

Master's thesis

Zander Rectem and Innovation Management

SUPERVISOR :

Prof. dr. Stephan BRUNS

UHASSELT KNOWLEDGE IN ACTION

www.uhasselt.be Universiteit Hasselt Campus Hasselt: Martelarenlaan 42 | 3500 Hasselt Campus Diepenbeek: Agoralaan Gebouw D | 3590 Diepenbeek

Faculty of Business Economics Master of Management

Systematic review of the effect of renewable energy policies on innovation in China

Thesis presented in fulfillment of the requirements for the degree of Master of Management, specialization Strategy

|___

Faculty of Business Economics Master of Management

Master's thesis

Systematic review of the effect of renewable energy policies on innovation in China

Zander Rectem

Thesis presented in fulfillment of the requirements for the degree of Master of Management, specialization Strategy and Innovation Management

SUPERVISOR : Prof. dr. Stephan BRUNS

This master thesis was written during the COVID-19 crisis in 2020-2021. This global health crisis might have had an impact on the (writing) process, the research activities and the research results that are at the basis of this thesis.

Preface

This master thesis is the final challenge of my study Master of Management with a major in Strategy & Innovation at the University of Hasselt. The research topic, "Systematic review of the effect of renewable energy policies on innovation in China ", was not my first choice, and since this topic and the methodology was completely new to me it demanded a lot of effort and determination. I learned a lot about policies in China and got rid of a lot of prejudice along the way. I had the opportunity to learn how to systematically find and assess a lot of studies which can be a handy skill for my further career development.

I am grateful for all the help from my supervisor, Stephan Bruns, who was always willing to answer all my questions and give constructive feedback when needed. Next to that, I'm thankful for my friends, family, and my girlfriend. I want to stress that my studies were all made possible due to the support of my widow mother, I will be forever in your debt.

The pandemic had a big impact on everyone, and for me personally, it completely ruined my business where I have put 3 years of my life and soul into. This resulted in a lot of time issues, stress and other unpleasantries related to this master thesis. Without the support of everyone, I could not have achieved finishing this master thesis during the pandemic.

Abstract

Introduction

The main pollution source in China is fossil fuel combustion, this has a significant impact on climate change, the local environment, and human health. A suitable solution is to convert current energy systems to renewable energy sources, this way it is possible to create electricity without producing CO2. The change requires a lot of technical innovation. Therefore, research needs to be done regarding the innovation drivers. The scope of this thesis is limited to policy intervention on innovation. This master thesis presents a systematic review of the effects of renewable energy policies on innovation. The outcome of the intervention method is measured in patents. The research question is the following: What is the effect of renewable energy policies on innovation in China?

Method

This systematic review uses reporting standards for systematic evidence syntheses for environmental standards (ROSES), to ensure the highest possible reporting standards. ROSES follows a sequential pattern. The first step is creating a search string and choosing databases, I chose the "Web of Science" database. Second, inclusion and exclusion criteria for the articles need to be defined. This is followed up by text screening; first a title and abstract screening, and next a full-text screening. While doing this, every article that has been included or excluded needs to be saved in a list, so the study is replicable.

Findings

The first search gave 293 articles, after removing duplicates, removing articles with an unretrievable text, and excluding non-relevant articles according to the inclusion criteria, 20 relevant articles remained. Then I conducted a data synthesis on the remaining articles. The data synthesis method I used is narrative synthesis. I extracted certain variables such as article title, author, policies, type of research, and innovation outcome in the form of patent measurement. The outcome was then classified into separate renewable energy technology groups, this way it is easier to see if there are contradictory values in the remaining articles. The technology groups consist out of alternative energy, waste management, energy conservation, other green technologies, and others.

Important findings show that China is a latecomer to the renewable energy market, but China has booked significant innovation progress. China booked significant innovation progress in every renewable energy technology identified in this thesis. In 2018, China filed the most renewable energy patents globally. The results show that renewable energy policies in China have a significant positive effect on innovation. China has become the world's biggest manufacturer in wind energy and solar energy technology, but mainly through international in-licensing.

While analyzing, a couple of policies reoccurred or were mentioned as a driver of innovation. The "Renewable Energy Law "(2006) was mentioned multiple times as a significant positive effect on innovation. The Five-year development plans were also mentioned several times as important factors for innovation in multiple different energy technology groups. These Five-Year guidelines are very important because they can prioritize certain renewable energies, and thus are a strong policy instrument.

The results also show that subsidies have a significant positive effect on innovation and play an important role in new-energy firms, namely innovation subsidies. Multiple studies also mention that China uses a lot of push, pull, and environmental policies, which all show to have a significant positive effect on innovation, with an important one being feed-in tariffs. This shows a correlation with significant innovations in mature and novel technologies.

One of the most polluting industries is the vehicle industry, China has invested a lot in the new energy vehicle industry and owns a high patent share. China has enacted multiple policies to stimulate innovation in this industry, an important one is the 12th Year with a focus on manufacturing and deploying 500000 vehicles. China is the world's biggest automobile manufacturer, and they invest heavily in this sector because China wants foreign oil independence and it wants to reduce emissions (Gao et al., 2017).

Despite the great innovation leaps, China still has not caught up with leading countries in innovation in a lot of areas. China shows to only have two percent of solar energy patents grants worldwide between 2002 and 2015 and only one percent in wind energy but is an emerging player in the renewable energy market.

Value of the study

The contribution of this research is that it highlights possible advantageous policies for innovation in renewable energies, this can be of interest for policymakers in emerging countries to shape the renewable energy landscape in the future. The findings can be used by the policymakers that plan to improve innovation. The results show a broad overview of policies and their effects. The research also shows the significant role that policies play in developing renewable energy technology.

Limitations

Creating a systematic review with ROSES is normally made by multiple people, this systematic review is done by one person. Therefore, consistency checks with multiple people have not been performed in the article screening process. There was only one database used in this screening process. Next to that, this paper was written with certain deadlines and time restrictions. The data gathered is dependent on the correctness of existing papers, therefore it is not sure if all data is reliable data. In this study, innovation is measured in the patent count or with a correlation with papers, which sometimes fail to grasp the full amount of innovation. Not every invention is patented, and the value of each patent is not clear. Lastly, English is my second language, and this can be a deficiency because a lot of these studies were very technical, and sometimes it was difficult to interpret everything.

Table of content

Pre	Preface						
Abs	stract.						
Tat	ole of o	content					
1.	Intro	duction15					
2.	. Objective of the review						
3. Methods							
5	3.1	Creating the research question17					
5	3.2	Search strategy19					
	3.2.1	Search string19					
	3.2.2	Screening19					
	3.2.3	Critical appraisal20					
	3.2.4	Data extraction					
4.	Resu	ılts21					
2	1.1	Flow diagram for systematic reviews21					
2	1.2	Literature study22					
5.	Data	analysis					
5	5.1	Distribution of articles45					
6.	Disc	ussion47					
7.	7. Conclusion and policy implications49						
8.	8. Stakeholder engagement51						
9.	Refe	rence list53					
10.	Арре	endix					
1	L0.1	Appendix A: Search string results from Web of Science Core Collection57					
1	L0.2	Appendix B: Inclusion and exclusion list57					
1	L0.3	Appendix C: Classification of green patent groups (Fujii & Managi, 2019)84					

List of Figures

Figure 1: ROSES flow diagram for systematic review2	1
Figure 2: patent numbers in NEV for six countries (1988-20182	4
Figure 3: innovation matrix of emerging economies2	5
Figure 4: environmentally related technology patents between 2000-2015	6
Figure 5.a and 5.b: (a) Cumulative patent count from China (CN), Japan (JP), United States (US), Germany (DE), Denmark (DK), France (FR), Great Britain (GB), and Spain (ES) (2015), (b) Wind patents over time by country	2
Figure 6: distribution of renewable energy group talked about in the sample size4	5
Figure 7: the distribution of research types46	5

List of Tables

Table 1: PIO method used to form the research question	17
Table 2: Search string used in this thesis	19
Table 3: Inclusion and exclusion criteria	20
Table 4: Green patent data from China provided by WIPO, numbers are the average value period	e in each 33
Table 5: Data synthesis	44

1. Introduction

China is the most polluting country in the world regarding CO2 emissions (World Resources Institute, 2021). China has a very high amount of air pollution, ozone pollution, and fine particles (PM2.5) in the air and these have a significant impact on the local environment, climate change, and human health (Gao et al., 2017; Jia et al., 2017; Yihui, 2006). The main pollution source is fossil fuel combustion in diverse sectors (Lei et al., 2011; Zhai et al., 2012). The other big problem is that fossil fuels are not a sustainable energy source. Research from Kuo (2019) shows that there is a limited amount of these exhaustive resources. The research predicts that by 2090 coal, oil and gas will be depleted. This means that countries must look into alternative energy sources.

Renewable energy is considered an alternative to fossil fuels. It produces minimum emissions and is a sustainable energy source (Panwar et al., 2011). It is becoming a prominent factor in the fulfillment of energy demand (Bull, 2001). There are multiple sources of renewable energy such as solar energy, wind energy, hydropower, geothermal energy, tidal energy, and ocean thermal energy (Twidell & Weir, 2015). Switching to alternative energy is not an easy task and a lot of strategies will be involved. Lund (2007) says that converting all present energy systems to renewable energy systems is possible, but a lot of technological innovation is needed to realize this goal. This implies that investment for innovation in renewable energy sources is very much needed. Consequently, policies should offer an incentive to innovate in this area.

Policies, innovation, and patent laws go hand in hand (Archibugi, 1992). When looking at the innovation side, it is considered that patent count is an indicator for innovation (Archibugi, 1992). But there are some issues with patents in China; Hall (2018) says that China is a controversial country regarding patent laws because it is known to duplicate a lot of items from existing brands. They are liable for over 86 % of counterfeit goods globally. But in the latest years, they have strengthened their patents laws, and the government has started a war on fake items (Hall, 2018; Zhao, 2015).

Zhang et al (2013) say that the current renewable energy market in China is very diverse, in some areas China is becoming a world leader, but in others, it is still lagging. Next to that, China appears to be the manufacturing leader in wind and solar energy technologies, but under-deployment in the domestic country has occurred (Heggelund, 2021). In 2012 the energy mix of China existed out of 66.2% coal as primary energy consumption, it was a trade-off between fast economic growth and sustainable development (Clark & Cooke, para. 73).

China has issued several initiatives for renewable energies in the infamous five-year plans. Five Year-plans are important guidelines for social and economic development, they map strategies and set growth targets and contain detailed guidelines for all its regions (Kennedy & Johnson, 2016). These plans are already shaping China's economic market since 1953. In 2018 China has filled the greatest number of patents for renewable energy technologies, 7544 patents (Statista, 2019). This shows that the innovation rate is growing. Therefore, it is important to check what the existing policies are and how they affect innovation. This can offer interesting insights for policymakers in emerging economies. To do this the method of systematic review has been chosen, because it gives a broad look into the materials, it is repeatable, and it minimizes bias. This systematic review tries to provide a look into policies for renewable energy in China and what kind of effect they have on innovation. Throughout the thesis **the research question**: "What is the effect of renewable energy policies on innovation in China?" will be discussed and answered.

2. Objective of the review

The general objective is to identify the relationship between renewable energy policies and innovation in China. The measurement of innovation will be patent count. The scope of the analysis will be limited to renewable energy sources. These mainly include solar energy, wind energy, hydropower, and geothermal energy (Twidell & Weir, 2015). To reach the objective studies will be identified, summarized, and analyzed in a systematic approach. After doing this the thesis can provide an answer to the research question: What is the effect of renewable energy policies on innovation in China?

3. Methods

Systematic reviews try to identify studies and findings, summarize them, and analyze them (Tutt Library Colorado College, 2021). This methodology was chosen because with this method I can identify and synthesize all relevant data to answer my research question (Poklepović & Tanveer, 2019). The methodology minimizes bias and makes research replicable. The field of renewable energy offers a lot of existing literature, and the research question is clearly defined with PIO (Teesside University, 2019). This approach implies that the research question can be answered and that a systematic review is a suitable method for this study.

This systematic review is conducted based on the protocol for reporting standards for systematic evidence syntheses (ROSES) (Haddaway et al., 2017). ROSES aims to improve the standards of reporting for fields related to environmental research. This standard ensures that systematic reviews are qualitative and replicable.

3.1 Creating the research question

Before looking for articles and other materials in a field, one must result to creating a research question. For this master thesis, the forming of the research question was done by using the PIO framework (Teesside University, 2019). PI(C)O is a framework that tries to help with constructing a clear and good research question.

Population	China	
Intervention	Renewable energy policy	
Outcome	Innovation	

Table 1: PIO method used to form the research question

After doing the method the following research question was created. What is the effect of renewable energy policies on innovation in China?

3.2 Search strategy

This systematic review was conducted with the database of the "Web of Science" between October 2020 till July 2021. Access was granted through the institution of UHasselt. First, keywords and synonyms were identified and then combined to create a search string. This search string was then entered on the advanced search option on the Web of Science. Next, the results were screened, and data were extracted.

3.2.1 Search string

A search thing is a group of text or words that can be inserted into a search engine to find corresponding results. Multiple search strings were tested and can be found in 'Appendix A'. In this research, the search string in Table 2 was created for the advanced search option of the "Web of Science".

China is included in the search string since it is the population I am researching. Renewable energy policy on its own excludes a lot of articles that do not tag themselves as renewable energy policies, therefore wind, solar energy, and hydropower are included. Geothermal energy is another energy source but adding it to the search string shows no impact on the number of results. The outcome of this review is to check the effect on innovation. Soete and Wyatt (1983) say that innovation is often measured using patent count; therefore, a lot of studies mention only innovation in the metadata but nothing about patents. Energy consumption is not something useful for this study.

TS= (chin* AND (renewable energ* polic* OR wind energ* polic* OR solar energ* polic* OR hydro* energ* polic*) AND (innovation* OR patent *) NOT (energ* consum*))

293

Table 2: Search string used in this thesis

3.2.2 Screening

The screening of articles was divided into two main parts. First a title and abstract screening followed up by a full-text screening. Normally a screening for unretrievable text is done in the full-text screening, but in this case, it has been performed with the title and abstract screening because a lot of articles didn't appear to have an access link from my institution, or the abstract was completely missing. This has no influence on the outcome. The inclusion and exclusion criteria used can be found in Table 3. A full list of all articles and exclusion criteria can be found in 'Appendix B', and the outcome is shown in Figure 1.

Inclusion	Exclusion		
The studied population is China	The studied population is not China		
Articles that analyze the effect of renewable	Papers that propose policy options but show no		
energy policies on innovation	research on existing ones		
Renewable energy	Nonrenewable energy or nuclear energy		
English language	Non-English papers		
Domestic policies	Foreign policies, or no clear mention of		
	renewable energy policies		
Papers that measure innovation through	Papers without any measurement of innovation		
patents or R&D in and output			
	Papers about energy consumption		

Table 3: Inclusion and exclusion criteria

3.2.3 Critical appraisal

The remaining articles were subjected to a critical appraisal. The critical appraisal method will not exclude articles, rather show what kind of research has been done in every article. This way it can be distinguished if articles are empirical or theoretical. Empirical studies are studies with a lot of charts, tables and graphs, contain more than 5 pages with a clear structure, and are peer-reviewed (Tutt Library Colorado College, 2021). Theoretical papers make connections between multiple empirical studies or define a theoretical position (Tutt Library Colorado College, 2021).

3.2.4 Data extraction

For each search result the following data will be extracted: Author, date of publication, title, and possible reason for exclusion. This table can be found in 'Appendix B'.

Every selected article after full-text screening is summarized with some background information and then the variables "policy" and "outcome" are extracted in the 'Data analysis' section. Next to that, the research type is extracted and put in the 'Literature study' section.

4. Results

4.1 Flow diagram for systematic reviews

The Web of Sience Core collection returned 293 articles, with one duplicate. After an abstract and title screening, and removing all unretrievable texts, 46 articles remained. Normally, checking if all full texts are accessible is done after abstract and title screening, but quite a lot of articles did not have an abstract. Therefore, I decided to incorporate this procedure with title and abstract screening. After the full-text screening, 20 articles remained. These 20 articles will now be summarized and analyzed in the following sections.

4.2 Literature study

The literature study offers a brief summary of the selected articles. Next to that, they contain data about policies and their impact on innovation. Lastly, they show the type of research that has been done, as seen in the critical appraisal section.

1. Do government subsidies promote new-energy firms' innovation? Evidence from dynamic and threshold models (Li et al, 2021).

This paper focusses on the impact of government subsidies on new energy firms. The research consists out of patent and R&D data from nine provinces located at the Chinese eastern coastal area and 18 provinces located in noncoastal area. During the research they divided the data from the noncoastal area and coastal area because the coastal area is relatively more developed and there is a more mature innovation environment. The methodology is innovation measured from the aspects of inputs and innovation outputs in a period of 5 years (2012-2016). When looking at the regression result of linear models for regional samples, the main findings are that government innovation subsidies have a greater effect than non-innovation subsidies in regards of innovation outcome. The effect of non-innovation subsidies is not significant.

Its main findings are that government subsidies have a great importance on firm's innovation, but since there are many factors to consider; it's not possible to predict the outcome of government subsidies a priori. Next to that, there exists a complicated nonlinear relationship between the effects of the subsidies and only when subsidies are within certain intervals, they can create an impact on a firm's innovation in- and output. Secondly, innovative inertia in the short term can be a great motivator for firm's innovation practices; Lastly, regional differences are important when creating policies.

The limitations of this study show that they don't show how they defined what is a non-innovation and an innovation subsidy. They also mention themselves that the classification was not optimal. Also, when doing the data analysis, it says they distinguish between the coastal and noncoastal area due to development reasons, but this is without citations and not substantiated; as an outsider you don't know if coastal areas are less developed or not.

Type of research: Empirical research

2. China's climate and energy policy: at a turning point (Heggelund, 2021)?

This article talks about 30 years of development in energy and climate policies in China. It maps the transition of fossil fuels to gaining traction in the renewable energy market. China utilizes FYPs (Five years plans) and Nationally Determined Contribution (NDC) objectives to conserve energy and control emissions. The 11th (2006–2010) FYP focused on energy efficiency to reduce consumption, but it came short in reaching the goals. The 12th FYP (2011–2015) green development and market approaches were deployed for renewable energy but coal was still favorited. The 13th FYP (2016-2020) put on goals for energy development to reduce coal, China has reached this objective. It also wants to control emissions with the air pollution action plan (2013–2017).

After the climate convention of 2015 in Paris, China developed objectives aimed at peaking emissions around 2030. Since then, coal consumption went down, and they have put in place air pollution control to bring back blue skies and improvements. Beijing opted for a national emission trading system as a policy tool to reduce emissions. Currently, China is the 'largest manufacturer, exporter, and deployer of solar panels, wind turbines, and electric vehicles, placing it as the world leader in renewable energy.

This success is thanks to subsidies and other advantageous policies such as the renewable energy law (2005). By 2017, China's renewable energy investment was more than 45 percent of the global total. In 2018, 13160 global patents were filed in the field of renewable energy, and 7544 were from China. But there is also a lot of curtailment in this field since thermal power plants still have priority over solar and wind plants. Economic growth has been the most important driver by far.

To address certain issues the government has issued some policies. In 2018, NEA gave the ' Clean Energy Consumption Action Plan' (2018–2020). This plan sets in motion that there must be a minimum number of hours purchases from renewable energy from photovoltaic, wind, and hydropower.

The vehicle industry has also seen a lot of innovation; a recent study found that motor vehicles give the greatest proportion of local atmospheric PM2.5. The article says that there are numerous policies that have been adopted to enhance the new energy vehicle market, like the 'Made in China 2025' strategy and policies for new-energy vehicles. China is building new infrastructure to lead in the rollout of freely available chargers and a fully electric bus fleet of 16000 vehicles is coming. There is no mention of patents in the vehicle industry in this article.

This article has not been cited a lot and has no strict framework on how to gather information.

Type of research: Theoretical overarching view, but not in a systematic approach.

3. Is China's industrial policy effective? An empirical study of the new energy vehicles industry (Liu et al., 2020).

China has imposed several policies to become competitive in the new energy vehicle (NEV) market. They analyze the overtaking on the curve strategy, a strategy designed to lead technological development in the NEV sector. It says that innovation can be measured in three ways; R&D in and out puts, patents, and direct measures of innovation output. They used data from 71 policies in the NEV sector launched by the government between 2006 and 2018. Since China was late on the market, they adopted a "overtaking on the curve" strategy. The strategy is meant to catch up with the global automobile industry by investing heavily into NEV and gaining core domestic technologies instead of a specialization in manufacturing. The article also concludes that the policies that have been used are giving a significant positive impact on innovation. These policies include policies for Research and development, taxation and finance. These have a good effect on growth Of NEV patents but the overtaking on the curve strategy did not meet expectations since they are still behind Japan. China shows significant patent share in NEV technology. Figure 2 shows the number of patents in the NEV industry.

Figure 2: patent numbers in NEV for six countries (1988-2018)

4. Does the focus of renewable energy policy impact the nature of innovation? Evidence from emerging economies (Samant, 2020).

This paper talks about how policies impact innovation. The research shows that the implementation of certain policies has different impacts on the nature of innovation. China's government is known for using a lot of push-pull policies. China employed 92 new renewable energy policies between 2000 and 2013; 24 pull policies, 26 push policies, and nine general policies. The most used policy instrument is feed-in tariffs, this is a pull policy. The technology focus of policies is solar energy and exploring tidal energy. The objective is that China wants to be self-sufficient and builds capacity. China employs the

Type of research: empirical study

following pull instruments in its policy mix: mandatory RE targets, feed-in tariffs, quality certification, financial and tax benefits to consumers, and government procurement. China employs the following push instruments in its policy mix: financial and tax benefits to local manufacturers, R&D funding, State-owned enterprises doing R&D, direct capital subsidies, capacity auctions, and R&D demonstrations.

Between 2002-2015 China had 159210 patents in renewable energy and 5163 novel technology patents. When comparing it with Brazil, India, and Turkey; China had the highest number of novel patents. The data analysis shows that countries with higher supply push policies have more novel technologies. Based on the research they created a matrix framework to classify innovations in four categories.

Figure 3: innovation matrix of emerging economies

Figure 3 shows an innovation matrix, this innovation matrix can be defined in four categories. Technology replication: pull and push policies are weak, with little incentive for innovation. Innovations primarily in mature technologies: policy focuses on domestic demand with some government support and also a focus on local market demand. Substantial focus on novel technologies: focus on supply push policies, support goes to innovation that helps industrial development. Significant innovations in mature and novel technologies with high demand-pull and supply push policies: policy motivates demand through pull policies but also encourages manufacturing and research and development through these policies. China can be placed in this quadrant. It is the most mature way in the matrix.

The limitation of this study is that they use data from other past research and it's difficult to categorize renewable energy technologies as novel or mature. The sample size is also limited, and the research can be improved by quantitative statistical analysis.

Type of research: Empirical research

5) Green technology innovation development in China in 1990–2015 (Wang et al,2015).

This paper researches the development of green technology in China from 1990-2015 using patent counts. The innovation in green technology made significant progress in areas of water and waste management and the solar photovoltaic sector. The growth trend of research and development expenditure is linear with the growing trend of the GDP per capita. After economic development reaches a certain level, a shift towards more innovation and green technology happens. Innovation in the field of climate change is currently more than environmental management and water-related technologies. However, the sector is not big enough to become reliant on soon.

The innovation activities of China and environment-related technologies are a growing trend, and the growth rate is one of the highest globally. Figure 4 shows the growth of selected green technology patents among different countries. This growth has a correlation with "China's National Climate Change Program" which controls the export of pollution-intensive products and counter the expansion of polluting firms. Although there is a positive shift in green development, China needs to improve more seen from the perspective of the Environmentally Adjusted Multifactor Productivity indicator. China relies too much on production capital and natural capital instead of productivity improvement and this is a gap that needs to be filled.

Figure 4: environmentally related technology patents between 2000-2015

6) How will different types of industry policies and their mixes affect the innovation performance of wind power enterprises? Based on dual perspectives of regional innovation environment and enterprise ownership (Wang et al, 2019).

This article talks about wind power industry policies issued by departments above the ministerial level. This study reaches from 2001 to 2016 and incorporates 241 policies about policy mixes on the innovation performance of WPEs. The study finds that policy mixes offer the best performance in areas with weak innovation environments. However, there is little gain from implementing policies in areas with strong innovation environments and government-managed companies in

Type of research: empirical research

areas with weak innovation environments. Supply-side policies dominate China's wind power policy framework.

The development plan from the Five-years plans seem to set China's wind power goals and effectively promote innovation. There are a couple more important development plans mentioned that have effectively promoted innovation for wind energy enterprises: "the Medium and Long-Term Development Plan of Renewable Energy" (2007)," the Twelfth Five-Year National Strategic Emerging Industry Development Plan "(2011–2015), and the "Twelfth Five-Year Wind Power Development Plan" (2012).

The study finds that the innovative performance of single demand-side policies (DSP) and environmental side policies (ESP) gives negative effects on wind power enterprises. Single supplyside policy (SSP) shows a positive, significant effect on innovation performance. The regression outcome of finds that mixes of SSP and ESP, mixes of SSP and DSP, as well as mixing them all have significantly promoted the innovation performance of WPEs. ESP and DSP mixes show a negative effect on innovation. This means that SSP can compensate for the negative impact of ESP and DSP on innovation performance.

Type of research: empirical research

7) Impacts of policies on innovation in wind power technologies in China (Lin, 2019).

This study researches the effect of feed-in tariffs, research and development spending, and their connection and interaction. Policies play an important role in innovation in wind energy, this research shows the impact of Chinese policies on wind power energy. The data used is from 2006 to 2016.

The results show that demand-pull policies by the means of feed-in tariffs have a significant positive effect on wind power technologies. If prices for feed-in tariffs are higher, the number of patents in wind energy will grow. Deploying more wind power results in more patent growth. By making electricity prices higher power manufacturers will need to innovate to reduce costs. R&D funding in companies (feed-in tariff policy) can stimulate greater patent growth because the wind power industry enterprises are gainers for feed-in tariff policy. This means that that there is an interaction effect.

Type of research: empirical research: negative binomial fixed effect regression model

8) Local demand-pull policy and energy innovation: Evidence from the solar photovoltaic market in China (Gao, 2019).

Local demand-pull and supply policy are important factors for innovation. This research talks about Local demand-pull policies in the photovoltaic (PV) market in China and correlates them with related balance-of-system patents. These patents include all components of the PV system other than the photovoltaic panels. The solar photovoltaic balance of system market has seen significant growth from 2005 till 2014, with patent count increasing up from two to 567. A big leap happened in 2011, the patent count went up from 155 to 326 in 2012. This is a result of a policy that changed large-scale photovoltaic to distributed PV rollout. Thanks to the Chinese government's policies, installations of distributed PV in China increased 1.7 GW, starting if from 0.6 GW in 2011 to 2.3 GW in 2012.

The outcomes recommend that local demand-pull approaches for the PV market in China have essentially molded local innovation. In any case, the significant job of local demand-pull strategy in initiating advancement has been tested by the way that China has started to lead the pack in the PV module manufacturing industry even without an enormous PV market demand when PV production in China took off. The conclusion of the study is that only local demand significantly increases local innovation, with non-local demand not having a significant effect on local innovation.

Type of research: empirical research

9) Scientific linkage and technological innovation capabilities: international comparisons of patenting in the solar energy industry (Fan et al, 2017).

This study measures scientific linkage and technological innovation capabilities, existing out of Japan, the US, the EU, South Korea, and China. The study chose these countries because the amount of patent applications is very high in each one in the EPO database. It uses measurements in technological innovation capabilities and scientific linkage to analyze international competitiveness in the solar energy industry. The findings are that China was a latecomer and had a focus on technology-based innovation. China focused on certain technology portfolios to improve its technological innovation capabilities, increasing the R&D ventures and enhancing the R&D effectiveness of solar thermal technologies and other supportive policies of renewable energy development. When data is compared with the other countries, China comes out really strong in all three categories: relative growth rate, relative patent position, and revealed technological advancement. China has a high number of patents granted between 1973 and 2014: 80 011 patents in solar energy technologies. But a weak scientific linkage in comparison with early strong entrants like the USA.

Type of research: empirical research

10) Trends in patents for solar thermal utilization in China (Zhao, 2015)

This research focuses on technologies of solar thermal utilization (STU) and analyzes the relation between policy and patents with a database consisting out of 7373 patents. The STU sector has made successful progress regarding market development and patent applications, with the main driver being renewable energy policies. Eight laws, four development plans, and three technology standards are listed as the important policies related to patent growth in the STU sector between 1984 and 2006. Since 2006, the "Energy Saving Law" was set up and China started to zero in on the vital innovations of energy-saving and new energy. Accordingly, the creation of the tenth Fiveyear research project, the eleventh Five-year research project, and the twelfth Five-year research project effectively grew new energy advancement designs. Since the mid-90s, numerous spots across China have effectively executed a few approaches about environmentally friendly power steadily, for instance, tax reductions and subsidies, ... The advancement of STU would get fiery help from all the levels of the government.

The STU sector consists of products that use solar radiation conversion to an alternative application. In this paper, they analyze the following representative technologies: solar water heating (SWH), solar cookers (SC), and solar space heating (SSH).

SWH patents started rapid growth after the "Renewable Energy Law" and the Eleventh Five-Year plan. SSH had a remarkable growth since "the energy conservation law" (1998) and "Renewable Energy Law", but SHH is still in an early stage. SC grew significant since 2005 thanks to the Eleventh Five-year Energy Development Plan and R&D-funded solar warm engineering projects.

Type of research: Analysis between patents and policies, empirical

11) The development of wind power in China, Europe and the USA: how have policies and innovation system activities co-evolved? (McDowall et al.,2013).

This paper shows how wind power developed in China, Europe and the USA.

Since the early 2000's China's wind power has started to grow significant. China was a latecomer to (mature) wind power. China took policies to catch up with other countries, three areas are important: Funding research and universities in and wind energy manufacturers though the Key technology program. The second one is support join ventures and other technology transfer mechanisms through the "Ride the wind" program. Thirdly, increasing licensing and other IP projects so that they have intellectual property of their own.

In China, the achievement of wind energy is better clarified because of Chinese government strategy than because of worldwide innovation move measures, for example, the CDM. The vital component for wind energy growth in China has been thanks seeing wind energy as a significant opportunity.

Another interesting finding of the study is that huge political and institutional work should go close by endeavors to give value backing and R&D subsidizing and that the constructions through which value supports and R&D financing are coordinated influence the elements of the development framework.

Patent data shows that the share of global wind energy patents in China between 1978-2007 is low compared to Germany, US, UK and Denmark and that China mostly manufacturers. In 2009, more than 450 million dollars flowed to other countries in the form of royalties, licenses, and technical consulting.

Type of study: Theoretical

12) Demand-side policy for emergence and diffusion of eco-innovation: The mediating role of production (Lee et al., 2020).

This article explains that the role of how exactly demand-side policy affects eco-innovation is unclear, but the study analyzes if demand-side policy affects production activities and if these production activities facilitate innovation in solar photovoltaics. The panel data used contains 14 countries from 1999 to 2016: Australia, Austria, Canada, China, France, Germany, Italy, Japan, South Korea, Netherlands, Spain, Switzerland, the United Kingdom, and the United States. Limitations are that data from China is less complete than other countries. To overcome this, the study analyzes data with and without data from China and checks the differences.

The research shows that production has a significant positive impact on environmental innovation. Next to that, there is also a positive relationship between production and demand side policy. Therefore, there is a positive indirect effect from demand-side policy on innovation. But there is an insignificant effect on direct innovation from demand-side policy on innovation. So, production is a mediator between their relationships. Public R&D is taken as a supply-side policy also shows a positive relationship regarding innovation. Electricity generation shows a negative impact on innovation due to patent proportion. The literature links this to the policies that started in 1980 to fund R&D for eco-innovation and reached around 1.8 billion dollars in 2015. China also started to use Feed In tariffs since 2009 which expanded onto national level in 2011 to stimulate the photovoltaic market.

Type of research: Empirical research: 3SLS regression technique

13) The technological system of production and innovation: The case of photovoltaic technology in China (Shubbak, 2019).

This paper uses 3 levels of analysis to study the innovation and the technological system of production in photovoltaics. The analysis is about the market dynamics of production and deployment, the institutional framework, and innovation-related activities. The results show the role of government policy instruments in developing domestic situations. The government domestic policy mix is divided into four main periods ranging from 1993 to 2017. The first period (1995 - 1999) focused on building a knowledge base for scientific reasons and regulations. The position of China was still relatively small. The second period (2000-2004) focused on rural electrification programs and establishment of solar panel production and strengthening innovation and R&D. This resulted in a growth of priority patents. The third period (2005-2009) was more market-oriented and focused on production and export. Thanks to the success of panel production, international expansion, and industry policies stimulated patent growth thanks to several laws and subsidies. Priority patents and transnational patents have experienced a lot of growth since 2007. The fourth period (2010-2014) policies stimulate the domestic market by creating grid infrastructure and subsidizing PV panels. The policies are divided into four types of institutional instruments: targets

from the government, supply-push policies, demand-pull policies, and regulatory instruments such as laws. It mainlined the growth of both patenting activities.

The patent indicators use priority patent filings to capture the complete landscape of licensing activities and transnational patents that are applications filed at the European patent office and international applications which are expected to be of higher technological and economical value.

When we look at priority patent filings, we notice that China has accumulated notable growth since 2005, overtaking the traditional leader in priority patents, Japan, in 2011. But China is lagging in transnational patent applications with being only involved in 3% of the accumulated transnational patents during 1977-2012.

The connections between the PV production system of production and innovation conclude different findings. The institutions, market and innovation are completely connected, the results show a different pattern for environment. Direct influence of environmental aspects was found neither on market nor on innovation. Environment influenced them indirectly through institutions. There also couldn't be found a direct influence of institutions on environment. Nonetheless, there is indirect influence via the market dynamics or innovation.

When looking into detail, the positive effects of local institutions on innovation are thanks to collaborations in scientific programs, attracting foreign experts, supporting research and development activities, and strengthening intellectual property rights. There are no negative effects from local institutions found in this paper. Positive innovation effects from the market are merger & acquisition deals that provide foreign intellectual property, financial support for patenting, and stimulating R&D when there is an industrial success, and the emergence of a domestic photovoltaic market. The market has one negative effect on innovation namely down-cycling that reduces R&D for some companies.

Market-wise China has become the leader of PV installations, with a global share up to 60% in 2013. The patent stock of China has grown a lot in priority patents, but they are lagging in transnational patents. This shows that high-income, leading countries use patents as a market instrument.

Type of research: empirical research

14) Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA (Liu et al., 2021).

This study investigates the collaboration network of the wind energy industry in China. It shows that China's State Grid Corporation plays an important actor in this network. To do this, the research uses social network analysis and complex network theory. It also shows an important look into the network's spatial distribution, relationship types, competitiveness, and network structures.

The number of collaborative patents applications grew from 6 to 564 from 2000 till 2018, the proportion of collaborative patents grew from 3% to 5%, with some variances over the year. This is thanks to the twelfth Five-year Plan and the "Renewable Energy Law" (2006). The "Renewable

Energy Law" made the first big growth possible on the number of patent applications. Then the Five-Year plan (2012) had policies to promote the development and application of wind energy technology. These two policies have a positive impact on the collaboration patent growth of China's wind energy industry. The paper uses these dates to create three phases, namely the budding phase (1985-2005), the growth phase (2006-2012), and the maturity phase (2013-2019).

Type of research: empirical research: Complex network theory and social network analysis

15) China's wind industry: Leading in deployment, lagging in innovation (Lam et al., 2017).

This study focusses on the question whether the wind industry in China has become an important element of innovation of clean technology. The growth of wind capacity is enormous, but in terms of innovation and cost competitiveness it is still lagging behind; domestic manufacturers have not secured a lot of transnational patents and have low learning rates in comparison to other global players. China has embraced wind capacity at an impressive rate from coming from a country with no wind power capacity in 2000. By 2012 its wind capacity went a little over 75000 MW, coming from 400MW in 2000. There are multiple policies to promote wind energy in recent years and the "Renewable Energy Law" (2006) is the most notable one. Figure 5.a and 5.b show that China has round 5% overall share, but more than half of them are only granted by the Chinese Patent Office.

Figure 5.a and 5.b: (a) Cumulative patent count from China (CN), Japan (JP), United States (US), Germany (DE), Denmark (DK), France (FR), Great Britain (GB), and Spain (ES) (2015), (b) Wind patents over time by country

Type of research: Empirical

16) Decomposition analysis of sustainable green technology inventions in China (Fujii & Managi, 2019).

This paper examines the factors of inventions in green technology. The focus lies on policy results from each five-year period between 1996-2015 and uses patent data to create a decomposition framework. It is found that green patent publications are increased due to efficiency improvement, prioritization the five-year plans, and increased R&D mainly due to economic welfare. The priority shifts from each five-years plan in different green technology areas.

The priority factor in the 12th year plan for renewable energy policies declines, and more priority was given to other green technology. As such, green patents in waste overtake the renewable energy patents in each period. Next to that, patents in conservation are also close, which indicates the shift from renewable energy to other green technology. Table 4 shows that there is significant growth thanks to issued policies from the Five-Year plans. Compared to the total average value in each period, renewable energy patents are growing percentage-wise at a higher rate/ The paper concludes that economic development and increasing R&D activities are effective stimulators to develop green technology in China.

			-	-
Data	1996-2000	2001-2005	2006-2010	2011-2015
variable	9th Five-	10th Five-	11th Five-	12 th Five-
	Year plan	Year plan	Year plan	Year plan
Renewable	1249	2734	7774	27387
energy				
patents				
Total	80747	188270	488849	1271679
patents				

Table 4: Green patent data from China provided by WIPO, numbers are the average value in each period

Type of research: Empirical research: patent decomposition framework.

17) Trends and driving forces of low-carbon energy technology innovation in China's industrial sectors from 1998 to 2017: from a regional perspective (Zhang et al., 2021)

This research uses data from 30 provinces in China to look for trends that drive low-carbon technology innovation. These 30 provinces are then divided into four economic zones. The patent data is derived from China's Intellectual Property Office combined with data from the World Intellectual Property Organization. Then an LMDI decomposition model is made. The results show that total Low carbon patent applications in China's industrial sectors increased by 36209 items from 1998 to 2017, with a growth rate of over 97% after 2005.

The number of alternative energy patents is higher than the number of energy conversion technology. This is a result of renewable energy policies that promote renewable energy sources. This paper argues that the Medium- and Long-term Program for Renewable Energy Development is an important driving force. But the gap between both is closing because patent applications have increased from 12.9% to 73.8%. This is due to a series of energy-saving policies like the, Top-1000 Energy-Consuming Enterprises Program, Buildings Energy Efficiency, Structural Adjustment
like small Plant Closures, Ten Key Projects, and Appliance Standards and Energy-Efficiency Labels. The total amount of low carbon patents grew with a yearly average rate of 36.7%. Total patent applications (1998-2017) of low-carbon energy increased by 36209 items with a growth of 97% from 2005 to 2017.

Type of research: Empirical

18) Employee incentives and energy firms' innovation: Evidence from China (Si et al.,, 2020).

This study researches the causal relationship between non-executive stock ownership (ESOP) and innovation using the State Intellectual Property Office database from 2006 to 2018. 248 enterprises are covered, and a significant positive link has been found. Non-executive stock ownership fosters innovation due to risk-taking from employees. This effect has mainly been found by non-state-owned companies with high research and development intensity. This ESOPs concept was started in the 1980s, but due to weak laws and unregulated processes, it was not found a successful practice. Finally, in 2005 the Regulation of Equity Incentive Plans was introduced with more success, but the biggest improvement was in 2014 named the Guiding Opinions on the Pilot Program of Employee Stock Ownership Plans Implemented by Listed Companies. It introduces flexibility and manages finances. The result shows a significant positive effect from ESOP on patent applications, with an increase of 15.2% of the market value of per-employee ESOPs in the number of patent applications. The study does not directly target renewable energy, but it is said to improve energy technologies for conventional and renewable energy.

Type of research: Empirical

19) Do government subsidies promote efficiency in technological innovation of China's photovoltaic enterprises? (Lin & Luan, 2020).

This article takes a closer look into the relationship between subsidies and innovation performance. To do this, it uses data from Chinese photovoltaic companies from 2012 to 2016. To analyze the relationship, they investigate four factors of innovation: government subsidy, financial leverage, ownership concentration, and firm size. The descriptive statistics show that there is no correlation between the influencing factors. The data analysis shows that government subsidy has a significant positive effect on the innovation of photovoltaic enterprises. Secondly, firm size has a negative impact on innovation due to bureaucratic difficulties, and lastly, a higher asset-liability ratio enhances innovation performance. The limitation of this study is that it cannot quite capture how exactly effective government subsidies are in promoting innovation.

Type of research: DEA -Tobit model: Empirical research

20) Assessing fuel cell vehicle innovation and the role of policy in Japan, Korea, and China (Gareth et al., 2012).

In 2010, China became the biggest automobile manufacturer on the market. This has encouraged Chinese policymakers to act on the associated issues of pollution and foreign oil independence. In response, the government has issued policies to promote alternative energy vehicles; fuel cell vehicles have received funding from the "National Basic Research Program" and the "Ministry of Science and Technology's High Technology Development Program". In the 12th year plan (2011-2015) it was planned to manufacture and deploy a minimum of 500 000 "green" vehicles. More than 7.6 billion dollars has been invested in research and development and industrial development for all alternative vehicles. Prior to 1995, China had virtually no fuel cell patents. Contrary to Japan who already had a broad portfolio. But the 10th five-year plan (2001) has started with R&D support for fuel cells, but the patent growth was still quite small compared to Japan. In 2008 the financial crisis had a severe impact on innovation, China had a patent decrease of 96%. Then after 2009 China got and keeps increasing a lead over Japan and Korea regarding patent applications.

Globally there are different kind of innovation strategies; significant innovators for fuel cells in China are universities and government research institutes, while in Japan only around 1% of patents are coming from universities. There is no known data of collaboration on patents in China between industry and academic institutes. The data from this research shows that the 5-Year Plans and other innovation policies had a significant positive effect on stimulating innovation. The private sector in China still has huge growth potential, since 51% of patents filed are from universities. China grew from zero fuel cell patents to over 1600 patents between 1995 and 2011.

Type of research: Empirical

5. Data analysis

In this section, the data is extracted and put into Table 5.

Table 5 shows the title, author(s), policy and the outcome. The result of this analysis is discussed in the discussion section.

Title	Author(s)	Policy	Outcome
Do government	(Li et al, 2021)	Innovation and non-	Innovation subsidies have a
subsidies		innovation government	significant positive effect on
promote new-		subsidies.	innovation in new energy-
energy firms'			firms. Non-innovation
innovation?			subsidies have not a
Evidence from			significant effect on
dynamic and			innovation.
threshold			
models.			
China's climate	(Heggelund,	The 11 th ,12 th , 13 th Five-	The 12 th and 13 th Five-Year
and energy	2021).	year plan.	plans made clear
policy: at a		The Renewable Energy Law	improvements regarding
turning point?		(2005), subsidies, and other	innovation, the 11 th fell a
		advantageous policies.	bit short in reaching its
			goals.
		The air pollution plans	But thanks to the Renewable
		(2013-2017)	Energy Law and other
		Clean Energy Consumption	advantageous policies listed
		Action Plan' (2018–2020)	in the policy section, China
			became the largest
			producer, exporter and
			installer of solar panels,
			wind turbines, batteries, and
			electric vehicles, placing it
			at the top of the global
			energy transition.
			China became frontrunner in
			renewable energy patents,
			with 7544 patents from the
			13160 globally patents filed
			from China in 2018.
Is China's	(Liu et al,. 2020).	71 policies in the NEV	A significant positive effect
industrial policy		sector between 2006 and	on NEV patents. China has a

effective? An		2018; policies for taxation,	significant patent share
empirical study		finance, research and	amongst the world's major
of the new		development and in the new	countries. It shows that
energy vehicles		energy vehicles industry	China its policies for the NEV
industry		(NEV).	are effective.
Desether former	(Courset 2020)		The second se
of renewable	(Sumant, 2020)	pull policies. Between 2000	had significant positive
energy policy		and 2013 China issued 92	effects on innovation. China
impact the		new renewable energy	had significant innovations
nature of		policies: 24 pull policies, 26	in mature and novel
innovation?		push policies, and 9 general	technologies. Between
Evidence from		policies.	2002-2015 China had
emerging			159210 patents in
economies		China employs the following	renewable energy and 5163
		pull instruments in its policy	novel technology patents.
		mix: mandatory RE targets,	Novel technology patents
		feed-in tariffs, quality	have risen from 1.3% to
		certification, financial and	4.3% patents in that period.
		tax benefits to consumers,	When comparing it with
		and government	Brazil, India, and Turkey
		procurement. China	China had highest number
		employs the following push	of novel patents.
		instruments in its policy	
		mix: financial and tax	
		benefits to local manufac-	
		turers, R&D funding, State-	
		owned enterprises doing	
		R&D, direct capital	
		subsidies, capacity auctions,	
		and R&D demonstrations.	
		The most used policy	
		instrument is feed-in tariffs,	
		this is a pull policy.	
Green	(Wang et	Environmental-related	Significant innovation in
technology	al,2015)	policies such as "China's	green technology patents in
innovation		National Climate Change	waste technology and
development in		Program": Controlling	photovoltaics.
China in 1990-		export of heavy polluting	Innovation in the field of
2015		products and counter	
			climate change is currently

		growth of polluting firms.	more than innovation in environmental management and water related technologies. China has one of the highest growth rates but needs to improve more seen from the perspective from the Environmentally Adjusted Multifactor Productivity indicator.
How will	(Wang et al,	241 policies about policy	The developments show to
different types	2019)	mixes on the innovation	effectively promote
of industry		performance of Wind	innovation in wind powered
policies and		powered enterprises.	enterprises.
their mixes		Supply side policies	Single demand-side policies
affect the		dominate China's wind	and environmental-side
innovation		power policy.	policies give significant
performance of		Five-year plans and "the	negative effect, but single
wind power		Medium and Long-Term	supply-side policy shows a
enterprises?		Development Plan of	positive, significant effect on
Based on dual		Renewable Energy" (2007),	the innovation performance.
perspectives of		"the Twelfth Five-Year	The regression outcome
regional		National Strategic Emerging	finds that mixes of SSP and
innovation		Industry Development Plan"	ESP, mixes of SSP and DSP,
environment		(2011–2015), and the	as well as mixing them all
and enterprise		"Twelfth Five-Year Wind	have significantly promoted
ownership		Power Development Plan"	the innovation performance
		(2012).	of Wind power enterprises.
Impacts of	(Lin, 2019)	The effect of demand-pull	Feed-in tariffs have had a
policies on		policies (2002-2016): feed-	significant positive effect on
innovation in		in tariff policy, research and	wind power technologies. If
wind power		development spending, and	tariffs are higher, they
technologies in		their connection and	induce greater patent stock.
China		interaction.	R&D funding though feed-in
			tariffs stimulate patent
			growth. Policies also induce
			innovation by making
			electricity prices higher,
			since power manufacturers

			need to try to reduce costs
			to obtain more profit.
Local demand-	(Gao, 2019)	Local demand-pull policies	The balance-of-system
pull policy and		in the photovoltaic (PV)	patents have seen
energy		sector.	significant improvements,
innovation:			going from two to 567.
Evidence from			China has become the
the solar			leader of PV module
photovoltaic			manufacturing.
market in China			
			Local demand-pull policies
			give only a significant
			positive effect on local
			innovation. Probably due to
			local knowledge. Non-local
			demand-pull policy is
			insignificant effect for local
			innovation.
Scientific	(Fan et al, 2017).	Policies that affect	The patent stock of China in
linkage and		technology-based	the solar energy industry
technological		innovation: R&D investment	has grown significantly.
innovation		and improving R&D	Between 1973 and 2014, 80
capabilities:		efficiency and other	011 patents were granted in
international		advantageous renewable	solar energy technologies.
comparisons of		energy policies.	China also shows a strong
patenting in the			growth in solar technology-
solar energy			related patent grants
industry			between 1985-2014.
,			
			The policies show a
			significant positive effect on
			innovation, but China is not
			the market leader in wind
			patents and has a focus on
			technology-based
			innovation.
Trends in	(7hao 2015)	This article save that thora	The main driver of natont
natents for color	(21100, 2013)	are eight laws four	arowth in STU comes from
thermal		development plane (Five	growin in STO comes hom
		uevelopment plans (Five-	energy policies, and the
utilization in		year plans) and three	Solar thermal utilization has

China		technology standards that	made a lot of progress in
		are important for patent	regard of patent
		growth in solar thermal	applications.
		utilization (STU). The most prominent being the 11 th and 12th Five-Year plan, the Renewable Energy Law, and the energy conservation law.	85.8 % came from solar water heater patents alone. Solar water heating patent growth is correlated significantly from the Renewable Energy Law (2006).
			Solar space heating patents grew a lot since 1998 thanks to the energy conservation law and the renewable energy law (2006)
			Solar cookers patent counts have a positive correlation with the Eleventh Five-year Energy Development Plan.
The	(McDowall et	China has setup Catch up	Since the early 2000's the
dovelopment of			
development of	al.,2013).	polies since the early	share of wind energy
wind power in	al.,2013).	polies since the early 2000's. They have funded	share of wind energy patents grew significantly,
wind power in China, Europe	al.,2013).	polies since the early 2000's. They have funded research and universities in	share of wind energy patents grew significantly, but they are still lagging
wind power in China, Europe and the USA:	al.,2013).	polies since the early 2000's. They have funded research and universities in and wind energy	share of wind energy patents grew significantly, but they are still lagging behind countries like
wind power in China, Europe and the USA: how have	al.,2013).	polies since the early 2000's. They have funded research and universities in and wind energy manufacturers though the	share of wind energy patents grew significantly, but they are still lagging behind countries like Germany, US, UK and
wind power in China, Europe and the USA: how have policies and	al.,2013).	polies since the early 2000's. They have funded research and universities in and wind energy manufacturers though the "Key technology program".	share of wind energy patents grew significantly, but they are still lagging behind countries like Germany, US, UK and Denmark (1978-2007). It
wind power in China, Europe and the USA: how have policies and innovation	al.,2013).	polies since the early 2000's. They have funded research and universities in and wind energy manufacturers though the "Key technology program". Another important policy is	share of wind energy patents grew significantly, but they are still lagging behind countries like Germany, US, UK and Denmark (1978-2007). It notes that China is a strong
wind power in China, Europe and the USA: how have policies and innovation system activities	al.,2013).	polies since the early 2000's. They have funded research and universities in and wind energy manufacturers though the "Key technology program". Another important policy is support join ventures and	share of wind energy patents grew significantly, but they are still lagging behind countries like Germany, US, UK and Denmark (1978-2007). It notes that China is a strong manufacturer for wind
wind power in China, Europe and the USA: how have policies and innovation system activities co-evolved?	al.,2013).	polies since the early 2000's. They have funded research and universities in and wind energy manufacturers though the "Key technology program". Another important policy is support join ventures and other technology transfer	share of wind energy patents grew significantly, but they are still lagging behind countries like Germany, US, UK and Denmark (1978-2007). It notes that China is a strong manufacturer for wind energy technology.
wind power in China, Europe and the USA: how have policies and innovation system activities co-evolved?	al.,2013).	polies since the early 2000's. They have funded research and universities in and wind energy manufacturers though the "Key technology program". Another important policy is support join ventures and other technology transfer mechanisms through the	share of wind energy patents grew significantly, but they are still lagging behind countries like Germany, US, UK and Denmark (1978-2007). It notes that China is a strong manufacturer for wind energy technology.
wind power in China, Europe and the USA: how have policies and innovation system activities co-evolved?	al.,2013).	polies since the early 2000's. They have funded research and universities in and wind energy manufacturers though the "Key technology program". Another important policy is support join ventures and other technology transfer mechanisms through the "Ride the wind" program.	share of wind energy patents grew significantly, but they are still lagging behind countries like Germany, US, UK and Denmark (1978-2007). It notes that China is a strong manufacturer for wind energy technology.
wind power in China, Europe and the USA: how have policies and innovation system activities co-evolved?	al.,2013).	polies since the early 2000's. They have funded research and universities in and wind energy manufacturers though the "Key technology program". Another important policy is support join ventures and other technology transfer mechanisms through the "Ride the wind" program. Thirdly, increasing licensing and other IP projects so	share of wind energy patents grew significantly, but they are still lagging behind countries like Germany, US, UK and Denmark (1978-2007). It notes that China is a strong manufacturer for wind energy technology.
wind power in China, Europe and the USA: how have policies and innovation system activities co-evolved?	al.,2013).	polies since the early 2000's. They have funded research and universities in and wind energy manufacturers though the "Key technology program". Another important policy is support join ventures and other technology transfer mechanisms through the "Ride the wind" program. Thirdly, increasing licensing and other IP projects so that they have intellectual	share of wind energy patents grew significantly, but they are still lagging behind countries like Germany, US, UK and Denmark (1978-2007). It notes that China is a strong manufacturer for wind energy technology.
wind power in China, Europe and the USA: how have policies and innovation system activities co-evolved?	al.,2013).	polies since the early 2000's. They have funded research and universities in and wind energy manufacturers though the "Key technology program". Another important policy is support join ventures and other technology transfer mechanisms through the "Ride the wind" program. Thirdly, increasing licensing and other IP projects so that they have intellectual property of their own.	share of wind energy patents grew significantly, but they are still lagging behind countries like Germany, US, UK and Denmark (1978-2007). It notes that China is a strong manufacturer for wind energy technology.
wind power in China, Europe and the USA: how have policies and innovation system activities co-evolved?	al.,2013).	polies since the early 2000's. They have funded research and universities in and wind energy manufacturers though the "Key technology program". Another important policy is support join ventures and other technology transfer mechanisms through the "Ride the wind" program. Thirdly, increasing licensing and other IP projects so that they have intellectual property of their own.	share of wind energy patents grew significantly, but they are still lagging behind countries like Germany, US, UK and Denmark (1978-2007). It notes that China is a strong manufacturer for wind energy technology.
development of wind power in China, Europe and the USA: how have policies and innovation system activities co-evolved? Demand-side	al.,2013). (Lee et al.,	polies since the early 2000's. They have funded research and universities in and wind energy manufacturers though the "Key technology program". Another important policy is support join ventures and other technology transfer mechanisms through the "Ride the wind" program. Thirdly, increasing licensing and other IP projects so that they have intellectual property of their own.	share of wind energy patents grew significantly, but they are still lagging behind countries like Germany, US, UK and Denmark (1978-2007). It notes that China is a strong manufacturer for wind energy technology.
development of wind power in China, Europe and the USA: how have policies and innovation system activities co-evolved? Demand-side policy for	al.,2013). (Lee et al., 2020).	polies since the early 2000's. They have funded research and universities in and wind energy manufacturers though the "Key technology program". Another important policy is support join ventures and other technology transfer mechanisms through the "Ride the wind" program. Thirdly, increasing licensing and other IP projects so that they have intellectual property of their own. Demand side policies on production.	share of wind energy patents grew significantly, but they are still lagging behind countries like Germany, US, UK and Denmark (1978-2007). It notes that China is a strong manufacturer for wind energy technology.
development of wind power in China, Europe and the USA: how have policies and innovation system activities co-evolved? Demand-side policy for emergence and	al.,2013). (Lee et al., 2020).	polies since the early 2000's. They have funded research and universities in and wind energy manufacturers though the "Key technology program". Another important policy is support join ventures and other technology transfer mechanisms through the "Ride the wind" program. Thirdly, increasing licensing and other IP projects so that they have intellectual property of their own. Demand side policies on production.	share of wind energy patents grew significantly, but they are still lagging behind countries like Germany, US, UK and Denmark (1978-2007). It notes that China is a strong manufacturer for wind energy technology. Demand side policies on production of eco-innovation show a significant positive

innovation: The			effect on innovation.
mediating role			
of production			
(Lee et al.,			
2020).			
The	(Chubbalt 2010)	The policies are divided in	Market wise China has
tachnological	(SHUDDAK, 2019)	inte pulltiple periode, these	harket-wise Chille has
		correspond with the Five	installations, with a global
system of		Veer plane	
		real plans.	The patent stock of China
		1995-1999:	has grown a let in priority
		focus on building a	nas grown a lot in priority
		knowledge base for	2005 China everteek the
China		scientific reasons and	loador Japan in priority
China		regulations.	natonte
			The third period marks a
			acod growth in patent
		2000-2004:	growth
		focus on rural	But they are lagging behind
		electrification, R&D support	in transnational natents
		and manufacturing solar	with being only involved in
		panels.	3% of the accumulated
			transnational patents during
			1977-2012. This shows that
		2005-2009: market	high-income, leading
		oriented and focused on	countries use patents as a
		production and export.	market instrument.
		2010-2014:	
		creating grid infrastructure	
		and subsidizing PV panels.	
	()		• · · · · · · · ·
Exploring the	(LIU et al., 2021)		Collaborative patent
patent		(2006) and 12 ¹¹ Five-year	applications grew from 6 to
collaboration		pian (2011-2015)	564 from 2000 till 2018.
			inis is a significant positive
			impact. The proportion of
A study based			from 2% to 5%
A SLUUY DASEU			110111 370 LU 370.
from CNIDA			
HOIH CNIPA.			
China's wind	(Lam et al.,	There are multiple policies	The growth of innovation is
industry:	2017).	in recent years and the	apparent, but it's still

Leading in		"Renewable Energy Law"	lagging. China has a low
deployment,		(2006) is the most notable	number of international
lagging in		one.	patents and even together
innovation.			with the patents that are
			only granted in China, it is
			still behind in numbers of
			patents in comparison with
			Japan, United States,
			Germany, Denmark,
			France, Great Britain, and
			Spain (2015).
Decomposition	(Fujii & Managi,	Policies issued by the 9 th	There is a significant
analysis of	2019)	, Five-year plan (1996-2000),	positive patent growth in
sustainable		10 th Five-vear plan (2001-	green patents and
areen		2005), 11 th Five-year plan	renewable energy patents
technology		(2006-2010) and 12 th Five-	due to the policies issued in
inventions in		vear plan (2011-2015).	the Five-year plans and
China		/ r - /	increased R&D thanks to
			economic welfare. The
			average value number of
			natents arew from 1249 to
			27387 between 1996 to
			2015 in periods of five
			voars. This growth is
			percentage wice higher than
			the total percensional
			the total nonrenewable
			patent growth. The highest
			growth rate happens
			between 2006 and 2015;
			the patents grew from 7774
			to 27387.
Tronds and	(Zhang et al	The Renewable Energy Law	Total patent applications
	(Zhang et al.,	(2006) and multiple	(1008-2017) of low corbor
low-carbon	2021)		(1330-2017) UI IUW-COIDUI
			itoms with growth of 070
tachnolo		energy-saving policies.	from 2005 to 2017 The
innovation in			rom 2005 to 2017. The
Innovation in			number of alternative
			energy patents is higher
industrial			than the number of energy
sectors from			conservation patents, but

1998 to 2017:			this gap is closing due to
from a regional			said policies. Policies play an
perspective.			important role in innovation
			rate for low-carbon
			technologies.
Employee	(Si at al 2020)	Non-oxocutivo stock	A significant positivo
incentives and		ownership permission made	relationship with innovation
oporav firms'		possible through the	in (ronowable) operav
innovation:		Possible through the	
Evidence from		Incontino Plans (2005) and	companies.
		Cuiding Opinions on the	
China.		Bilot Program of Employee	
		(2014).	
Do government	(Lin & Luan,	The effect from Government	Research shows that there
subsidies	2020)	subsidies for photovoltaic	is a significant positive
promote		enterprises.	effect on innovation from
efficiency in			government subsidies.
technological			
innovation of			
China's			
photovoltaic			
enterprises?			
Assessing fuel	(Gareth et al	Fuel cell vehicles have	The policies had a significant
	2012)	received funding from the	
innovation and	2012)	"National Basic Pesearch	innovation. China grew from
the role of policy		Program" and the "Ministry	
in Japan Korea		of Science and Technology's	1600 natents between 1995
and China		High Technology	and 2011
		Dovelopment Program	
		In the 12 th Eive-Vear plan	
		(2011, 2015) it was planned	
		to manufacture and deploy	
		a minimum of E00 000	
		a minimum of JUU UUU	
		7.6 hillion dollars has been	
		invostod for recearch and	
		dovolopment and industrial	
		alternative vehicles.	

Table 5: data synthesis

5.1 Distribution of articles

This section describes in what type of subgroup the analyzed articles fall. The distribution happens in four different groups: Waste management, alternative energy, energy conservation and other green technologies (Fujii & Managi, 2019). The technology group and subgroup categories can be found in 'Appendix C'. I created the other category for articles that talk about certain policy effects on new energy firms. These are effects that can apply to all new energy firms.

Figure 6: Distribution of renewable energy group talked about in the sample size

14 articles fall into the group "renewable energy", three mention innovation in "other green technologies", one is about innovation in waste management and three articles fall in the other category. An article can cover multiple subgroups.

Figure 7 shows the distribution of types or research. Theoretical research uses theoretical data, while empirical data uses evidence-based data (Corbetta, 2003).

Figure 7: The distribution of research types

6. Discussion

The results show that China has made significant innovation progress in renewable energy and that policies seem to have a significant connection with innovation results. China was a latecomer in the renewable energy market but is making substantial gains since the 2000s. China is still lagging behind the global leaders in innovation in wind energy and solar energy, but data shows that China is one of the biggest emerging forces (Samant, 2020; Statista, 2016; Statista, 2016). Between 2002-2015 China had 159210 patents in renewable energy and 5163 novel technology patents. When comparing this with Brazil, India, and Turkey; China had the highest number of novel patents (Samant, 2020). More recent data shows that China is becoming a frontrunner in renewable energy patents, with 7544 patents from the 13160 global patents filed from China in 2018 (Heggelund, 2021). The Five-Year development plans contribute significantly to innovation in renewable energy. 7 studies acknowledge that they played a significant role in fostering innovation. The biggest patent growth seems to be in the 11th and 12th Five-year plans (2006 to 2015) (Fujii & Managi, 2019). China used a lot of push-pull policies between 2000 and 2013 which show to have given significant innovations in mature and novel technologies (Samant, 2020). An important push policy is (innovation) subsidies, they have a significant positive effect on innovation in newenergy firms. Next to those, public research and development policies also seem to have a positive relationship with innovation.

The solar energy sector has also made positive gains in multiple areas. Solar thermal utilization (STU) has made a lot of positive progress regarding patent applications. The "Renewable Energy Law" is mentioned as an important driver for STU. The patent stock in the solar energy industry grew significantly between 1973 and 2014, 80 011 patents were granted in solar energy technologies. This growth is possible thanks to advantageous policies such as R&D support, feed-in tariffs, creating grid infrastructure, and subsidizing PV panels. China has gained a lot of priority patents since 2005, but they are lagging in important transnational patents. China has become a leader in PV installations and manufacturing.

The wind energy sector seems to be similar. China came late onto the wind energy market and had to introduce catch-up policies like the "Ride the wind program", which had a positive innovation effect. Thanks to innovation mixes of demand, environmental and supply-side policies the patent stock grew. A significant positive policy regarding innovation outcome is feed-in tariffs, they often involve long-term contracts of support towards the development of renewable energy sources, by guaranteeing a high price for producing companies. Despite the progress, data also show that China is still behind other countries like Germany, the US, UK, and Denmark in 2007 (McDowall et al., 2013). In 2015 China was still behind in numbers of wind energy patents in comparison with Japan, United States, Germany, Denmark, France, Great Britain, and Spain (Lam et al., 2017). But China has a lot of international licensing deals and is a strong manufacturer in this sector.

The new energy vehicle industry is another story. China has invested a lot in the new energy vehicle industry and has a high patent share. China enacted multiple policies to stimulate innovation in this industry, an important one is the 12th Year with a focus on manufacturing and

deploying 500000 vehicles. China is the world's biggest automobile manufacture, and they invest heavily in this sector because they want foreign oil independence and this is sector pollutes a lot (Gao et al., 2017).

Further, Figure 7 shows the classification between theoretical and empirical research articles. Theoretical data relies more on logical assumptions, while empirical data tests these assumptions (Corbetta, 2003). Corbetta (2003) implies that the validity of the empirical data is often more accurate since it has been tested for validity. The articles reviewed are mainly empirical research. From the 20 articles, only two seem to be theoretical research. This shows that the gathered data has an appropriate amount of validity and reliability. Additionally, Figure 6 shows that there are multiple articles in the same green patent category, this is used to spot similarities in policies in the same energy groups.

Lastly, the results show multiple studies in renewable energy fields, but some renewable energy sources are not incorporated into this study. There is no mention of hydropower energy and tidal energy. Other research shows that hydro energy plays a significant role in the energy industry of China (Li et al., 2020). Liu et al., (2011) say that tidal energy has been neglected by the government due to the prices of tidal power plants. Next to that, there are some other factors that limit this research. A systematic review done with the ROSES method is normally executed by two or more people, this systematic review is done by one person. Therefore, there can be some bias in areas such as article screening. Next to that, this paper was written with certain deadlines and time restrictions. The data gathered is dependent on the correctness of existing papers, therefore it is not sure if all data is reliable data. There was only one database used due to time restrictions. Also, 31/281 articles were not accessible, meaning that more than 10 % of articles were automatically excluded. Some papers also mention that data from China was not complete or not completely reliable. In this study, innovation is measured in the patent count or with a correlation with papers, which sometimes fail to grasp the full amount of innovation. Not every invention is patented. The final limitation is that English is my second language, and this can be a deficiency because a lot of these studies were very technical, and sometimes it was difficult to interpret everything.

7. Conclusion and policy implications

This thesis analyzes literature about renewable energy policies and their effect on innovation. Following the systematic protocol of ROSES, the paper highlights innovation outcomes related to renewable energy policies. The results show that renewable energy policies play an important positive role in the effect of innovation in China. Government policies are effective in stimulating innovation. In every retrieved article, China has shown remarkable growth patent-wise. Data from Statista (2019) shows that China has filed the highest number of patents worldwide for renewable energy in 2018.

Solar energy, wind energy, solar, solar thermal utilization, new energy vehicles, fuel cells, and other new-energy firms have seen a lot of innovation after the millennium. The Five-Year Plan is one of the biggest innovation drivers. Next to that, mixes of demand, environmental and supply-side policies have played an important factor in fostering innovation. The "Renewable Energy Law" in 2006 marks an important step for innovation, as every major renewable energy source has seen patent growth after 2006. This was at the start of the 11th Five-year plan. During the 11th, 12th and 13th Five-year plan (2006-2020) renewable energy patents have seen a lot of growth. This is very important because China is one of the most polluting countries in the world regarding CO2 and other pollution (Gao et al., 2017; Jia et al., 2017; World Resources Institute, 2021). The main source of pollution comes from fossil fuel combustion in diverse processes and sectors (Lei et al., 2011; Zhai et al., 2012). Despite the great innovation leaps, China still has not caught up with leading countries in innovation in a lot of areas. China shows to only have two percent of solar energy patents grants worldwide between 2002 and 2015 and only one percent in wind energy (Statista, 2016; Statista, 2016).

Garrett-Peltier (2017) says that the efficiency and use of renewable energies is one of the main strategies to reduce emissions. The major contribution of this research is that it highlights possible advantageous policies for multiple renewable energies, this can be of interest for policymakers in shaping the renewable energy landscape in the future. That is why this thesis has significant policy implications. The findings can be used by the policymakers that plan to improve innovation. The results show a broad overview of policies and the result of those policies. The research shows the significant role that policies play in developing renewable energy technology, thus the paper can also contribute to other emerging countries. China can improve policies to gain more transnational patents and that China is still lagging behind the patent leaders. China is especially a strong manufacturing market player. The reviews show that push and pull policies and innovation subsidies had a positive influence on innovation in every instance, this can be interesting for new emerging markets in renewable energy.

Lastly, the main limitation is that this systematic review has been done in a short period of time by only one person. Therefore, there has been no consistency checking done for articles screening and

some articles were not accessible through the university. Only one database has been used due to the time limitations. Next to that, English is not my native language, which could be a deficiency while identifying and interpreting.

8. Stakeholder engagement

There is no role of stakeholders in this systematic review.

9. Reference list

Archibugi, D. (1992). Patenting as an indicator of technological innovation: a review. Science and public policy, 19(6), 357-368.

Clark, W. W., & Cooke, G. (2014). The Green Industrial Revolution. Elsevier.

CNIPA. (2020). Major Achievements 2016–2020. https://english.cnipa.gov.cn/module/download/down.jsp?i_ID=160168&coIID=2630

Corbetta, P. (2003). From theory to empirical research. In Social research: Theory, methods and techniques (pp. 56-87). SAGE Publications, Ltd, https://www.doi.org/10.4135/9781849209922

Ding, H., Zhou, D., & Zhou, P. (2020). Optimal policy supports for renewable energy technology development: A dynamic programming model. Energy Economics, 92, 104765.

Fan, X., Liu, W., & Zhu, G. (2017). Scientific linkage and technological innovation capabilities: international comparisons of patenting in the solar energy industry. Scientometrics, 111(1), 117-138.

Gao, X., & Rai, V. (2019). Local demand-pull policy and energy innovation: Evidence from the solar photovoltaic market in China. Energy Policy, 128, 364-376.

Garrett-Peltier, H. (2017). Green versus brown: Comparing the employment impacts of energy efficiency, renewable energy, and fossil fuels using an input-output model. Economic Modelling, 61, 439-447.

Haddaway ,NR., Macura, B., Whaley, P., Pullin, AS. (2017). ROSES for Systematic Review Reports. Version 1.0. DOI: 10.6084/m9.figshare.5897272.

Hall, C. (2018, 10 december). A Turning Point for China's Stance on Counterfeit Luxury Goods. The Business of Fashion. https://www.businessoffashion.com/articles/luxury/a-turning-point-for-chinas-stance-on-counterfeit-luxury-goods

Haslam, G. E., Jupesta, J., & Parayil, G. (2012). Assessing fuel cell vehicle innovation and the role of policy in Japan, Korea, and China. International Journal of Hydrogen Energy, 37(19), 14612-14623.

Heggelund, G. M. (2021). China's climate and energy policy: at a turning point?. International Environmental Agreements: Politics, Law and Economics, 21(1), 9-23.

Jia, M., Zhao, T., Cheng, X., Gong, S., Zhang, X., Tang, L., ... & Chen, Y. (2017). Inverse relations of PM2. 5 and O3 in air compound pollution between cold and hot seasons over an urban area of east China. Atmosphere, 8(3), 59.

Kennedy, S., & Johnson, C. K. (2016). Perfecting China, Inc.: China's 13th Five-Year Plan. Rowman & Littlefield.

Kuo, G. (2019, mei). When Fossil Fuels Run Out, What Then? MAHB. https://mahb.stanford.edu/library-item/fossil-fuels-run/

Li, H., Lin, H., Tan, Q., Wu, P., Wang, C., De, G., & Huang, L. (2020). Research on the policy route of China's distributed photovoltaic power generation. Energy Reports, 6, 254-263.

Li, Q., Wang, M., & Xiangli, L. (2021). Do government subsidies promote new-energy firms' innovation? Evidence from dynamic and threshold models. Journal of Cleaner Production, 286, 124992.

Li, X. Z., Chen, Z. J., Fan, X. C., & Cheng, Z. J. (2018). Hydropower development situation and prospects in China. Renewable and Sustainable Energy Reviews, 82, 232-239.

LibGuides: Systematic Reviews: Critical appraisal. (2021, 15 juli). Vrije Universiteit Amsterdam.

Lin, B., & Chen, Y. (2019). Impacts of policies on innovation in wind power technologies in China. Applied Energy, 247, 682-691.

Liu, L. Q., Liu, C. X., Sun, Z. Y., & Han, R. C. (2011). The development and application practice of neglected tidal energy in China. Renewable and Sustainable Energy Reviews, 15(2), 1089-1097.

Liu, L., Zhang, T., Avrin, A. P., & Wang, X. (2020). Is China's industrial policy effective? An empirical study of the new energy vehicles industry. Technology in Society, 63, 101356.

Lund, H. (2007). Renewable energy strategies for sustainable development. Energy, 32(6), 912-919.

McDowall, W., Ekins, P., Radošević, S., & Zhang, L. Y. (2013). The development of wind power in China, Europe and the USA: how have policies and innovation system activities coevolved?. *Technology Analysis & Strategic Management*, *25*(2), 163-185.

National Bureau of Statistics. (2021, 11 mei). Main Data of the Seventh National Population Census. National bureau of statistics in China.

http://www.stats.gov.cn/english/PressRelease/202105/t20210510_1817185.html

Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and sustainable energy reviews, 15(3), 1513-1524.

PIPA, Bonan, L., Wood, J., & Jang, S. (2004, oktober). Overview of Chinese Patent Law (Nr. 35th). https://ipo.org/wp-

content/uploads/2013/04/China_Overview_ChinesePatentLaw_Sept20040425.pdf

Poklepović, E., & Tanveer, S. (2019, 23 juli). Why systematic reviews matter. Elsevier Connect. https://www.elsevier.com/connect/authors-update/why-systematic-reviews-matter

Samant, S., Thakur-Wernz, P., & Hatfield, D. E. (2020). Does the focus of renewable energy policy impact the nature of innovation? Evidence from emerging economies. Energy Policy, 137, 111119.

Shahzad, U. (2012). The need for renewable energy sources. energy, 2, 16-18.

Soete, L., & Wyatt, S. (1983). The use of foreign patenting as an internationally comparable science and technology output indicator. Scientometrics, 5(1), 31-54.

Statista. (2016). Distribution of solar energy patent grants worldwide between 2002 and 2015, by country https://www.statista.com/statistics/726685/global-solar-patent-ownership-by-country/

Statista. (2016). Distribution of wind energy patent grants worldwide between 2002 and 2015, by countryhttps://www.statista.com/statistics/726666/global-wind-patent-ownership-share-by-country/

Statista. (2019). Global renewable energy patent share by country 2018. https://www.statista.com/statistics/957485/cumulative-share-renewable-patents-worldwide/

Teesside University. (2019). Developing Your Search Question using PICO/PIO/PEO.

Tutt Library Colorado College. (2021). Research Guides: Education: Empirical v. Theoretical. Coloradocollege. https://coloradocollege.libguides.com/c.php?g=286871&p=1911416

Wang, Q., Qu, J., Wang, B., Wang, P., & Yang, T. (2019). Green technology innovation development in China in 1990–2015. Science of the Total Environment, 696, 134008.

Wang, X., Zou, H., Zheng, Y., & Jiang, Z. (2019). How will different types of industry policies and their mixes affect the innovation performance of wind power enterprises? Based on dual perspectives of regional innovation environment and enterprise ownership. Journal of environmental management, 251, 109586.

World Resources Institute. (2021.). Climate Watch Historical Country Greenhouse Gas Emissions Data (1990–2018). CLIMATEWATCH. Geraadpleegd op 15 augustus 2021, van https://www.climatewatchdata.org/ghg-emissions?end_year=2018@ions=TOP&start_year=1990

Yihui, D. (2006). National assessment report of climate change (I): climate change in China and its future trend. Advances in Climate Change Research, 2(01), 3.

Zhai, Y., Wang, Q., & Song, Y. (2012). Air pollutant emissions from energy consumptions in the Yangtze River Delta region. China environmental science, 32(9), 1574-1582.

Zhang, S., Andrews-Speed, P., Zhao, X., & He, Y. (2013). Interactions between renewable energy policy and renewable energy industrial policy: A critical analysis of China's policy approach to renewable energies. Energy Policy, 62, 342-353.

Zhao, R., Zhao, L., Deng, S., & Zheng, N. (2015). Trends in patents for solar thermal utilization in China. Renewable and Sustainable Energy Reviews, 52, 852-862.

10. Appendix

10.1 Appendix A: Search string results from Web of Science Core Collection

Search string	Results
TS= (Patent* and China and Renewable energ* and Polic*)	35
TS= (chin* AND (renewable energ* polic*) AND (patent) NOT (energ* consum*))	26
TS= (chin* AND (renewable energ* polic*) AND (innovation* OR patent*) NOT (energ*	196
consum*))	
TS= (chin* AND (renewable energ* polic* OR wind energ* polic* OR solar energ*	281
polic* or geothermal energ* polic*) AND (innovation* OR patent *) NOT (energ*	
consum*))	
TS= (chin* AND (renewable energ* polic* OR wind energ* polic* OR solar energ*	281
Polic* AND (innovation* OR patent *) NOT (energ* consum*))	
TS= (chin* AND (renewable energ* polic* OR wind energ* polic* OR solar energ*	293
polic* OR hydro* energ* polic*) AND (innovation* OR patent *) NOT (energ*	
consum*))	

10.2 Appendix B: Inclusion and exclusion list

Title	Author(s)	Publication Year	Reason for exclusion (No value= no exclu- sion)
Analysis of the Tech- nical Competitive Strategy of Main Com- petitors in the Field of Wind Power	Duan Liping	2009	Unretrievable text
Competitive ad- vantage in the renew- able energy industry: Evidence from a gravi- ty model	Kuik, Onno; Branger, Frederic; Quirion, Philippe	2019	Innovation measurement not in patents
Renewable energy technologies: patent counts and considera- tions for energy and climate policy in Brazil	de Melo, Conrado Augustus; da Silva, Manuella Pereira; Benedito, Ricardo da Silva	2020	Population not China
Chinese Renewable Energy Technology Exports: The Role of Policy, Innovation and Markets	Groba, Felix; Cao, Jing	2015	Innovation measurement not in patents
The emergence of China's wind and solar industries	Korsnes, Marius	2020	Unretrievable text

Comparing the Inter-	Zhou Yuan: Pan	2018	No clear link between policy
national Knowlodgo	Mojiyan: Urban	2010	and result
Flow of Chipple Wind	Franko		
Flow of Chille's Wille	Flauke		
(PV) Industries: Pa-			
tent Analysis and Im-			
plications for Sustain-			
able Development			
Which Subsidy Mode	Zhang, Huiming;	2015	Innovation measurement not in
Improves the Financial	Zheng, Yu; Zhou,		patents
Performance of Re-	Dequn; Zhu, Pei-		
newable Energy	feng		
Firms? A Panel Data			
Analysis of Wind and			
Solar Energy Compa-			
nies between 2009			
and 2014			
Geothermal power in	Zhang, L. X.: Pang,	2019	Innovation measurement not in
China: Development	M Y · Han 1 · Li Y	2010	natents
and porformanco			patents
	T., Wally, C. B.		
	Tu Olanay Data	0040	The sublide state successful to the in-
The profitability of	Tu, Qiang; Betz,	2019	Innovation measurement not in
onshore wind and	Regina; Mo, Jianiei;		patents
solar PV power pro-	Fan, Ying		
jects in China - A			
comparative study			
The economics of re-	Xu, Yan; Yang,	2021	Innovation measurement not in
newable energy power	Zhijie; Yuan, Jiahai		patents
in China			
Wind energy and	Lindman, Asa; So-	2016	Population not China
areen economy in	derholm, Patrik		
Europe: Measuring	,		
policy-induced innova-			
tion using patent data			
Review on the costs	Zhao Hui-ru: Guo	2014	Innovation measurement not in
and benefits of renew-	Sen: Fu Li-wen	2014	natents
able energy power	Sell, Fd, El Well		patents
subsidy in China			
The role of the com	Chai Hyunday	2014	Deputation not China
nie role of the com-	Choi, Hyunuo;	2014	Population not China
plementary sector and	Anadon, Laura Diaz		
its relationship with			
network formation and			
government policies in			
emerging sectors: The			
case of solar photovol-			
taics between 2001			
and 2009			
Technological Progress	Jiang, Kejun	2017	Innovation measurement not in
in Developing Renew-			patents
able Energies			
Global patterns of	Baver, Patrick: Do-	2013	Foreign policy/Data not from
renewable energy	lan, Lindsav: Ur-		China
innovation, 1990-2009	pelainen, Johannes		
Interactions between	Zhang, Sufang	2013	Innovation measurement not in
renewable energy	Andrews-Sneed	2010	natents
nolicy and renewable	Philin: 7han Vianlie		patento
oporay industrial sali	Ho Vongviu		
	ne, ronyxiu		
cy. A church analysis			
or china's policy ap-			
proach to renewable			
energies		0010	
Impacts of policies on	Lin, Boqiang; Chen,	2019	
innovation in wind	Yutang		

power technologies in			
SWITCH-China: A Systems Approach to Decarbonizing China's Power System	He, Gang; Avrin, Anne-Perrine; Nel- son, James H.; Johnston, Josiah; Mileva, Ana; Tian, Jianwei; Kammen, Daniel M.	2016	Innovation measurement not in patents
Exploiting the Imple- mentation Gap: Policy Divergence and Indus- trial Upgrading in Chi- na's Wind and Solar Sectors	Nahm, Jonas	2017	Innovation measurement not in patents
Protecting Solar: Global Supply Chains and Business Power	Meckling, Jonas; Hughes, Llewelyn	2018	Foreign policies
Building an interna- tionally competitive concentrating solar power industry in Chi- na: lessons from wind power and photovolta- ics	Gilmanova, Alina; Wang, Zhifeng; Gosens, Jorrit; Lilli- estam, Johan	2021	Unretrievable text
Selection of key tech- nology policies for Chinese offshore wind power: A perspective on patent maps	Zhang, Huiming; Zheng, Yu; Zhou, Dequn; Long, Xingle	2018	Innovation measurement not in patents
The Management In- novation and Research Systematic Strategies of Wind Electric Power Development in China	Pang, Nan-sheng; Ma, Shuai	2016	Outcome
The short-term costs of local content re- quirements in the Indian solar auctions	Probst, Benedict; Anatolitis, Vasilios; Kontoleon, Andre- as; Anadon, Laura Diaz	2020	Population not China
Renewable energies: Worldwide trends in research, funding and international collabo- ration	Luis Aleixandre- Tudo, Jose; Castel- Io-Cogollos, Lourdes; Luis Aleixandre, Jose; Aleixandre- Benavent, Rafael	2019	No policies
What drives invest- ment in wind energy? A comparative study of China and the Eu- ropean Union	Ydersbond, Inga Margrete; Korsnes, Marius Stoylen	2016	Innovation measurement not in patents
Toward Technology- Sensitive Catching-Up Policies: Insights from Renewable Energy in China	Binz, Christian; Gosens, Jorrit; Hansen, Teis; Han- sen, Ulrich Elmer	2017	Papers that propose policy op- tions but show no research on existing ones
Is the supply chain ready for the green transformation? The case of offshore wind logistics	Poulsen, Thomas; Lema, Rasmus	2017	Innovation measurement not in patents
Evolutionary Patterns	Oh, Yoonhwan;	2016	No mention of policies

of Renewable Energy	Yoon, Jungsub; Lee,		
Technology Develop-	Jeong-Dong		
(1990-2010)			
Fragmented authori- ties, institutional misa- lignments, and chal- lenges to renewable energy transition: A case study of wind power curtailment in China	Cai, Yifan; Aoyama, Yuko	2018	Innovation measurement not in patents
The production of sci- entific knowledge on renewable energies: Worldwide trends, dynamics and chal- lenges and implica- tions for management	Rizzi, Francesco; van Eck, Nees Jan; Frey, Marco	2014	No domestic policies
Green Industrial Policy in Emerging Markets	Harrison, Ann; Mar- tin, Leslie A.; Nata- raj, Shanthi	2017	Innovation measurement not in patents
The politics of late late development in re- newable energy sec- tors: Dependency and contradictory tensions in India's National Solar Mission	Behuria, Pritish	2020	Population not China
Beyond Technology Push vs. Demand Pull: The Evolution of Solar Policy in the US, Ger- many and China	Hansen, Erik G.; Luedeke-Freund, Florian; Quan, Xiaohong (Iris); West, Joel	2017	Innovation measurement not in patents
Development trajecto- ries in China's wind and solar energy in- dustries: How technol- ogy-related differ- ences shape the dy- namics of industry localization and catch- ing up	Quitzow, Rainer; Huenteler, Joern; Asmussen, Hanna	2017	No mention of policies
Projecting the Price of Lithium-Ion NMC Bat- tery Packs Using a Multifactor Learning Curve Model	Penisa, Xaviery N.; Castro, Michael T.; Pascasio, Jethro Daniel A.; Esparcia, Eugene A.; Schmidt, Oliver; Ocon, Joey D.	2020	no policies
Antidumping and Feed-In Tariffs as Good Buddies? Model- ing the EU-China Solar Panel Dispute	Bougette, Patrice; Charlier, Christophe	2018	No deomestic policies
Low-carbon technolo- gies, national innova- tion systems, and global production net- works: the state of play	Hughes, Llewelyn; Quitzow, Rainer	2018	Unretrievable text
Renewable Energy Transformation or	Moe, E.	2015	Unretrievable text

Fossil Fuel Backlash: Vested Interests in the			
Political Economy			
Demand-side policy for emergence and diffusion of eco- innovation: The medi- ating role of produc- tion	Lee, Hoyoon; Shin, Kiyoon; Lee, Jeong- Dong	2020	
China's climate and energy policy: at a turning point?	Heggelund, Gorild M.	2021	
Market and Non- market Policies for Renewable Energy Diffusion: A Unifying Framework and Empir- ical Evidence from China's Wind Power Sector	Liu, Yang; Wei, Taoyuan	2016	Innovation measurement not in patents
The technological sys- tem of production and innovation: The case of photovoltaic tech- nology in China	Shubbak, Mahmood H.	2019	
Barriers to onshore wind energy imple- mentation: A system- atic review	Farkat Diogenes, Jamil Ramsi; Claro, Joao; Rodrigues, Jose Coelho; Loureiro, Manuel Valentim	2020	Population not China
Scientific linkage and technological innova- tion capabilities: in- ternational compari- sons of patenting in the solar energy in- dustry	Fan, Xia; Liu, Wen- jie; Zhu, Guilong	2017	
International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA	Subtil Lacerda, Juliana; van den Bergh, Jeroen C. J. M.	2014	Innovation measurement not in patents
Global Innovation Systems-A conceptual framework for innova- tion dynamics in transnational contexts	Binz, Christian; Truffer, Bernhard	2017	Unretrievable text
Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA	Liu, Weiwei; Song, Yifan; Bi, Kexin	2021	
Frugal innovation strategies and global competition in wind power	Gerybadze, Alexan- der; Klein, Malte	2020	Population not China
Resource misallocation in the Chinese wind power industry: The	Yu, Chin-Hsien; Wu, Xiuqin; Lee, Wen- Chieh; Zhao,	2021	Innovation measurement not in patents

role of feed-in tariff	Jinsong		
policy	71 \	0010	• •
The Evolution of Re- newable Energy Price Policies Based on Im- proved Bass Model: A System Dynamics (SD) Analysis	Zhao, Xin-gang; Zhang, Yu-zhuo; Li, Yan-bin	2018	Innovation measurement not in patents
The effectiveness of domestic content cri- teria in India's Solar Mission	Sahoo, Anshuman; Shrimali, Gireesh	2013	Population not China
Allocating subsidies to R&D or to market ap- plications of renewable energy? Balance and geographical relevance	Koseoglu, Nazli M.; van den Bergh, Jeroen C. J. M.; Subtil Lacerda, Juliana	2013	Innovation measurement not in patents
Trends in patents for solar thermal utiliza-tion in China	Zhao, Ruikai; Zhao, Li; Deng, Shuai; Zheng, Nan	2015	
China's wind power industry: Policy sup- port, technological achievements, and emerging challenges	Wang, Zhongying; Qin, Haiyan; Lewis, Joanna I.	2012	Innovation measurement not in patents
Exuberance in China's renewable energy investment: Rationali- ty, capital structure and implications with firm level evidence	Zhang, Dayong; Cao, Hong; Zou, Peijiang	2016	Innovation measurement not in patents
China's wind industry: Leading in deploy- ment, lagging in inno- vation	Lam, Long T.; Branstetter, Lee; Azevedo, Ines M. L.	2017	
Policymaking chal- lenges in complex systems: The political and socio-technical dynamics of solar pho- tovoltaic technology deployment in China	Gao, Xue; Yuan, Jiaha	2020	Innovation measurement not in patents
Development of pho- tovoltaic power gener- ation in China: A tran- sition perspective	Liu, Dawei; Shi- royama, Hideaki	2013	Innovation measurement not in patents
A comprehensive re- view of state-of-the- art concentrating solar power (CSP) technolo- gies: Current status and research trends	Islam, Md Tasbirul; Huda, Nazmul; Abdullah, A. B.; Saidur, R.	2018	Innovation measurement not in patents
The greening of South-South trade: Levels, growth, and specialization of trade in clean energy tech- nologies between countries in the global South	Gosens, Jorrit	2020	Population not China
Gone with the wind: A learning curve analysis of China's wind power	Hayashi, Daisuke; Huenteler, Joern; Lewis, Joanna, I	2018	No mention of policies

industry			
Social acceptance of solar energy technolo- gies in China-End us- ers' perspective	Yuan, Xueliang; Zuo, Jian; Ma, Chunyuan	2011	No mention of policies
Technology transfer and cooperation for low carbon energy technology: Analysing 30 years of scholar- ship and proposing a research agenda	Kirchherr, Julian; Urban, Frauke	2018	No mention of policies
What hinder the fur- ther development of wind power in China? A socio-technical bar- rier study	Zhao, Zhen-Yu; Chang, Rui-Dong; Chen, Yu-Long	2016	Innovation measurement not in patents
Piloting Away - State- Signaling and Confi- dence-building in Chi- na's Renewable Ener- gy Sector	Tseng, Sheng-Wen; Habich-Sobiegalla, Sabrina	2020	Unretrievable text
Decomposition analy- sis of sustainable green technology in- ventions in China	Fujii, Hidemichi; Managi, Shunsuke	2019	
Can value-added tax incentives of new en- ergy industry increase firm's profitability? Evidence from financi- al data of China's listed companies	Sun, Chuanwang; Zhan, Yanhong; Du, Gang	2020	Innovation measurement not in patents
The role of technology transfer for the devel- opment of a local wind component industry in Chile	Pueyo, Ana; Garcia, Rodrigo; Mendiluce, Maria; Morales, Dario	2011	Population not China
The verticality of poli- cy mixes for sustaina- bility transitions: A case study of solar water heating in China	Huang, Ping	2019	Innovation measurement not in patents
Large-scale PV power generation in China: A grid parity and tech- no-economic analysis	Zou, Hongyang; Du, Huibin; Brown, Marilyn A.; Mao, Guozhu	2017	Innovation measurement not in patents
Green fiscal policy and firms' investment effi- ciency: New insights into firm-level panel data from the renewa- ble energy industry in China	Chang, Kai; Wan, Qiong; Lou, Qichun; Chen, Yili; Wang, Weihong	2020	Innovation measurement not in patents
Analysis of Russia's biofuel knowledge base: A comparison with Germany and China	Kang, Jin-Su; Kho- lod, Tetyana; Downing, Stephen	2015	No renewable policies
Literature review on renewable energy development and Chi- na's roadmap	Zhou, Dequn; Ding, Hao; Wang, Qun- wei; Su, Bin	2021	Unretrievable text

Handling financial resource mobilisation in technological inno- vation systems-The case of chinese wind power	Karltorp, Kersti; Guo, Siping; San- den, Bjorn A.	2017	Innovation measurement not in patents
Optimal policy sup- ports for renewable energy technology development: A dy- namic programming model	Ding, Hao; Zhou, Dequn; Zhou, P.	2020	Innovation measurement not in patents
Localisation Strategies of Firms in Wind Ener- gy Technology Devel- opment	Perrot, Radhika; Filippov, Sergey	2010	Innovation measurement not in patents
Trends and driving forces of low-carbon energy technology innovation in China's industrial sectors from 1998 to 2017: from a regional perspective	Zhang, Xi; Geng, Yong; Tong, Yen Wah; Kua, Harn Wei; Dong, Huiju- an; Pan, Hengyu	2021	
An analysis of the wind power develop- ment factors by Gen- eralized Bass Model: A case study of China's eight bases	She, Zhen-Yu; Cao, Rui; Xie, Bai-Chen; Ma, Jia-Jun; Lan, Sheng	2019	No review on existing policies
The development of wind power in China, Europe and the USA: how have policies and innovation system activities co-evolved?	McDowall, Will; Ekins, Paul; Ra- dosevic, Slavo; Zhang, Le-yin	2013	
Effect of innovation policy mix on innova- tion efficiency: Evi- dence from Chinese wind power industry chain	Wang, Xiaozhen; Jiang, Zihao; Zheng, Ying	2020	Unretrievable text
Cross-National Com- plementarity of Tech- nology Push, Demand Pull, and Manufactur- ing Push Policies: The Case of Photovoltaics	Hansen, Erik G.; Luedeke-Freund, Florian; Quan, Xiaohong Iris; West, Joel	2019	Innovation measurement not in patents
Public policy and fi- nancial resource mobi- lization for wind ener- gy in developing coun- tries: A comparison of approaches and out- comes in China and India	Surana, Kavita; Anadon, Laura Diaz	2015	Innovation measurement not in patents
Accelerating renewa- ble energy electrifica- tion and rural econom- ic development with an innovative business model: A case study in China	Li, Changsheng; Shen, Bo	2019	Innovation measurement not in patents
Application of a fuzzy	Huang, Shih-Chieh;	2013	Innovation measurement not in

cognitive map based on a structural equa- tion model for the identification of limita- tions to the develop-	Lo, Shang-Lien; Lin, Yen-Ching		patents
What makes renewa- ble energy successful in China? The case of the Shandong prov- ince solar water heater innovation system	Goess, Simon; de Jong, Martin; Ra- vesteijn, Wim	2015	Innovation measurement not in patents
Sustainability transi- tions and leapfrogging in latecomer cities: the development of solar thermal energy in Dezhou, China	Yu, Zhen; Gibbs, David	2018	Innovation measurement not in patents
DEVELOPMENT OF LOW-CARBON TECH- NOLOGIES DURING THE 11TH FYP	Leibo, Steven A.; Yang, Li	2013	Innovation measurement not in patents
Driving forces of solar energy technology innovation and evolu- tion	Luan, Chunjuan; Sun, Xiaoming; Wang, Yalan	2021	Innovation measurement not in patents
Inter-sector network and clean energy in- novation: Evidence from the wind power sector	Zhang, Fang; Tang, Tian; Su, Jun; Huang, Keman	2020	No renewable policies
Spatial characteristics and its driving factors of low-carbon energy technology innovation in China: A gravity movement and ex- ploratory spatial data analysis	Zhang, Xi; Geng, Yong; Tong, Yen Wah; Kua, Harn Wei; Tian, Xu; Wu, Rui; Zhao, Xingrong; Chiu, Anthony S. F.	2021	policy options but show no re- search on existing ones
Status and future strategies for Concen- trating Solar Power in China	Wang, Jun; Yang, Song; Jiang, Chu- an; Zhang, Ya- oming; Lund, Peter D.	2017	No renewable policies
The persistence of flexible coal in a deep- ly decarbonizing ener- gy system	Ding, Yongbin; Li, Mingquan; Abdulla, Ahmed; Shan, Rui; Gao, Shuo; Jia, Guozhu	2021	Not renewable energy
From collapsed coal mines to floating solar farms, why China's new power tor stations matter	Pouran, Hamid M.	2018	Innovation measurement not in patents
Accelerating diffusion of climate-friendly technologies: A net- work perspective	Halleck-Vega, Sol- maria; Mandel, Antoine; Millock, Katrin	2018	Innovation measurement not in patents
Technology transfer in the clean development mechanism: Insights from wind power	Lema, Adrian; Le- ma, Rasmus	2013	Innovation measurement not in patents
From lagging to lead-	Gosens, Jorrit; Lu,	2013	Innovation measurement not in

ing? Technological	Yonglong		patents
innovation systems in			
and the case of Chi-			
nese wind power			
The near- to mid-term	Lilliestam, Johan;	2021	Innovation measurement not in
outlook for concentrat-	Ollier, Lana; La-		patents
Ing solar power: most-	Dordena, Merce; Pfenninger, Stefan		
sun	Thonig, Richard		
Collaborative govern-	Mah, Daphne Ngar-	2014	Innovation measurement not in
ance for technological	yin; Hills, Peter		patents
innovation: a compar-			
wind energy in Xin-			
jiang, Shanghai, and			
Guangdong			
The institutional evo-	Bohnsack, Rene;	2016	Innovation measurement not in
lution process of the	Pinkse, Jonatan;		patents
global solar industry:	waeipoei, Anneioes		
private actors in creat-			
ing institutional shifts			
Green technology in-	Wang, Qinhua; Qu,	2019	
novation development	Jiansheng; Wang,		
In China in 1990-2015	along: Yang Taibao		
THE ROLE OF INDUS-	Botta, Enrico	2016	Unretrievable text
TRIAL POLICIES IN		_0.0	
THE DEVELOPMENT OF			
A COMPETITIVE WIND			
ENERGY INDUSTRY:			
CHINESE SECTORAL			
INNOVATION SYS-			
TEMS			
Is the photovoltaic	Wang, Zihan; Li,	2020	Innovation measurement not in
poverty alleviation	Jiaxin; Liu, Jing; Shuai, Chuanmin		patents
for the poor to escape			
poverty?-A DEA and			
GRA analysis of differ-			
ent projects in rural			
China Has solar DV achieved	Li liovin: Wong	2020	Innovation modeuroment not in
the national poverty	Zihan: Cheng, Xin:	2020	natents
alleviation goals? Em-	Shuai, Jing; Shuai,		paterita
pirical evidence from	Chuanmin; Liu, Jing		
the performances of			
52 villages in rural			
Differences in CO2	Liu, Feng: van den	2020	about energy consumption or
emissions of solar PV	Bergh, Jeroen C. J.		co2 reduction
production among	Μ.		
technologies and re-			
gions: Application to			
Local demand-pull	Gao, Xue: Rai Ma-	2019	
policy and energy	run	_0.0	
innovation: Evidence			
from the solar photo-			
voltaic market in Chi-			
10			

'Green chasm' in	Ahn, Sang-Jin;	2020	policy options but show no re-
clean-tech for air pol-	Yoon, Ho Young		search on existing ones
dence of a long inno-			
vation cycle and a			
technological level gap			
Co-benefits, contradic-	Lo, Kevin; Broto,	2019	Innovation measurement not in
tions, and multi-level	Vanesa Castan		patents
governance of low-			
tion: Leveraging solar			
energy for sustainable			
development in China			
Spatial lifecycles of	Binz, Christian;	2017	No renewable policies
cleantech industries -	Tang, Tian; Huente-		
The global develop-	ier, Joern		
photovoltaics			
Demonstration pro-	Bossink, Bart A. G.	2015	Innovation measurement not in
jects for diffusion of	,		patents
clean technological			
innovation: a review			
Market dynamics,	Zou, Hongyang;	2017	Innovation measurement not in
tion in China's solar	lingzheng: Sova-		patents
photovoltaic (PV) in-	cool, Benjamin K.:		
dustry: A critical re-	Zhang, Yongjie;		
view	Mao, Guozhu		
Financing Indian Ur-	Sharma, Rohit	2018	Population: Not China
ban Rail through Land			
Development: Case			
tions for the Acceler-			
ated Reduction in Oil			
Associated with 1.5			
degrees C			
Cost reduction or elec-	Ding, H.; Zhou, D.	2020	Innovation measurement not in
Covernment R&D	Q.; LIU, G. Q.;		patents
induced PV develop-	2110u, r.		
ment and future policy			
schemes			
Knowledge spillover	Bae, Junhee;	2020	No renewable energy policies
efficiency of carbon	Chung, Yanghon;		from China
capture, utilization,	Lee, Jaewook; Seo,		
and storage technolo-	Папууеог		
among countries			
Opportunities and	Zhang Peidong;	2009	Innovation measurement not in
challenges for renew-	Yang Yanli; Shi Jin;		patents
able energy policy in	Zheng Yonghong;		
China	Wang Lisheng; Li		
The Impact of Interna-	Hsiao, Cody Yu-	2019	No renewable energy policies
tional Oil Prices on the	Ling; Lin, Weishun:		the remember energy policies
Stock Price Fluctua-	Wei, Xinyang; Yan,		
tions of China's Re-	Gaoyun; Li, Siqi;		
newable Energy En-	Sheng, Ni		
Carbon intonsity ro	Cheng Vuanvuan	2021	about energy concumption or
duction assessment of	Yao, Xin		co2 reduction
renewable energy			
technology innovation			

in China: A panel data			
model with cross-			
section dependence			
and slope heteroge-			
neity			
Renewable energy	Liu, Ximei; Zeng,	2017	Innovation measurement not in
investment risk evalu-	Ming		patents& Review
ation model based on			
system dynamics	.	0040	
China's New Energy	Jin Yue-qin	2010	Unretrievable text
Industrial Develop-			
ment: Position, Con-			
in the Post-crisis Era			
In the Fost-Chisis Lia	Van Zhoming: Zou	2020	policy options but show no ro-
technology innova-	Baoling: Du Kerui:	2020	search on existing ones
tions promote China's	li Ke		search on existing ones
areen productivity			
arowth? Fresh eviden-			
ce from partially linear			
functional-coefficient			
models			
A review of photovol-	Li, Yan; Zhang, Qi;	2018	Innovation measurement not in
taic poverty alleviation	Wang, Ge; McLel-		patents
projects in China:	lan, Benjamin; Liu,		
Current status, chal-	Xue Fei; Wang, Le		
lenge and policy rec-			
ommendations			
Analysis of China's	Shi, Dan	2009	Innovation measurement not in
Renewable Energy			patents& Review
Development under			
the Current Economic			
and Technical Circum-			
The limits of academic	Gosens lorrit:	2018	Upretrievable text
entrepreneurshin:	Hellsmark Hans	2010	
Conflicting expecta-	Kaberger Tomas		
tions about commer-	Liu. Li: Sanden.		
cialization and innova-	Biorn A.; Wang,		
tion in China's nascent	Shurong; Zhao, Lei		
sector for advanced	5, ,		
bio-energy technolo-			
gies			
A Functional Analysis	Esmailzadeh, Mo-	2020	Population not China
of Technological Inno-	hammad; Noori,		
vation Systems in	Siamak; Aliahmadi,		
Developing Countries:	Alireza; Nouraliza-		
An Evaluation of Iran's	deh, Hamidreza;		
Photovoltaic Innova-	Bogeys, Marcel		
tion System	Tusika a Taskal Ma	0040	Torrestation
The Kyoto mecha-	Freitas, Isabel Ma-	2012	Innovation measurement not in
nisms and the diffu-	ria Bodas; Dantas,		patents
sion of renewable en-	EVA; IIZUKA, MICHIKO		
the BRICS			
Toward just energy	Huang Ping: Liu	2021	No renewable policies
transitions in authori-	Yina	2021	No renewable policies
tarian regimes: indi-			
rect participation and			
adaptive governance			
Innovation and New-	Jin Yue-qin; Chen	2012	Unretrievable text
type Industrial Poli-	Yi-si		
cies: In the Case of			

Renewable Energy in			
Does the focus of re- newable energy policy impact the nature of innovation? Evidence from emerging eco- nomies	Samant, Shantala; Thakur-Wernz, Pooja; Hatfieldc, Donald E.	2020	
Energy System Transi- tions in the Eastern Coastal Metropolitan Regions of ChinaThe Role of Regional Policy Plans	Xiao, Mengzhu; Simon, Sonja; Pregger, Thomas	2019	Innovation measurement not in patents
Challenges Presented in the Implementation of Sustainable Energy Management via ISO 50001:2011	Rampasso, Izabela Simon; Melo Filho, Geraldo Pereira; Anholon, Rosley; de Araujo, Robson Amarante; Alves Lima, Gilson Brito; Perez Zotes, Luis; Leal Filho, Walter	2019	Innovation measurement not in patents
Effectiveness evalua- tion of photovoltaic poverty alleviation project in China: From a capital perspective	Bai, Bo; Xiong, Siqin; Ma, Xia- oming; Tian, Yushen	2021	Innovation measurement not in patents
Employee incentives and energy firms' in- novation: Evidence from China	Si, Deng-Kui; Wang, Yanan; Kong, Dongmin	2020	
Not in my backyard, but not far away from me: Local acceptance of wind power in China	Guo, Yue; Ru, Peng; Su, Jun; Anadon, Laura Diaz	2015	Innovation measurement not in patents
Constructing China's wind energy innova- tion system	Klagge, Britta; Liu, Zhigao; Silva, Pedro Campos	2012	No renewable energy policies
The Learning Process and Technological Change in Wind Pow- er: Evidence from China's CDM Wind Projects	Tang, Tian; Popp, David	2016	Innovation measurement not in patents
Overview of the de- velopment of the Chi- nese Jiangsu coastal wind-power industry cluster	He, Zhengxia; Xu, Shichun; Shen, Wenxing; Long, Ruyin; Yang, He	2016	Innovation measurement not in patents
Using Backcasting Methodology in Deci- sion-making of Bio- mass Energy Devel- opment	Li, Jun; Ding, Wen- bin; Jing Sijiang	2013	Innovation measurement not in patents
The price of wind power in China during its expansion: Tech- nology adoption, learning-by-doing, economies of scale, and manufacturing localization	Qiu, Yueming; Anadon, Laura D.	2012	Innovation measurement not in patents
Comparing the Evolu- tion of Crystalline Sili- con Photovoltaic Cells: Technological Route and National Speciali- zation	Tan, Long; Sun, Honghang; Ye, Xuanting; Liu, Yun; Su, Jun	2014	Innovation measurement not in patents
--	--	------	---------------------------------------
Is China's industrial policy effective? An empirical study of the new energy vehicles industry	Liu, Lanjian; Zhang, Tian; Avrin, Anne- Perrine; Wang, Xianwen	2020	
Do favorable land price policy affect re- newable energy indus- try? Evidence from photovoltaics	Geng, Bin; Zhang, Xiaoling; Liang, Ying; Bao, Haijun	2016	Innovation measurement not in patents
OFF-GRID:: FARM. Multifuncional land- scapes and sustaina- ble systems for Medi- terranean rural areas.	Rocca, Valentina	2014	No renewable policies
How Expensive Is Ex- pensive Enough? Op- portunities for Cost Reductions in Offshore Wind Energy Logistics	Poulsen, Thomas; Hasager, Charlotte Bay	2016	Innovation measurement not in patents
INSTITUTIONAL IN- NOVATION OF LOW- CARBON DEVELOP- MENT	Leibo, Steven A.; Yang, Li	2013	Innovation measurement not in patents
Are government sub- sidies effective in im- proving innovation efficiency? Based on the research of China's wind power industry	Lin, Boqiang; Luan, Ranran	2020	Innovation measurement not in patents
Do government subsi- dies promote new- energy firms' innova- tion? Evidence from dynamic and threshold models	Li, Qing; Wang, Maoqiong; Xiangli, Liuxu	2021	
Notions on learning applied to wind tur- bine development in the Netherlands and Denmark	Kamp, LM; Smits, REHM; Andriesse, CD	2004	Population
Backcasting perfor- mance of the emerg- ing renewable energy sector in China: to- wards a strategic op- timization approach	Ng, Artie W.	2008	Innovation measurement not in patents
The Evaluation of In- novation Policy Effi- ciency for the Emerg- ing Energy Industry in China: Wind Industry	Lu, Ming-Jie; Chen, Song; Liu, Xin; Lou, Yong	2012	Unretrievable text
A Critical Review of Sustainable Energy Policies for the Promo- tion of Renewable Energy Sources	Lu, Yuehong; Khan, Zafar A.; Alvarez- Alvarado, Manuel S.; Zhang, Yang; Huang, Zhijia; Im-	2020	Innovation measurement not in patents

	ran, Muhammad		
Assessing the renewa- ble energy investment risk factors for sus- tainable development in Turkey	Kul, Cansu; Zhang, Ling; Solangi, Yasir Ahmed	2020	Population not China
Learning and techno- logical capability build- ing in emerging econ- omies: The case of the biomass power equipment industry in Malaysia	Hansen, Ulrich El- mer; Ockwell, Da- vid	2014	Population not China
How does international trade network affect multinational diffusion of wind power tech- nology?	Zhang, Gupeng; Duan, Hongbo	2020	Innovation measurement not in patents
Prospects for global market expansion of China's wind turbine manufacturing indus- try	Gosens, Jorrit; Lu, Yonglong	2014	No renewable energy policy link with innovation
Integrated technologi- cal paradigm-based soft paths towards sustainable develop- ment of small hydro- power	Xu, Jiuping; Ni, Ting	2017	Innovation measurement not in patents
The (R)evolution of China: Offshore Wind Diffusion	Poulsen, Thomas; Hasager, Charlotte Bay	2017	Innovation measurement not in patents
Destined for decline? Examining nuclear energy from a techno- logical innovation sys- tems perspective	Markard, Jochen; Bento, Nuno; Kitt- ner, Noah; Nunez- Jimenez, Alejandro	2020	Not renewable energy
The Evolution of the Wind Industry and the Rise of Chinese Firms: From Industrial Poli- cies to Global Innova- tion Networks	Silva, Pedro Cam- pos; Klagge, Britta	2013	Unretrievable text
Does politics matter? Explaining swings in wind power installa- tions	Moe, Espen	2017	No renewable energy policies
Influencing factors of energy technical inno- vation in China: Evi- dence from fossil en- ergy and renewable energy	Yang, Fang; Cheng, Yuanyuan; Yao, Xin	2019	No renewable energy policies
Potential usage, verti- cal value chain and challenge of biomass resource: Evidence from China's crop res- idues	Yang, Jun; Wang, Xiaobing; Ma, Hengyun; Bai, Jun- fei; Jiang, Ye; Yu, Hai	2014	Innovation measurement not in patents
Industrial life cycle: relevance of national markets in the devel- opment of new indus-	O'Sullivan, Marlene	2020	Innovation measurement not in patents

nologies - the case of wind energyWalsh, Philip R.2012Innovation measurement not in patentsInnovation Nirvana or Identifying commer- calization strategies for small and medium enewable energy enterprisesSung, Bongsuk; Wen, Cui2018Innovation measurement not in patentsCausal Dynamic Rela- tonships between Political-Economic Performance in the Renewable Energy Technologies MarketSung, Bongsuk; Wen, Cui2018Innovation measurement not in patentsDevelopment of smart microgrid powered by remewable energy in Corporate Sustainabil- ty in Chinas: current status and challengesXu, Cong; Lu, Wu Xu, Cong; Lu, Wu2019Unretrievable textThe Effect of Technol- ogy Innovation on Corporate Sustainabil- vation modes in Chi- na's wind turbine manufacturing indus- tryWang, Pei; Zhang, zijn; Zeng, Yau ang; Zhang, Fang; Zhong, Xiaotian; Li, Jianqiang; Su, Jun2012Innovation measurement not in patentsBehind the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine manufacturing indus- tryRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhong, Xiaotian; Li, Jianqiang; Su, Jun2012Innovation measurement not in patentsThe Effect of value colomic a detailed botom-up analysis of innovation drivers China's policy initia- tryDia, Yixin; Xue, Lan Che, Yuyan; Zheng, Qiongjie2015Unretrievable textThe proce volution of value modify solar energy innova- tion and Silicon ValleyYu, Yang; Li, Hong; Che, Yuyan; Zheng, Qiongjie2014Population not China	tries for energy tech-			
wind energy Innovation Nirvana or Innovation Wasteland? Identifying commer- calization strategies for small and medium renewable energy enterprisesWalsh, Philip R. 20122012Innovation measurement not in patentsCausal Dynamic Rela- tionships between Performance in the Renewable Energy Technologies MarketSung, Bongsuk; Wen, Cui2018Innovation measurement not in patentsDevelopment of smart microgrid powered by renewable energy in China: current status and challengesXu, Cong; Lu, Wu ang, Shucheng; Tang, Xu2019Unretrievable textDevelopment of smart wircogrid powered by renewable energy in China: current status and challengesWang, Pei; Zhang, Pain, Shucheng; Tang, Xu2021Innovation measurement not in patentsBehind the develop- ment of technology: The transition of inno- aviation and incident. A detailed try undom driversRu, Peng; Zhi, Qi- ang; Xu, Wu2012Innovation measurement not in patentsWind turbine cost re- duction: A detailed totom-up analysis of innovation driversBai, A.; Taylor, M.; OGalachoir, B.; Rogan, F.2020Innovation measurement not in patentsDai, Yixin; Xue, Lan totom-up analysis of innovation driversDai, Yixin; Xue, Lan Solar energy policies2015Unretrievable textChina's policy inita- tives of the develop- ment of wind turbines in Chi- ra: A study based on the modified multi- factor learning qurveDai, Yixin; Xue, Lan Solar energy innova- ton and Silicon ValleyDai, Yixin; Xue, Lan Solar energy innova- ton and Silicon ValleyNo renewable energy polici	nologies - the case of			
Innovation Nirvana or Innovation Wasteland? Identifying commer- calization strategies for small and medium entry strategies for small and medium preference in the Renewable Energy Technologies Market Development of smart microgrid powered by rememble energy in China's current statusSung, Bongsuk; Wen, Cui2018Innovation measurement not in patentsDevelopment of smart microgrid powered by remewable energy in Corporate Sustainabil- vation modes in Chi- na's wind turbine manufacturing indus- try twoito modium analysis of innovation driversXu, Cong; Lu, Wu microgrid powered by Zijin; Zeng, Yeli; Yang, Shucheng; Tang, Xu2019Innovation measurement not in patentsBehind the develop- nent of technology: The transition of inno- vation modes in Chi- na's wind turbine comandia driversRu, Peng; Zhi, Qi- ang; Zhang, Rang; Zhong, Xiaotian; Li, Jianqiang; Su, Jun2012Innovation measurement not in patentsDetorm-up analysis of innovation driversDai, Yixin; Xue, Lan China's policy initia- tives for the develop- ment of wind energy ind turbines in Chi- na: A study based on the modified multi- factor learning curveDai, Yixin; Xue, Lan Zheng, Qiongjie2014Unretrievable textChina's policy intoxa- tive networks of solar and Silicon ValleyNeij, Lena; Ander- sessment of Wind Turbine Innovation and Silicon ValleyNeij, Lena; Ander- sen, Per Dann	wind energy			
Innovation Wasteland? Identifying commer- calization strategies for small and medium renewable energy enterprisesSung, Bongsuk; Wen, Cui2018Innovation measurement not in patentsCausal Dynamic Rela- tionships between Performance in the Renewable Energy Technologies MarketSung, Bongsuk; Wen, Cui2018Innovation measurement not in patentsDevelopment of smart microgrid powered by renewable energy in China: current status and challengesXu, Cong; Lu, Wu ang, Shucheng; Tang, Xu2019Unretrievable textDevelopment of smart wircogrid powered by renewable energy in China: current status and challengesWang, Pei; Zhang, Pang, Shucheng; Tang, Xu2021Innovation measurement not in patentsBehind the develop- ment of technology: The transition of inno- vation modes in Chi- nas' wind turbine manufacturing indus- tryRu, Peng; Zhi, Qi- ang; Su, Jun Jangiang; Su, Jun2012Innovation measurement not in patentsWind turbine cost re- duction: A detailed totom-up analysis of innovation driversElia, A.; Taylor, M.; OGalachor, B.; Rogan, F.2020Innovation measurement not in patentsDai, Yixin; Xue, Lan totom-up analysis of innovation driversDai, Yixin; Xue, Lan Zhang, Xiaotian; Li, Jungiang; Cling;2015Unretrievable textThe price evolution of wind turbines in Chi- ra: A study based on the modified multi- factor learning curveDai, Yixin; Xue, Lan Zheng, Qiongjie2014Woretrievable textSolar energy innova- tion and Silicon ValleyKammen, Daniel M. Solar energy innova- 	Innovation Nirvana or	Walsh, Philip R.	2012	Innovation measurement not in
Identifying commer- calization strategiesSung, Bongsuk; Wen, Cui2018Innovation measurement not in patentsCausal Dynamic Rela- tonships between Political-Economic Performance in the Renewable Energy Technologies MarketSung, Bongsuk; Wen, Cui2018Innovation measurement not in patentsDevelopment of smart microgrid powered by remewable energy in China: current status and challengesXu, Cong; Lu, Wu Zijn; Zeng, Yeli; Yang, Shucheng; Tang, Xu2019Unretrievable textThe Effect of Technol- ogy Innovation on Corporate Sustainabili- ity in Chinase Renew- nessWang, Pei; Zhang, Zijn; Zeng, Yeli; Yang, Shucheng; Tang, Xu2021Innovation measurement not in patentsThe Effect of Technol- ogy Innovation on Corporate Sustainabili- ity in Chinase Renew- The transition of inno- vation modes in Chi- aris wind turbine mandacturing indus- tryRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhong, Xaotain; Li, Jangiang; Su, Jun2012Innovation measurement not in patentsWind turbine cost re- Innovation drivers China's policy initia- tives for the develop- ment of wind turbines in Chi- sessment of Wind The price evolution of wind turbines in Chi- as Astudy based on the modified multi- factor learning curve2014Innovation measurement not in patentsA Comparative As- sessment of Wind rus A study based on the modified multi- actor learning curveNeij, Lena; Ander- sen, Per Danne- mand2014Population not ChinaA Comparative As- sessment of Wind rus Astudy provation valey tion and Silicon ValleyKammen, Daniel M. 2	Innovation Wasteland?			patents
cialization strategies for small and medium renewable energy enterprises Causal Dynamic Rela- tionships between Performance in the Renewable Energy Technologies Market Development of smart microgrid powered by renewable energy in Cahiae current status and challenges The Effect of Technol- ogy Innovation on Corporate Sustainabil- try in Chines Renew- able Energy Compa- nies Behind the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine mandfacturing indus- try Wind turbine cost re- duction: A detailed bottom-up analysis of rais a solicy initia- try solicy initia- solicy values and solicy values investor the develop- ment of technology: the transition of inno- sity and turbine manufacturing indus- try Wind turbine cost re- clution: A detailed bottom-up analysis of rise for the develop- ment of wind energy technology The price evolution of rise A study based on the modified multi- factor learning curve Solar energy innova- tion and Silicon Valley Kammen, Daniel M. 2016 Vination measurement not china to mad Silicon Valley Kammen, Daniel M. 2017 No renewable energy policies ine Silver and the price solar energy innova- tion and Silicon Valley Kammen, Daniel M. 2018 No renewable energy policies ine Silver and and Diffusion Policies de Paulo, Alex Fabi- ane; Porto, Geci- ane; Solar Energy Innova- tion and Silicon Valley Kammen, Daniel M. 2019 No renewable energy policies	Identifying commer-			
for small and medium renewable energy enterprisesSung, Bongsuk; Wen, Cui2018Innovation measurement not in patentsCausal Oynamic Rela- Factors and Export Performance in the Renewable Energy Technologies MarketSung, Bongsuk; Wen, Cui2018Innovation measurement not in patentsDevelopment of smart microgrid powered by renewable energy in China: current status and challengesXu, Cong; Lu, Wu Xu, Cong; Lu, Wu2019Unretrievable textThe Effect of Technol- Ogy Innovation on Gorporate Sustainabil- try in Chinase Renew- able Energy Compa- niesWang, Pei; Zhang, Yang, Shucheng; Tang, Xu2021Innovation measurement not in patentsBehind the develop- ment of technology: try turtoring indus- tryRu, Peng; Zhi, Qi- ang; Zhang, Fang; Tang, Xu2012Innovation measurement not in patentsWind turbine manafsaturing indus- tryRu, Peng; Zhi, Qi- ang; Su, Jun ang Shang; Su, Jun as wind turbine mandacturing indus- try2012Innovation measurement not in patentsWind turbine cost re- torna's wold turbine ment of wind based on the modified multi- factor learning curveDai, Yixin; Xue, Lan Che, Yuyan; Zheng, Qiongjie2017No renewable energy policiesA Comparative As- sessment of Wind mand Silicon ValleyKammen, Daniel M. Zone, Per Danne- mand2014Population not ChinaA Comparative As- sessment of Wind ton and Silicon ValleyKammen, Daniel M. Zonfa, Gordia2014No renewa	cialization strategies			
renewable energy enterprises Causal Dynamic Rela- tionships between Performance in the Renewable Energy Technologies Market Development of smart microgrid powered by renewable energy in Corporate Sustainabil- try in Chines Renew- able Energy Compa- nies Behind the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine mandfacturing indus- try Wind energy try China's current extaus Behind the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine mandfacturing indus- try Wind turbine cost re- duction: A detailed bottom-up analysis of renewable energy innova- tow and the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine mandfacturing indus- try Wind turbine cost re- duction: A detailed bottom-up analysis of renewable energy innova- tor wind turbines China's policy initia- try (X), Yang; Li, Hong; Che, Yuyuan; a: A study based on the modified multi- ecomparative As- Solar energy innova- tion ad Silicon Valley Kammen, Daniel M. 2014 20	for small and medium			
enterprisesuncertifiedCausal Dynamic Rela- tionships between Political-Economic Performance in the Renewable Energy Technologies MarketSung, Bongsuk; Wen, Cui2018Innovation measurement not in patentsDevelopment of smart microgrid powered by renewable energy in Ogli Inovation on Cyporate Sustainabil- ity in Chinese Renew- able Energy Compa- niesXu, Cong; Lu, Wu wang, Sucheng; Tang, Xu2019Unretrievable textWang, Pel; Zhang, and Export Performance in the microgrid powered by renewable energy in The Effect of Technol- ogy Innovation on Cyporate Sustainabil- ity in Chinese Renew- able Energy Compa- niesWang, Pel; Zhang, Zijn; Zeng, Yeli; Yang, Shucheng; Tang, Xu2012Innovation measurement not in patentsBehind the develop- ment of technology: The transition of Inno- vation modes in Chi- na's wind turbine manufacturing indus- tryRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhong, Xaotian; Li, Jianqiang; Su, Jun2012Innovation measurement not in patentsWind turbine cost re- duction: A detailed bottom-up analysis of innovation driversElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsDai, Yixin; Xue, Lan tives for the develop- ment of wind energy innovation driversDai, Yixin; Xue, Lan China's policy initia- tore, Yuyang; Che, Yuyang; Cheng, Qiongjie2015Innovation measurement not in patentsChina's solicor Valley solar energy innova- tion and Silicon ValleyKammen, Daniel M. Solar Energy Innova- tion and Silicon ValleyVu; Yang; Li, Hong; Che,	renewable energy			
Causal Dynamic Rela- tionships between Political-Economic Factors and Export Performance in the Renewable Energy Technologies MarketSung, Bongsuk; Wen, Cui2018Innovation measurement not in patentsParformance in the Renewable energy in China: current status and challengesXu, Cong; Lu, Wu2019Unretrievable textThe Effect of Technol- coyp Innovation on Corporate Sustainabil- ity in Chines Renew- able Energy Compa- niesWang, Pei; Zhang, Zijn; Zeng, Yeli; Yang, Shucheng; Tang, Xu2012Innovation measurement not in patentsDevelopment of smart corporate Sustainabil- ity in Chines Renew- able Energy Compa- niesRu, Peng; Zhi, Qi- ang; Zhang, Fang; Tang, Xu2012Innovation measurement not in patentsDevelopment of technology: The transition of inno- vation modes in Chi- na's wind turbine cost re- duction: A detailed Notom-unalysis of innovation driversRu, Peng; Zhi, Qi- ang; Su, Jun A's Wind turbine cost re- duction: A detailed Dai, Yixin; Xue, Lan ty China's policy initia- tion and Silicon ValleyDai, Yixin; Xue, Lan Collachoir, B.; Rogan, F.2020Innovation measurement not in patentsDai, Yixin; Xue, Lan tion and Silicon ValleyVu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2015Unretrievable textSolar energy Innova- tion and Silicon ValleyKammen, Daniel M. del Paulo, Alex Fabi- anne; Porto, Geci- aner, Solar energy Innova- tion and Silicon ValleyKammen, Daniel M. 20142014Population not China turetrievable textSolar energy Innova- tion and Silicon ValleyKammen, Daniel M.	enterprises			
tionships between Political-Economic Factors and Export Performance in the Renewable Energy Technologies MarketWen, CuipatentsDevelopment of smart microgrid powered by renewable energy of top factors and energy in China: current status and challengesXu, Cong; Lu, Wu2019Unretrievable textThe Effect of Technol- ogy Innovation on top factors and the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine manufacturing indus- tryWang, Pei; Zhang, Zijn; Zeng, Yeli; Yang, Shucheng; Tang, Xu2012Innovation measurement not in patentsWind turbine otion: A detailed bottom-up analysis of innovation driversRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhang, Fang; Zhang, Fing; Zhang, Fing; Zhang, Fing; Zhang, Fing; Zhang, Fing; China's policy initia- try2012Innovation measurement not in patentsWind turbine cost re- duction: A detailed bottom-up analysis of innovation driversElia, A; Taylor, M.; OGallachoir, B.; Rogan, F.2015Innovation measurement not in patentsDai, Yixin; Xue, Lan tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan Zheng, Qiongjie2015Unretrievable textDianovation drivers Solar energy innova- tion and Silicon ValleyKammen, Daniel M. 20142014Population not ChinaSolar energy innova- tion and Silicon ValleyKammen, Daniel M. 20152014Population not ChinaSolar energy innova- tion and Silicon ValleyKammen, Daniel M. 20162018No renewable energy policiesSol	Causal Dynamic Rela-	Suna, Bonasuk:	2018	Innovation measurement not in
Political-Economic Factors and Export Performance in the Renewable Energy Technologies MarketXu, Cong; Lu, Wu 2019Unretrievable textDevelopment of smart microgrid powered by renewable energy in China: current status and chalengesXu, Cong; Lu, Wu 20192019Unretrievable textThe Effect of Technol- ogy Innovation on Corporate Sustainabil- ity in Chines Renew- able Energy Compa- niesWang, Pei; Zhang, Zijin; Zeng, Yeli; Yang, Shucheng; Tang, Xu2021Innovation measurement not in patentsBehind the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine manufacturing indus- tryRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhong, Xiatain; Li, Jianqiang; Su, Jun OGaliachair, B.; Rogan, F.2012Innovation measurement not in patentsOrina's wind turbine manufacturing indus- tryElia, A.; Taylor, M.; OGaliachair, B.; Rogan, F.2020Innovation measurement not in patentsDottom-up analysis of innovation driversDai, Yixin; Xue, Lan China's policy initia- tichen yugan; Zheng, Qiongjie2015Unretrievable textThe price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curveYu, Yang; Li, Hong; Zheng, Qiongjie2014Population not ChinaSolar energy Innova- tion and Silicon ValleyKammen, Daniel M. en, Per Danne- mand2014Population not ChinaSolar energy Innova- tion and Silicon ValleyKammen, Daniel M. ener, Per Danne- mand2018No renewable energy policiesSolar energy Innova- <br< td=""><td>tionships between</td><td>Wen, Cui</td><td>_0.0</td><td>patents</td></br<>	tionships between	Wen, Cui	_0.0	patents
Factors and Export Performance in the Renewable Energy Technologies MarketXu, Cong; Lu, Wu2019Unretrievable textDevelopment of smart microgrid powered by renewable energy in China: current status and challengesXu, Cong; Lu, Wu2019Unretrievable textThe Effect of Technol- ogy Innovation on Corporate Sustainabil- ity in Chinese Renew- able Energy Compa- niesWang, Pei; Zhang, Zijin; Zeng, Yeli; Yang, Shucheng; Tang, Xu2021Innovation measurement not in patentsBehind the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine mandfacturing indus- tryRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhong, Xiaotian; Li, Jianqiang; Su, Jun2012Innovation measurement not in patentsWind turbine cost re- duction: A detailed bottom-up analysis of innovation driversElia, A.; Taylor, M.; Ogalachoir, B.; Rogan, F.2020Innovation measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan Che, Yuyuan; Zheng, Qiongjie2015Unretrievable textThe price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curve Solar energy Innova- tion and Silicon ValleyNamen, Daniel M. 20142014Population not China ton and Silicon ValleyA Comparative As- sessment of Wind Turbine Innovation rubine Innovation and Diffusion ValleyKammen, Daniel M. 20142014Population not China ton and Silicon ValleyEvolution of Collabora- tive networks of solar energy app	Political-Economic			P
Performance in the Renewable Energy Technologies MarketXu, Cong; Lu, Wu2019Unretrievable textDevelopment of smart microgrid powered by renewable energy in China: current statusXu, Cong; Lu, Wu2019Unretrievable textThe Effect of Technol- ogy Innovation on Corporate Sustainabil- ity in Chines Renew- able Energy Compa- niesWang, Pei; Zhang, Zijin; Zeng, Yeli; Yang, Shucheng; Tang, Xu2021Innovation measurement not in patentsBehind the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine mandacturing indus- tryRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhang, Fang; Zhang, Su, Jun2012Innovation measurement not in patentsWind turbine cost re- duction: A detailed bottom- up analysis of innovation driversElia, A.; Taylor, M.; Rogan, F.2020Innovation measurement not in patentsDail (Yixin; Xue, Lan twind turbines in Chi- na: A study based on the modified multi- factor learning curveDai, Yixin; Xue, Lan Che, Yuyuan; Zheng, Qiongjie2015Unretrievable textThe price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curveNeij, Lena; Ander- solar energy Innova- tion and Silicon ValleyNeij, Lena; Ander- solar energy Innova- ton and Silicon ValleyNeij, Lena; Ander- solar energy Innova- ton and Silicon ValleyNeij, Lena; Ander- solar energy Innova- tang, Porto, Geci- anne, Porto, Geci- ane, Porto, Geci- ane, Porto, Geci- ane, Porto, Geci- ane, Porto, Geci- ane, Silveira2018No renewable energy policies <td< td=""><td>Factors and Export</td><td></td><td></td><td></td></td<>	Factors and Export			
Renewable Energy Technologies MarketXu, Cong; Lu, Wu2019Unretrievable textDevelopment of smart nernewable energy in China: current status and challengesXu, Cong; Lu, Wu2019Unretrievable textThe Effect of Technol- ogy Innovation on Corporate Sustainability in Chinase Renew- able Energy Compa- niesWang, Pei; Zhang, Zijin; Zeng, Yeli; Yang, Shucheng; Tang, Xu2021Innovation measurement not in patentsBehind the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine cost of technology: The transition of inno- vation modes in Chi- na's wind turbine cost re- duction: A detailed bottom-up analysis of Innovation drivers2012Innovation measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyElia, A.; Taylor, M.; Rogan, F.2020Innovation measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan Che, Yuyuan; Zheng, Qiongjie2015Unretrievable textThe price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curve Solar energy innova- tion and Silicon ValleyNeij, Lena; Ander- sen, Per Danne- mand2014Population not ChinaSolar energy innova- tion and Silicon ValleyKammen, Daniel M. 20142014Population not ChinaSolar energy innova- tion and Silicon ValleyKammen, Daniel M. anne, Porto, Geci- ane Silveira2018No renewable energy policiesSolar Energy Innov	Performance in the			
Technologies MarketvuDevelopment of smart microgrid powered by renewable energy in China: current status and challengesXu, Cong; Lu, Wu2019Unretrievable textThe Effect of Technol- ogy Innovation on Corporate Sustainabil- ity in Chinese Renew- able Energy Compa- niesWang, Pei; Zhang, Zijin; Zeng, Yeli; Yang, Shucheng; Tang, Xu2021Innovation measurement not in patentsBehind the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine manufacturing indus-Ru, Peng; Zhi, Qi- ang; Zhang, Fang; Zhong, Xiaotian; Li, Jianqiang; Su, Jun ana's wind turbine manufacturing indus-2012Innovation measurement not in patentsWind turbine cost re- duction: A detailed bottom-up analysis of innovation driversElia, A.; Taylor, M.; OGalachoir, B.; Rogan, F.2020Innovation measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2017No renewable energy policiesThe price evolution of wind turbines in Chi- ra: A study based on the modified multi- factor learning curve Solar energy innova- tion and Silcon ValleyNeij, Lena; Ander- sen, Per Danne- mand2014Population not ChinaOcilicon Valley Volution of collabora- tive networks of solar energy applied tech- nologiesKammen, Daniel M. 20152018No renewable energy policiesSolar energy Innova- tion and Silcon ValleyKammen, Daniel M. 20142014Population not ChinaLow-Carbon Electricit	Renewable Energy			
Development of smart microgrid powered by renewable energy in China: current status and challengesXu, Cong; Lu, Wu2019Unretrievable textThe Effect of Technol- ogy Innovation on Corporate Sustainabili- ity in Chinese Renew- able Energy Compa- niesWang, Pei; Zhang, Zijin; Zeng, Yeli; Yang, Shucheng; Tang, Xu2021Innovation measurement not in patentsBehind the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine manufacturing indus- tryRu, Peng; Zhi, Qi- Zhang, Fang; Zhong, Xiaotian; Li, Jianqiang; Su, Jun ang, Zhang, Fang; Zhong, Xiaotian; Li, Jianqiang; Su, Jun na's wind turbine cost re- duction: A detailed bottom- up analysis of innovation drivers2012Innovation measurement not in patentsWind turbine cost re- funa's wind turbine mark of the develop- ment of wind energy technologyElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsWind turbine cost re- funa's wind urbine mand driversDai, Yixin; Xue, Lan OGallachoir, B.; Rogan, F.2015Unretrievable textWind turbine sin Chi- na: A study based on the modified multi- factor learning curveYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongije2014Population not ChinaA comparative As- sessment of Wind und abilicion ValleyNeij, Lena; Ander- sen, Per Danne- mand2014Population not ChinaSolar energy Innova- tion and Silicon ValleyKammen, Daniel M. 20142015Population not ChinaSolar Energy Innova- tion and Silicon Valley <td< td=""><td>Technologies Market</td><td></td><td></td><td></td></td<>	Technologies Market			
microgrid powered by renewable energy in Chia: current status and challengesNo only fully fully fully fully fully fully fully fully fully fully fully fully fully and challengesNo only fully fully fully fully fully fully fully in Chinese Renew- able Energy Compa- niesZ021Innovation measurement not in patentsBehind the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine manufacturing indus- tryRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhong, Xiaotian; Li, Jianqiang; Su, Jun ang; Zhang, Fang; China's vind turbine manufacturing indus- try2012Innovation measurement not in patentsWind turbine manufacturing indus- tryElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsDaily Size of innovation driversElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2015Unretrievable textChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan Che, Yuyan; Zheng, Qiongjie2017No renewable energy policiesSolar energy innova- tion and Silicon ValleyKammen, Daniel M. 20142014Population not ChinaSolar energy innova- tion and Silicon ValleyKammen, Daniel M. 20142014Population not ChinaSolar energy innova- tion and Silicon ValleyKammen, Daniel M. 20142014Population not ChinaSolar energy innova- tion and Silicon ValleyKammen, Daniel M. 20142014Population not ChinaSolar energy innova- tion and Silicon ValleyKammen,	Development of smart	Xu. Cong: Lu. Wu	2019	Unretrievable text
renewable energy in China: current status and challenges The Effect of Technol- ogy Innovation on Corporate Sustainabil- ity in Chinese Renew- able Energy Compa- nies Behind the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine manufacturing indus- try Wind turbine cost re- duction: A detailed bottom-up analysis of innovation drivers China's policy initia- tives for the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine manufacturing indus- try Wind turbine cost re- duction: A detailed bottom-up analysis of innovation drivers China's policy initia- factor learning curve Solar energy innova- tion and Silicon Valley A Comparative As- sessment of Wind AT Share, Per Danne- muth of collabora- tive networks of solar Solar Energy Innova- tion and Silicon Valley Solar Energy Innova- Solar Energy Innova- Solar Energy Innova- Solar Energy Innova- Solar Energy Innova- Solar Energ	microarid powered by		2010	
China: current status and challengesWang, Pei; Zhang, Zijn; Zeng, Yeli; Yang, Shucheng; Tang, Xu2021Innovation measurement not in patentsOpy Innovation on ogy Innovation on ogy Innovation on Dires Renew- able Energy Compa- niesRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhong, Xiaotian; Li, Jianqiang; Su, Jun2012Innovation measurement not in patentsPheritsRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhong, Xiaotian; Li, Jianqiang; Su, Jun2012Innovation measurement not in patentsWind turbine cost re- duction: A detailed bottom-up analysis of innovation driversElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan Zheng, Qiongjie2015Unretrievable textThe price evolution of wind turbines in Chi- factor learning curveYu, Yang; Li, Hong; Zheng, Qiongjie2017No renewable energy policiesFor price evolution of sessment of Wind Turbine Innovation Prova- turbin and Silicon ValleyKammen, Daniel M. 20142014Unretrievable textA Comparative As- sessment of Wind Turbine Innovation and Diffusion PoliciesKammen, Daniel M. Solar energy Innova- toin and Silicon ValleyKammen, Daniel M. 20152018No renewable energy policiesSolar energy Innova- turbin Ennovation and Diffusion PoliciesKammen, Daniel M. Solar energy Innova- toin and Silicon Valley2018No renewable energy policiesSolar energy Innova- turbin function dialbor	renewable energy in			
and challengesVang, Pei; Zhang, Zijin; Zeng, Yeli; Yang, Shucheng; Tang, Xu2021Innovation measurement not in patentsCorporate Sustainabil- ity in Chinese Renew- able Energy Compa- niesRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhong, Xlaotian; Li, Jianqiang; Su, Jun2012Innovation measurement not in patentsBehind the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine manufacturing indus- tryRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhong, Xlaotian; Li, Jianqiang; Su, Jun2012Innovation measurement not in patentsWind turbine cost re- duction: A detailed bottom-up analysis of innovation driversElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsChina's policy initia- ractor learning curveDai, Yixin; Xue, Lan Che, Yuyuan; Zheng, Qiongjie2015Unretrievable textThe price evolution of wind turbines in Chi- ractor learning curveYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2014No renewable energy policiesA Comparative As- sessment of Wind and Silicon ValleyNeij, Lena; Ander- sen, Per Danne- mand2014Unretrievable textSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. der Poto, Geci- an Silveira2018No renewable energy policiesSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. der Poto, Geci- an Silveira2019Innovation measurement not in patentsLow-Carbon Electricity rechnology, Innova- tion, Manuferturingde Paulo, Alex Fabi- <td>China: current status</td> <td></td> <td></td> <td></td>	China: current status			
The Effect of Technology Innovation on Corporate Sustainabili ty in Chinese Renew- able Energy Compa- 	and challenges			
InterventionZijin; Zeng, Yeli; Yang, Shucheng; Tang, XuZu (Sing) Zeng, Yeli; Yeli; Yeli; Yang, Shucheng; Tang, XuZu (Sing) Zeng, Yeli; 	The Effect of Technol-	Wang Pei Zhang	2021	Innovation measurement not in
Orgy mitoritize Corporate Sustainabil- ity in Chinese Renew- able Energy Compa- niesYang, Shucheng; Tang, XuPatentsBehind the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine manufacturing indus- tryRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhong, Xiaotian; Li, Jianqiang; Su, Jun2012Innovation measurement not in patentsMind Lurbine vation modes in Chi- na's wind turbine manufacturing indus- tryElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsDiany Subject vation as subject vation modes in Chi- novation driversElia, A.; Taylor, M.; Rogan, F.2020Innovation measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan Che, Yuyuan; Zheng, Qiongjie2015Unretrievable textThe price evolution of solar energy innova- tion and Silicon ValleyYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2014Population not ChinaA Comparative As- sessment of Wind Turbie Innovation and Diffusion PoliciesKammen, Daniel M. Sen, Per Danne- mand2015Population not ChinaSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. Sen, Per Danne- mand2015Population not ChinaLion and Silicon ValleyKammen, Daniel M. sen, Per Danne- mand2018No renewable energy policiesLow-Carbon Electricity Teknologyde Paulo, Alex Fabi- ane; Porto, Geci- ane Silveira2019Innovation measurement not in pat	ogy Innovation on	Zijin: Zena Veli:	2021	natents
Tang, XuTang, Xuable Energy CompaniesTang, XuBehind the development of technology: The transition of inno- vation modes in Chi- na's wind turbine manufacturing industryRu, Peng; Zhi, Qi- ang, Zhang, Fang; Zhong, Xiaotian; Li, Jianqiang; Su, Jun2012Innovation measurement not in patentsWind turbine cost re- duction: A detailed bottom-up analysis of innovation driversElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan2015Unretrievable textThe price evolution of to and Silicon ValleyYu, Yang; Li, Hong; Zheng, Qiongjie2017No renewable energy policiesA Comparative As- sessment of Wind Turbie Innovation and Diffusion PoliciesKammen, Daniel M. Solar Energy Innova- tion and Silicon Valley2015Unretrievable textVelotion of trobie Innovation and Diffusion PoliciesKammen, Daniel M. energy applied tech- nologies2015Population not ChinaChord Subic Policies to and Silicon ValleyKammen, Daniel M. energy applied tech- nologies2015Population not ChinaLow-Carbon Electricity Technology, Innova- tion Amarkateringde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2019Innovation measurement not in patents	Corporate Sustainabil-	Yang Shucheng:		patents
In y monimestTong, Naable Energy CompaniesRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhong, Xiaotian; Li, Jianqiang; Su, Jun2012Innovation measurement not in patentsBehind the develop- ment of technology: The transition of inno- vation modes in Chi- na's wind turbine manufacturing indus- tryRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhong, Xiaotian; Li, Jianqiang; Su, Jun2012Innovation measurement not in patentsWind turbine cost re- duction: A detailed bottom-up analysis of innovation driversElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan2015Unretrievable textThe price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curveYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2017No renewable energy policiesSolar energy innova- tion and Silicon ValleyNeij, Lena; Ander- sen, Per Danne- mand2014Unretrievable textSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. anne; Porto, Geci- ane Silveira2015Population not ChinaSolar Energy Innova- tion and Silicon Valleyde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesSolar Energy Innova- tion and Silicon Valleyde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2019Innovation measurement not in patents	ity in Chinese Renew-	Tang Xu		
Babin of he development of technology: The transition of inno- vation modes in Chi- na's wind turbine manufacturing indus- tryRu, Peng; Zhi, Qi- ang; Zhang, Fang; Long, Xiaotian; Li, Jianqiang; Su, Jun2012Innovation measurement not in patentsWind turbine cost re- duction: A detailed bottom-up analysis of innovation driversElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan Che, Yuyuan; Zheng, Qiongjie2015Unretrievable textThe price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curveYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2017No renewable energy policiesSolar energy innova- tion and Silicon ValleyKammen, Daniel M. Sen, Per Danne- mand2014Unretrievable textSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. energy applied tech- nologies2015Population not ChinaSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. anne, Daniel M.2015Population not ChinaSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion Mantfacturingde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2019Innovation measurement not in patents	able Energy Compa-	rang, Xu		
Intest DescriptionRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhong, Xiaotian; Li, Jianqiang; Su, Jun2012Innovation measurement not in patentsThe transition of inno- vation modes in Chi- na's wind turbine manufacturing indus- tryRu, Peng; Zhi, Qi- ang; Zhang, Fang; Zhong, Xiaotian; Li, Jianqiang; Su, Jun2012Innovation measurement not in patentsWind turbine cost re- duction: A detailed bottom-up analysis of innovation driversElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan Che, Yuyuan; Zheng, Qiongjie2015Unretrievable textThe price evolution of the modified multi- factor learning curveYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2014No renewable energy policiesSolar energy innova- tion and Silicon ValleyNeij, Lena; Ander- sen, Per Danne- mand2014Unretrievable textSolar Energy Innova- tive networks of solar energy applied tech- nologiesKammen, Daniel M. e Paulo, Alex Fabi- ane; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion Matarturingde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2019Innovation measurement not in patents	nies			
Define the develop ment of technology: The transition of inno- vation modes in Chi- na's wind turbine manufacturing indus- tryEnd (a) (a) (a) (a) Zhong, Xiaotian; Li, Jianqiang; Su, JunZoriz Long, Xiaotian; Li, Jianqiang; Su, JunInnovation measurement not in patentsWind turbine cost re- duction: A detailed bottom-up analysis of innovation driversElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan Zheng, Qiongjie2015Unretrievable textThe price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curveYu, Yang; Li, Hong; Zheng, Qiongjie2014No renewable energy policiesA Comparative As- sessment of Wind Turbine Innovation and Diffusion PoliciesNeij, Lena; Ander- sen, Per Danne- mand2015Population not ChinaSolar energy Innova- tion and Silicon ValleyKammen, Daniel M. and2015Population not ChinaSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. and2015Population not ChinaChe, Carbon Electricity Technology, Innova- tion Manufacturingde Paulo, Alex Fabi- ane; Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion Manufacturingde Paulo, Alex Fabi- ane; Silveira2019Innovation measurement not in patents	Behind the develop-	Ru Pena: 7hi Oi-	2012	Innovation measurement not in
The transition of inno- vation modes in Chi- na's wind turbine manufacturing indus- try Wind turbine cost re- duction: A detailed bottom-up analysis of innovation drivers China's policy initia- tives for the develop- ment of wind energy technology The price evolution of, 'U, Yang; Li, Hong; Che, Yuyuan; The price evolution of the modified multi- factor learning curve Solar energy innova- tion and Silicon Valley Kammen, Daniel M. Solar Energy Innova- tion and Silicon Valley Solar Energy Innova- tion and Silicon Valley Kammen, Daniel M. Solar Energy Innova- tion and Silicon Valley Solar Energy Innova- tion Anglicon Valley Solar Energy Innova- tion and Silicon Valley Solar Energy Innova- tion Anglicon Valley Solar Energy Innova- tion Anglicon Solar Energy Innova- tion Anglicon Valley Solar Energy Innova- tion Manufacturing Solar Solar Energy Innova- tion Anglicon Valley Solar Energy Innova- tion Manufacturing Solar Solar Energy Innova- tion Manufac	ment of technology:	ang: Zhang, Eang:	2012	natents
The datistication and seriesZhong, Xabulan, Li, Jiangiang; Su, Junvation modes in Chi- na's wind turbine manufacturing indus- tryJiangiang; Su, JunWind turbine cost re- duction: A detailed bottom-up analysis of innovation driversElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan Zheng, Qiongjie2015Unretrievable textThe price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curveYu, Yang; Li, Hong; Zheng, Qiongjie2017No renewable energy policiesSolar energy innova- toon and Silicon ValleyKammen, Daniel M. Meij, Lena; Ander- sen, Per Danne- mand2014Unretrievable textA Comparative As- sessment of Wind turbine Innovation and Diffusion PoliciesNeij, Lena; Ander- sen, Per Danne- mand2015Population not ChinaSolar energy Innova- tion and Silicon ValleyKammen, Daniel M. de Paulo, Alex Fabi- anne; Porto, Geci- an e Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion Marfacturingde Paulo, Alex Fabi- anne; Porto, Geci- an e Silveira2019Innovation measurement not in patents	The transition of inno-	Zhong Visotian: Li		patents
Valid function mais wind turbine manufacturing indus- tryStanglang, Su, SunWind turbine manufacturing indus- tryElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsWind turbine bottom-up analysis of innovation driversElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2015Innovation measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan Che, Yuyuar; Zheng, Qiongjie2017No renewable energy policiesThe price evolution of the modified multi- factor learning curveYu, Yang; Li, Hong; Che, Yuyuar; Zheng, Qiongjie2014No renewable energy policiesSolar energy innova- tion and Silicon ValleyNeij, Lena; Ander- sen, Per Danne- mand2014Unretrievable textSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. de Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesEvolution of collabora- tive networks of solar energy applied tech- nologiesde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2019Innovation measurement not in patents	vation modes in Chi-	liangiang: Su lun		
In a swind turing industryElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsWind turbine cost re- duction: A detailed bottom-up analysis of innovation driversElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixir; Xue, Lan2015Unretrievable textThe price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curveYu, Yang; Li, Hong; Zheng, Qiongjie2017No renewable energy policiesSolar energy innova- tion and Silicon ValleyKammen, Daniel M. and2014Population not ChinaA Comparative As- sessment of Wind solar Energy Innova- tion and Silicon ValleyNeij, Lena; Ander- sen, Per Danne- mand2015Population not ChinaEvolution of collabora- tive networks of solar energy applied tech- nologiesde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion Mafufacturingde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2019Innovation measurement not in patents	na's wind turbing	Jianqiang, Su, Jun		
Interformediate tryElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsWind turbine cost re- duction: A detailed bottom-up analysis of innovation driversElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan2015Unretrievable textThe price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curveYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2017No renewable energy policiesSolar energy innova- tion and Silicon ValleyKammen, Daniel M. sen, Per Danne- mand2014Population not ChinaTurbine Innovation and Diffusion PoliciesKammen, Daniel M. sen, Per Danne- mand2015Population not ChinaSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. sen, Per Danne- mand2015Population not ChinaEvolution of collabora- tive networks of solar energy applied tech- nologiesde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion Maufacturing2019Innovation measurement not in patents	manufacturing indus-			
Wind turbine cost re- duction: A detailed bottom-up analysis of innovation driversElia, A.; Taylor, M.; OGallachoir, B.; Rogan, F.2020Innovation measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan2015Unretrievable textThe price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curveYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2017No renewable energy policiesA Comparative As- sessment of Wind Turbine Innovation and Diffusion PoliciesNeij, Lena; Ander- sen, Per Danne- mand2014Unretrievable textSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. de Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesSolar Energy Innova- tion and Silicon Valleyde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion Maufacturingde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2019Innovation measurement not in patents	try			
Minister Cost TermDisplay First2020Innovation inclusion measurement not in patentsMinister Cost TermOGallachoir, B.; Rogan, F.Rogan, F.Innovation inclusion measurement not in patentsChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan2015Unretrievable textThe price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curveYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2017No renewable energy policiesSolar energy innova- tion and Silicon ValleyKammen, Daniel M. sen, Per Danne- mand2014Population not ChinaA Comparative As- sessment of Wind Turbine Innovation and Diffusion PoliciesNeij, Lena; Ander- sen, Per Danne- mand2015Population not ChinaSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. sen, Per Danne- mand2015Population not ChinaEvolution of collabora- tive networks of solar energy applied tech- nologiesde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion Maufacturing2019Innovation measurement not in patents	Wind turbine cost re-	Flia A · Taylor M ·	2020	Innovation measurement not in
DetendentDetendentDetendentbottom-up analysis of innovation driversRogan, F.PatendentChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan2015Unretrievable textThe price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curveYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2017No renewable energy policiesSolar energy innova- tion and Silicon ValleyKammen, Daniel M. sen, Per Danne- mand2014Population not ChinaA Comparative As- sessment of Wind Turbine Innovation and Diffusion PoliciesNeij, Lena; Ander- sen, Per Danne- mand2015Population not ChinaSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. de Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion Maufacturingde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2019Innovation measurement not in patents	duction: A detailed	OGallachoir B	2020	natents
DescriptionThe gain, 1.1Innovation driversDai, Yixin; Xue, LanChina's policy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, LanThe price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curveVu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2017No renewable energy policiesSolar energy innova- tion and Silicon ValleyKammen, Daniel M. Solar Energy Innova- tion and Silicon Valley2014Population not ChinaA Comparative As- sessment of Wind Turbine Innovation and Diffusion PoliciesNeij, Lena; Ander- sen, Per Danne- mand2015Population not ChinaSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. er Danne- mand2015Population not ChinaSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. er Danne- mand2015Population not ChinaCollabora- tive networks of solar energy applied tech- nologiesde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- ton Maufacturing2019Innovation measurement not in patents	bottom-up analysis of	Bogan F		patents
Innovation and splicy initia- tives for the develop- ment of wind energy technologyDai, Yixin; Xue, Lan2015Unretrievable textThe price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curveYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2017No renewable energy policiesSolar energy innova- tion and Silicon ValleyKammen, Daniel M. Sen, Per Danne- mand2014Population not ChinaTurbine Innovation and Diffusion PoliciesNeij, Lena; Ander- sen, Per Danne- mand2015Population not ChinaSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. sen, Per Danne- mand2015Population not ChinaSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. sen, Per Danne- mand2015Population not ChinaChe Yuyuan; anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion Manufacturingde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2019Innovation measurement not in patents	innovation drivers	Rogun, T		
Links of points of p	China's policy initia-	Dai Yixin Xue Lan	2015	Unretrievable text
Interstor of wind energy technologyYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2017No renewable energy policiesThe price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curveYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2017No renewable energy policiesSolar energy innova- tion and Silicon ValleyKammen, Daniel M. Neij, Lena; Ander- sen, Per Danne- mand2014Population not ChinaA Comparative As- sessment of Wind Turbine Innovation and Diffusion PoliciesNeij, Lena; Ander- sen, Per Danne- mand2014Unretrievable textSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. and2015Population not ChinaSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tionde Paulo, Alex Fabi- ane Silveira2019Innovation measurement not in patents	tives for the develop-		2015	
InterformediationYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2017No renewable energy policiesmind turbines in Chi- na: A study based on the modified multi- factor learning curveYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2017No renewable energy policiesSolar energy innova- tion and Silicon ValleyKammen, Daniel M. sen, Per Danne- mand2014Population not ChinaA Comparative As- sessment of Wind Turbine Innovation and Diffusion PoliciesNeij, Lena; Ander- sen, Per Danne- mand2015Population not ChinaSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. energy applied tech- nologies2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion Manufacturingde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2019Innovation measurement not in patents	ment of wind energy			
The price evolution of wind turbines in Chi- na: A study based on the modified multi- factor learning curveYu, Yang; Li, Hong; Che, Yuyuan; Zheng, Qiongjie2017No renewable energy policiesSolar energy innova- tion and Silicon ValleyKammen, Daniel M. Sessment of Wind Turbine Innovation and Diffusion PoliciesXemmen, Daniel M. Sen, Per Danne- mand2014Population not ChinaSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. Sen, Per Danne- mand2014Unretrievable textSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. Sen, Per Danne- mand2015Population not ChinaSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. Sen, Per Danne- mand2015Population not ChinaSolar Energy Innova- tion and Silicon Valleyde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion ManufacturingSolar Solar anne; Porto, Geci- ane Silveira2019Innovation measurement not in patents	technology			
Inc. price volution of wind turbines in Chi- na: A study based on the modified multi- factor learning curveChe, Yuyuan; Zheng, QiongjieZorrIntercenewable energy policiesSolar energy innova- tion and Silicon ValleyKammen, Daniel M. Ser, Per Danne- mand2014Population not ChinaA Comparative As- sessment of Wind Turbine Innovation and Diffusion PoliciesNeij, Lena; Ander- sen, Per Danne- mand2014Unretrievable textSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. and2015Population not ChinaSolar Energy Innova- tion and Silicon Valleyde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion Manufacturing2019Innovation measurement not in patents	The price evolution of	Yu Yang Li Hong	2017	No renewable energy policies
Wind Carbines in clinCite, Fuydan, Zheng, Qiongjiena: A study based on the modified multi- factor learning curveZheng, QiongjieSolar energy innova- tion and Silicon ValleyKammen, Daniel M. Sessment of Wind Turbine Innovation and Diffusion Policies2014Population not ChinaSolar Energy Innova- tion and Silicon ValleyNeij, Lena; Ander- sen, Per Danne- mand2014Unretrievable textSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. de Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2015Population not ChinaLow-Carbon Electricity Technology, Innova- tion Manufacturingde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2019Innovation measurement not in patents	wind turbines in Chi-	Che Yuyuan:	2017	No renewable energy policies
InternetA study based on participationZheng, Qiongjiethe modified multi- factor learning curveKammen, Daniel M. Solar energy innova- tion and Silicon ValleyKammen, Daniel M. 20142014Population not ChinaA Comparative As- sessment of Wind Turbine Innovation and Diffusion PoliciesNeij, Lena; Ander- sen, Per Danne- mand2014Unretrievable textSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. de Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2015Population not ChinaLow-Carbon Electricity Technology, Innova- tion Manufacturingde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2019Innovation measurement not in patents	na: A study based on	Zheng Oiongije		
factor learning curveKammen, Daniel M.2014Population not ChinaSolar energy innova- tion and Silicon ValleyKammen, Daniel M.2014Population not ChinaA Comparative As- sessment of Wind Turbine Innovation and Diffusion PoliciesNeij, Lena; Ander- sen, Per Danne- mand2014Unretrievable textSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. de Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2015Population not ChinaLow-Carbon Electricity Technology, Innova- tion Manufacturingde Paulo, Alex Fabi- ane Silveira2019Innovation measurement not in patents	the modified multi-	Zheng, Qiongjie		
Nactor rearry innova- tion and Silicon ValleyKammen, Daniel M.2014Population not ChinaA Comparative As- sessment of Wind Turbine Innovation and Diffusion PoliciesNeij, Lena; Ander- sen, Per Danne- mand2014Unretrievable textSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M.2015Population not ChinaEvolution of collabora- tive networks of solar energy applied tech- nologiesKammen, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion2019Innovation measurement not in patents	factor learning curve			
Solar Greigy milota tion and Silicon ValleyNammen, Damer M. Damer M.2014Population not ChinaA Comparative As- sessment of Wind Turbine Innovation and Diffusion PoliciesNeij, Lena; Ander- sen, Per Danne- mand2014Unretrievable textSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. 20152015Population not ChinaEvolution of collabora- tive networks of solar energy applied tech- nologiesde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion2019Innovation measurement not in patents	Solar energy innova-	Kammen Daniel M	2014	Population not China
A Comparative As- sessment of Wind Turbine Innovation and Diffusion PoliciesNeij, Lena; Ander- sen, Per Danne- mand2014Unretrievable textSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. anne; Porto, Geci- ane Silveira2015Population not ChinaEvolution of collabora- tive networks of solar energy applied tech- nologiesde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion2019Innovation measurement not in patents	tion and Silicon Valley	Rammen, Damer M.	2014	ropulation not china
Secomparative AsianNeily, Lena, Ander San, Per Danne- mand2014Offeenevable textSessment of Wind Turbine Innovation and Diffusion Policiessen, Per Danne- mand2015Population not ChinaSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. de Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2015Population not ChinaEvolution of collabora- tive networks of solar energy applied tech- nologiesde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion2019Innovation measurement not in patents	A Comparative As-	Neij Lena: Ander-	2014	Unretrievable text
Sessment of WindSen, Fer DameTurbine Innovation and Diffusion PoliciesmandSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. 20152015Evolution of collabora- tive networks of solar energy applied tech- nologiesde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018Low-Carbon Electricity Technology, Innova- tion2019Innovation measurement not in patents	secondative As-	son Dar Danno-	2014	
and Diffusion PoliciesIndicationSolar Energy Innova- tion and Silicon ValleyKammen, Daniel M. 20152015Evolution of collabora- tive networks of solar energy applied tech- nologiesde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018Low-Carbon Electricity Technology, Innova- tion2019Innovation measurement not in patents	Turbing Innovation	mand		
Solar Energy Innova- tion and Silicon ValleyKammen, Daniel M. 20152015Population not ChinaEvolution of collabora- tive networks of solar energy applied tech- nologiesde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion2019Innovation measurement not in patents	and Diffusion Policies	manu		
Solar Energy Innova- tion and Silicon ValleyKannien, Danier M. Danier M.2015Population not ChinaEvolution of collabora- tive networks of solar energy applied tech- nologiesde Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira2018No renewable energy policiesLow-Carbon Electricity Technology, Innova- tion2019Innovation measurement not in patents	Solar Energy Innova	Kammen Daniel M	2015	Population pot China
Evolution of collabora- tive networks of solar energy applied tech- nologies de Paulo, Alex Fabi- anne; Porto, Geci- ane Silveira 2018 No renewable energy policies Low-Carbon Electricity Technology, Innova- tion_Manufacturing 2019 Innovation measurement not in patents	tion and Silicon Valley	Kallinen, Daniel M.	2013	
tive networks of solar energy applied tech- nologies anne; Porto, Geci- ane Silveira 2010 No renewable energy policies Low-Carbon Electricity Technology, Innova- tion_Manufacturing 2019 Innovation measurement not in patents	Evolution of collabora	de Paulo, Alox Eabi	2018	No renewable operaty policies
energy applied tech- nologies ane Silveira Low-Carbon Electricity 2019 Technology, Innova- tion_Manufacturing patents	tive networks of color	anne: Porto Coci	2010	No renewable energy policies
Inologies Innovation measurement not in patents Low-Carbon Electricity 2019 Technology, Innovation patents	anergy applied tech	anne, Puill, Gell-		
Low-Carbon Electricity 2019 Innovation measurement not in patents Technology, Innova- patents	nologies			
Technology, Innova-	Low-Carbon Electricity		2010	Innovation moscurement act in
tion Manufacturing			2019	natents
	tion Manufacturing			patents

and Internationalisa-			
tion	Olan Cara Char	0004	Terretter
examining the impact of factor price distor- tions and social wel- fare on innovation efficiency from the microdata of Chinese renewable energy industry	Qiao, Sen; Chen, Hsing Hung; Zhang, Rong Rong	2021	Innovation measurement not in patents
How will different	Wang, Xiaozhen:	2019	
types of industry poli- cies and their mixes affect the innovation performance of wind power enterprises? Based on dual per- spectives of regional innovation environ- ment and enterprise ownership	Zou, Honghui; Zheng, Ying; Jiang, Zihao		
Vested Interests, En- ergy Policy and Re- newables in Japan, China, Norway and Denmark	Moe, Espen	2014	Unretrievable text
Ambition and ambigui- ty: Expectations and imaginaries developing offshore wind in China	Korsnes, Marius	2016	Innovation measurement not in patents
Government funded renewable energy innovation in China	Huang, Cui; Su, Jun; Zhao, Xiaoyuan; Sui, Jigang; Ru, Peng; Zhang, Hanwei; Wang, Xin	2012	Innovation measurement not in patents
From transitions in cities to transitions of cities: The diffusion and adoption of solar hot water systems in urban China	Huang, Ping; Broto, Vanesa Castan; Liu, Ying	2018	Innovation measurement not in patents
Profiling Innovation System for Solar Pho- tovoltaics in China	Guo, Ying; Zhu, Donghua; Wang, Xuefeng	2009	Unretrievable text
Are we seeing clearly? The need for aligned vision and supporting strategies to deliver net-zero electricity systems	Ford, Rebecca; Hardy, Jeffrey	2020	Innovation measurement not in patents
The impact of gov- ernment subsidies and enterprises' R&D in- vestment: A panel data study from re- newable energy in China	Yu, Feifei; Guo, Yue; Le-Nguyen, Khuong; Barnes, Stuart J.; Zhang, Weiting	2016	Innovation measurement not in patents
Comparison of tech- nology efficiency for CO2 emissions reduc- tion among European countries based on	Kwon, Deuk Sin; Cho, Joon Hyung; Sohn, So Young	2017	Population not China

DEA with decomposed			
factors	Wang Cichang	2020	
China and Its Future	wang, Sicheng	2020	Unrethevable text
Forecast			
Innovation policies	Sarathy, Ravi	2013	Unretrievable text
and industry subsi-			
dies: China and the			
global solar energy			
Industry	Zhang Jingjing	2015	No repewable energy policies
in solar energy: a	Yan Yan Guan	2015	No renewable energy policies
comparative study	Jiancheng		
between the USA and			
China			
Diffusion and Adoption	Sereenonchai,	2017	Unretrievable text
Behavior of Environ-	Sukanya; Arunrat,		
mentally Friendly In-			
from Chinese Society			
Evaluating green inno-	Hsu, China-Chi;		No renewable energy policies,
vation and perfor-	Ngo Quang-Thanh;		so no link with innovation
mance of financial	Chien, FengSheng;		
development: mediat-	Li, Li; Mohsin, Mu-		
ropmontal regulation	nammad		
Seven steps to curb	Mathews, John	2007	Papers about energy consump-
global warming		2007	tion or co2 reduction
EFFECTS OF COLLAB-	Liang, Xinning; Lu,	2020	Unretrievable text
ORATION NETWORKS	Weisheng; Wu,		
ON TECHNOLOGY IN-	Zezhou		
IC (PV) SECTOR: A			
CASE STUDY OF CHI-			
NA			
Technology Diffusion	Vega, Solmaria	2018	Innovation measurement not in
and Climate Policy: A	Halleck; Mandel,		patents
its Application to Wind	Antoine		
Energy			
Green investment:	Eyraud, Luc; Clem-	2013	Innovation measurement not in
Trends and determi-	ents, Benedict;		patents
nants	Wane, Abdoul		
Public financing of	Mazzucato, Maria-	2017	Innovation measurement not in
tions	Gregor		patents
Patterns of technologi-	Wong, Chan-Yuan:	2016	No domestic policies
cal accumulation: The	Keng, Zi-Xiang;		·
comparative ad-	Mohamad, Zeeda		
vantage and relative	Fatimah; Azizan,		
impact of Asian	Suzana Ariff		
in low carbon energy			
technological systems			
Electricity portfolio	Chalvatzis, Kon-	2015	Innovation measurement not in
innovation for energy	stantinos J.; Rubel,		patents
security: The case of	Keagan		
China			
Managing tradeoffs in	Matsuo, Tveler	2019	Population not China
green industrial poli-	Schmidt, Tobias S.	2010	
cies: The role of re-	, ,		

newable energy policy			
design Integrating hibliomat	Li Ving Thou Vuong	2015	No ronowable operav policies
rics and roadmapping	Xue, Lan: Huang,	2013	No renewable energy policies
methods: A case of	Lucheng		
dye-sensitized solar			
cell technology-based			
Industry in China	Chan Haing Hunga	0040	Terretien werden ert wet in
Attaining a sustainable	Chen, Hsing Hung; Chen, Silu: Lan	2016	Innovation measurement not in
in the smart grid in-	Yong		patents
dustry of China using			
suitable open innova-			
tion intermediaries			
Strategic policy to	Chen, Hsing Hung;	2014	Innovation measurement not in
select suitable inter-	Lee, AMY H. I.;		patents
tion to promote PV	chen, Silu		
solar energy industry			
in China			
Dynamics of a policy-	Quitzow, Rainer	2015	Innovation measurement not in
driven market: The			patents
co-evolution of tech-			
systems for solar pho-			
tovoltaics in China and			
Germany			
Natural gas: A transi-	Safari, Amir; Das,	2019	Not renewable energy
tion fuel for sustaina-	Nandini; Langhelle,		
transformation?	lovashree: Assadi		
	Mohsen		
Conceptualizing Niche-	Mah, Daphne Ngar-	2020	Innovation measurement not in
Regime Dynamics of	yin; Cheung, Dar-		patents
Energy Transitions	ren Man-wai		
from a Political Eco-			
Insights from Com-			
munity-Led Urban			
Solar in Seoul			
Policy Decision Model	Yan Hailin; Dai	2009	Unretrievable text
on Innovation Stimu-	Sheng; Hou Ji-		
Pegulation: A Case	Hongyun		
Study of Chinese Solar	nongyun		
Energy Industry			
Comparing Solar Wa-	Li, Wei; Rubin,	2013	Innovation measurement not in
ter Heater Populariza-	Tzameret H.;		patents
tion Policies in China,	Onyina, Paul A.		
The Roles of Govern-			
ments in Adopting			
Green Innovations			
The research profiling	Guo, Ying; Huang,	2010	No renewable energy policies
method applied to	Lu; Porter, Alan L.		
nano-enhanced, thin-			
Political conflict and	Markard Jochen	2020	Population not China
climate policy: the	Rosenbloom, Daniel		
European emissions	,		
trading system as a			
Trojan Horse for the			
iow-carbon transition?		<u> </u>	

Community solar en- ergy initiatives in ur- ban energy transi- tions: A comparative study of Foshan, China and Seoul, South Ko- rea	Mah, Daphne Ngar- yin	2019	Innovation measurement not in patents
A Policy Dimension Required for Technol- ogy Roadmapping: Learning from the Development of Emerging Wind Energy Industry in China	Zhou, Yuan; Xu, Guannan; Minshall, Tim; Su, Jun; Zhang, Fang; Zhi, Qiang	2011	Unretrievable text
The Effects of Neolib- eralism and Trade Liberalization on Chi- na's Environment Over Time: A Macromarket- ing Perspective	Xu, Zhenning; Ramirez, Edward; Xu, Juanjuan; Liu, Yu	2015	Innovation measurement not in patents
Assessing the poten- tial of low-carbon technologies in the German energy sys- tem	Kumar, Subhash; Loosen, Maximilian; Madlener, Reinhard	2020	Population not China
Environmental Policy Integration in the En- ergy Sector of China: The Roles of the Insti- tutional Context	Ruan, Xiang; Sheng, Rong; Lin, Tuo	2020	Innovation measurement not in patents
Electric power substi- tution for coal in Chi- na: Status quo and SWOT analysis	Niu, Dong-xiao; Song, Zong-yun; Xiao, Xin-li	2017	Innovation measurement not in patents
Scaling up concentrat- ing solar thermal technology in China	Li, Jun	2009	Unretrievable text
Plenary lecture III - Worldwide energy demand and environ- mental safeguard	Muzi, Francesco	2008	Not domestic policies
The governance of urban energy transi- tions: A comparative study of solar water heating systems in two Chinese cities	Huang, Ping; Broto, Vanesa Castan; Liu, Ying; Ma, Huizi	2018	Innovation measurement not in patents
How China became a leader in solar PV: An innovation system analysis	Huang, Ping; Ne- gro, Simona O.; Hekkert, Marko P.; Bi, Kexin	2016	Innovation measurement not in patents
Comparison study of tidal stream and wave energy technology development between China and some West- ern Countries	Liu, Yijin; Li, Ye; He, Fenglan; Wang, Haifeng	2017	Innovation measurement not in patents
Towards the achieve- ment of SDG 7 in sub- Saharan Africa: Creat- ing synergies between Power Africa, Sustain- able Energy for All and	Chirambo, Dumisani	2018	Population not China

climate finance in-			
versal energy access			
before 2030			
Identifying the under- pin of green and low carbon technology innovation research: A literature review from 1994 to 2010	Shi, Qian; Lai, Xia- odong	2013	Innovation measurement not in patents
Management Innova- tion and Policy Diffu- sion through Leader- ship Transfer Net- works: An Agent Net- work Diffusion Model	Yi, Hongtao; Berry, Frances Stokes; Chen, Wenna	2018	Innovation measurement not in patents
Examining the asym- metric effects of Paki- stan's fiscal decentral- ization on economic growth and environ- mental quality	Li, Xiaolong; Younas, Muhammad Zeeshan; Andlib, Zubaria; Ullah, Sana; Sohail, Sidra; Hafeez, Muhammad	2021	Population not CHina
Vehicle emission and atmospheric pollution in China: problems, progress, and pro- spects	Wang, Jin; Wu, Qiuxia; Liu, Juan; Yang, Hong; Yin, Meiling; Chen, Shili; Guo, Peiyu; Ren, Jiamin; Luo, Xuwen; Linghu, Wensheng; Huang, Qiong	2019	Innovation measurement not in patents
Interdependence be- tween Urban Process- es and Energy Transi- tions: The Urban En- ergy Transitions (DU- ET) Framework	Huang, Ping; Broto, Vanesa Castan	2018	Innovation measurement not in patents
Government subsidies, R&D investment and innovation perfor- mance: analysis from pharmaceutical sector in China	Xu, Jian; Wang, Xiuhua; Liu, Feng	2021	Not renewable energy
Towards a typology of pilots: the Shanghai emissions-trading scheme pilot	Stensdal, Iselin	2020	Unretrievable text
Innovation orienta- tions, external part- nerships, and start- ups' performance of low-carbon ventures	Gu, Yuandong; Su, Dejin	2018	Innovation measurement not in patents
Mandating better buildings: a global review of building codes and prospects for improvement in the United States	Sun, Xiaojing; Brown, Marilyn A.; Cox, Matt; Jackson, Roderick	2016	Population not China
The Impact of Green Credit Guidelines on the Technological In- novation of Heavily Polluting Enterprises:	Hao, Fangjing; Xie, Yuantao; Liu, Xiaojiao	2020	not about renewable energy

A Quasi-Natural Ex-			
periment from China			
Clean distributed gen-	Dong, Jun; Feng,	2016	Innovation measurement not in
eration in China: Poli-	Tian-tian; Sun,		patents
cy options and inter-	Hong-xing; Cai,		
national experience	Hong-xin; Li, Rong;		
T I 1 1 6	Yang, Yisheng	0040	· · · · · · · · · · · · · · · · · · ·
The importance of	Sovacool, Benjamin	2010	Innovation measurement not in
open and closed styles	к.		patents
of energy research	0 T 0 '	0004	•
Towards Smart Cities	Song, Tao; Cai,	2021	Innovation measurement not in
by Internet of Things	Jianming; Chanine,		patents
(IOT)-a Silent Revolu-	Teresa; Li, Le		
tion in China	Matta Julia, An	0000	Terreretien merenent met in
Potentials and oppor-	Metta, Julie; An,	2020	Innovation measurement not in
	rao; zneny,		patents
	Huannuan; Zhang,		
gies - From interature			
cation			
The Impact of Cov	lin Zhonji, Chang	2019	Not renewable energy
orpmont Subsidios on	Vuo: Vuo lian	2010	Not renewable energy
Private P&D and Firm	Tue, Au, Jian		
Performance: Does			
Ownershin Matter in			
China's Manufacturing			
Industry?			
The EU ETS and its	Verde, Stefano E.:	2021	Foreign policies
companion policies.	Galdi Giulio: Alloi-	2021	l oreign policies
any insight for China's	sio. Isabella: Bor-		
ETS?	ahesi, Simone		
Multi-level Reinforce-	Jaenicke, Martin;	2017	population not China
ment in European	Quitzow, Rainer		
Climate and Energy	C ,		
Governance: Mobiliz-			
ing economic interests			
at the sub-national			
levels			
The impression of	Khan, Anwar; Mu-	2020	Papers about energy consump-
technological innova-	hammad, Faqir;		tion or co2 reduction
tions and natural re-	Chenggang, Yang;		
sources in energy-	Hussain, Jamal;		
growth-environment	Bano, Sadia; Khan,		
nexus: A new look into	Muhammad Awais		
BRICS economies		0040	•
A comparison of inno-	Lin, Chen-Chun;	2013	Innovation measurement not in
vation policy in the	Yang, Chia-Han;		patents
smart grid industry	Snyua, Joseph Z.		
Chips and the USA			
A Cross Strait Com	Lin Kuon Chung:	2017	Innovation modeuroment not in
narison of Innovation	Shyu Joseph 7	2017	natents
Policy under Industry	Ding Kun		patents
4 0 and Sustainability			
Development Transi-			
tion			
Green transition in-	Kemp, Rene: Ne-	2017	Unretrievable text
dustrial policy, and	ver, Babette		
economic development	,		
How do Public Demon-	Zhou, Yuan: Xu.	2015	No renewable energy policies
stration Projects Pro-	Guannan; Minshall.		
mote Green-	Tim; Liu, Peng		
Manufacturing Tech-			

noiogics: A case stu			
dy from China			
How public demon-	Zhou, Yuan; Zhang,	2015	No renewable energy policies
stration projects affect	Hanwei; Ding,		
the emergence of new	Mengyu		
industries: an empiri-			
cal study of electric			
vehicles in China			
Conceptual design of a	Kostevsek, Anja;	2013	Population not China
municipal energy and	Petek, Janez;		
environmental system	Cucek, Lidija; Pivec,		
as an efficient basis	Aleksandra		
for advanced energy			
planning Differences in the of		0004	To a contract to a contract to a to be
Differences in the ef-	Xiong, Yongqing;	2021	Innovation measurement not in
rects of China's new	Qin, Snuteng		patents
the policies on market			
try policies on market			
growth from the per-			
Carbon Erec Energy	Shan Habiny Ali	2021	Innovation modeuroment not in
and Sustainable Envi-	Shell, Heblil, All, Svod Abtcham:	2021	natopts
ronmont: The Dole of	Albarthi Majody		patents
Human Capital and	Shah Ali Shan		
	Basit Khan Abdul		
tions in Attaining	Abbas Daiser: ur		
SDGs	Rahman Saeed		
The energy policy	Wang Zhan: Deng	2017	Innovation measurement not in
outlets for community	Xiangzheng	2017	natents
acceptance of ecologi-	Alangzheng		patento
cal investment in Chi-			
na			
How do tochnological	Cheng Va: Awan	0004	www.www.www.www.www.www.www.www.www.
now up technological	Cherry, ra, Awan,	2021	propose policy options but snow
innovation and fiscal	Usama; Ahmad,	2021	no research on existing ones
innovation and fiscal decentralization affect	Usama; Ahmad, Shabbir; Tan,	2021	no research on existing ones
innovation and fiscal decentralization affect the environment? A	Usama; Ahmad, Shabbir; Tan, Zhixiong	2021	no research on existing ones
innovation and fiscal decentralization affect the environment? A story of the fourth	Usama; Ahmad, Shabbir; Tan, Zhixiong	2021	no research on existing ones
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution	Usama; Ahmad, Shabbir; Tan, Zhixiong	2021	no research on existing ones
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable	Usama; Ahmad, Shabbir; Tan, Zhixiong	2021	no research on existing ones
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth	Usama; Ahmad, Shabbir; Tan, Zhixiong	2021	no research on existing ones
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy	Usama; Ahmad, Shabbir; Tan, Zhixiong Ye, Rui-Ke; Gao,	2021	Innovation measurement not in
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge-	Ye, Rui-Ke; Gao, Zhuang-Fei; Fang,	2021	Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A	Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li;	2021	Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics	Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei	2021	Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's	Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei	2021	Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post-	Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei	2021	Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post- subsidy era	Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei	2021	Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post- subsidy era Economic performance	Ye, Rui-Ke; Gao, Zhixiong Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei	2021 2021 2017	Innovation measurement not in Innovation measurement not in
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post- subsidy era Economic performance of photovoltaic water	Ye, Rui-Ke; Gao, Zhixiong Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei Zhang, Chi; Cam- pana, Pietro Elia;	2021 2021 2017	Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post- subsidy era Economic performance of photovoltaic water pumping systems with	Ye, Rui-Ke; Gao, Zhixiong Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei Zhang, Chi; Cam- pana, Pietro Elia; Yang, Jin; Yan,	2021 2021 2017	Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post- subsidy era Economic performance of photovoltaic water pumping systems with business model inno-	Ye, Rui-Ke; Gao, Zhixiong Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei Zhang, Chi; Cam- pana, Pietro Elia; Yang, Jin; Yan, Jinyue	2021 2021 2017	Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post- subsidy era Economic performance of photovoltaic water pumping systems with business model inno- vation in China	Ye, Rui-Ke; Gao, Zhixiong Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei Zhang, Chi; Cam- pana, Pietro Elia; Yang, Jin; Yan, Jinyue	2021 2021 2017	Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post- subsidy era Economic performance of photovoltaic water pumping systems with business model inno- vation in China Factors influencing the application of participation	Ye, Rui-Ke; Gao, Zhixiong Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei Zhang, Chi; Cam- pana, Pietro Elia; Yang, Jin; Yan, Jinyue Wu, Guobin; Yang, Buy Li Ling: Bi	2021 2021 2017 2019	Innovation measurement not in patents Innovation measurement not in patents Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post- subsidy era Economic performance of photovoltaic water pumping systems with business model inno- vation in China Factors influencing the application of prefabri-	 Zhang, Chi; Campana, Pietro Elia; Yang, Jin; Yan, Jinyue Wu, Guobin; Yang, Ru; Li, Ling; Bi, Ying, Liu 	2021 2021 2017 2019	Innovation measurement not in patents Innovation measurement not in patents Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post- subsidy era Economic performance of photovoltaic water pumping systems with business model inno- vation in China Factors influencing the application of prefabri- cated construction in China: Erem perspec	Ve, Rui-Ke; Gao, Zhixiong Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei Zhang, Chi; Cam- pana, Pietro Elia; Yang, Jin; Yan, Jinyue Wu, Guobin; Yang, Ru; Li, Ling; Bi, Xing; Liu, Bingsheng: Li	2021 2021 2017 2019	Innovation measurement not in patents Innovation measurement not in patents Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post- subsidy era Economic performance of photovoltaic water pumping systems with business model inno- vation in China Factors influencing the application of prefabri- cated construction in China: From perspec- tives of tochology	Ve, Rui-Ke; Gao, Zhixiong Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei Zhang, Chi; Cam- pana, Pietro Elia; Yang, Jin; Yan, Jinyue Wu, Guobin; Yang, Ru; Li, Ling; Bi, Xing; Liu, Bingsheng; Li, Shaoyan; Zhou	2021 2021 2017 2019	Innovation measurement not in patents Innovation measurement not in patents Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post- subsidy era Economic performance of photovoltaic water pumping systems with business model inno- vation in China Factors influencing the application of prefabri- cated construction in China: From perspec- tives of technology promotion and cleaper	Ve, Rui-Ke; Gao, Zhixiong Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei Zhang, Chi; Cam- pana, Pietro Elia; Yang, Jin; Yan, Jinyue Wu, Guobin; Yang, Ru; Li, Ling; Bi, Xing; Liu, Bingsheng; Li, Shaoyan; Zhou, Shiyiang	2021 2021 2017 2019	Innovation measurement not in patents Innovation measurement not in patents Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post- subsidy era Economic performance of photovoltaic water pumping systems with business model inno- vation in China Factors influencing the application of prefabri- cated construction in China: From perspec- tives of technology promotion and cleaner production	Ve, Rui-Ke; Gao, Zhixiong Ye, Rui-Ke; Gao, Zhixiong Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei Zhang, Chi; Cam- pana, Pietro Elia; Yang, Jin; Yan, Jinyue Wu, Guobin; Yang, Ru; Li, Ling; Bi, Xing; Liu, Bingsheng; Li, Shaoyan; Zhou, Shixiang	2021 2021 2017 2019	Innovation measurement not in patents Innovation measurement not in patents Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post- subsidy era Economic performance of photovoltaic water pumping systems with business model inno- vation in China Factors influencing the application of prefabri- cated construction in China: From perspec- tives of technology promotion and cleaner production	 Chieng, Ta, Awan, Usama; Ahmad, Shabbir; Tan, Zhixiong Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei Zhang, Chi; Campana, Pietro Elia; Yang, Jin; Yan, Jinyue Wu, Guobin; Yang, Ru; Li, Ling; Bi, Xing; Liu, Bingsheng; Li, Shaoyan; Zhou, Shixiang Zhou, Yuan; Dong 	2021 2021 2017 2019 2019	Innovation measurement not in patents
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post- subsidy era Economic performance of photovoltaic water pumping systems with business model inno- vation in China Factors influencing the application of prefabri- cated construction in China: From perspec- tives of technology promotion and cleaner production	 Chieng, Ta, Awan, Usama; Ahmad, Shabbir; Tan, Zhixiong Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei Zhang, Chi; Campana, Pietro Elia; Yang, Jin; Yan, Jinyue Wu, Guobin; Yang, Ru; Li, Ling; Bi, Xing; Liu, Bingsheng; Li, Shaoyan; Zhou, Shixiang Zhou, Yuan; Dong, Eang: Kong, Deiing: 	2021 2021 2017 2019 2019	propose policy options but show no research on existing ones Innovation measurement not in patents Innovation measurement not in patents Innovation measurement not in patents No renewable energy policies
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post- subsidy era Economic performance of photovoltaic water pumping systems with business model inno- vation in China Factors influencing the application of prefabri- cated construction in China: From perspec- tives of technology promotion and cleaner production Unfolding the conver- gence process of sci- entific knowledge for	 Chieng, Ta, Awan, Usama; Ahmad, Shabbir; Tan, Zhixiong Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei Zhang, Chi; Campana, Pietro Elia; Yang, Jin; Yan, Jinyue Wu, Guobin; Yang, Ru; Li, Ling; Bi, Xing; Liu, Bingsheng; Li, Shaoyan; Zhou, Shixiang Zhou, Yuan; Dong, Fang; Kong, Dejing; Liu, Yufei 	2021 2021 2017 2019 2019	propose policy options but show no research on existing ones Innovation measurement not in patents Innovation measurement not in patents Innovation measurement not in patents No renewable energy policies
innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth Moving from subsidy stimulation to endoge- nous development: A system dynamics analysis of China's NEVs in the post- subsidy era Economic performance of photovoltaic water pumping systems with business model inno- vation in China Factors influencing the application of prefabri- cated construction in China: From perspec- tives of technology promotion and cleaner production Unfolding the conver- gence process of sci- entific knowledge for the early identification	 Cheng, Ta, Awan, Usama; Ahmad, Shabbir; Tan, Zhixiong Ye, Rui-Ke; Gao, Zhuang-Fei; Fang, Kai; Liu, Kang-Li; Chen, Jia-Wei Zhang, Chi; Cam- pana, Pietro Elia; Yang, Jin; Yan, Jinyue Wu, Guobin; Yang, Ru; Li, Ling; Bi, Xing; Liu, Bingsheng; Li, Shaoyan; Zhou, Shixiang Zhou, Yuan; Dong, Fang; Kong, Dejing; Liu, Yufei 	2021 2021 2017 2019 2019	propose policy options but show no research on existing ones Innovation measurement not in patents Innovation measurement not in patents Innovation measurement not in patents No renewable energy policies

of emerging technolo-			
gies	-		
Examining the pat- terns of innovation in low carbon energy science and technolo- gy: Publications and patents of Asian emerging economies	Wong, Chan-Yuan; Mohamad, Zeeda Fatimah; Keng, Zi- Xiang; Azizan, Su- zana Ariff	2014	No renewable energy policies
Promotion policies for third party financing in Photovoltaic Poverty Alleviation projects considering social reputation	Li, Yan; Zhang, Qi; Wang, Ge; Liu, Xuefei; Mclellan, Benjamin	2019	Innovation measurement not in patents
Assessing the regional sustainability perfor- mance in China using the global Malmquist- Luenberger productivi- ty index	Liu, Kai-di; Yang, Duo-Gui; Yang, Guoliang; Zhou, Zhi-Tian		Unretrievable text
Facilitating the transi- tion to sustainable construction: China's policies	Chang, Rui-dong; Soebarto, Veronica; Zhao, Zhen-yu; Zillante, George	2016	Innovation measurement not in patents
How Do Configuration Shifts in Fragmented Energy Governance Affect Policy Output? A Case Study of Chan- ging Biogas Regimes in Indonesia	Budiman, Ibnu; Smits, Mattijs	2020	Population not China
The politics of tech- nology bans: Industri- al policy competition and green goals for the auto industry	Meckling, Jonas; Nahm, Jonas	2019	No renewable energy policies
Green energy futures: Responsible mining on Minnesota's Iron Range	Phadke, Roopali	2018	Population not China
Multinational firms and the internationaliza- tion of green R&D: A review of the evidence and policy implications	Noailly, Joelle; Ry- fisch, David	2015	propose policy options but show no research on existing ones
National innovation systems and the in- termediary role of industry associations in building institutional capacities for innova- tion in developing countries: A critical review of the literature	Watkins, Andrew; Papaioannou, Theo; Mugwagwa, Julius; Kale, Dinar	2015	Innovation measurement not in patents
Impact of Political Connection Strength on the Internationali- zation Outcome of Chinese Firms: Per- spectives from Market Exploration and Tech- nology Acquisition	Zhang, Gupeng; Zhang, Qianlong; Huang, Dujuan	2020	not about renewable energy

Empirical analysis and strategy suggestions on the value-added capacity of photovolta- ic industry value chain in China	Liu, Jicheng; Lin, Xiangmin	2019	Innovation measurement not in patents
China's role in attain- ing the global 2 de- grees C target	Jiang, Kejun; Zhu- ang, Xing; Miao, Ren; He, Chenmin	2013	Papers about energy consump- tion or co2 reduction
Prospects for Clean- Tech Venture Capital Investment in China: A Third Wave?	Chen, Bei	2009	Unretrievable text
Innovation and tech- nology transfer through global value chains: Evidence from China's PV industry	Zhang, Fang; Gal- lagher, Kelly Sims	2016	No domestic policies
The optimal research and development port- folio of low-carbon energy technologies: A study of China	Wang, Kaiming; Mao, Yong; Chen, Jiangtao; Yu, Shi- wei	2018	No renewable energy policies
Second Use Value of China's New Energy Vehicle Battery: A View Based on Multi- Scenario Simulation	Zhang, Lei; Liu, Yingqi; Pang, Bei- bei; Sun, Bingxiang; Kokko, Ari	2020	Innovation measurement not in patents
Co-evolution entropy as a new index to explore power system transition: A case study of China's elec- tricity domain	Nie, Yan; Lv, Tao; Gao, Jian	2017	Innovation measurement not in patents
Business innovation and government regu- lation for the promo- tion of electric vehicle use: lessons from Shenzhen, China	Li, Ying; Zhan, Changjie; de Jong, Martin; Lukszo, Zofia	2016	Innovation measurement not in patents
Can an island econo- my be more sustaina- ble? A comparative study of Indonesia, Malaysia, and the Phil- ippines	Yang, Lan; Wang, Chengdong; Yu, Huajun; Yang, Meijie; Wang, Shoubing; Chiu, Anthony S. F.; Wang, Yutao	2020	Population not China
Global sustainability, innovation and gov- ernance dynamics of national smart elec- tricity meter transi- tions	Sovacool, Benjamin K.; Hook, Andrew; Sareen, Siddharth; Geels, Frank W.	2021	Population not China
Conceptualising gov- ernment-market dy- namics in socio- technical energy tran- sitions: A comparative case study of smart grid developments in China and Japan	Mah, Daphne Ngar- yin	2020	Innovation measurement not in patents
Research on the policy route of China's dis-	Li, Hanfang; Lin, Hongyu; Tan, Qing-	2020	Innovation measurement not in patents

tributed photovoltaic power generation	kun; Wu, Peng; Wang, Chengjie; De, Gejirifu; Huang, Liling		
An innovation-focused roadmap for a sus- tainable global photo- voltaic industry	Zheng, Cheng; Kammen, Daniel M.	2014	Innovation measurement not in patents
The dynamics of ad- vancing climate policy in federal political systems	Jordaan, Sarah M.; Davidson, Adrien- ne; Nazari, Jamal A.; Herremans, Irene M.	2019	Population not China
Do government subsi- dies promote efficien- cy in technological innovation of China's photovoltaic enterpris- es?	Lin, Boqiang; Luan, Ranran	2020	
Evaluating the transi- tion towards cleaner production in the con- struction and demoli- tion sector of China: A review	Ghisellini, Patrizia; Ji, Xi; Liu, Geng- yuan; Ulgiati, Ser- gio	2018	Innovation measurement not in patents
Implementation of agrophotovoltaics: Techno-economic analysis of the price- performance ratio and its policy implications	Schindele, Stephan; Trommsdorff, Max- imilian; Schlaak, Albert; Obergfell, Tabea; Bopp, Georg; Reise, Christian; Braun, Christian; Weselek, Axel; Bauerle, An- drea; Hoegy, Petra; Goetzberger, Adolf; Weber, Eicke	2020	Innovation measurement not in patents
Role of technologies in energy-related CO2 mitigation in China within a climate- protection world: A scenarios analysis using REMIND	Zhang, Shuwei; Bauer, Nico; Lu- derer, Gunnar; Kriegler, Elmar	2014	Innovation measurement not in patents
The Hangzhou Con- sensus: Legacy for China, G20 and the World	Larionova, Marina; Kolmar, Olga	2017	Innovation measurement not in patents
Patent analysis to identify shale gas de- velopment in China and the United States	Lee, Woo Jin; Sohn, So Young	2014	Not renewable energy
Assessing fuel cell vehicle innovation and the role of policy in Japan, Korea, and China	Haslam, Gareth E.; Jupesta, Joni; Parayil, Govindan	2020	
Charging Chinese fu- ture: the roadmap of China's policy for new energy automotive	Li, Jianzhong	2020	Innovation measurement not in patents

industry			
Challenges and Policy Suggestions on the Development of Hy- drogen Economy in China	Shan, Wei; Wang, Fang-Fang	2020	Innovation measurement not in patents
Parallel chance- constrained dynamic programming for cas- cade hydropower sys- tem operation	Liu, Benxi; Cheng, Chuntian; Wang, Sen; Liao, Shengli; Chau, Kwok-Wing; Wu, Xinyu; Li, Wei- dong	2018	Innovation measurement not in patents
Technology transfer in the hydropower indus- try: An analysis of Chi- nese dam developers' undertakings in Europe and Latin America	Kirchherr, Julian; Matthews, Nathanial	2018	Innovation measurement not in patents
When do states disrupt industries? Electric cars and the politics of innovation	Meckling, Jonas; Nahm, Jonas	2018	Unretrievable text
Influencing factors on hydrogen energy R&D projects: An ex-post performance evalua- tion	Chun, Dongphil; Hong, Sungjun; Chung, Yanghon; Woo, Chungwon; Seo, Hangyeol	2016	Population not China
Progress in China's Unconventional Oil & Gas Exploration and Development and The- oretical Technologies	Zou Caineng; Yang Zhi; Zhu Rukai; Zhang Guosheng; Hou Lianhua; Wu Songtao; Tao Shizhen; Yuan Xuanjun; Dong Dazhong; Wang Yuman; Wang Lan; Huang Jinliang; Wang Shufang	2015	Not renewable energy
Policy Implications of Shale Gas Research in Collaboration Network Analysis	Liu, Jie; Ma, Tieju	2015	Not renewable energy
Review of Low-Carbon Vehicle Technologies in China	Ou, Xunmin; Zhang, Xiliang	2010	Unretrievable text
Alternative fuel buses currently in use in Chi- na: Life-cycle fossil energy use, GHG emis- sions and policy rec- ommendations	Ou, Xunmin; Zhang, Xiliang; Chang, Shiyan	2010	Innovation measurement not in patents

10.3 Appendix C: Classification of green patent groups (Fujii & Managi, 2019)

Technology group (code)	Technology subgroup
Waste management (WASTE)	(1) Waste disposal, (2) treatment of waste, (3) consuming waste by combustion, (4) reuse of waste materials, (5) pollution control
Alternative energy production (RENEWABLE)	(1) Biofuels, (2) integrated gasification combined-cycle fuel cells, (3) pyrolysis or gasification of biomass, (4) harnessing energy from manmade waste, (5) hydroenergy, (6) ocean thermal energy conversion, (7) wind energy, (8) solar energy, (9) geothermal energy, (10) other production or use of heat not derived from combustion, (11) using waste heat, (12) devices for producing mechanical power from muscle energy
Energy conservation (CONSERVATION)	(1) Storage of electrical energy, (2) power supply circuitry, (3) measurement of electricity consumption, (4) storage of thermal energy, (5) low-energy lighting, (6) thermal building insulation, in general, (7) recovering mechanical energy
Other green technology (OTHER)	 (1) Vehicles, in general, (2) vehicles other than rail vehicles, (3) rail vehicles, (4) marine vessel propulsion, (5) cosmonautic vehicles using solar energy, (6) forestry techniques, (7) alternative irrigation techniques, (8) pesticide alternatives, (9) soil improvement, (10) commuting, (11) Carbon/emissions trading, (12) static structure design, (13) nuclear engineering, (14) gas turbine power plants using heat sources of nuclear origin