00 0)00 1)98 10)27 2)73

IIG 10)42 0)98 7)17 0)38 0)06 0)01 0)89 0)07
123)51 89)19 47)87 19)48 0)91 0)96 8)26 4)86

Table XIII. Estimates (standard errors) for side-e!ects (covariates)

Parameter MCAR MAR Non-R (i) Non-R (ii)

Measurements model
First time
Intercept 0)640 (0)402) 0)640 (0)402) 0)642 (0)402) 0)639 (0)402)
Age e!ect !0)022 (0)009) !0)022 (0)009) !0)022 (0)009) !0)022 (0)009)

Second time
Intercept 1.598 (0)489) 1)598 (0)489) 1)745 (0)597) 1)403 (0)489)
Age e!ect !0)023 (0)011) !0)023 (0)011) !0)021 (0)011) !0)025 (0)010)

Log-odds ratio 1)955 (0)357) 1)955 (0)357) 1)808 (0)515) 1)935 (0)347)

Drop-out model
Intercept 0)766 (0)211) 1)085 (0)275) 0)951 (0)315) 1)382 (0)435)
First measurement !0)584 (0)284) !0)963 (0)623)
Second measurement 1)237 (2)660) !1)231 (0)627)
Sex e!ect 0)518 (0)275) 0)568 (0)277) 0)636 (0)294) 0)493 (0)289)

Log-likelihood !480)485 !478)302 !478)149 !478)600
Model d.f. 7 8 9 8

From this model building it is clear that selecting a model which "ts the observed data well is
not su$cient when non-ignorable models are considered. First, models which produce boundary
or invalid solutions should be treated with caution. Arguably, such models should be discarded.
Second, one should question the plausibility of non-response mechanisms in terms of design
information (for example, time ordering of measurements) and subject matter knowledge (for
example, prior knowledge about the directionality of treatment e!ect).

Next, let us look at the progress that can be made through accounting for the e!ect of
covariates. A marginal odds ratio model was "tted;6 a logit link is assumed to link the outcome at
each measurement occasion to covariates and the association between outcomes is modelled in
terms of log-odds ratios. Results are presented in Table XIII.

We selected age as a predictor for the marginal measurement models. For both measurements,
age increased the risk of side-e!ects. Although we allowed the association between both outcomes
to be dependent on covariates, the log-odds ratio was found to be constant. In the drop-out
model, sex was the only su$ciently signi"cant predictor to be kept in the model. We consider four
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drop-out models: (i) MCAR; (ii) MAR; (iii) Non-R(i), drop-out depends on both measurements;
(iv) Non-R(ii), drop-out depends only on the value of the second measurement. The most general
drop-out model we retained assumes the form

logit(/
ijk

)"logit(P(non-drop-out D>
1
"j, >

2
"k, x

i
))"a

0
#a

1
I( j"1)#a

2
I (k"1)#a

3
x
i

where x
i
is the sex of subject i. From the MAR model we conclude that drop-out chances increase

for subjects with side-e!ects at the "rst visits and are higher for men than for women.
Observe that the MAR model and the Non-R models lead to approximately the same "t. This

is in line with our "ndings in Table IX. First, the association between both measurements is
considerable, given a log-odds ratio of about 2, found in all models. MAR and Non-R(ii) both
indicate a strong dependence of drop-out on the level of side-e!ect; the regression coe$cients
have the same sign. In conclusion, all three models show a strong dependence of drop-out on the
occurrence of side-e!ects, irrespective of whether the "rst, the second, or both measurements are
used, that is, the same conclusion as in the analysis without covariates.

Diggle and Kenward4 and Molenberghs et al.3 considered several examples where a non-
random drop-out model showed a markedly better "t than a random drop-out model. These
authors then reparameterized the drop-out model in terms of size and increment (average of and
di!erence between previous and current measurements). It turned out that in such cases drop-out
usually depends on increment rather than on size.

5. CONCLUDING REMARKS

Fitting models to incomplete data by means of maximum likelihood, even when the missing data
mechanism is MAR, requires care since likelihood inference is surrounded with references to the
sampling distribution. In particular, the classical expected information matrix, while used by
many authors, is inconsistent and should be replaced with the observed information matrix.

Non-random (selection) models necessarily encompass a part that cannot be tested by the data.
Therefore, whether or not a drop-out model is acceptable cannot be determined solely by
mechanical model building exercises. Arbitrariness can be removed partly by careful considera-
tion of the plausibility of a model. One should use as much context derived information as
possible. Prior knowledge can given an idea of which models are more plausible. Covariate
information can be explicitly included in the models to increase the range of plausible models
which can be "t.2,19 Moreover, covariates can help explaining the dependence between response
mechanism and outcomes. Good non-response models in a longitudinal setting should make use
of the temporal and association structures among the repeated measures.

ACKNOWLEDGEMENTS

The authors wish to thank Solvay Duphar N.V. for the kind permission to use their data.

REFERENCES

1. Little, R. J. A. and Rubin, D. B. Statistical Analysis with Missing Data, Wiley, New York, 1987.
2. Baker, S. G. and Laird, N. M. &Regression analysis for categorical variables with outcome subject to

nonignorable non-response', Journal of the American Statistical Association, 83, 62}69 (1988).
3. Molenberghs, G., Kenward, M. G. and Lesa!re, E. &The analysis of longitudinal ordinal data with

non-random dropout', Biometrika, 84, 33}44 (1997).

MISSING DATA PERSPECTIVES OF THE FLUVOXAMINE DATA SET 2463

Copyright ( 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2449}2464 (1999)



4. Diggle, P. D. and Kenward, M. G. &Informative dropout in longitudinal data analysis (with discussion)',
Applied Statistics, 43, 49}93 (1994).

5. Dempster, A. P., Laird, N. M. and Rubin, D. B. &Maximum likelihood from incomplete data via the EM
algorithm', Journal of the Royal Statistical Society, Series B, 39, 1}38 (1977).

6. Molenberghs, G. and Goetghebeur, E. &Simple "tting algorithms for incomplete categorical data',
Journal of the Royal Statistical Society, Series B, 59, 401}414 (1997).

7. Molenberghs, G. and Lesa!re, E. &Marginal modelling of correlated ordinal data using a multivariate
Plackett distribution', Journal of the American Statistical Association, 89, 633}644 (1994).

8. Kenward, M. G., Lesa!re, E. and Molenberghs, G. &An application of maximum likelihood and
generalized estimating equations to the analysis of ordinal data from a longitudinal study with cases
missing at random', Biometrics, 50, 945}953 (1994).

9. Lesa!re, E., Molenberghs, G. and Dewulf, L. &E!ect of dropouts in a longitudinal study: an application
of a repeated ordinal model', Statistics in Medicine, 15, 1123}1141 (1996).

10. Kenward, M. G. and Molenberghs, G. &Likelihood based frequentist inference when data are missing at
random', Statistical Science, 12, 236}247 (1996).

11. Molenberghs, G., Goetghebeur, E., Lipsitz S. R. and Kenward, M. G. &Non-Random Missingness in
Categorical Data: Strengths and Limitations', ¹he American Statistician 53, 110}118. (1999).

12. Michiels, B. and Molenberghs, G. &Protective estimation of longitudinal categorical data with nonran-
dom dropout', Communications in Statistics } ¹heory and Methods, 26, 65}94 (1997).

13. Rubin, D. B. &Inference and missing data', Biometrika, 63, 581}592 (1976).
14. Little, R. J. A. &Inference about means for incomplete multivariate data', Biometrika, 63, 593}604 (1976).
15. Little, R. J. A. &Pattern-mixture models for multivariate incomplete data', Journal of the American

Statistical Association, 88, 125}134 (1993).
16. Fay, R. E. &Causal models for patterns of nonresponse', Journal of the American Statistical Association,

81, 354}365 (1986).
17. Baker, S. G., Rosenberger, W. F. and DerSimonian, R. &Closed-form estimates for missing counts in

two-way contingency tables', Statistics in Medicine, 11, 643}657 (1992).
18. Baker, S. G. &Composite linear models for incomplete multinomial data', Statistics in Medicine, 13,

609}622 (1994).
19. Baker, S. G. &Marginal regression for repeated binary data with outcome subject to nonignorable

nonresponse', Biometrics, 51, 1042}1052 (1995).

2464 G. MOLENBERGHS E¹ A¸.

Copyright ( 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2449}2464 (1999)


