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Abstract

Full Bayes Markov Chain Multi Carlo (MCMC) and Penalised Structured Additive Regression

(STAR) models were compared for an undernutrition (measured as stunting) study in Zambia.

Spatial correlated effects were specified as a Markov random field prior, continuous covariates

were modelled using Bayesian penalised splines and diffused priors were assigned to fixed effects.

A Bayesian Structured Additive Regression Model was developed for the Zambia data. Model

estimation and inference was based on both fully Bayesian MCMC and Empirical Bayes (based on

mixed method methodology). In a frequentist setting, EB inference is closely related to penalized

likelihood estimation. (Approximate) restricted maximum likelihood are used to estimate Variance

components which correspond to inverse smoothing parameters. Both inference procedures were

then compared based on the results from the Zambia study and were found to be very similar.

The results indicate spatial variations in stunting among the districts of Zambia. Continuous co-

variates Age and BMI have a significant effect on stunting. There is also significant difference

among the factors of all categorical variables except for mother’s employment status where no dif-

ference was found in stunting between children of employed and unemployed mothers.

Keywords: MCMC, STAR, Full Bayes, Empirical Bayes, spatial, continuous, categorical, model

estimation, inference.
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1 Introduction

1.1 Background

A linear model for a transformed mean of an outcome variable that has distribution in the expo-

nential family is known as a Generalised Linear Model (GLM) (Agretsi, 2002). In most practical

regression situations at least one of these problems is encountered: it may not be appropriate to

assume that for a continuous covariate the effect on the predictor is strictly linear; to model the

interaction effects, complex interactions might be required; spatially and temporally correlated ob-

servations may be encountered; and covariates may not sufficiently explain heterogeneity among

individuals. Structured Additive Regression (STAR) Models remedies these problems (Fahrmeir,

Kneib and Lang, 2004).

In this thesis, spatio extension of generalised additive models are proposed for cross-sectional data

with spatial information for each observation and inference is studied from a Bayesian perspec-

tive. In Bayesian inference, the effects of the fixed or non-linear functions are explained as random

variables or random functions. It is assumed that the effects of correlated spatial effects follow

a Gaussian random field prior or are modelled by two-dimensional splines (Fahrmeir, Kneib and

Lang, 2004). Bayesian semiparametric regression modelling has progressed in the past years such

as the area of the usage of adaptive knot selection for developing Uni-and Bivariate smoothers

(Smith and Kohn, 1997).

Full Bayes (FB) or an Empirical Bayes (EB) are used to perform inference on STAR models.

For Full Bayes, Markov Chain Monte Carlo (MCMC) techniques are used to estimate unknown

functions and covariate effects together with unknown variance or smoothing parameters. For Em-

pirical Bayes, Restricted Maximum Likelihood (REML) is used to estimate variance or smoothing

parameters. EB inference and Penalised Likelihood estimation are closely related from a frequen-

tist perspective (Fahrmeir and Knorr, 2000). The EB approach in this thesis is based on GLMM

representations.

Finally both techniques (FB and EB) are applied in the 1992 Demographic Health Surveys (DHS)
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of Zambia undernutrition study and the results analysed and compared. Undernutrition is the out-

come of insufficient intake of food and includes stunted (reduced height for one’s age), wasted

(extremely thin for one’s height) and insufficient weight for one’s age. Undernutrition is a major

public health concern in developing countries like Zambia as it is a vital sign of deprivation. By

some estimates undernutrition plays a role in almost 50 percent of death in the developing world

(UNICEF, 1998). Vital factors implicated in undernutrition include nutritional status of the par-

ents, access to clean water, sanitation, and primary health care, income and education levels of

parents (Sen, Roy, and Mondal, 2009).

Some of these factors such as BMI of the parents and age of child are likely to have a nonlinear

effect on undernutrition . BMI is likely to follow an inverse U shape because there is a greater like-

lihood of having an undernourished child for parents with very low BMI. Paradoxically, parents

with very high BMI may have undernourished children, as their obesity could be due to eating low

nutritious food. Even for children born undernourished, their anthropometric status only worsens

around 4-6 months when solid food are introduced and the child weaned (WHO, 1995; Stephen-

son, 1999). This stunting continues to worsen till around 24-36 months when it plateaus as the

body has considerably reduced in size and could now be supported with fewer nutrition (WHO,

1995). Spatial variations in undernutrition has also been observed in developing countries even

after controlling for key indicators (World Bank, 1995).

1.2 Data Description

The Demographic Health Survey (DHS) of Zambia conducted in 1992, is used in this study. There

are 4847 cases. Undernutrition is measured by stunting or insufficient height for age, indicating

chronic undernutrition. Stunting for a child i is determined using a z-score defined as

Zi =
AIi−MAI

σ

2



where AI refers to the height at a certain age, while MAI and σ correspond to the median and the

standard deviation in the reference population, respectively. Figure 1 displays a screenshot of the

first 10 rows of the Zambia dataset.

Figure 1: Screenshot of the Zambia dataset

.

Table 1: Variables in the undernutrition dataset

Variable Description

stunting standardised Z-score for stunting

mbmi body mass index of the mother

agechild age of the child in months

district district where the mother lives

emp mothers employment status with categories working (= 1) and not working (= 0)

edu mothers educational status with categories complete primary

(edu = 1), complete secondary or higher (edu = 2) and no education or

incomplete primary (edu = 0)

locality locality of the domicile with categories urban (= 1) and rural (= 0)

sex gender of the child with categories male (= 1) and female (=0)

Table 1 above displays all the variables in the Zambia study and their descriptions.
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1.3 Objectives

1. To compare the methodologies of Full Bayes with Penalised/Empirical Bayes for structured

additive regression models.

2. To compare the results of both inference methods based on analysis of the Zambia undernu-

trition study.

3. To determine the factors responsible for stunting in Zambia.
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2 Methodology

2.1 Structured Additive Regression Model

In Generalised Linear Models (GLMs), the response variable Yi, r = 1,2, · · · ,n, with independent

observations (y1, · · · ,yn) from an exponential family distribution makes up the random component.

The systemic component of a GLM relates a vector (η1, · · · ,ηn) to the predictor variables via a

linear model. Let ψiq denote the value of predictor q(q = 1,2, · · · ,r) for subject i and γ denotes

unknown parameters. Then

ηi = ∑
q

γqψiq. (1)

This linear combination of predictor variables (1) is called the linear predictor (Agretsi, 2002).

A link function connects the random component to the systemic components. Let µi = E(Yi). A

link function g is a monotonic differentiable function, and links µi to ηi by ηi = g(µi). Thus, the

formula that links E(Yi) to the predictor variables is defined as

g(µi) = ∑
q

γqψiq

However at least one of these problems in practical regression situations is encountered: the as-

sumption of a linear predictor may not be ideal for a continuous covariate; observations may be

spatially or temporally correlated; covariates may not adequately explain heterogeneity among

individuals or units. In this thesis, in addition to the presence of a spatial effect, another prob-

lem encountered is that the continuous covariate(s) may not be linear (Fahrmeir, Kneib and Lang,

2004). To remedy these problems, the strictly linear predictor (1) is replaced by the following

structured additive predictor.

ηi = f1(xi1)+ · · ·+ f j(xi j)+ fp(xip)+u′iγ (2)

where xi j denotes the j( j = 1, · · · , p) covariates of different types and dimensions for subject
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i(i = 1, · · · ,n), the ui and γ denote the vectors of values of the Linear covariates for subject i

and unknown regression parameters for the Linear covariates respectively.

f j comprises of smooth functions of continuous; varying coefficient models; independent and iden-

tical random intercepts and slopes; time trends and seasonal effects; spatially or temporally corre-

lated random effects; and two dimensional surfaces. From a frequentist perspective, these functions

are deterministic while in the Bayesian paradigm they are considered as random functions realiza-

tions. P-splines are used to model the smooth functions. In this approach, it is assumed that a

polynomial spline of degree l approximates an unknown smooth function of covariate x. Within

the domain x, a set of equally spaced knots xmin = ζ0 < ζ1 < · · · < ζm−1 < ζm = xmax defines the

polynomial spline (Fahrmeir, Kneib and Lang, 2004). Another way of writing such a spline is

using the linear combination of K = m+ l B-spline basis functions Bk, i.e,

f (x) =
K

∑
k=1

βkBk(x)

Here β = (β1 · · · ,βK)
′ denotes the vector of unknown regression coefficients. The n×K design

matrix X with elements X [i,k] = Bk(xi) and a vector of unknown parameters β j is used to express

the vector of function evaluations f = ( f1(xi1)+ · · ·+ f j(xi j))
′ of an unknown function f j. i.e.,

f = Xβ

As a result the following is obtained for model (2),

η = X1β1 + · · ·+Xpβp +Uγ (3)

where U is the design matrix for linear effects and γ is the vector of regression coefficients for

linear effects.
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2.2 Prior Assumptions

A diffuse prior p(γ j) ∝ const will be considered for the fixed effects parameters γ . Priors for the

unknown functions f1, · · · , fp in (2) depend on the type of the covariate and on the prior beliefs

about smoothness.

A general form for representing the smoothness priors for the regression coefficients β j is given

by:

p(β j/τ
2
j ) ∝

1
(τ2

j )
rank(K j)/2

exp(− 1
2τ2

j
β
′
jk jβ j) (4)

where K j is a penalty matrix and the prior for β j is partially improper due to K j being rank defi-

cient in most cases.

The variance parameter τ2
j controls the trade off between flexibility and smoothness and is equiv-

alent to the inverse smoothing parameter in a frequentist approach.

The following subsections describe specific priors for continuous and spatial covariates and their

functions f j.

A form of quadratic penalties β ′P(λλλ )β , with P(λλλ ) representing a penalty matrix, is specified on

the regression coefficients so that overfitting is avoided. The form of most penalty matrices is

P(λλλ ) = λK with λ denoting a scalar smoothing parameter and K denotes a penalty matrix.

Prior assumptions about the smoothness of f and the type and dimension of x determines the basis

functions (B1, · · · ,Bk)
′ and penalty P(λλλ ) to use (Fahrmeir, Kneib and Lang, 2004).

2.2.1 Priors for Continuous covariates

There are several alternatives for specifying smoothness priors for continuous covariates. The

focus in this thesis will be on Random walks and bayesian P-splines.

7



P-splines

The B-spline basis functions evaluated at the observations gives the columns of the design matrix

X. The number of knots to use requires making some important choices i.e. either the variability

of the data might not be captured when using a small number of knots or overfitting of the data

occurs when a large number of knots are used. To ensure enough flexibility and smoothness of the

curve, Eilers and Marx (1996) recommends using a moderately large number of equally spaced

knots (between 20 and 40). As a result the following Penalized likelihood estimation is obtained:

P(γ) =
1
2

γ

K

∑
k=r+1

(∆r
βk)

2, r = 1,2,

where γ is the smoothing parameter and ∆r is the difference operator of order k. Suppose x repre-

sents an equally spaced ordered observations of a continuous covariate

x(1) < x(2) < · · ·< x(K).

where K ≤ n denotes the number of different observed values for x in the data set. In dynamic

models, a common approach is to estimate one parameter βk for each distinct x(k) i.e. f (x(k)) = βk

and then use random walk priors to penalize too abrupt jumps between successive parameters. In

the Bayesian approach, for the regression coefficients, first or second order random walks are used

as priors. First and second order random walk models are defined by

βk = βk−1 +uk and βk = 2βk−1−βk−2 +uk (5)

and for initial values, Gaussian errors uk ∼ N(0,τ2) and diffuse priors p(β1) ∝ const, or p(β1)

and p(β2)) ∝ const, are used respectively. A product of conditional densities defined by (5) easily

computes the joint distribution of the regression parameters β j and can be brought into the general

form (4). The penalty matrix is of the form K = D′D where D is a first or second order difference

matrix (Lang and Brezger, 2004). The order of the spline and the penalty determines the limiting
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behaviour λ →∞. A polynomial fit of degree r−1 is obtained in the limit if the order of the spline

is equal to or higher than the order of the penalty. For example, the penalty matrix for a random

walk of first order is:

K =



1 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 1


τ2, the variance parameter, controls the amount of smoothness and the smaller (larger) the variance

the smoother (rougher) are the estimated functions (Besag et al., 1995).

2.2.2 Priors for spatial effects

Assume that the index s ∈ 1, · · · ,S is suppose to represent the location or site in connected ge-

ographical regions. A common way to introduce a spatially correlated effect is to assume that

neighboring sites are more alike than arbitrary sites. Thus, a set of neighbors for each site s must

be defined for a valid prior definition. For geographical data one usually assumes that two sites

s and s′ are neighbors if they share a common boundary. The simplest and most frequently used

spatial smoothness prior for the function evaluations f (s) = Bs is defined as

βs|βs′,s 6= s′,r2 ∼ N

(
1
Ns

∑
s′∈δs

βs′,
τ2

Ns

)

where Ns is the number of adjacent sites and s′ ∈ δsdenotes that site s′ is a neighbor of site s. The

prior is called a Markov random field (MRF) and is a direct generalization of a first order random

walk to two-dimensions (Fahrmeir, Kneib and Lang, 2004).

Unobserved covariates cause problems of heterogeneity among clusters of observations, and this

may result in false standard error estimates and biased estimates for the remaining effects. Suppose

c ∈ 1, · · · ,C is a cluster variable denoting the cluster a particular observation belongs to. Problems
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of heterogeneity are remedied by introducing additional Gaussian i.i.d. effects f (c) = βc with

βc ∼ N(0,τ2), x = 1, · · · ,C. (6)

A n×C 0/1 incidence matrix represents the design matrix X and the the identity matrix (K = i)

is the penalty matrix. For more complex modelling of spatial effects, the prior in (6) may be

used. For example, in certain instances it is recommended to split up a spatial effect fspat into

a spatially correlated (smooth) part fstr and a spatially uncorrelated (unsmooth) part funstr, i.e.,

fspat = fstr+ funstr. Since surrogates of many unobserved influential factors defines a spatial effect,

a rational for the split up is that some of them may obey a strong spatial structure whilst others

may be present only locally (Fahrmeir, Kneib and Lang, 2004). Hence, the two kinds of influential

factors are differentiated by estimating a structured and an unstructured component. As a result, by

observing which of the two effects is larger it is possible to assess the degree of spatial dependency

in the data. If the structured exceeds the unstructured effects, the spatial dependency is larger

and vice versa (Besag York and Mollie, 1991). Markov random field priors or two dimensional

surface smoothers are assumed as priors for the smooth spatial part and prior (6) is assumed for

the uncorrelated part.

2.3 Mixed Model representation

This section shows how STAR models can be represented by generalized linear mixed models

(GLMM) after appropriate reparameterization. Utilizing the structured additive predictor (3) pro-

vides the solution for the simultaneous estimation of the functions f j, j = 1, · · · , p, and the vari-

ance (or inverse smoothing) parameters τ2
j in an EB approach discussed in Section 1.6. the general

model formulation again is crucial to rewrite the model as a GLMM.

Assume that the dimension K j×1 and the corresponding penalty matrix K j of the j-th coefficient

vector has rank k j. By decomposing the vectors of regression coefficients β j, j = 1, · · · , p into an

10



unpenalized and a penalized part, the decomposition is given by:

β j = Xunp
j β

unp
j +Xpen

j β
unp
j , (7)

where a basis of the nullspace of K j is contained in the columns of the K j× (K jk j) matrix Xunp
j

and the orthogonal deviation from this nullspace is contained in Xpen
j . the unpenalised part in j is

separated from the penalised part by decomposition (7).

The following is obtained from the decomposition (7)

1
τ2

j
β
′
jK jβ j =

1
τ2

j
(β pen

j )′β pen
j

and the following is obtained from the general prior (4):

p(β unp
jm ) ∝ const, m = 1, · · · ,K j− k j

and

(β pen
j )∼ N(0,τ2

j I). (8)

By defining the matrices Ũ j = XXj
unp and X̃ j = XXj

pen, the predictor (3) can be rewritten as:

η =
p

∑
j=1

X jβ j +Uγ

=
p

∑
j=1

Ũ jβ
unp
j +Uγ

= Ũβ
unp + X̃β

pen.

The matrices X̃ j and the vectors β
pen
j comprises the design matrix X̃ and the vector β pen respec-

tively. i.e. X̃ = X̃1, X̃2, · · · , X̃p and β pen = ((β pen
1 )′, · · · ,(β pen

p )′)′. Similarly, Ũ = (Ũ1Ũ2 · · · ŨpU)

and β unp = ((β unp
1 )′, · · · ,(β unp

p )′,γ ′)′.

Finally, a GLMM with fixed effects β unp and random effects β pen∼N(0,Λ) where Λ= diag(τ2
1 , · · · ,τ2

1 , · · · ,τ2
p, · · · ,τ2

p)
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is obtained (Fahrmeir, Kneib and Lang, 2004).

2.4 Full Bayesian Inference based on MCMC techniques

In full Bayesian inference, τ2
j , the unknown variance parameters, are also considered as random

variables consequently requiring suitable hyperprior assumptions. Highly dispersed and proper

inverse Gamma priors p(τ2
j )∼ IG(a j,b j) are assigned to the variances resulting probability density

function:

τ
2
j ∝ (τ2

j )
−a j−1 exp

(
−

b j

τ2
j

)
.

Even though the priors for the β j are partial improper, using proper priors for τ2
j (with a j > 0 and

a j > 0) ensures propriety of the joint posterior. A common choice for the hyperparameters (also

the default in BayesX) is a j = b j = 0.001.

The posterior of the model provides the basis for Bayesian inference and is defined as

p(β1, · · · ,βp,τ
2
1 , · · · ,τ2

p,γ|y) ∝ L(y,β1, · · · ,β2,γ)
p

∏
j=1

(p(β j|τ2
j )p(τ2

j )),

where L(.) denotes the likelihood which is a product of the individual likelihood contributions

assuming conditional independence.

The posterior distribution is numerically intractable in many practical situations (especially for

structured additive regression models). Markov Chain Monte Carlo (MCMC) simulations method

remedies this problem by drawing random samples from the posterior. Characteristics of the pos-

terior such as posterior means, standard deviations or quantiles can be estimated by their empirical

analogues. By using the posterior as stationary distribution, MCMC devices a way to construct a

Markov chain. As a result, a sample of dependent random numbers are produced by converging

the iterations of the transition kernel of this Markov chain to the posterior. Since some time is

needed for the algorithms to converge the first part of the sample (the burn-in phase) is usually

discarded. Furthermore, to minimize autocorrelations, some thinning is usually applied (Fahrmeir

et al., 2004).
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Sampling scheme based on Gaussian responses

For that the distribution of the response variable is gaussian i.e yi|ηi, σ2∼N(ηi,
σ2

ci
), i= 1, · · · ,n or

y|η , σ2 ∼ N(η ,σ2C−1) where C = diag(c1, · · · ,cn) is a known weight matrix. A Gibbs sampler

can be employed in this situation, since full conditionals for fixed effects as well as nonlinear

functions f j are multivariate Gaussian i.e. the mean for the full conditional γ|. for fixed effects

with diffuse priors is Gaussian and is defined as

E(γ|.) = (U′CU)−1U′C(y− η̃) (9)

and covariance matrix

Cov(γ|.) = σ
2(U′CU)−1) (10)

where U denotes fixed effects designed matrix and η̃ = η −Uγ denotes the part of the additive

predictor associated with the remaining effects in the model. Similarly, the mean for the full

conditional for the regression coefficients β j of a function f j is Gaussian and is given by

m j = E(β j|.) = (
1

σ2 X′jCX j +
1
τ2

j
K j)

−1 1
σ2 X′jC(y−η− j) (11)

where η j = η−Xjβ j, and covariance matrix

Cov(β j|.) = P−1
j = (

1
σ2 X′jCX j +

1
τ2

j
K j)

−1 (12)

Linear equation systems with a high dimensional precision matrix Pj must be solved in every it-

eration of the MCMC scheme, consequently drawing random samples in an efficient way is not

simple. From Rue (2001), obtaining (β j|.) is used to obtain random numbers as follows: the

Cholesky decomposition is computed P j = LL′ and L′β j = z solved, where z is a vector of in-

dependent standard Gaussians and β j ∼ N(0,P−1
j ). Then the mean m j is computed by solving

P jm j =
1

σ2 X′jC(y−η− j). Finally, β j ∼ N(m j,P−1
j ) is produced by adding m j to the previously

simulated β j (Lang and Brezger, 2004).
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The full conditionals for the variance parameters τ2
j , j = 1, · · · , p, and σ2 are all inverse Gamma

distributions with parameters

a′j = a j +
rank(k j)

2
and b′j = b j +

1
2

β
′
jK jβ j (13)

for τ2
j . For σ2 we obtain

a′σ = aσ +
n
2

and and b′σ = bσ +
1
2

ε
′
ε (14)

where ε is the usual vector of residuals.

Summary sampling scheme

1. Initialization

Given fixed smoothing parameters λ j =
σ2

τ2
j
, BayesX uses λ j = 0.1 as default, compute the

posterior mode for β1, · · · ,βp and γ . backfitting algortihm is used to compute the mode.

These posterior mode estimates are used as the intial state β 2
j , (τ2

j )
c,γc of the chain.

2. Update regression parameters γ

Draw from the Gaussian full conditional with mean and covariance matrix specified in (9)

and (10) to update regression parameters γ .

3. Update regression parameters β j

Draw from the Gaussian full conditional with mean and covariance matrix specified in (11)

and (12) to update β j for j = 1, · · · , p

4. Update variance parameters τ2
j and σ2

Draw from the inverse gamma full conditional with parameters specified in (13) and (14) to

update variance parameters τ2
j and σ2.
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2.5 Penalised Likelihood/Empirical Bayes inference based on mixed model

methodology

For the EB inference, where variances τ2
j are considered as constants, the variances τ2

j and the

priors p(τ j)
2 have to be deleted. The posterior in terms of the GLMM representation of the model

in section (2.4) is given by

p(β unp,β pen|y) ∝ L(y,β unp,β pen)
p

∏
j=1

(
p(β pen

j |τ
2
j )
)
,

where p(β pen|τ2
j ) ∝ N(0,τ2

j I)

Regression and variance parameters can be estimated using iteratively wighted least squares (IWLS)

and approximate marginal or restricted maximum likelihood (REML) developed for GLMMs. The

following 2 iterative steps describe the Estimation process:

1. Given the current variance parameters as the solutions of the system of equations obtain updated

estimates β̂ unp and β̂ pen

Ũ′WŨ Ũ′WX̃

X̃′WŨ X̃′WX̃+ Λ̃−1


 β unp

β pen

=

 Ũ′Wỹ

Ũ′Wỹ

 .

The usual working observations and weights in generalized linear models are defined by the (n×1)

vector ỹ and the n×n diagonal matrix W = diag(w1, · · · ,wn).

2. maximise the approximate marginal / restricted log likelihood to obtain updated estimates

for the variance parameters τ̂2
j

l∗(τ2
1 · · · ,τ2

p) =−
1
2

log(| Σ |)− 1
2

log(| ŨΣ
−1Ũ |)− 1

2
(ỹ− Ũβ̂

unp)′Σ−1(ỹ− Ũβ̂
unp) (15)

with respect to the variance parameters τ2
1 , · · · ,τ2

p. An approximation to the marginal covariance
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matrix of ỹ | β̂ pen is given by Σ = W−1+ X̃ΛX̃′. Iteration of the 2 steps are done until convergence

is achieved. In BayesX, instead of the usual Fisher scoring iterations, the marginal likelihood (15)

is maximized by a computationally efficient alternative (Fahrmeir et al., 2004).

For the above algorithm, convergence problems may occur if one of the parameters τ2
j is small.

In this situation, Fisher scoring fails in finding the marginal likelihood estimates τ̂2 because the

maximum of the marginal likelihood may be on the boundary of the parameter space. If criterion

(16) is smaller than the user specified value lowerlim, the estimation of small variances τ2
j is

stopped.

c(τ2
j ) =

‖ X̃ jβ̂
pen
j

‖ ˆeta
‖ (16)

2.6 Full Bayesian MCMC and Empirical Bayes Models for The Zambia

dataset

In the Zambia dataset, the response is stunting measured as a Z-score. Usually, the effect of the

covariates on the response is modelled by a linear predictor. In this thesis, much emphasis is placed

on the effects of the two continuous covariates age of the child agc and the mother’s body mass

index bmi, which could possibly be nonlinear, and on regional effects of the district where the

mother lives. A second model will also be run where the two continuous covariates agc and bmi

are treated as linear covariates and the two estimates compared.

The first model is given by

η = γ0 + γ1locality + γ2edu1 + γ3edu2 + γ4emp + γ5sex + f1(bmi) +

f2(agc)+ fstr(district)+ funstr(district)

The second model is given by

η = γ0 + γ1locality + γ2edu1 + γ3edu2 + γ4emp + γ5sex + γ6(bmi) +

γ7(agc)+ fstr(district)+ funstr(district)
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The categorical covariates are modelled by independent diffuse priors i.e. p(γ j) ∝ const. Since the

two continuous covariates agc and bmi are assumed to have a possibly nonlinear effect on the Z-

score, they are therefore modelled nonparametrically by cubic P-splines with 20 equidistant knots

and a second order random walk prior. For their variance components, Inverse gamma prior with

hyperparameters a=0.001 and b=0.001 are used.

For the spatially correlated effect fstr(district), Markov random field priors are chosen, and for the

variance component, Inverse gamma prior with hyperparameters a=0.001 and b=0.001 are used.

While for the spatially uncorrelated effect funstr(district) i.i.d. Gaussian random effects are chosen

and for the variance component, Inverse gamma prior with hyperparameters a=0.001 and b=0.001

are used.

2.6.1 Full Bayesian MCMC Model

The function bayesx from the R software package ”R2BayesX” is used to estimate the model:

zm = bayesx(stunting emp.f + edu.f + locality.f + sex.f + sx(mbmi, bs = ”psplinerw2”, knots

= 20, degree = 3) + sx(agechild, bs = ”psplinerw2”, knots = 20, degree = 3) + sx(district, bs

= ”mrf”, map = ZambiaBnd)+ sx(district, bs = ”re”), family=”gaussian”, method=”MCMC”,

predict = TRUE, hyp.prior = c(0.001, 0.001), iter = 32000, burnin = 2000, step = 15, data = zam)

Properties that define the MCMC algorithm such as iterations, burnin and step are utilised in the

above model. Iterations=32000 defines the total number of MCMC iterations used in the model

while burnin=2000 defines the number of burn in iterations used. From the above specifications, a

sample of 30000 random numbers is obtained. Because these random numbers are correlated, the

thinning parameter step is used to thin out the Markov chain. By specifying step=15 in the model,

BayesX will only store every 15th sampled parameter resulting in a random sample of length 2000

for every parameter.

Convergence of the model will be assessed via autocorrelation plots and sampling paths.
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2.6.2 Penalised likelihood/Empirical Bayes Model

The GLMM methodology used for EB inference in STAR models is enabled by the REML algo-

rithms. The function bayesx from the R software package ”R2BayesX” is also used to estimate the

EB model:

zm1 = bayesx(stunting emp.f + edu.f + locality.f + sex.f + sx(mbmi, bs = ”psplinerw2”, knots

= 20, degree = 3) + sx(agechild, bs = ”psplinerw2”, knots = 20, degree = 3) + sx(district, bs

= ”mrf”, map = ZambiaBnd) + sx(district, bs = ”re”), family=”gaussian”, method = ”REML”,

lowerlim=0.001, eps=0.00001, data = zam)

The estimation process is controlled by options lowerlim and eps. The usual Fisher-scoring algo-

rithm for determining small variances have to be modified because they are close to the boundary

of their parameter space. The estimation of the variance of an effect is stopped if the fraction of

the penalized part of an effect relative to the total effect is less than lowerlim and the estimator is

defined to be the current value of the variance. The criteria for the termination of the estimation

process is defined by eps. The estimation process is assumed to have converged if both the relative

changes in the regression coefficients and the variance parameters are less than eps.

2.7 Software and Tools

All the statistical analysis are carried out using R version 3.3.1 and BayesX version 3.0.2 statistical

packages.
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3 Results

3.1 Exploratory Data Analysis

Table 2: Frequency table for variable sex

Sex Observations Freq Cum

Female 2451 0.5057 0.5057

Male 2396 0.4943 1

Table 2 above displays the frequencey table for the sex variable, there were 2396 Male children and

2451 Female children. The number of employed mothers were 2657 while 2190 were unemployed

(Table 7, Appendix I). For the residence of the children, 2102 live in urban areas whilst 2745

live in rural areas (Table 8, Appendix I). Table 9 in Appendix I, displays the different education

levels of the mothers (2302 had no education, 2355 had primary education and 190 had secondary

education).

Table 3: Discriptive statistics of BMI and Age of child

Variable Mean Median Std Min Max

BMI 21.94 21.4 3.29 12.8 39.29

Age 26.67 25 17.11 0 59

Table 3 displays the descriptive statistics for the mother’s BMI and the child’s age. For the BMIs

of the mothers, the minimum recorderd was 12.8, mean was 21.94 and maximum was 39.29. For

the children age, the minimum recorderd was 0 months, median was 25 months and maximum was

60 months.
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Figure 2: Map displaying the districts of Zambia

.

Figure 2 displays the map of Zambia and the 54 districts within it. The minimum number of

neighbours is 1 and the maximum 9.
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3.2 Full Bayesian MCMC

Figure 3: Maximum autocorrelation of all
parameters of the model

Figure 4: Autocorrelation function of the samples
of the BMI variance parameter

Figure 5: sampling paths of the last 10 coeffs
of age

Figure 6: sampling paths of the last 10 coeffs
of BMI

Convergence for the MCMC model is assessed via autocorrelation plots and sampling paths. Fig-

ures 3 and 4 display the autocorrelation function for all the parameters and the BMI variance

parameter respectively. As can be observed from both plots, the autocorrelations for all the lags
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are very close to zero indicating convergence of our model. Autocorrelation for the lags of the

other parameters were all very close to zero as displayed in Appendix II (Figures 14-17). Figures

5 and 6 of the sampled parameters show uncorrelated samples with no particular pattern further

proving the convergence of our model.

Figure 7: Non-linear Effect of ’bmi’ Figure 8: Non-linear Effect of ’agc’

Figures 7 and 8 show the nonlinear effects of childs age and the mothers BMI. From Figure 7 it

can be observed that as BMI of the mother increases, the child’s Z-score also increases meaning

that children of mother’s with higher BMI had less stunting compared to those with lower BMI.

Figure 8 shows that as the child’s age increases the Z-score reduces meaning that with increased

age stunting also increases until at around 20 months when the z-score stabilises. It can also be

seen from both figures that there is clear non-linearity of the curves (especially for the age variable)

justifying the inclusion of both the age and BMI variables as non-linear covariates. This is also

confirmed from the values of AIC=3821.88 and BIC=4108.43 of model I (treated both covariates

as non-linear) versus values of AIC=4160.87 and BIC=4409.04 of model II (treated both as linear

covariates). As a result, model I is preferred for the subsequent analysis.

Tables 4 and 5 show the posterior mean estimates of model I and II respectively. There is not much
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difference in the models in either the parameter estimates or their significance. From Table 4, the

variances of the covariate BMI (0.0018) is less than that of age (0.0067) meaning that the curve

of the former is smoother than that of the latter. The smoothing parameter is determined from the

formula (smoothingparameter = scale
variance ), hence the smaller the variance the smoother the curve.

Table 4: Parameters and Variances estimates of model I

Parameter Mean Sd 2.5%-Quant. Median 97.5%-Quant.

intercept -0.1137 0.0513 -0.2161 -0.1131 -0.0139

emp 0.0159 0.0273 -0.0374 0.0161 0.0687

edu-prim 0.1130 0.0293 0.0551 0.1130 0.1699

edu-sec 0.4072 0.0719 0.2655 0.4087 0.5508

urban 0.1804 0.0445 0.0928 0.1814 0.2659

sex-male -0.1164 0.0260 -0.1669 -0.1161 -0.0660

variance parameter Mean Sd 2.5%-Quant. Median 97.5%-Quant.

Var(age) 0.0065 0.0073 0.0013 0.0043 0.0238

var(mbmi) 0.0018 0.0022 0.0003 0.0011 0.0078

var(district-str) 0.0333 0.0177 0.0094 0.0294 0.0767

var(district-unstr) 0.0082 0.0060 0.0008 0.0069 0.0232

Scale estimate mean Sd 2.5%-Quant. Median 97.5%-Quant.

Sigma2 0.8022 0.0165 0.7707 0.8021 0.8359
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Table 5: Parameters and Variances estimates of model II

Parameter Mean Sd 2.5%-Quant. Median 97.5%-Quant.

intercept -0.2387 0.0943 -0.4173 -0.2346 -0.0621

emp 0.0156 0.0279 -0.0373 0.0161 0.0700

edu-prim 0.1044 0.0302 0.0491 0.1044 0.1648

edu-sec 0.3916 0.0741 0.2489 0.3937 0.5367

urban 0.1979 0.0453 0.1128 0.1966 0.2861

sex-male -0.1189 0.0265 -0.1708 -0.1188 -0.0651

age -0.0150 0.0008 -0.01651 -0.0151 -0.0137

mbmi 0.0230 0.0041 0.0151 0.0228 0.0314

variance parameter Mean Sd 2.5%-Quant. Median 97.5%-Quant.

var(district-str) 0.0321 0.0189 0.0195 0.0272 0.0848

var(district-unstr) 0.0086 0.0063 0.0008 0.0074 0.0242

Scale estimate mean Sd 2.5%-Quant. Median 97.5%-Quant.

Sigma2 0.8627 0.0181 0.8292 0.8628 0.9008

The posterior means of the parameters and their corresponding 95% credible intervals are shown

in Table 4. Children of mothers who had both primary and secondary education had higher Z-score

(implying less stunting) compared to those without education and the difference was significant.

Being a male child was associated with more stunting; children who live in urban areas also had

less stunting compared to those in rural areas; and there was no significant difference in stunting

between children of working mothers and non-working mothers.
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Figure 9: Kernel density estimates of the mean of the structured, top, and the unstructured spatial
effect, bottom

.

Kernel density estimates or shaded maps are used to display the posterior means for the struc-

tured and unstructured spatial effects of the district covariates. In Figure 9, the Kernel density are

assumed to follow a Gaussian distribution and the range of the structured spatial effects is much

larger than the range of the unstructured spatial effect. This implies that there is greater spatial

dependency, i.e. global unobserved factors dominate locally unobserved factors.

25



Figure 10: Map of Structured spatial random
effects

Figure 11: Map of Unstructured spatial random
effects

The maps in Figures 10 and 11 display the structured and unstructured random effects respectively

and the colours correspond to significantly negative (Blue colored), significantly positive (Pink

colored) and insignificant (Grey colored). The structured spatial effects are dominant over the un-

structured as confirmed by the former having wider range of effects (-0.3139 to 0.3139 vs -0.1031

to 1.1031). Thus, there is presence of a very large spatial dependency for all nearby districts in

each of the 3 regions (North, Centre and South). From Figure 10, it can be observed that there is a

strong South-North difference in these regional effects with the center of the country dividing the

two regions. It can be inferred that children living in districts in the central and southern regions

have less stunting than those living in the north with children living in districts of the southern

region suffering the least stunting by far.

After controlling for the structured spatial and other model effects, it can be observed from Figure

11 that there are variations in the degree of stunting for neighbouring districts in each region. For

example, one of the districts in the south-central region (dark-pink coloured district) corresponds

to major urban areas such as the capital city, has considerably less stunting than nearby districts

in the central region. But it can also be seen in one of the districts in the north-central region

(small dark-blue coloured district) that there is presence of high degree of stunting compared to
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its neighbouring central districts. These observations of both districts indicate that there are local

unobserved variables at play.

Figure 12: Map of the sum of spatial random effects

.

The map of Figure 12 shows the sum of the structured and unstructured spatial effects for the

district covariate. It can be seen that it has very similar pattern to the structured spatial effects

of Figure 10 indicating the large dominance of the structured spatial effects over the unstructured

effects.
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3.3 Sensitivity Analysis

Table 6: Summary of the sensitivity analysis of the choice of hyperparameters for Model I

Parameter a=0.001
b=0.001

a=0.01
b=0.01

a=0.5
b=0.0005

a=1
b=0.005

spatial effects∗

τstr
2 0.0333 0.0368 0.0352 0.0359

(0.0094-0.0767) (0.0111-0.0821) (0.0105-0.0823) (0.0102-0.0073)

τunstr
2 0.0082 0.0075 0.0080 0.0076

(0.0008-0.0232) (0.0007-0.0223) (0.0008-0.0229) (0.0007-0.0224)

smooth functions∗∗

τage
2 0.0065 0.0060 0.0064 0.0065

(0.0013-0.0238) (0.0012-0.0212) (0.0012-0.0239) (0.0013-0.0258)

τBMI
2 0.0018 0.0018 0.0020 0.0017

(0.0003-0.0078) (0.0003-0.0082) (0.0003-0.0096) (0.0003-0.0073)

*Variance components and 95% credible intervals for the spatially structured and unstructured

effects; **Variance components and 95% credible intervals for the nonlinear smooth functions.

The estimated regression parameters depend on the choice of hyperparameters, as a consequence

Model I was ran again to investigate the results sensitivity to different choices of hyperparameters.

The different hyper-parameters investigated are: IG (a = 0.01, b = 0.01), IG (a = 0.5, b = 0.0005)

and IG (a = 1, b = 0.005) respectively. The four selected hyperparameters produced similar results

for the posterior means of the fixed parameters as well as the variance components of the spatial

effects and smooth functions. This implies that the model is less sensitive to different hyperparam-

eters. Table 6 summarises the sensitivity analysis of the choices of hyper-parameters for Model I

and the values of their respective variance components.
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3.4 Penalised likelihood/Empirical Bayes

Figure 13: Kernel density estimates of the mean of the structured, top, and the unstructured spatial
effect, bottom

.

Figure 14: Non-linear Effect of ’bmi’ Figure 15: Non-linear Effect of ’agc’
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Similar to the previous FB MCMC analysis, Figure 13 shows that the range of mean effects of

structured spatial effect is much larger than unstructured effects. Figures 14 and 15 also show

similar patterns to the FB MCMC for the BMI and age variables respectively. The linear covariate

parameters also have similar estimates and significance to those of the FB MCMC analysis as ob-

served in Table 7. A difference observed is that the EB inference has lower variances than the FB

MCMC for both the non-linear covariates and spatial effects. As a result, EB inference produces

smoother curves than FB MCMC analysis.

Table 7: Parameter and Variance estimates

Parametric coefficients

Parameter Mode SE t value P-value

intercept -0.1529 0.0340 -4.2589 2e-16

emp 0.0153 0.0273 0.5618 0.5743

edu-prim 0.1139 0.0291 3.9175 0.0001

edu-sec 0.4093 0.0717 5.7083 <2e-16

urban 0.1808 0.0438 4.1303 <2e-16

sex-male -0.1171 0.0259 -4.5298 <2e-16

variance parameter Variance Smooth par

Var(age) 0.0032 249.0010

var(mbmi) 0.0000 69862.1000

var(district-str) 0.0294 27.2828

var(district-unstr) 0.0081 99.4393

Scale estimate: 0.8021

Figures 16 and 17 show the maps of the structured and unstructured effects respectively. The trends

observed in Figures 16 and 17 are similar to those of the FB analysis. As can be seen in Figure
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16 there is a strong regional divide in stunting with the districts in the southern region having the

least stunting followed by the districts in the central region and the districts in the Northern regions

having the most stunting. The structured spatial effects also dominates over the unstructured spatial

effects.

Figure 16: Map of Structured spatial random
effects

Figure 17: Map of Unstructured spatial random
effects
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4 Discussion and Conclusion

Mother’s BMI had a positive linear relations to the z-score for stunting i.e. as mothers BMI increase

stunting reduced sgnificantly in their children. Several studies (Tiga and Sen, 2016; Dharmalingam

and Krishnakumar, 2010; Borah and Agarwalla, 2016) have shown that higher BMI was associ-

ated with better nutrition in a child and lowered stunting. In developing countries like Zambia,

higher BMI is associated with better socio-economic status and access to better living conditions

and more nutritious food choices (Tigga et al., 2015).

Increasing age of the child was found to be associated with stunting. The anthropometric status

of children was found to worsen around 4-6 months age as this is the period in which solid food

is introduced. This increase in stunting could be due to poor quality food replacing breastmilk

as well as other factors such as poor living conditions leading to infectious diseases and parasites

(WHO, 1995; Stephenson,1999).

Significant spatial variability was found in the incidence of stunting among the districts of Zambia.

Districts in the Central and Southern regions had less stunting compared to the Northern Regions.

This could be due to several factors prominent among them is that both the Central and Southern

regions have higher concentration of urban areas such as the capital city and other major cities

providing access to better socioeconomic and health facilities. Other factors causing the spatial

variability may include poor climatic conditions leading to low agricultural yield, presence of

infectious diseases in certain districts and poor infrastructure hindering access to health services

etc (Gallup and Sachs, 1998).

In this thesis, EB estimation inference was developed using GLMM and then compared to FB

MCMC inferences using a spatio-additive model. EB approach is a promising alternative to FB

analysis due to its computationally efficient modification of the usual version of REML estima-

tion of smoothing parameters. Based on the estimation results obtained herein, the two inference

methods produce similar results.
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5 Limitations and Recommendations

In this study, the structured spatial effects were much larger than the unstructured spatial effects as

indicated by the three regional divides in the degrees of stunting. Thus, there was more global than

local unobserved risk factors. Future studies should focus on unobserved global factors that led to

these regional discrepancies. For example factors such as GDP, Primary health facility availability,

employment opportunities, level of infrastructure development, climatic conditions, etc, for the

different districts of these regions could be included in future studies to determine the cause of this

sharp regional divides.

There is also presence of some unstructured spatial effects especially in one of the south central

districts (having a very low stunting) and another north central district (having very high stunting)

compared to their corresponding neighbours after controlling for all other factors. Policy makers

should focus on local unobserved factors that could have caused such anomalies in these two

districts.

35





6 References

1. Agretsi, A. (2002). Categorical Data Analysis. 2nd edition. Wiley and Sons, New Jersey.

2. Besag, J., York, J. and Mollie, A. (1991). Bayesian image restoration with two applications

in spatial statistics (with discussion). Ann. Inst. Statist. Math. 43, 1-59.

3. Dharmalingam, A., Navaneetham, K., & Krishnakumar, C. S.(2010).Nutritional status of

mothers and low birth weight in India. Maternal and Child Health Journal, 14(2),290298.

4. Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing using B-splines and penalties.

Statist. Sci. 11, 89-121.

5. Fahrmeir,L., Kneib,Th., & Lang,S. (2004). Penalized additive regression for spacetime

data:a Bayesian perspective. Statistica Sinica 14, 715745.

6. Fahrmeir, L. and Knorr-Held, L. (2000). Dynamic and semiparametric models. In Smooth-

ing and Regression: Approaches, Computation and Application (Edited by M. Schimek).

Wiley, New York.

7. Gallup, J. and J. Sachs (1998). Geography and Economic Growth. Proceedings of the An-

nual Bank Conference on Development Economics. Washington DC: The World Bank.

8. Lang, S., Brezger, A. (2004). Bayesian P-Splines Journal of Computational and Graphical

Statistics, 13, 183212.

9. Sen, J., Roy A., & Mondal, N. (2009).Association of maternal nutritional status, body com-

position and socio-economic variables with low birth weight in India. Journal of Tropical

Pediatrics, 56(4), 254259.

10. Smith, M. and Kohn, R. (1996). Nonparametric regression using Bayesian variable selection.

Journal of Econometrics, 75, 317-343.

37



11. Stephenson, C. (1999). Burden of Infection on Growth Failure. Journal of Nutrition, Sup-

plement, 534S-538S.

12. Tigga, P.L, & Sen, J (2016). Maternal Body Mass Index Is Strongly Associated with Chil-

dren Z-Scores for Height and BMI. Journal of Anthropology, 2016(6538235).

doi.org/10.1155/2016/6538235.

13. Tigga, P.L, Sen, J., & Mondal, N (2015). Association of some socio-economic and socio-

demographic variables with wasting among pre-school children of north Bengal, India. Ethiopian

Journal of Health Sciences, 25(1), 6372.

14. UNICEF (1998). The State of the World’s Children 1998: Focus on Nutrition. New York:

UNICEF.

15. WHO (1995). Physical Status: The Use and Interpretation of Anthropometry. WHO Tech-

nical Report Series No. 854. Geneva: WHO.

16. World Bank (1995). Zambia Poverty Assessment. Washington, DC: The World Bank.

38



7 Appendix

Appendex I: Exploratory Data Analysis Tables

Table 8: Frequency table for Mother’s employment status

Emp Status Observations Freq Cum
No 2190 0.4518 0.4518
Yes 2657 0.5482 1

Table 9: Frequency table for type of locality

Locality Observations Freq Cum
Rural 2745 0.5663 05663
Urban 2102 0.4337 1

Table 10: Frequency table for Education level

Level Observations Freq Cum
No 2302 0.4749 0.4749

Primary 2355 0.4859 0.9608
Secondary 190 0.0392 1
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Appendex II: Autocorrelation plots

Figure 18: Autocorrelation function of the
samples of the structured variance parameter

Figure 19: Autocorrelation function of the sam-
ples of the unstructured variance parameter

Figure 20: Autocorrelation function of the
samples of the total spatial variance parameter

Figure 21: Autocorrelation function of the sam-
ples of the age variance parameter
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Appendex III: codes

library("BayesX")

library("BayesXsrc")

library("R2BayesX")

## load ZambiaBnd and plot it

data("ZambiaBnd")

plotmap(ZambiaBnd)

data("ZambiaNutrition")

str(ZambiaNutrition)

####print first 10 rows of ZambiaNutrition

head(ZambiaNutrition, n=10)

zam1=ZambiaNutrition

zam1$emp=NULL

zam1$emp[zam1$memployment=="yes"]=1

zam1$emp[zam1$memployment=="no"]=0

zam2=ZambiaNutrition

zam2$edu=NULL

zam2$edu[zam2$meducation=="no"]=0

zam2$edu[zam2$meducation=="primary"]=1

zam2$edu[zam2$meducation=="secondary"]=2
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zam3=ZambiaNutrition

zam3$locality=NULL

zam3$locality[zam3$urban=="no"]=0

zam3$locality[zam3$urban=="yes"]=1

zam4=ZambiaNutrition

zam4$sex=NULL

zam4$sex[zam4$gender=="female"]=0

zam4$sex[zam4$gender=="male"]=1

zam=cbind(ZambiaNutrition,"emp"=zam1$emp,"edu"=zam2$edu,

"locality"=zam3$locality,"sex"=zam4$sex)

zam=cbind(ZambiaNutrition,"emp"=zam1$emp,"edu"=zam2$edu,

"locality"=zam3$locality,"sex"=zam4$sex)

zam$memployment <- NULL

zam$urban <- NULL

zam$gender <- NULL

zam$ meducation <- NULL

zam$emp.f <- factor(zam$emp)

zam$edu.f <- factor(zam$edu)

zam$locality.f <- factor(zam$locality)
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zam$sex.f <- factor(zam$sex)

####MODEL I######

zm <- bayesx(stunting ˜ emp.f + edu.f + locality.f + sex.f +

sx(mbmi,bs = "psplinerw2", knots = 20, degree = 3) +

sx(agechild, bs = "psplinerw2", knots = 20, degree = 3) +

sx(district, bs = "mrf", map = ZambiaBnd)+ sx(district, bs = "re")

,family="gaussian", method="MCMC", hyp.prior = c(0.001, 0.001),

iter = 32000, burnin = 2000, step = 15, data = zam)

summary(zm)

AIC(zm)

####plots

plot(zm, term = c("sx(district):mrf", "sx(district):re"),main = "")

plot(zm, which = "max-acf")

plot(zm, term = "sx(mbmi)", which = "var-samples", acf = TRUE)

plot(zm, term = "sx(district):total", which = "var-samples",

acf = TRUE)

plot(zm, term = "sx(district)", which = "coef-samples")

plot(zm, term = "sx(agechild)", which = "coef-samples")

plot(zm, term = "sx(district):mrf", map = ZambiaBnd, main =

"Structured spatial effect", digits = 4, pos = "topleft")

plot(zm, term = "sx(district):re", map = ZambiaBnd, main =

"Unstructured spatial effect", digits = 4,pos = "topleft")

plot(zm, term = "sx(mbmi)", main = "Mother’s body mass index",

xlab = "BMI",ylab = "f(BMI)", ylim = c(-0.8, 0.6), rug = FALSE)

plot(zm, term = "sx(agechild)", main = "Age of child", xlab =
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"agc (months)",ylab = "f(agc)", ylim = c(-0.8, 0.6), rug = FALSE)

plot(zm, term = "sx(district):total", map = ZambiaBnd, main =

"Total spatial effect", pos = "topleft", digits = 4)

##### same model with REML

zm1 <- bayesx(stunting ˜ emp.f + edu.f + locality.f + sex.f +

sx(mbmi,bs = "psplinerw2", knots = 20, degree = 3) + sx(agechild,

bs = "psplinerw2", knots = 20, degree = 3) +

sx(district, bs = "mrf", map = ZambiaBnd) + sx(district, bs = "re"),

lowerlim=0.001, eps=0.00001, family="gaussian",

predict =TRUE, method = "REML", data = zam)

summary(zm1)

DIC(zm1)

plot(zm1, term = c("sx(district):mrf", "sx(district):re"),

main = "")

plot(zm1, term = "sx(district):mrf", map = ZambiaBnd, main =

"Structured spatial effect", digits = 4, pos = "topleft")

plot(zm1, term = "sx(district):re", map = ZambiaBnd, main =

"Unstructured spatial effect", digits = 4, pos = "topleft")

plot(zm1, term = "sx(mbmi)", main = "Mother’s body mass index",

xlab = "BMI",ylab = "f(BMI)", ylim = c(-0.8, 0.6), rug = FALSE)

plot(zm1, term = "sx(agechild)", main = "Age of child", xlab =

"agc (months)",ylab = "f(agc)", ylim = c(-0.8, 0.6), rug = FALSE)

plot(zm1, term = "sx(district):total", map = ZambiaBnd, main =

"Total spatial effect", digits = 4,pos = "topleft")
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### model II########

zm2 <- bayesx(stunting ˜ emp.f + edu.f + locality.f +

sex.f + mbmi+ agechild + sx(district, bs = "mrf", map = ZambiaBnd)

+ sx(district, bs = "re"), family="gaussian", hyp.prior =

c(0.001, 0.001), iter = 32000, burnin = 2000, step = 15, data = zam)

summary(zm2)

### model II REML

zm2a <- bayesx(stunting ˜ emp.f + edu.f + locality.f

+ sex.f + mbmi+ agechild + sx(district, bs = "mrf",

map = ZambiaBnd)

+ sx(district, bs = "re"),lowerlim=0.001, eps=0.00001,

predict =TRUE,family="gaussian",

method = "REML", data = zam)

summary(zm2a)

####plots

plot(zm, term = "sx(district):mrf", map = ZambiaBnd,

pos = "topleft")

#####sensitivity analysis#######

zma <- bayesx(stunting ˜ emp.f + edu.f + locality.f + sex.f

+ sx(mbmi,bs = "psplinerw2", knots = 20, degree = 3) +
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sx(agechild, bs = "psplinerw2", knots = 20, degree = 3)

+ sx(district, bs = "mrf", map = ZambiaBnd)+ sx(district, bs = "re")

,family="gaussian", method="MCMC", hyp.prior = c(1, 0.005)

, iter = 32000, burnin = 2000, step = 15, data = zam)

summary(zma)

zmb <- bayesx(stunting ˜ emp.f + edu.f + locality.f + sex.f

+ sx(mbmi,bs = "psplinerw2", knots = 20, degree = 3) +

sx(agechild, bs = "psplinerw2", knots = 20, degree = 3) +

sx(district, bs = "mrf", map = ZambiaBnd)+ sx(district, bs = "re")

,family="gaussian", method="MCMC", hyp.prior = c(0.5, 0.0005),

iter = 32000, burnin = 2000, step = 15, data = zam)

summary(zmb)

zmc <- bayesx(stunting ˜ emp.f + edu.f + locality.f + sex.f +

sx(mbmi,bs = "psplinerw2", knots = 20, degree = 3) +

sx(agechild, bs = "psplinerw2", knots = 20, degree = 3) +

sx(district, bs = "mrf", map = ZambiaBnd)+ sx(district, bs = "re")

,family="gaussian", method="MCMC", hyp.prior = c(0.01, 0.01),

iter = 32000, burnin = 2000, step = 15, data = zam)

summary(zmc)
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