
Faculteit Bedrijfseconomische
Wetenschappen
master in de handelswetenschappen
Masterthesis

Intermittent demand forecasting

Kevin Driesen
Scriptie ingediend tot het behalen van de graad van master in de handelswetenschappen, afstudeerrichting supply

chain management

2020
2021

PROMOTOR :

Prof. dr. Inneke VAN NIEUWENHUYSE



Faculteit Bedrijfseconomische
Wetenschappen
master in de handelswetenschappen
Masterthesis

Intermittent demand forecasting

Kevin Driesen
Scriptie ingediend tot het behalen van de graad van master in de handelswetenschappen, afstudeerrichting supply

chain management

PROMOTOR :

Prof. dr. Inneke VAN NIEUWENHUYSE





This master thesis was written during the COVID-19 crisis in 2020-2021. This global 

health crisis might have had an impact on the (writing) process, the research activities 

and the research results that are at the basis of this thesis. 

  



Kevin Driesen 
Intermittent demand forecasting 

Promoter: Prof. dr. Inneke Van Nieuwenhuyse 
 
 

2 

 

Intermittent demand forecasting 

Kevin Driesen 
Master Supply Chain Management 

Faculty of Business Economics, Hasselt University 

 

 

This master’s thesis implements three different intermittent demand forecasting methods 

(Croston’s method, the Syntetos Boylan Approximation and the Teunter Syntetos Babai method) 

and compares them to each other by using three different accuracy measures (Mean Error, Mean 

Squared Error and Mean Absolute Scaled Error). Intermittent demand may occur in many 

different industries and is very different from normal demand patterns. Intermittent demand 

products have many different periods where no demand occurs, it may take months before a 

period of positive demand occurs. Normal demand patterns deal with continuous positive 

demands. The analysis in this thesis is done based on a dataset obtained from Scania Parts 

Logistics. 

 

Keywords: Intermittent demand, forecasting, Croston, Syntetos Boylan Approximation, Teunter 

Syntetos Babai, Excel 

1 Introduction 

The subject of this thesis is intermittent demand forecasting, i.e. demand that is characterized by 

infrequent demand occurrences: many periods have zero demand, while relatively few have positive 

demand. When demand occurs, amounts may vary (Aris A. Syntetos & Boylan, 2005). Demand 

forecasting is an important topic in supply chain management, because it gives the supply chain 

manager an estimate of the expected demand in future periods. An accurate demand forecast gives the 

opportunity to set an optimal inventory management for the desired customer service level (Aris A. 

Syntetos & Boylan, 2006). Both the variability of demand occurrence and the variability of demand size 

make intermittent demand more difficult to forecast, which occurs a lot in industries dealing with spare 

parts (e.g. electronics, automotive, high tech) (Li & Lim, 2018; Aris A. Syntetos & Boylan, 2006). Many 

different intermittent demand forecasting methods have been suggested in scientific literature (Babai, 

Dallery, Boubaker, & Kalai, 2019; Croston, 1972; Kourentzes, 2013; Li & Lim, 2018; Aris A. Syntetos & 

Boylan, 2005; R. H. Teunter, Syntetos, & Zied Babai, 2011). This thesis will compare the accuracy of 

three different forecasting methods applicable in Excel, using a real life intermittent demand dataset 

granted by Scania Parts Logistics (https://www.scania.com/partslogisticscenter/en/home.html).  

Croston’s method is a good place to start as it gave a new perspective on intermittent demand. Syntetos 

and Boylan (2001) identified limitations in Croston’s method, saying the method is robust and the 

demand estimates are positively biased and suggest their theoretically unbiased method, the Syntetos 
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Boylan Approximation (further referred to as SBA). Teunter, Syntetos and Babai (2011) found another 

flaw to both Croston’s method and the SBA, namely that these methods don’t take the risk of 

obsolescence into account (i.e. Croston and the SBA do not recognize when an SKU is approaching the 

end of its product lifecycle). As a solution to both problems they introduced their method, the Teunter, 

Syntetos and Babai method (further referred to as TSB). 

This thesis compares Croston’s method, which is currently used in many software packages (e.g. SAP) 

for forecasting intermittent demand (Li & Lim, 2018), with two other methods: the SBA (2005) and the 

TSB method (2011). As the methods are built on each other, trying to improve previous flaws, they are 

linked to each other and comparing them will result in a clear and direct comparison. 

More complex methods of intermittent demand forecasting are available (e.g. Neural Network 

forecasting, bootstrapping). Due to their complexity, data requirements and software (Kourentzes, 

2013; Willemain, Smart, & Schwarz, 2004; Zhou & Viswanathan, 2011) they are not further investigated 

in this paper; they are only briefly mentioned in sections 3.2 and 3.3. Therefore, this thesis will stick to 

the aforementioned methods; Croston’s method, the SBA and the TSB method.  

The remainder of this thesis includes the following sections. In section 2, a problem statement is given 

to further understand the problem of intermittent demand together with the research objectives of this 

thesis. Section 3 gives an overview of literature related to intermittent demand forecasting. In section 

4, the methodology used to compare the three forecasting methods is presented. Section 5 summarizes 

the empirical findings of this comparison. Finally, in section 6, the conclusions and main insights are 

provided. 

2 Problem statement and research objectives 

The majority of products have daily, weekly, monthly and even seasonal demand patterns making it 

relatively easy to forecast future demands. Products where demand has an intermittent nature do not 

have these predictable patterns. Therefore, they are called intermittent demand products, i.e. demand 

occurs sporadically: there are more often periods with zero demand than with positive demand, resulting 

in lengthy inter-demand intervals. Zero demand periods limit the available data, and the widely varying 

positive demand sizes make forecasting even more difficult (Aris A. Syntetos & Boylan, 2005).  

Intermittent demand forecasting is an important tool for optimizing inventory management, specifically 

for industries dealing with spare parts (Hua, Zhang, Yang, & Tan, 2017). Good inventory management 

balances stock availability and costs of inventory. Customer demands not being met, may result in very 

high stock-out costs in the spare parts industry. Therefore, accurate forecasts of demand help to save 

costs (Turrini & Meissner, 2019). Accurate forecasting also prevents having too much stock laying 

around as intermittent demand stock keeping units (further referred to as SKU) may spend months in 

stock; it thus helps to decrease holding costs of the SKU. Finally, intermittent demand forecasting also 
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grants an estimate to help optimally balancing customer service levels and SKU inventory costs. This is 

particularly important for high stock-out cost items and high holding cost items (Aris A. Syntetos & 

Boylan, 2006).  

However, products have a certain lifetime. When they are at the end of their lifetime, there will be no 

further demand, turning leftover SKUs into dead stock, i.e. SKUs that have become obsolete and no 

longer have any value. In the case of intermittent demand SKUs it is very difficult to decide whether 

they actually have became dead stock or if they are just going through a lengthier inter-demand interval. 

In case of obsolescence, it is very important to decide to remove the dead stock and reduce unnecessary 

inventory costs (R. H. Teunter et al., 2011). 

Another problem with intermittent demand is that the usual forecasting methods are not accurate 

enough. The conventional forecasting methods (e.g. moving average time series, exponential smoothing 

methods) use demand data to extract systematic patterns such as trends, levels and seasonal factors. 

As conventional forecasting methods don’t capture the dual nature of inter-demand intervals and varying 

demand sizes, they cannot be used for intermittent demand forecasting (Li & Lim, 2018).  

Intermittent demand SKUs include all kinds of intermediate or final goods (Li & Lim, 2018) and can be 

found at any level of the supply chain (Aris A. Syntetos & Boylan, 2006). They account for up to 60% 

of stock value in countless industries, e.g. electronics, automotive, spare parts, engineering and high 

tech (Li & Lim, 2018). Specifically the spare parts industry consists mostly of intermittent demand SKUs 

as service operations require a wide variation of spare parts. Syntetos, Babai and Gardner (2015) 

mention a survey by Deloitte in 2011, recording service operation revenues of many of the world’s 

largest companies to be 26% of their combined revenue of 1.5 trillion dollars. As Deloitte’s survey proves 

that intermittent demand items claim a quarter of the revenue and accounts for up to 60% of stock 

value in many organizations, improvements in managing intermittent demands can cause important 

cost decreases (Li & Lim, 2018). Intermittent demand items also have a greater risk of obsolescence: 

this can occur, for instance, when a newer and better product enters the market. Obsolete spare parts 

leave the producers with dead stock, resulting in a waste of invested money (Aris A. Syntetos et al., 

2015).  

The intermittent demand problem has been around for a long time. Croston’s method was the first 

method proposed for intermittent demand forecasting in 1972 (Li & Lim, 2018). After Croston, the 

interest in the topic increased; the resulting literature is  briefly discussed in section 3.  

In this article, three intermittent demand forecasting (Croston, SBA, TSB) are compared and analysed 

in Excel using  the following accuracy measures: mean error (further referred to as ME), mean square 

error (further referred to as MSE), mean absolute scaled error (further referred to as MASE). The ME 

was chosen to see if a method is positively or negatively biased for the used dataset. The MSE shows 

how big the forecasting errors were by squaring the errors. The MASE is used, because Hyndman and 

Koehler (2006) suggest it to be the best forecasting measure. 
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As discusses in the introduction, the three methods (Croston, SBA, TSB) are linked, as the SBA tries to 

improve Croston’s method, while the TSB method tries to further improve the SBA. Therefore, the main 

goal of this thesis is to compare and analyse these three different intermittent demand forecasting 

methods to determine if the improvements made to Croston’s method actually are improvements. In 

addition, this thesis is an example of the chosen intermittent demand forecasting methods implemented 

in Excel, as well as a comparison of the three methods, being helpful for any supply chain manager 

wishing to implement the methods on his/her own data. 

3 Literature review  

This section summarizes the scientific literature on intermittent demand forecasting methods. 

Subsection 3.1 presents several parametric forecasting methods suggested for intermittent demand. 

The bootstrapping method is explained is subsection 3.2. Finally, subsection 3.3 provides the neural 

network forecasting method for intermittent demand forecasting. 

 Parametric intermittent demand forecasting 

A general approach to demand forecasting is the parametric approach. In this case, parametric means 

‘within assumed parameters’. Parametric forecasting methods extract information from existing demand 

data to forecast demands while staying within the assumed parameters, e.g. a fixed lead time, positive 

demand sizes follow a normal distribution, demand size and inter-demand intervals are independent 

(Aris A. Syntetos et al., 2015). 

Examples of parametric methods are Simple Exponential Smoothing (further referred to as SES, 

(Gardner, 2006)) and the Holt-winters model (Gardner, 2006). Intermittent demand has traditionally 

been forecasted mainly with SES or Simple Moving Average (further referred to as SMA). However, SES 

is not a good method for forecasting intermittent demand patterns as it treats positive and zero demands 

in the same way, meaning that forecasts will be biased low before positive demand occurs and biased 

high after positive demand occurs (Aris A. Syntetos et al., 2015). Due to the increasing awareness of 

intermittent demand and its importance, new methods were suggested such as Croston’s method and 

the corresponding improvement suggestions (e.g. SBA, TSB method, Syntetos’ method) (Aris A. 

Syntetos & Boylan, 2005; R. H. Teunter et al., 2011; Zied Babai, Syntetos, & Teunter, 2014). More 

advanced methods, though still based on Croston’s method, also gained scientific attention, such as  the 

Aggregate-Disaggregate Intermittent Demand Approach (further referred to as ADIDA) and the inverse 

Aggregate-Disaggregate Intermittent Demand (further referred to as iADID) (Li & Lim, 2018). ADIDA 

and iADID are hierarchical forecasting (further referred to as HF) models and forecast demand of entire 

companies (all stores). HF models can be top-down or bottom-up. Top-down models start by forecasting 

the total demand of a company and continue by dividing this demand over the different stores. Bottom-

up does the opposite: it starts by forecasting demand in stores and aggregates that to the total company 

demand (Kahn, 1998).  
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 The Bootstrapping approach 

Bootstrapping also uses historical demand data to forecast demand: it takes multiple random samples 

from the dataset and uses these samples to create a histogram. Mean and variance are then calculated 

from this histogram as a forecast for the upcoming period. In the scientific literature, multiple advanced 

bootstrapping methods have been suggested (e.g. Willemain, Smart and Schwarz method, Zhou and 

Viswanathan method), adding extra properties for more accurate forecasts for intermittent demand 

patterns (Aris A. Syntetos et al., 2015; Willemain et al., 2004; Zhou & Viswanathan, 2011). 

Bootstrapping methods generally bring more complexity to the process of forecasting as they require 

knowledge of coding the method: hence, bootstrapping demands a lot of time to implement. Syntetos, 

Babai and Gardner (2015) conclude that the added complexity makes the usage of bootstrapping 

questionable and find that simple parametric methods perform very well, considering the effort spent in 

their implementation, as opposed to bootstrapping methods. Furthermore, bootstrapping methods 

require much more computing power than parametric methods: this is not suitable when dealing large 

numbers of SKUs, as is often the case in the spare parts industry. 

 Neural network forecasting 

Neural network (further referred to as NN) forecasting is another non-parametric intermittent demand 

forecasting method. Unlike the parametric and bootstrapping methods, NNs do not require human 

experts to provide a model. NNs are described as flexible, non-linear data driven models. They capture 

interactions between the positive demands and the demand intervals. As they require a lot of data to 

accurately predict the highly varying intermittent demand patterns, NNs are often seen as ‘data-hungry’ 

models (Kourentzes, 2013). Due to the complexity of these models and limited resources, they will not 

be analysed in this thesis. Readers interested in an application of NNs are referred to (Lolli et al., 2017), 

for a comparison of  benchmark NNs to standard forecasting methods. 

4 Methodology  

Subsection 4.1 provides a table of notations used for the formulations of the methods in this paper. The 

three methods under study (Croston’s method, SBA and TSB) are clarified respectively in subsections 

4.2, 4.3 and 4.4. The forecast accuracy measures used for the comparison are discussed in subsection 

4.5. Finally, section 4.6 gives an insight on the dataset used.  
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 Notations 

𝐷𝑡 Actual demand for an SKU in period t 

𝐷𝑡
′ Demand forecasted in period t for period t + 1 

𝑆𝑡
′ Smoothed demand size for an SKU in period t 

𝐼𝑡 Actual interval of periods since last positive demand in period t (Croston and SBA) 

𝐼𝑡
′ Smoothed interval of periods since last positive demand in period t (Croston and SBA) 

𝑃𝑡
′ Smoothed probability of demand occurrence in period t (TSB) 

α Smoothing parameter 0 ≤ α ≤ 1 

β Smoothing parameter 0 ≤ β ≤ 1 

n Total amount of periods with both actual demand and forecasted demand 

𝑛1 Total amount of periods with actual demand (MASE) 

 

 Croston’s method 

The most well-known and most often used parametric forecasting method for intermittent demand is 

the method suggested by Croston in 1972. Croston’s method divides intermittent demand in two series: 

the average size of positive demand and the average inter-demand intervals, these series update when 

positive demand occurs. Both series are separately forecasted by SES, a forecasting method for regular 

demand patterns (Hasni, Babai, Aguir, & Jemai, 2019). Then Croston’s estimate is based on the ratio 

between the two series (Li & Lim, 2018).  

Croston’s method is calculated as follows (Gardner, 2006; Zied Babai et al., 2014): 

 

1) 𝐷𝑡  =  0 → 𝐼𝑡
′  =  𝐼𝑡 − 1

′  ; 𝑆𝑡
′  =  𝑆𝑡 − 1

′  ; 𝐷𝑡
′  =  𝐷𝑡 − 1

′  (i.e. smoothed estimators are unchanged) 

2) 𝐷𝑡  >  0 → 𝐼𝑡
′  =  𝐼𝑡 − 1

′  +  𝛼(𝐼𝑡  −  𝐼𝑡 − 1
′ )    (i.e. smoothed interval updates) 

3) 𝐷𝑡  >  0 → 𝑆𝑡
′  =  𝑆𝑡 − 1

′  +  𝛼(𝐷𝑡  −  𝑆𝑡 − 1
′ )  (i.e. smoothed demand size updates) 

4) 𝐷𝑡  >  0 → 𝐷𝑡
′  =  

𝑆𝑡
′

𝐼𝑡
′     (i.e. Croston’s forecast updates)  
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Expression (1) dictates what happens to the estimates when actual demand is zero, i.e. none of the 

smoothing estimators are updated. Expression (2) shows the formula for updating the smoothed inter-

demand interval estimator when actual demand is positive, while expression (3) formulates how the 

smoothed demand size updates in that case. Finally, expression (4) shows the formula for updating the 

forecast for the next period. Croston first suggested using the same smoothing parameter α for 𝐼𝑡
′ and 

𝑆𝑡
′, a more general variant suggested by others (e.g. Schultz, (1987)) uses different smoothing values 

as it may be beneficial (Zied Babai et al., 2014). Croston’s original suggestion of using the same 

smoothing parameters for 𝐼𝑡
′ and 𝑆𝑡

′ is used in this paper. As for the value of the smoothing parameter, 

Croston found suggestions of keeping the smoothing value of α between 0,1 – 0,2 (Croston, 1972). For 

research purposes, this thesis will include multiple values between 0 and 1. 

Croston’s method is the most often used forecasting method for intermittent demand, and has also been 

integrated in many software packages (e.g. SAP). Furthermore, Croston’s method forms the base of 

many other intermittent demand forecasting methods, despite the associated positive bias in its 

estimates (Li & Lim, 2018). The bias in Croston’s estimates was proved by Syntetos and Boylan (2001) 

as a first step to improve Croston’s method. They found an error in the mathematical derivation of the 

expected estimate of demand, resulting in higher demand forecasts. However, this error contributed to 

the unexpected benefits of Croston’s method in comparison with SES. Syntetos and Boylan (2001) then 

modified Croston’s method to be unbiased: this method is known as the SBA and is further explained in 

subsection 4.2. Readers interested in the explanation of the mathematical error in Croston’s method are 

referred to Syntetos and Boylan’s paper (A. A. Syntetos & Boylan, 2001). 

Furthermore, Teunter, Syntetos and Babai (2011) exposed another flaw to Croston’s method, namely 

Croston’s method not dealing with obsolescence issues. Obsolete products are less in demand and 

naturally gain more and more zero demand periods. Croston’s method does not update with periods of 

zero demand, thus it does not recognize the obsolescence of products and will continue to forecast 

demand estimates based on previous positive demand averages. The authors solve this issue and the 

bias problem without adding complexity to Croston’s method; we refer to this method as the  TSB 

method, and it is further explained in subsection 4.3. 

Apart from these well-known criticisms on Croston’s method, Shenstone and Hyndman (2005) challenge 

Croston’s assumptions that positive demand sizes follow a normal distribution, inter-demand intervals 

follow a geometric distribution and that positive demand sizes and inter-demand intervals are 

independent of each other (Aris A. Syntetos et al., 2015). Interested readers are referred to Shenstone 

and Hyndman’s paper (Shenstone & Hyndman, 2005). 

 Syntetos and Boylan Approximation (SBA) 

Croston’s method shows theoretical superiority over more simplistic forecasting methods (e.g. moving 

average time series, exponential smoothing methods). However, as mentioned above, Syntetos and 

Boylan (2001) investigated Croston’s method and showed that forecasts were biased due to a 
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mathematical error. After proving the bias in Croston’s method, they suggested a modification to 

Croston’s method that multiplies Croston’s estimate by a factor (1 − 
𝛽

2
), with β being a smoothing 

parameter; the goal was to obtain unbiased estimates, without adding complexity. This method is now 

known as the Syntetos and Boylan Approximation (SBA).  

The SBA is calculated with the following formula (Gardner, 2006; Zied Babai et al., 2014): 

 

1) 𝐷𝑡  =  0 → 𝐼𝑡
′  =  𝐼𝑡 − 1

′  ; 𝑆𝑡
′  =  𝑆𝑡 − 1

′  ; 𝐷𝑡
′  =  𝐷𝑡 − 1

′  (i.e. smoothed estimators are unchanged) 

2) 𝐷𝑡  >  0 → 𝐼𝑡
′  =  𝐼𝑡 − 1

′  +  𝛽(𝐼𝑡  −  𝐼𝑡 − 1
′ )    (i.e. smoothed interval updates) 

3) 𝐷𝑡  >  0 → 𝑆𝑡
′  =  𝑆𝑡 − 1

′  +  𝛼(𝐷𝑡  −  𝑆𝑡 − 1
′ )  (i.e. smoothed demand size updates) 

4) 𝐷𝑡  >  0 → 𝐷𝑡
′  =  (1 −  

𝛽

2
)

𝑆𝑡
′

𝐼𝑡
′    (i.e. SBA forecast updates) 

Just like Croston’s method, when actual demand is zero, the SBA does not update any smoothing 

estimators as shown in expression (1). Expression (2) shows the formula for updating the inter-demand 

interval smoothed estimator when actual demand is positive. Expression (3) formulates how the 

smoothed demand size updates when actual demand is positive. Finally, the actual SBA forecast is 

formulated in expression (4). Note that the SBA differs from Croston’s method by using two different 

smoothing parameters for 𝐼𝑡
′ and 𝑆𝑡

′ in expression (2 and 3) as suggested by Schultz (1987) and in the 

final demand estimate 𝐷𝑡
′ by multiplying a smoothing factor (1 − 

𝛽

2
) to Croston’s estimate expression (4) 

(Zied Babai et al., 2014). Note that the β used in expression (2 and 4) are the same. 

Syntetos and Boylan (2001) performed a statistical test on the improvement of accuracy between SBA 

and Croston’s method. Their comparison was based on the accuracy measure Mean Absolute Percentage 

Error. They mention the improvement to be statistically significant at a significance level of 0.01, i.e. 

the SBA is more accurate. They also state that Croston’s method is only accurate under Croston’s stated 

assumptions (demand sizes follow a normal distribution and there is mutual independence between 

inter-demand intervals and demand sizes), which are not in line with the behaviour of intermittent 

demand in reality.  

 Teunter, Syntetos and Babai’s method (TSB) 

Teunter, Syntetos and Babai (2011) report that the multiplication factor added in the SBA to remove 

the bias in Croston’s method actually overcorrects Croston’s estimate. This makes the SBA negatively 

biased, and in some cases even more biased than Croston’s method. They refer to other papers for the 

proof of this negative bias (R. Teunter & Sani, 2009; Wallström & Segerstedt, 2010).  

Teunter, Syntetos and Babai (2011) find that Croston’s method has two flaws. Firstly, Croston suggested 

a method that has a positive bias, as already explained in the paper by Syntetos and Boylan (2001). 

The second flaw is that Croston’s method does not account for obsolescence issues, as it does not update 

the estimated demand after periods of zero demand. Croston’s method only updates when positive 
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demand occurs, i.e. longer periods of zero demand due to product obsolescence are not interpreted as 

a signal of obsolescence. 

The newly suggested TSB method is unbiased, unlike Croston’s method which is positively biased and 

the SBA where overcompensation resulted in a negative bias. On top of that, the TSB method resolves 

the issues with product obsolescence by working with a probability of demand occurrence instead of 

demand intervals and by updating this probability when zero demand occurs, i.e. longer periods of zero 

demand may indicate product obsolescence. The TSB method resolves these without adding much 

complexities to the formulas (R. H. Teunter et al., 2011). 

The TSB method is calculated as follows (Zied Babai et al., 2014): 

 

1) 𝐷𝑡  =  0 → 𝑃𝑡
′  =  𝑃𝑡−1

′  +  𝛽(0 − 𝑃𝑡−1
′ )  (i.e. smoothed demand occurrence probability updates) 

2) 𝐷𝑡  =  0 → 𝑆𝑡
′  =  𝑆𝑡 − 1

′    (i.e. smoothed demand size is unchanged) 

3) 𝐷𝑡  =  0 → 𝐷𝑡
′  =  𝑃𝑡

′𝑆𝑡
′   (i.e. TSB forecast updates) 

4) 𝐷𝑡  >  0 → 𝑃𝑡
′  =  𝑃𝑡−1

′  +  𝛽(1 − 𝑃𝑡−1
′ )  (i.e. smoothed demand occurrence probability updates) 

5) 𝐷𝑡  >  0 → 𝑆𝑡
′  =  𝑆𝑡 − 1

′  +  𝛼(𝐷𝑡  −  𝑆𝑡−1
′ )  (i.e. smoothed demand size updates) 

6) 𝐷𝑡  >  0 → 𝐷𝑡
′  =  𝑃𝑡

′𝑆𝑡
′   (i.e. TSB forecast updates) 

The TSB method is very different from Croston’s method and the SBA as it is the only method that also 

updates when zero demands occur. The TSB method also uses a probability of demand occurrence factor 

instead of the inter-demand intervals. The probability factor is shown in expression (1 and 4), 

formulating how demand occurrence probability updates when actual demand is respectively zero or 

positive. Expression (2) shows that the smoothed demand size remains unchanged when actual demand 

is zero. As the probability of demand occurrence factor updates when actual demand is zero, this 

automatically updates the TSB forecast too; see the TSB forecast formula in expression (3). The 

smoothed demand size estimator is the same as in Croston’s method and the SBA, which is formulated 

in expression (5). Finally, expression (6) shows the formula for the TSB forecast when actual demand 

is positive (Zied Babai et al., 2014). Note that there is no difference between expression (3 and 6), 

because expression (1 and 4) already include the impact of actual demand occurring.  

 Forecast accuracy metrics 

Intermittent demand patterns have, as mentioned in the intermittent demand subsection, many zero 

demand periods. Some accuracy measures (e.g. mean absolute percentage error and median absolute 

percentage error) are calculated with fractions where actual demand is used as the denominator. In the 

case of zero demand, that would result in infinity. Therefore, these relative measures are not usable to 

measure intermittent demand forecasting accuracy (Aris A. Syntetos & Boylan, 2005).  

The most simplistic accuracy measure is the ME. When ME is negative, the forecasting method is 

negatively biased and mostly forecasts values lower than actual demand. When ME is positive, the 
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forecasting method is positively biased and mostly forecasts values higher than actual demand. ME is 

calculated as follows: 

 

𝑀𝐸 =  
∑  (𝐷𝑡

′  −  𝐷𝑡)𝑛
𝑡 = 1

𝑛
 

Another easy to compute metric, which is based on the ME, is the MSE. Here, the total sum of all squared 

errors is divided by the total amount of forecasts (Nikolopoulos, Syntetos, Boylan, Petropoulos, & 

Assimakopoulos, 2017). The squaring of errors negates the visibility of any bias and punishes big 

forecast errors to a larger extent in the accuracy measure. It also makes the resulting MSE strictly 

positive. The MSE is calculated as follows: 

 

𝑀𝑆𝐸 =  
∑  (𝐷𝑡

′  −  𝐷𝑡)²𝑛
𝑡 = 1

𝑛
 

Hyndman and Koehler (2006) suggested the MASE as the standard measure for comparing forecast 

accuracy, as it provides a scale-free forecast accuracy measurement that always has a meaningful 

outcome, i.e. when MASE is lower than 1, the errors from the used method are on average smaller than 

the naïve forecasting method, e.g. period 4 had an actual demand of 20 units, naïve forecasting method 

then forecasts a demand of 20 units in period 5 (Hyndman & Koehler, 2006). The MASE cannot be 

negative, and is calculated according to the following formula (Zied Babai et al., 2014): 

 

𝑀𝐴𝑆𝐸 =  
(1/𝑛) ∑  |𝐷𝑡

′ − 𝐷𝑡|𝑛
𝑡 = 1

(1/𝑛1 − 1) ∑  |𝐷𝑖 − 𝐷𝑖 + 1|
𝑛1

𝑖 = 2

 

 Dataset 

The dataset used for this thesis is provided by Scania Parts Logistics 

(https://www.scania.com/partslogisticscenter/en/home.html), the logistical heart of the entire Scania 

Group that organizes Scania’s distribution of spare parts worldwide. A total of 50 different SKUs is used 

for the comparison. 

The SKUs were exported from the system of Scania Parts Logistics to an Excel document. Table 1 shows 

that the demand patterns of the 50 SKUs have a minimum of 5 months with positive demand and a 

maximum of 14 months with positive demand within a time period of 48 months. The rest of the months, 

there is no demand for the SKUs. Table 2 shows the minimum and maximum demand size of the 50 

SKUs (excluding zero demand periods). An average demand of 4,9 shows that demand sizes were rather 

low in comparison to the maximum demand size of 101. There still were some SKUs with high demand 

sizes, even though the average may suggest low demand sizes. 
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Positive demand months   Positive demand size 

Average 8,7   Average 4,9 

Minimum 5   Maximum 101 

Maximum 14   Minimum 1 

Table 1: Positive demand months data          Table 2: Positive demand size data 

Table 3 is the demand pattern of SKU 10094, an example of a demand pattern with low demand sizes 

and a total of 8 positive demand occurrences within a time period of 48 months. Table 4 is the demand 

pattern of SKU 35528, an example of a demand pattern with high demand sizes and a total of 13 positive 

demand occurrences within a time period of 48 months. Periods with no demand have been left out of 

table 3 and 4. 

Date Period 
Actual 

demand 

Periods 
since last 
demand  

Date Period 
Actual 

demand 

Periods 
since last 
demand 

1/02/2017 3 5 3  1/01/2017 2 45 2 

1/04/2018 17 2 14  1/03/2017 4 4 2 

1/05/2018 18 1 1  1/06/2017 7 3 3 

1/09/2018 22 1 4  1/07/2017 8 4 1 

1/04/2019 29 3 7  1/09/2017 10 16 2 

1/06/2019 31 1 2  1/10/2017 11 20 1 

1/07/2019 32 1 1  1/02/2018 15 52 4 

1/08/2019 33 1 1  1/03/2018 16 15 1 

 Total 15   1/07/2018 20 20 4 

     1/08/2018 21 10 1 

     1/09/2018 22 13 1 

     1/11/2018 24 15 2 

     1/03/2019 28 15 4 

      Total 232  

Table 3: SKU 10094 demand pattern           Table 4: SKU 35528 demand pattern 
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5 Results 

Section 5.1 explains what the parameter values are for this case. Section 5.2 compares the accuracy 

measures ME, MSE and MASE between the different methods, as averages over 50 SKUs. Section 5.3 

discusses the results when the parameters are optimized by using the Excel solver option, which is done 

for 10 different SKUs separately. 

 Parameters 

As mentioned in section 4, the forecasting methods use smoothing parameters α and β. For research 

purposes, the values of α and β will range from 0 to 0,4 in steps of 0,05. The forecasting methods are 

implemented on data from 50 different SKUs with different amounts of demand occurrences and low or 

highly varying demand sizes. This is done to ensure a broad view of different situations. For closer 

inspection, the parameters of the methods are optimized for 10 different SKUs separately in the 

optimization section 5.3. 

 Accuracy measures 

Note that the conclusions drawn from section 5.2 are based on averages of 50 different SKUs. This 

means that conclusions may not fit for multiple SKUs in particular and the parameters that seem optimal 

are by no means optimal parameters for every SKU specifically. Averages are also impacted by possible 

outliers, therefore it is important to know that conclusions are only correct for the dataset used in this 

thesis. 

5.2.1 Mean error 

Table 5 shows the average mean errors from 50 SKUs for each combination of α and β. The ME shows 

if a method over- or underestimates demand. Table 5 shows that Croston’s method indeed mostly 

overestimates, as mentioned in the literature review. However, the SBA does not seem to be 

underestimating, as we would expect based on the literature. Although the SBA still overestimates just 

like Croston’s method, for different combinations of α and β the SBA forecasts are more accurate than 

Croston’s method. The TSB method seems to be following a diagonal between α and β indicated by the 

yellow marked cells in table 5. The parameter combinations α and β below the yellow diagonal show 

that the TSB method mostly tends to underestimate. Above the yellow diagonal the TSB method tends 

to overestimate. However, it is clear that the TSB method is more accurate than Croston’s method and 

the SBA as the ME values are much closer to 0. Note that combinations of α and β above the parameters 

of this thesis (max α of 0,40 and max β of 0,40) may contain better values for ME. The lowest values 

of the ME for Croston’s method and the SBA are indicated by the orange and red cells respectively. 
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5.2.2 Mean squared error 

Table 6 shows the average mean squared errors from 50 SKUs for each combination of α and β. The 

lower the MSE, the more accurate a forecasting method is. The MSE also shows that the SBA and the 

TSB method are more accurate than Croston’s method, just as the ME already insinuated. However, the 

MSE shows that the SBA makes lower forecasting error than the TSB for higher values of α and β. This 

may be the result of outliers when the values of α and β are high. Nevertheless, based on the lowest 

MSEs, the TSB method performs better than the SBA. Note that combinations of α and β above the 

parameters of this thesis (max α of 0,40 and max β of 0,40) may contain better values for MSE. The 

lowest values of MSE for Croston’s method, the SBA and the TSB method are indicated by the orange, 

red and yellow cells respectively. 

5.2.3 Mean absolute scaled error 

Table 7 shows the mean absolute scaled errors from 50 SKUs for each combination of α and β. As 

mentioned in section 4.5, the MASE is used to prove if a forecasting method is better than the naïve 

forecasting method. When the MASE is less than 1, the forecasting method is better than the naïve 

forecasting. Table 7 shows that the TSB method is better than naïve forecasting when β is around 0,25 

or higher. The α does not affect the MASE too much for the TSB method. Croston’s method and the SBA 

seem to always be worse than naïve forecasting as their MASEs are always more than 1. However, when 

checking the minimum MASEs it is clear that there are cases where Croston’s method and the SBA do 

perform better than naïve forecasting, and get a MASE less than 1. Section 5.3 proves this by giving a 

closer inspection on some SKUs in particular and optimizing their parameters. Note that combinations 

of α and β above the parameters of this thesis (max α of 0,40 and max β of 0,40) may contain better 

values for MASE. The lowest values of MASE for Croston’s method, the SBA and the TSB method are 

indicated by the orange, red and yellow cells respectively. 

 Optimized parameters 

Excel is widely used across the globe and has many features; one of those features is the Excel solver. 

When working with formulas that require variables, the Excel solver can optimize the variables within 

set boundaries so that the output of the formula is optimized (either maximized or minimized). The 

solver can also be set to change the variables so that the formulas result in a chosen value, e.g. an 

output of 0. This feature can be handy for many occasions; for this thesis the Excel solver is used to set 

the smoothing parameters to an optimized value between 0 and 1 for the three different accuracy 

measures. The first optimized set is where the ME reaches a minimum in its absolute value. The second 

optimized set is where the MSE reaches a minimum. Finally, a third optimized set is reached when MASE 

is at its minimum. This process is done for 10 different SKUs. The results of these optimizations can be 

found in the appendix. 
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Optimizing parameters to obtain the minimum absolute value of ME, MSE or MASE causes very diverse 

combinations of α and β, which makes sense following the explanations of the accuracy measures in 

section 4.5. However, it was still rather unexpected how big these differences in parameters α and β 

actually were, as there were SKUs where α and/or β went from 0 to 1 depending on the optimized 

accuracy measure (e.g. table 11a and table 11b). 

As already concluded in section 5.2, Croston’s method obviously performs worse than the SBA and the 

TSB method on any SKU and any accuracy measure optimization. However, looking at SKUs 14102, 

14764, 15434, 35435 and 35528 it seems that the TSB method does not always perform better than 

SBA, which is the opposite of what was found during the literature study. This may be caused by the 

demand patterns in these SKUs. Note that the TSB method does not perform that much worse than SBA 

in these cases. For the other 5 SKUs where the TSB method does perform better than SBA, the TSB 

method outperforms SBA almost as much as  SBA outperforms Croston’s method. This indicates that 

SBA was an improvement on Croston’s method and that the TSB method was an improvement on SBA 

as also found in the literature study.  

When analysing the optimized parameters in comparison to the averaged accuracy measures, it became 

clear that trying to take the optimal averages of the accuracy measure and their corresponding values 

of α and β is not very effective. Optimizing the parameters for SKUs separately gave very different 

values of α and β. Some optimized parameters came close to the optimal parameters from section 5.2. 

However, the respective accuracy measure values were very different to the averaged accuracy 

measures values. Because of this it was difficult to compare optimized parameters with the optimized 

accuracy measures and their respective optimal parameters. 

6 Conclusions and insights 

The results indicate that the SBA is in fact an improvement on Croston’s method as the SBA achieves 

better accuracy measure values. The literature review mentioned that Croston’s method overestimates, 

which is true according to the ME. However, the SBA was said to underestimate forecasts, which is not 

confirmed in our experiments. The TSB method does not always outperform the SBA, but both methods 

are clearly an improvement on Croston’s method. Although not mentioned in the literature review, the 

TSB method seems to have a slight negative bias for different combinations of α and β and a slight 

positive bias for other combinations of α and β creating a diagonal where the ME approaches 0. However, 

the ME is not as far away from 0 in comparison to the MEs of Croston’s method and the SBA. The MASE 

shows that Croston’s method and the SBA perform worse than the naïve forecasting method for all 

values of α and β within the boundaries of this thesis (max α of 0,4 and max β of 0,4) for section 5.2. 

On the other hand  the TSB starts performing better than the naïve forecasting method when the value 

of β reaches 0,25 or higher according to the MASE. Again, it should be kept in mind that the boundaries 

of this thesis may prevent the visibility of other combinations of α and β where the TSB method performs 

better than the naïve forecasting method according to the MASE. 
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Note that these results and conclusions are based on the findings of research done on spare parts SKUs 

with forecasting methods applied in Excel. There may also be different conclusions to be made when α 

and β combinations go further than the boundaries set for this thesis (max α of 0,4 and max β of 0,4) 

in section 5.2. For future research, it is possible to conduct an experiment on the difference in difficulty 

and performance between applying these methods in Excel or an application of these methods in coding 

software designed for forecasting and the usage of a bootstrapping method.  
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Appendix 

Average Mean Error 

Average Mean Error 

Method β α = 0,05 α = 0,10 α = 0,15 α = 0,20 α = 0,25 α = 0,30 α = 0,35 α = 0,40 

Croston / 0,457 0,434 0,431 0,440 0,457 0,480 0,507 0,538 

SBA 0,05 0,424 0,458 0,489 0,516 0,541 0,564 0,585 0,604 

TSB 0,05 -0,009 0,015 0,035 0,053 0,068 0,081 0,093 0,103 

SBA 0,10 0,336 0,368 0,395 0,420 0,441 0,461 0,479 0,496 

TSB 0,10 -0,043 -0,019 0,000 0,017 0,032 0,044 0,055 0,064 

SBA 0,15 0,277 0,307 0,332 0,354 0,374 0,392 0,408 0,423 

TSB 0,15 -0,066 -0,042 -0,023 -0,006 0,007 0,019 0,030 0,039 

SBA 0,20 0,234 0,262 0,287 0,307 0,326 0,342 0,356 0,370 

TSB 0,20 -0,080 -0,057 -0,038 -0,022 -0,009 0,003 0,012 0,021 

SBA 0,25 0,202 0,229 0,252 0,272 0,289 0,304 0,318 0,330 

TSB 0,25 -0,090 -0,067 -0,049 -0,033 -0,020 -0,009 0,000 0,009 

SBA 0,30 0,177 0,203 0,225 0,244 0,260 0,274 0,287 0,299 

TSB 0,30 -0,097 -0,074 -0,056 -0,041 -0,028 -0,017 -0,008 0,000 

SBA 0,35 0,156 0,181 0,203 0,221 0,237 0,250 0,262 0,273 

TSB 0,35 -0,101 -0,079 -0,061 -0,046 -0,034 -0,023 -0,014 -0,007 

SBA 0,40 0,138 0,163 0,184 0,201 0,217 0,230 0,242 0,252 

TSB 0,40 -0,104 -0,083 -0,065 -0,050 -0,038 -0,028 -0,019 -0,011 

Table 5: Mean error averages from 50 SKUs. 

Average Mean Squared Error 

Average Mean Squared Error 

Method β α = 0,05 α = 0,10 α = 0,15 α = 0,20 α = 0,25 α = 0,30 α = 0,35 α = 0,40 

Croston / 22,148 22,083 22,176 22,366 22,629 22,960 23,358 23,835 

SBA 0,05 22,045 22,182 22,375 22,621 22,922 23,274 23,677 24,127 

TSB 0,05 21,261 21,294 21,350 21,420 21,504 21,600 21,710 21,833 

SBA 0,10 21,795 21,890 22,026 22,199 22,409 22,655 22,936 23,251 

TSB 0,10 21,174 21,222 21,294 21,379 21,474 21,576 21,687 21,807 

SBA 0,15 21,701 21,775 21,881 22,015 22,175 22,363 22,577 22,816 

TSB 0,15 21,193 21,256 21,347 21,451 21,565 21,685 21,813 21,949 

SBA 0,20 21,679 21,743 21,832 21,944 22,076 22,228 22,401 22,595 

TSB 0,20 21,265 21,341 21,449 21,572 21,704 21,843 21,989 22,142 

SBA 0,25 21,696 21,753 21,834 21,932 22,047 22,179 22,327 22,492 

TSB 0,25 21,368 21,458 21,583 21,724 21,874 22,030 22,194 22,364 

SBA 0,30 21,730 21,784 21,861 21,953 22,059 22,178 22,310 22,457 

TSB 0,30 21,497 21,601 21,742 21,900 22,068 22,242 22,422 22,610 

SBA 0,35 21,769 21,823 21,899 21,989 22,090 22,203 22,327 22,464 

TSB 0,35 21,645 21,764 21,922 22,098 22,283 22,475 22,673 22,878 

SBA 0,40 21,805 21,861 21,938 22,029 22,130 22,241 22,363 22,496 

TSB 0,40 21,812 21,946 22,121 22,315 22,519 22,729 22,944 23,166 

Table 6: Mean squared error averages from 50 SKUs. 
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Average Mean Absolute Scaled Error 

Average Mean Absolute Scaled Error 

Method β α = 0,05 α = 0,10 α = 0,15 α = 0,20 α = 0,25 α = 0,30 α = 0,35 α = 0,40 

Croston / 1,413 1,368 1,344 1,331 1,325 1,325 1,329 1,337 

SBA 0,05 1,392 1,390 1,390 1,390 1,391 1,391 1,392 1,393 

TSB 0,05 1,077 1,077 1,076 1,076 1,077 1,077 1,078 1,079 

SBA 0,10 1,330 1,329 1,328 1,328 1,329 1,329 1,330 1,330 

TSB 0,10 1,038 1,037 1,036 1,036 1,036 1,036 1,037 1,037 

SBA 0,15 1,288 1,287 1,286 1,286 1,287 1,287 1,287 1,287 

TSB 0,15 1,019 1,017 1,016 1,015 1,015 1,016 1,016 1,017 

SBA 0,20 1,257 1,256 1,255 1,255 1,255 1,255 1,256 1,256 

TSB 0,20 1,008 1,006 1,004 1,003 1,003 1,003 1,003 1,004 

SBA 0,25 1,234 1,233 1,232 1,232 1,231 1,231 1,232 1,232 

TSB 0,25 1,000 0,998 0,996 0,995 0,995 0,994 0,994 0,995 

SBA 0,30 1,216 1,214 1,213 1,213 1,213 1,213 1,213 1,213 

TSB 0,30 0,994 0,992 0,990 0,989 0,988 0,988 0,988 0,988 

SBA 0,35 1,202 1,199 1,198 1,198 1,197 1,197 1,197 1,197 

TSB 0,35 0,989 0,987 0,985 0,985 0,984 0,983 0,983 0,983 

SBA 0,40 1,190 1,188 1,186 1,185 1,185 1,185 1,185 1,185 

TSB 0,40 0,985 0,983 0,982 0,981 0,980 0,980 0,979 0,979 

Table 7: Mean absolute scaled error averages from 50 SKUs. 
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SKU 10094 

10094 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,358 Optimal α 1,000 Optimal α 0,980 

Optimal β / Optimal β 0,211 Optimal β 0,610 

ME 0,46 ME 0,21 ME 0,00 

MSE 1,11 MSE 0,94 MSE 1,16 

MASE 1,66 MASE 1,32 MASE 0,92 

Table 8a: SKU 10094 absolute value of ME minimized. 

10094 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,237 Optimal α 0,582 Optimal α 0,157 

Optimal β / Optimal β 0,000 Optimal β 0,000 

ME 0,48 ME 0,26 ME -0,03 

MSE 1,08 MSE 0,93 MSE 0,78 

MASE 1,66 MASE 1,33 MASE 0,96 

Table 8b: SKU 10094 MSE minimized. 

10094 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,297 Optimal α 0,914 Optimal α 0,911 

Optimal β / Optimal β 0,049 Optimal β 0,000 

ME 0,46 ME 0,22 ME -0,12 

MSE 1,09 MSE 0,93 MSE 0,81 

MASE 1,65 MASE 1,30 MASE 0,85 

Table 8c: SKU 10094 MASE minimized. 

Demand 10094  

Average size 1,875 

Max size 5 

Min size 1 

Occurrences 8 

Table 8d: SKU 10094 demand data. 
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SKU 10387 

10387 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,495 Optimal α 1,000 Optimal α 1,000 

Optimal β / Optimal β 0,833 Optimal β 1,000 

ME 0,62 ME 0,24 ME 0,03 

MSE 1,85 MSE 1,51 MSE 1,49 

MASE 2,38 MASE 1,81 MASE 1,09 

Table 9a: SKU 10387 absolute value of ME minimized. 

10387 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,298 Optimal α 1,000 Optimal α 1,000 

Optimal β / Optimal β 0,248 Optimal β 0,067 

ME 0,67 ME 0,38 ME 0,21 

MSE 1,69 MSE 1,33 MSE 1,20 

MASE 2,54 MASE 2,04 MASE 1,81 

Table 9b: SKU 10387 MSE minimized. 

10387 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,595 Optimal α 1,000 Optimal α 1,000 

Optimal β / Optimal β 0,821 Optimal β 1,000 

ME 0,63 ME 0,24 ME 0,03 

MSE 2,04 MSE 1,51 MSE 1,49 

MASE 2,37 MASE 1,81 MASE 1,09 

Table 9c: SKU 10387 MASE minimized. 

Demand 10387 

Average size 3,33 

Max size 4 

Min size 2 

Occurrences 6 

Table 9d: SKU 10387 demand data. 

 

 

  



Kevin Driesen 
Intermittent demand forecasting 

Promoter: Prof. dr. Inneke Van Nieuwenhuyse 
 
 

24 

 

SKU 14102 

14102 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,482 Optimal α 0,379 Optimal α 1,000 

Optimal β / Optimal β 0,852 Optimal β 1,000 

ME 0,17 ME 0,01 ME 0,01 

MSE 0,38 MSE 0,35 MSE 0,63 

MASE 1,12 MASE 0,95 MASE 1,03 

Table 10a: SKU 14102 absolute value of ME minimized. 

14102 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,251 Optimal α 0,000 Optimal α 0,295 

Optimal β / Optimal β 0,431 Optimal β 0,074 

ME 0,20 ME 0,09 ME 0,10 

MSE 0,35 MSE 0,32 MSE 0,33 

MASE 1,16 MASE 1,03 MASE 1,07 

Table 10b: SKU 14102 MSE minimized. 

14102 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,409 Optimal α 0,368 Optimal α 0,461 

Optimal β / Optimal β 0,785 Optimal β 0,791 

ME 0,17 ME 0,01 ME 0,02 

MSE 0,36 MSE 0,34 MSE 0,48 

MASE 1,12 MASE 0,95 MASE 0,98 

Table 10c: SKU 14102 MASE minimized. 

Demand 14102 

Average size 1,3 

Max size 2 

Min size 1 

Occurrences 10 

Table 10d: SKU 14102 demand data. 
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SKU 14144 

14144 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,254 Optimal α 0,194 Optimal α 1,000 

Optimal β / Optimal β 0,681 Optimal β 1,000 

ME 0,75 ME 0,44 ME 0,03 

MSE 2,25 MSE 1,69 MSE 2,70 

MASE 1,83 MASE 1,52 MASE 1,00 

Table 11a: SKU 14144 absolute value of ME minimized. 

14144 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,150 Optimal α 0,042 Optimal α 0,025 

Optimal β / Optimal β 0,571 Optimal β 0,162 

ME 0,79 ME 0,48 ME 0,26 

MSE 2,13 MSE 1,63 MSE 1,37 

MASE 1,85 MASE 1,52 MASE 1,17 

Table 11b: SKU 14144 MSE minimized. 

14144 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,212 Optimal α 0,114 Optimal α 0,720 

Optimal β / Optimal β 0,547 Optimal β 0,644 

ME 0,76 ME 0,46 ME 0,06 

MSE 2,18 MSE 1,65 MSE 1,85 

MASE 1,83 MASE 1,50 MASE 1,00 

Table 11c: SKU 14144 MASE minimized. 

Demand 14144 

Average size 2,22 

Max size 7 

Min size 1 

Occurrences 9 

Table 11d: SKU 14144 demand data. 
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14258 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,531 Optimal α 1,000 Optimal α 1,000 

Optimal β / Optimal β 1,000 Optimal β 0,670 

ME 0,59 ME 0,23 ME 0,01 

MSE 1,25 MSE 0,79 MSE 1,09 

MASE 1,94 MASE 1,28 MASE 0,95 

Table 12a: SKU 14258 absolute value of ME minimized. 

14258 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,313 Optimal α 0,657 Optimal α 0,305 

Optimal β / Optimal β 1,000 Optimal β 0,000 

ME 0,62 ME 0,23 ME 0,09 

MSE 1,23 MSE 0,79 MSE 0,69 

MASE 1,97 MASE 1,28 MASE 1,01 

Table 12b: SKU 14258 MSE minimized. 

14258 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,496 Optimal α 1,000 Optimal α 1,000 

Optimal β / Optimal β 1,000 Optimal β 0,389 

ME 0,59 ME 0,23 ME 0,01 

MSE 1,25 MSE 0,79 MSE 0,88 

MASE 1,93 MASE 1,28 MASE 0,94 

Table 12c: SKU 14258 MASE minimized. 

Demand 14258 

Average size 2,2 

Max size 5 

Min size 1 

Occurrences 5 

Table 12d: SKU 14258 demand data. 
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SKU 14764 

14764 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,243 Optimal α 0,106 Optimal α 1,000 

Optimal β / Optimal β 0,715 Optimal β 1,000 

ME 0,16 ME 0,00 ME 0,01 

MSE 0,45 MSE 0,44 MSE 0,80 

MASE 1,06 MASE 0,95 MASE 0,98 

Table 13a: SKU 14764 absolute value of ME minimized. 

14764 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,125 Optimal α 0,000 Optimal α 0,000 

Optimal β / Optimal β 0,247 Optimal β 0,033 

ME 0,18 ME 0,06 ME 0,06 

MSE 0,44 MSE 0,41 MSE 0,04 

MASE 1,06 MASE 0,95 MASE 0,97 

Table 13b: SKU 14764 MSE minimized. 

14764 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,179 Optimal α 0,000 Optimal α 0,000 

Optimal β / Optimal β 0,640 Optimal β 0,133 

ME 0,17 ME -0,01 ME 0,02 

MSE 0,44 MSE 0,42 MSE 0,41 

MASE 1,05 MASE 0,92 MASE 0,95 

Table 13c: SKU 14764 MASE minimized. 

Demand 14764 

Average size 1,31 

Max size 2 

Min size 1 

Occurrences 13 

Table 13d: SKU 14764 demand data. 
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SKU 15434 

15434 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,717 Optimal α 0,601 Optimal α 1,000 

Optimal β / Optimal β 0,000 Optimal β 1,000 

ME 0,16 ME 0,00 ME 0,01 

MSE 1,43 MSE 1,43 MSE 3,07 

MASE 0,96 MASE 0,79 MASE 0,97 

Table 14a: SKU 15434 absolute value of ME minimized. 

15434 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,374 Optimal α 0,669 Optimal α 0,264 

Optimal β / Optimal β 0,799 Optimal β 0,000 

ME 0,17 ME -0,01 ME 0,07 

MSE 1,42 MSE 1,40 MSE 1,40 

MASE 0,97 MASE 0,82 MASE 0,87 

Table 14b: SKU 15434 MSE minimized. 

15434 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,727 Optimal α 1,000 Optimal α 1,000 

Optimal β / Optimal β 0,643 Optimal β 0,000 

ME 0,16 ME -0,11 ME -0,90 

MSE 1,43 MSE 1,44 MSE 1,52 

MASE 0,96 MASE 0,71 MASE 0,71 

Table 14c: SKU 15434 MASE minimized. 

Demand 15434 

Average size 2,25 

Max size 7 

Min size 1 

Occurrences 8 

Table 14d: SKU 15434 demand data. 
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SKU 35435 

35435 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,824 Optimal α 0,661 Optimal α 1,000 

Optimal β / Optimal β 0,779 Optimal β 0,570 

ME 0,69 ME 0,00 ME 0,00 

MSE 19,29 MSE 17,03 MSE 21,29 

MASE 1,22 MASE 0,96 MASE 0,96 

Table 15a: SKU 35435 absolute value of ME minimized. 

35435 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,419 Optimal α 1,000 Optimal α 0,000 

Optimal β / Optimal β 0,307 Optimal β 0,038 

ME 0,97 ME 0,08 ME 0,29 

MSE 17,89 MSE 16,00 MSE 16,45 

MASE 1,32 MASE 0,97 MASE 1,12 

Table 15b: SKU 35435 MSE minimized. 

35435 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,794 Optimal α 1,000 Optimal α 1,000 

Optimal β / Optimal β 0,817 Optimal β 0,155 

ME 0,69 ME -0,28 ME -0,19 

MSE 18,90 MSE 16,89 MSE 16,83 

MASE 1,22 MASE 0,84 MASE 0,88 

Table 15c: SKU 35435 MASE minimized. 

Demand 35435 

Average size 9,14 

Max size 20 

Min size 2 

Occurrences 7 

Table 15d: SKU 35435 demand data. 
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SKU 35528 

35528 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,692 Optimal α 0,648 Optimal α 0,904 

Optimal β / Optimal β 0,788 Optimal β 0,570 

ME 3,04 ME 0,00 ME 0,00 

MSE 122,47 MSE 109,95 MSE 155,13 

MASE 1,09 MASE 0,89 MASE 0,90 

Table 16a: SKU 35528 absolute value of ME minimized. 

35528 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,644 Optimal α 0,000 Optimal α 0,000 

Optimal β / Optimal β 0,775 Optimal β 0,097 

ME 3,05 ME -0,31 ME 0,65 

MSE 122,41 MSE 106,31 MSE 111,92 

MASE 1,09 MASE 0,85 MASE 0,90 

Table 16b: SKU 35528 MSE minimized. 

35528 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,970 Optimal α 0,000 Optimal α 0,000 

Optimal β / Optimal β 1,000 Optimal β 0,440 

ME 3,18 ME -0,82 ME -0,35 

MSE 126,71 MSE 107,35 MSE 128,89 

MASE 1,06 MASE 0,80 MASE 0,82 

Table 16c: SKU 35528 MASE minimized. 

Demand 35528 

Average size 17,85 

Max size 52 

Min size 3 

Occurrences 13 

Table 16d: SKU 35528 demand data. 
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SKU 36987 

36987 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,314 Optimal α 0,563 Optimal α 0,712 

Optimal β / Optimal β 0,313 Optimal β 0,646 

ME 0,00 ME 0,00 ME 0,00 

MSE 315,31 MSE 320,09 MSE 362,42 

MASE 1,17 MASE 1,18 MASE 1,06 

Table 17a: SKU 36987 absolute value of ME minimized. 

36987 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,092 Optimal α 0,191 Optimal α 0,000 

Optimal β / Optimal β 0,000 Optimal β 1,000 

ME -2,50 ME -1,65 ME -4,04 

MSE 304,04 MSE 301,37 MSE 291,04 

MASE 0,95 MASE 1,01 MASE 0,76 

Table 17b: SKU 36987 MSE minimized. 

36987 

Croston's method Syntetos Boylan Approximation Teunter Syntetos Babai's method 

Optimal α 0,000 Optimal α 0,000 Optimal α 0,000 

Optimal β / Optimal β 0,173 Optimal β 1,000 

ME -3,84 ME -3,93 ME -4,04 

MSE 306,96 MSE 309,59 MSE 291,04 

MASE 0,83 MASE 0,83 MASE 0,76 

Table 17c: SKU 36987 MASE minimized. 

Demand 36987 

Average size 39,86 

Max size 92 

Min size 12 

Occurrences 7 

Table 17d: SKU 36987 demand data. 


