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Chapter 1

Introduction

1.1 Computer-assisted Synthetic Planning in Drug

Discovery

In the field of organic chemistry, predicting the feasibility of a reaction pathway

has always been a daunting task. Pharmaceutical research in particular is

dependent on these organic pathways for small-molecule drug discoveries. Due

to the estimated 1060 possible drug candidates, the over 135 million reported

synthesised drug molecules constitute only a small fraction of the feasible molecule

space [1]. Given that there is often more than one way of producing a certain

molecule, the reaction space itself is even greater still. As potential drug molecules

are often synthesised in a string of subsequent reactions, it is important to be

able to predict each of these reactions correctly in order for the overall reaction

to be a success. Even if it would be impossible to predict the outcome of each

reaction with full accuracy, it can be helpful to determine a priori which of these

reactions has the lowest probability of success in order to fail fast and reduce

the economic impact of such failure. Moreover, the potential reaction space can

be limited by the commercial availability of compounds and the perceived ease

of synthesis.

As far back as 1967, researchers have attempted to develop software able to assist

in designing these chemical pathways in silico [2]. These techniques have been

coined computer-assisted synthetic planning (CASP) and have taken different

routes to achieve their goal. Other goals than forward prediction (predicting

the outcome of a reaction based on the input reactants) could be retrosynthesis

(predicting the necessary reactants based on an input product molecule) or even
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CHAPTER 1. INTRODUCTION

the elucidation of the mechanism behind the reaction [3].

The first such models were based on an extensive set of chemical rules. These

rules were collected from the experience of human experts in chemical reaction

modelling. Based on the collective set of rules, known as the template (or

transform) library, reaction centers could be determined in input molecules and

predictions were made based on the templates that were encoded in the model.

The obvious disadvantage of these models is that they require manual encoding of

the templates and building these libraries is very time consuming. Furthermore,

deciding on the full extent of the reaction centers requires its own heuristics:

Too many atoms included could make it difficult to find an appropriate template,

while too few might oversimplify the reaction and produce incorrect results [4].

These constraints often make the models accurate only within a limited reaction

space. Despite these drawbacks, 2013 saw the release of the most extensive of

template-based models in Chematica, which uses a database of approximately

10 million compounds and more than 4,400 transforms. However, compiling this

database of knowledge required over a decade of work [5]. In 2017, Merck KGaA

acquired Chematica and rebranded it as Synthia. In its current form, the tool

holds over 100,000 hand-coded reaction rules [6].

A second approach has been to rely on the physical and thermodynamic properties

of the molecules. Machine learning techniques were applied to search for the

most probable (lowest energy) transition states, which in turn provide an answer

to which products are most likely to form [7, 8]. The major drawback to these

methods is the high computational cost involved in the quantum mechanics that

accompany these calculations of free energy.

Modern day developments have sparked a new interest in the possibilities of

neural networks. With ever increasing hardware specifications, numerous ar-

chitectures have been developed in the field of artificial intelligence (AI). In a

well-publicised confrontation in 2016, DeepMind’s reinforcement learning neural

network AlphaGo defeated world champion Lee Sedol at Go, a strategic board

game that had proven to be a great challenge for AI due to the sheer number of

possible nodes at each step, making a brute-force approach intractable [9]. While

neural networks have been around for many decades, this event set a landmark

for what can be achieved with modern day hardware and spawned a renewed

interest for many different research applications. This renaissance of neural

networks has also been felt in the field of computational chemistry. They can

be applied in combination with rule-based systems to select either the template

reaction [10] or to filter reactive sites or select the correct molecular orbital

interactions in mechanistic approaches [11, 12]. Coley et al. suggested a two-step

approach to predict reaction outcomes. In the first step, the reactant graph is
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CHAPTER 1. INTRODUCTION

analyzed and the most likely bonds to change in the reaction are predicted by

using a graph-convolutional neural network. In a second step, these changes are

consolidated to form a set of possible products, from which the most likely to be

formed is selected using a second neural network combined with the likelihood

outcomes from the first step evaluated in each product candidate [13]. However,

aside from these approaches, the use of neural networks has also proven to be a

key contributor in the development of template-free prediction models, a third

and final approach to reaction modelling. Borrowing from advances in natural

language processing (NLP) [14], architectures with recurrent neural networks

(RNN) for the encoder and decoder with a single attention layer in between have

been proposed to cast the set of reactants and reagents onto a set of outcome

molecules (forward prediction) or vice versa (retrosynthesis) [15, 16, 17]. These

so-called sequence-to-sequence models treat the reaction prediction directly as a

translation problem, where the implicit rules of organic pathways can be seen

as the grammar of the language. However, these models make the distinction

between reagents and reactants in the input, which requires atom-mapping to

connect each atom in the product to a single atom in the reaction input, a process

which is inherently linked to the use of templates and rule-based heuristics. In

2019, Schwaller et al. proposed a multi-head attention mechanism that is no

longer based on the RNN component of the previous models and is able to be

trained on data with unseparated reagents and reactants, therefore abolishing

the need for atom-mapping [18, 14]. A single model top-1 accuracy of 88.6% was

reported, which increased to 94.2% when the top-5 was considered. Building on

this work, Su et al. developed a bilateral long-short-term memory model with

self-attention to predict not the most likely product distribution, but to classify

whether or not a reaction from a specific reaction family would be successful.

To achieve this end, they conducted 700 reactions and used the yields as input

in their model and an accuracy of over 80% was reported [19]. Tetko et al.

proposed an NLP transformer model for retrosynthesis, scoring a 97% top-5

accuracy on single-step reactions [20]. A more comprehensive list of prediction

models is available in literature reviews [3, 4, 5, 21].

1.2 Chemical Fingerprints and Datasets

No matter what approach or which model is selected, an appropriate format is

required to read and output the data. This vocabulary needs to be unambiguous

and complete. Throughout the last decades, several different formats have

been proposed. One such formats is the IUPAC internal chemical identifier for

reactions (RInChI) which aims at creating an unambiguous line notation for

reactions by grouping them into reactants, products and catalysts after sorting
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CHAPTER 1. INTRODUCTION

them within the group. The format allows for hashing into RInChI keys, shorter

fingerprints of the original reaction, but does not allow any form of atom-mapping

[22].

A different format is provided by the Chemical Markup Language (CML). This is

the XML equivalent for chemical notation, which can be expanded to CMLReact.

CML provides a large flexibility in the representation of a molecule and can

hold several notation conventions at once. While this is the strength of the

markup language, it is also a perceived weakness as there is not one unique way

of representing any given molecule or reaction [23].

Finally, one of the oldest and most commonly used notations is the Simplified

Molecular Input Line Entry System (SMILES) [24]. A clear set of rules was

determined to project any organic compound onto a data string. In doing so,

the notation is simplified wherever possible (e.g. removal of hydrogen atoms

and single and aromatic covalent bonds). While some flexibility is allowed in

the simplification, equivalent SMILES are interchangeable and can be read by

most cheminformatics software packages available. Reactions can be represented

by tokens separating reactants from products and molecules from one another.

Extensions to reaction SMILES have been made (SMARTS, DeepSMILES, SELF-

IES) to include, among other, atom-mapping and reaction center information

[25, 26].

Equally important as having a unified vocabulary to represent reaction data,

is the availability of a large and reliable dataset. To this end, by far the most

commonly used is the United States Patent and Trademark Office (USPTO)

dataset. The USPTO provides a large, and, more importantly, freely available set

of chemical reactions for which patents have been filed. Based on the abstracts,

text-mining work has been done to extract the reactions from this dataset in

the formats previously described [27]. Each entry in the USPTO was parsed

into a CML file containing the reaction SMILES, the paragraph from which

it was extracted and the reaction conditions in which the reaction took place.

In this work, the full USPTO dataset consisted of a total of 1,387,365 unique

canonicalized reactions, which were standardized according to the algorithm

proposed by Madzhidov et al [28].

At various points in the lifecycle of this dataset, subsets were created by different

research groups with different characteristics. The USPTO MIT subset was

created by Jin et al. in order to create a dataset with no stereochemical

information. Furthermore, all exact duplicate reactions were removed as well

as erroneous reactions. The resulting reaction dataset contained 480k reactions

[29]. Using this subset as a starting point, Bradshaw et al. filtered the data even

further and removed all reactions where no linear electron flow topology was
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Figure 1.1: An example of two near-duplicate reactions in the USPTO dataset.
The bottom reaction [ID 2187557] reported H2O explicitly, where it was left out
in the top reaction [ID 2874384].

present, with the intent of creating a prediction model (ELECTRO) based on

electron flow [30]. Schwaller et al. on the other hand, created a subset of unique

canonicalized reactions starting from an update of the original USPTO dataset

that was published in 2016, keeping as much information as possible [17].

Asides from the publicly available USPTO dataset, reaction data for researchers

is only sparsely available. While additional reaction databases exist, such as

SciFinder, Reaxys, Pistachio or SPRESI, these are commercial packages and

are not readily available to all research groups. Unfortunately, as is often the

case with collecting data from published material, and patents in particular, the

resulting datasets will suffer from publication bias. While the available reactions

are plenty, they are but a fraction of the total attempted synthesis routes and

may therefore lead to an overestimation of the success rate of certain pathways

[1]. Raccuglia et al. showed the promise of using so-called ’dark’, or unsuccessful,

reactions in predicting the reaction success in the synthesis of inorganic materials

[31].

1.3 Research Outline

As outlined in the previous section, the reaction SMILES generated during

scraping of a large text-based dataset such as the USPTO, are dependent on

the formulation used by the author of the journal or the patent. While reaction

conditions are filtered out and stoichiometry and byproducts of the reaction

are generally ignored, there is no consensus approach on reporting solvents,

reagents or catalysts. This can potentially lead to duplicate reactions entering

the data twice, but with slightly differing reaction SMILES. An example of

such a near-duplicate reaction is given in figure 1.1. When duplicate reactions

are present in the train-, validation- and test-splits, this will result in incorrect
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CHAPTER 1. INTRODUCTION

accuracy predictions due to data leakage. As reported by Schwaller et al., no

consensus approach currently exists in the removal of near-duplicate reactions

[17].

However, comparing reactions pairwise in order to find and remove near-duplicates

can only be achieved in O(n²) time complexity, as the number of pairwise com-

parisons is given by n(n−1)
2 . Due to the large scale of the datasets at hand,

this is intractable even on modern computing hardware. To this end, the use

of Locality-Sensitive Hashing (LSH), a family of hashing algorithms originally

designed for the retrieval of near-duplicate web-pages [32], was explored on a

combined dataset, consisting of the full USPTO, Reaxys and Pistachio reaction

SMILES data.
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Chapter 2

Data Structure and

Methodology

2.1 Data and Metrics

A combination of three different datasets was used. As described in the previous

chapter, the USPTO dataset is freely available, built from a database of US

patents, and the most common benchmark dataset for chemical computation

research. Asides from the USPTO dataset, NextMove’s Pistachio dataset was

also used. This is a proprietary dataset consisting of a combination of US and

EU patents, totalling over 4 million reactions. Finally, Elsevier’s Reaxys dataset

provides a combination of patents and journal entries. Just like Pistachio, the

Reaxys dataset is proprietary and the most extensive of the three, providing

information on over 15 million reactions. Due to the common sources of the three

datasets, some overlap is present between them. The combination of the these

datasets will from here on out be referred to as Reactlake. After removing the

exact duplicates from Reactlake, it consisted of 18,727,618 remaining reactions.

All three datasets are available in the form of canonicalized reaction SMILES.

Graphical representations of reactions throughout this work were created with

RDKit (2020.03.3) in Python 3.6. These reaction SMILES were converted to

individual molecules and one-hot encoded in reactant and product vectors. As

such, each reaction SMILES can be represented by two reduced vectors containing

the one-hot encoded positions of each individual molecule in the sparse matrix

(see figure 2.1 for an example). In order to remove all near-duplicate reactions, a

metric is required to formally capture the distance (or equivalently, the similarity)
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CHAPTER 2. DATA STRUCTURE AND METHODOLOGY

Figure 2.1: An example of a single reaction [ID 3365334] (top) with its corre-
sponding reaction SMILES (middle) and reactant and product vectors (bottom).

Figure 2.2: Two near-duplicate reactions differing only in the organic solvent
CCl4. Top [ID 127920]: reactant and product vectors are given by [301202,
6678879, 6679887] and [1818850], Bottom [ID 552473]: reactant and product
vectors are [301202, 4719643, 6678879, 6679887] and [1818850].

between two reactions. Next, a classification threshold should be set to determine

wether or not the calculated distance is sufficient to classify the two reactions as

near-duplicates.

Starting from the one-hot encoded vectors, several similarity indeces can be used,

each providing slight nuances.

The Hamming distance is an absolute distance metric that is defined as the

number of different entries in two equal-length sets. It can be viewed as the

number of changes required to map one vector onto the other. The Hamming

distance of bit-vectors 010101 and 010111 is as such calculated as 1. For two

molecule sets A and B of arbitrary sizes in the one-hot encoded vector, it can be

generalized as the difference between the union and the intersection of the two

reduced vectors or |A ∪B|−|A ∩B|. In the example of figure 2.2, the Hamming

distance of the reactant vectors and product vectors is 1 and 0 respectively.

While the Hamming distance provides an absolute measure of similarity between

two equal-sized vectors, the Jaccard similarity can be seen as an extension of

the Hamming distance, but relative to the size of the union of non-zero entries

in the vectors. The Jaccard index or similarity coefficient (sometimes referred to
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as the Tanimoto index) is defined as |A∩B||A∪B| and is a measure of the ratio of equal

entries to the total number of entries in the vectors. By design, the Jaccard

index exists only in the interval [0,1]. The Jaccard distance is calculated as

the complement of the Jaccard index: 1− |A∩B||A∪B| or |A∪B|−|A∩B||A∪B| . As such, it is

the ratio of the Hamming distance to the union of entries in the two vectors.

Applying this definition to the example of figure 2.2, the Jaccard distance of the

reactant vectors is calculated as 0.25.

Other distance metrics, such as the Sørensen-Dice coeffient or the Tversky-

distance are very similar to the Jaccard index and were not considered. Given

that the distance metrics can be calculated on both the reactant and the product

vectors of two reactions, this provides us four different metrics.

2.2 Benchmark Dataset

In order to find the thresholds to properly classify reactions as near-duplicates,

a supervised dataset was generated. The dataset originated by the use of two

different text mining algorithms that were used on the same subset of the

USPTO MIT subset of the USPTO dataset as described in the previous chapter.

While the USPTO entries are the same, this produced small differences in the

output reaction SMILES, which can be considered near-duplicate reactions. Two

examples of such a simulated near-duplicate reactions are given in figure 2.3.

A total of 37,372 reactions comparisons were created as such. To augment the

dataset with reaction comparisons not considered to be (near-)duplicates, a

sample of 100,000 reactions was taken from the full USPTO dataset and sliced

in half. Next, these reactions were placed side-by-side to create 50,000 random

reaction pairs. While these reaction comparisons may include near-duplicates by

chance, it is reasonable to assume the majority of these comparisons are different

reactions altogether and the distribution of the different metrics in this sample

are considered a proper sample of the overall pairwise comparison metrics in the

dataset. The combined 87,372 reactions were used to determine a proper set

of classification metrics. Based on this dataset, a visual exploration was used

to determine a starting point for the classification metrics. These metrics were

then used to find near-duplicate reactions in samples of the USPTO dataset.

Based on the evaluated outcome of these findings, the metrics thresholds were

fine-tuned further until the algorithm provided satisfactory results.

9
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(a)

(b)

Figure 2.3: Two examples of simulated near-duplicates originating from the
USPTO MIT subset of the USPTO dataset. (a) The bottom reaction is without
the borane molecule included in the top reaction. (b) A different interpretation
of the molecular orientation of one of the reactants leads to two different SMILES
representations of one achiral molecule.

2.3 Reduction Algorithms

2.3.1 Brute-Force Calculations

When searching a dataset with ever increasing size, the use of a brute force pair-

wise comparison algorithm soon becomes intractable. A very simple algorithm

is presented in figure 2.4. The number of pairwise comparisons is approximately

equal to n(n−1)
2 . In practice, the number is slightly less because near-duplicates

that are identified as such will not be taken into consideration for future compar-

isons. Because all possible comparisons are performed, the results of the brute

force algorithm are considered the ground truth in any accuracy benchmark.

2.3.2 Locality-Sensitive Hashing

The main idea behind Locality-Sensitive Hashing (LSH) is to provide an efficient

technique to find nearest neighbours of the target vector. Any target candidate

10
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Figure 2.4: The brute force algorithm: The index is unique() function iterates
over reactions in the index list and compares each entry against the new candidate.
If a near-duplicate is not found, the candidate is added to the list.

can be compared against these nearest neighbours only, which results in O(n)

time-complexity of the algorithm.

To achieve this goal, the LSH algorithm used is built upon a different algorithm,

known as the MinHash algorithm. In this algorithm, a specific fingerprint for

each vector is created in a very specific way. Each iteration, a permutation of

the sparse vectors holding the entries is performed. The position of the first

non-zero entry of this permutation is taken as the next bit in the fingerprint of

a specific data vector. A schematic example of this process is given in figure

2.5. The most important property of this permutation algorithm is that the

likelihood of a single bit in the fingerprints of two vectors colliding is equal to

their Jaccard similarity. The fraction of equal bit entries between two MinHash

fingerprints is therefore an unbiased estimator for the Jaccard similarity of their

corresponding sets. However, creating permutations from the vectors would be a

very memory-inefficient algorithm. The same Jaccard properties hold when each

bit is calculated by substituting each permutation by a random hash function

f . Let e1, e2, ..., en be the n entries in the vector s. The j’th value in the

MinHash fingerprint of s is then given by min(fj(e1), fj(e2), ..., fj(en)). The

latter implementation automatically clarifies the origin of the term MinHash.

Each bit in the fingerprint will still be referred to as a permutation in this text.

11
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

s1 s2 s3
0 1 0
0 1 0
1 0 0
0 1 1
1 0 1
1 1 1
0 1 0
1 0 1


→



s1 s2 s3
1 1 1
1 0 0
1 0 1
0 1 0
0 1 0
0 1 0
1 0 1
0 1 1


→



s1 s2 s3
0 1 0
1 1 1
1 0 1
0 1 0
1 0 0
1 0 1
0 1 1
0 1 0


Figure 2.5: An example of two MinHash permutations. Every column represents
a data vector. The 3-bit fingerprints from these permutations for the three
data vectors (left to right) would be 201, 000 and 301. The estimated Jaccard
similarities would be: Ĵ(s1 − s2) = 0.33, Ĵ(s2 − s3) = 0.33, Ĵ(s1 − s3) = 0.66.
The true Jaccard similarities are: J(s1 − s2) = 0.125, J(s2 − s3) = 0.25,
J(s1 − s3) = 0.75.

Assuming each vector set has been mapped to a MinHash fingerprint of m

permutations, these fingerprints can now be used in the LSH algorithm. To do

so, the m permutations are divided into p blocks of bits and each of these blocks

will be hashed together into hash buckets. In the final step of the algorithm,

two vectors will only be considered as a comparison pair if at least one of their

p blocks ends up in the same hash bucket. An example of this is given in

figure 2.6. Due to the intrinsic speed and efficiency of hashing, this greatly

s1: 43592 35743 29452 29504
s2: 43592 43654 23145 23914
s3: 34211 11032 20134 23914

Figure 2.6: Three hypothetical fingerprints of 20 permutations are separated
into bit buckets of length 5. In this example, the first and second vector sets
will be considered for comparison, as well as the second and third.

reduces the overall computation time compared to the very inefficient process of

performing pairwise comparisons. In particular, when hashing the fingerprint

sequences in hash buckets, they are stored in memory and do not require any

form of processing when introducing new candidates for comparison. This in

contrast to the brute force comparisons, where the pairwise distance has to be

calculated for each comparison in each new iteration. While this strongly benefits

the computation time, it can be taxing on memory. Depending on available

hardware, this could force a limit on dataset size and number of permutations

per fingerprint allowed.

However, two types of errors are introduced due to the fact that the permutations

in the fingerprint are not injective and the collision of a permutation in two sets

is therefore a stochastic event, depending on the random hashing function. As

12
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described earlier, the probability of the collision of a single permutation in two

sets is given by their Jaccard similarity. These errors can incur a cost towards

accuracy and computation time.

On the one hand, there is the false positive event that two bit blocks collide, even

though they do not originate from near-duplicate reactions. This false positive

event will decrease performance, as a fruitless comparison is triggered, but will

not affect accuracy of the algorithm as it is only the final comparison, taking

into consideration the four metrics defined earlier, that will determine whether

or not two vector sets are considered to be near-duplicates. In this application,

the LSH approach only acts as a preliminary filter to decrease computation time.

On the other hand, there is a possibility that two near-duplicate vector sets

do not share a single bit block and will not be taken into consideration as

near-duplicates, effectively harming the accuracy of LSH as compared to the

ground truth. Assuming a comparison is warranted if the Jaccard similarity

exceeds a certain threshold x, the ideal probability of collision as a function of t,

the Jaccard similarity, is a stepwise function given by:

P (t) =

0 t < x

1 t ≥ x

Because the probability of collision in the LSH algorithm is known for a single

permutation, the probability of a collision of at least one block in two fingerprints

(P(t)), assuming m permutations and p blocks of size B = m/p, is construed as:

P (t) = 1− P (No collision)

= 1− P (Single block not colliding)m/B

P (Single block not colliding) = 1− P (Collision of single block)

= 1− P (Collision of all permutations in single block)

= 1− t(B)

P (t) = 1− (1− tB)m/B

An overview of P(t) for several choices of B for fixed size of m and several choices

of m for fixed size B and a threshold of 0.8 is given in figure 2.7. As can be seen

in this example, a trade-off between the two types of errors is always present. As

discussed earlier, permutation size may be limited due to memory constraints.

Not only does it play a factor in determining P(t), a larger permutation size also

decreases the variance of the estimated Jaccard similarity.

Since LSH acts as a preliminary filter for selecting comparisons, it is important

to note that the Jaccard similarity chosen for the threshold is not necessarily
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the same Jaccard similarity as chosen in the comparison metrics. A logical

requirement is that the threshold selected in LSH would be smaller or equal to the

threshold of the Jaccard similarity selected in the near-duplicate reduction metric

for these vector sets. Implementation was done via the MinHash and MinHash

(a) (b)

Figure 2.7: Collision probabilities for: (a) fixed permutation size m = 100 and
various block sizes (b) fixed block size B = 5 and various permutation sizes.

LSH classes from the datasketch (1.5.3) module in Python 3.6. An overview

of the implementation of the algorithm is given in figure 2.8. The datasketch

Figure 2.8: An overview of the LSH algorithm.

implementation only requires the user to set the number of permutations and

the LSH query threshold. The block size is automatically optimized for these

two parameters.

14
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Each new candidate reaction is mapped to a fingerprint in the form of a MinHash

object. For this purpose, both the reactant vector or the product vector can be

selected. Next, near-duplicate candidates are queried from the already selected

reactions that are considered to be unique reactions. The datasketch query will

search through all candidates with at least one collision and will only return

these reaction vectors that have an estimated Jaccard equivalence higher or

equal to the threshold selected. The estimated Jaccard equivalence is calculated

via the overlap in the MinHash fingerprints. This process is considered to be

the preliminary LSH filter. The candidate is then compared to this selected

set of vectors based on the previously selected metrics. If no match is found,

the MinHash object is added to the LSH object and to the index list of unique

reactions, otherwise it is discarded.

2.4 Forward Prediction Modelling

In conclusion, the Reactlake data is used in the previously described IBM Molec-

ular Transformer. In doing so, three different models were trained. First, the

USPTO MIT data [17] was used without augmentation and without separating

reactants from reagents in the input. The single-model top-3 accuracies were

calculated and compared to the accuracies described in the original research

paper to confirm the proper use of the Molecular Transformer.

Next, the model was trained on two versions of the Reactlake data set. One

version contained the Reactlake data set after removal of the near-duplicates

using the previously described LSH algorithm. The other data set contained a

random sample of the full Reactlake dataset, but equal in size to the reduced

Reactlake dataset. The size was kept equal in order to properly compare results

between the two Reactlake datasets. Both Reactlake models were trained and

assessed on three separate random splits.
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Results

3.1 Reduction Metrics

A visual exploration of the joint kernel distribution estimate (KDE) of the Ham-

ming distances and Jaccard distances of the reactant vectors of the benchmark

dataset is given in figure 3.1. Similar benchmark datasets were created from

the Reaxys and Pistachio datasets to show the general applicability of these

classification metrics. The benchmark dataset also contains reactions with a

Jaccard distance of 1. These reactions can be regarded as miss-classified as a

side-effect of the pairing algorithm used to join the reactions, as two reactions

with a Jaccard distance of 1 have no molecules in common in the reactant vector.

Based on this exploration, one could suggest to define a near-duplicate reaction

as a reaction with a Hamming distance lower or equal to 4 and a Jaccard distance

lower or equal to 0.8. However, as can be seen from the examples in figure 3.2,

using only the reactant vectors to calculate distance returns many false positives

when applied to the USPTO dataset. This can in large part be explained by the

presence of common reagent molecules across reactions, effectively diluting the

Jaccard distance. When the reactant vectors are relatively small, the Hamming

distance will be small as well, keeping in mind that the Hamming distance can

never be larger than the union of the two reactant vectors.

It is of importance to notice the sensitivity of the algorithm to false positive

reactions. While the benchmark dataset in figure 3.1 shows a sample of 50,000

reaction comparisons from the USPTO dataset, a reaction candidate in the

Reactlake dataset will be compared against a set of reactions of over 9,360,000

in size on average. While the vast majority of non-duplicate reactions will be

classified correctly, a single false positive among the comparisons will lead to an
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(a) (b)

(c)

Figure 3.1: Kernel density estimate plots of the benchmark datasets for the joint
distribution of the Jaccard and Hamming distances. (a) The KDE plot for the
MIT400k and USPTO benchmark dataset. The red rectangle shows the area for
a Jaccard distance < 0.8 and a Hamming distance < 4. (b) and (c) show similar
plots for the Pistachio and Reaxys datasets respectively.

incorrect removal of the reaction from the dataset.

In order to further enhance the classification metrics, the Jaccard distances and

Hamming distances for the product vectors were included as well. Due to the

tendency of products being reported on more parsimoniously, with reagents,

solvents and byproducts often being removed all together, the resolution of the

Jaccard and Hamming distances is larger in the product vectors, allowing for

easier separation. The Jaccard distance of 99.5% of the benchmark product

vectors was exactly 0, while 99.98% of the Jaccard distances in the USPTO

sample were exactly 1. At the same time, the Hamming distance of 93.6% of the

USPTO sample product vector comparisons was 2 or less, while the Hamming

distance of 99.5% of the benchmark reactions was exactly 0 and no Hamming

distances exceeded 1. Based on these comparisons, the following metrics were

selected for all further near-duplicate reaction searches: Jaccard distance of

reactant vectors ≤ 0.8, Hamming distance of reactant vectors ≤ 4, Jaccard

distance of reactant vectors ≤ 0.4 and Hamming distance of product vectors ≤
1.
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(a)

(b)

Figure 3.2: Two examples of false positive duplicate reactions in the USPTO
dataset from a sample of 100,000 reactions. (a) Due to the presence of water
and formic acid in both reactions [ID 683384, ID 2297334], the Jaccard distance
drops to 0.5, while the Hamming distance is 2. (b) A similar false positive
duplicate reaction pair [ID 575959, ID 3641143] with a Jaccard distance of 0.6
and a Hamming distance of 3.

3.2 Reduction Efficiency & Accuracy

Using the datasketch implementation for the LSH query, a total of three param-

eters are required as input.

Because each reaction is split into a reaction and a product vector, the first

choice is which vector is to be used in the LSH query. As can be seen in figure

3.3, the algorithm works best on the product vector, both for speed and accuracy.

This is to be expected as the Jaccard similarities of the product vector are more

polarized towards 0 or 1. This reduces the chance of both false positives and false

negatives. It is of note that the runtimes reported here are hardware dependent

and should only be considered relative to one another. Second, the threshold in

the query has to be decided on. As outlined previously, the estimated Jaccard

similarity is calculated as the ratio of matching bits in two MinHash fingerprints.
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(a) (b)

Figure 3.3: Results for different LSH thresholds (lshparm) for a fixed number of
permutations (128) on a sample size of 250,000 reactions: (a) The wall times on
a log-log scale (b) The number of duplicates removed from the sample slowly
digressed from the ground truth (3720) for LSH on the reactant vectors for
increasing thresholds, while it remained constant for LSH on the product vectors.

After a new fingerprint is hashed into its corresponding bit buckets, the LSH

query searches among the reactions with at least one bit block collision and out

of these reactions, returns those with an estimated Jaccard similarity exceeding

the threshold. As stated earlier, a logical choice of threshold is one lower than the

Jaccard similarity threshold of the corresponding vector in the reduction metrics.

Table 3.1 shows the results of an increasing threshold on the accuracy and wall

times for LSH performed on the reactant or product vectors at the endpoint

of figure 3.3. Not only is LSH on the product vectors faster, it maintained

an accuracy of 100% versus the ground truth (3720 near-duplicates removed),

even with increasing thresholds. The final hyperparameter is the number of

permutations or the length of the MinHash fingerprint. A larger fingerprint

will increase the estimation precision of the estimated Jaccard similarity. At

the same time, the number of permutations can not directly be linked to the

collision probability of two vectors. Additional permutations can either be used

to increase the number of bit blocks, which increases the probability of collision,

or to increase the block length, which has the opposite effect. As figure 3.4a

shows, there is a computational prize in increasing the number of permutations

due to the increased number of hashing functions that have to be calculated for

each individual candidate. Due to the optimization of the LSH algorithm in the

datasketch implementation, the effect on the accuracy is minimal. This can be

seen in figure 3.4b and table 3.2.

However, the effect of the permutation number on the performance of the
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Table 3.1: Wall times and near-duplicate results for the LSH reduction on
reactant and product vectors for a sample of 250,000 reactions of the USPTO
dataset.

Threshold Wall Time (s) Near-duplicates

Reactant

0.10 5020 3702
0.15 4069 3,688
0.20 3080 3,626
0.25 1263 3,432
0.30 1142 3,396

Product

0.10 234

3,720

0.20 174
0.30 187
0.35 174
0.40 177
0.45 162
0.50 160

(a) (b)

Figure 3.4: Influence of the number of permutations on the results on a sample
size of 750,000 reactions and a fixed threshold of 0.5 on the product vector: (a)
The wall times showing the linear time complexity of LSH (b) The effect of the
number of permutations is negligible on the number of near-duplicates found in
the sample.

algorithm is not only apparent on the runtime. Perhaps of more importance is

the strain it puts on memory. Each candidate fingerprint that has been assessed

as unique is introduced into the LSH object, causing memory usage to grow

almost linearly with the sample size of the dataset in scope. An example is

given in figure 3.5 for a sample size of 1,000,000 reactions. The initial sharp

increase in memory usage is due to the dataset being loaded. The next incline

which lasts for most of the runtime is attributed to the ever increasing size of

the LSH object. With an average of 8.7kb per insertion of a MinHash element

of 128 permutations, one gigabyte of memory can store an LSH object with
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Table 3.2: Wall times and near-duplicate results for the LSH reduction on
product vectors for a sample of 250,000 reactions of the USPTO dataset and
different numbers of permutations for a threshold of 0.5.

Permutations Wall Time (s) Near-duplicates
30 44 3,715
40 56 3,717
60 94 3,719
80 102 3,719
100 128 3,719
128 160 3,720

approximately 115,000 entries. This makes scaling the algorithm to sample

sizes of several millions only tractable either on machines with copious amounts

of memory or with a decreased amount of permutations. The full Reactlake

Figure 3.5: Memory consumption during the LSH reduction of 1 million reactions.
The incline is due to the rapid growth of the LSH object.

dataset of 18,727,618 unique reactions was reduced with both 30 permutations

and 128 permutations, results of which are given in table 3.3. From here on

Table 3.3: Results and wall times of the Reactlake LSH reduction for both 30
and 128 permutations, together with the specifications of the machines.

Permutations 30 128
Cores 16 32

Clock Speed 2.50 GHz 2.30 GHz
Memory 61.3 GB 956.25 GB

Wall time 02h52m43s 19h23m04s
Near-duplicates 2,546,311 2,556,514

out, the reduced Reactlake dataset refers to the 16,171,104 reactions remaining

after performing the MinHash LSH algorithm on the product vectors with 128

permutations, a threshold of 0.5 and the metrics as described in section 3.1. An

overview of the distributions of the parent databases for the original and reduced

Reactlake sets are given in table 3.4. However, it must be noted that the order

in which the datasets are concatenated prior to reduction plays a role in the
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Table 3.4: Size of the original Reactlake subsets before and after MinHash LSH
near-duplicate reduction.

Subset Original Entries Reduced Entries
USPTO 1,387,365 1,302,985 (93.9%)
Reaxys 15,524,697 13,634,854 (87.8%)

Pistachio 1,815,556 1,233,265 (67.9%)
Total 18,727,618 16,171,104 (86.3%)

reduction percentage of each individual dataset. Each candidate is held against

the dynamic list of retained reactions. A reaction at the end of the dataset is

therefore compared against millions of others and will have a higher chance of

colliding with a near-duplicate than that same reaction at the start of the dataset.

This effect is also visible when reducing the initial Reactlake data by filtering

out the exact unique values within and between datasets. This is why only less

than 2 million reactions were considered from the Pistachio dataset, out of an

original size of more than 4 million. Table 3.5 provides a decomposition of the

near-duplicate collisions per individual dataset. With USPTO the first dataset

in Reactlake, its observations are only compared internally, while Pistachio’s

observations are compared against both retained USPTO and Reaxys data.

Table 3.5: Decomposition of the near-duplicate reduction results per individual
dataset. Each cell provides the number of reactions that were removed from the
dataset designated by the row label during the comparison against the retained
reaction observations from the dataset designated by the column label.

USPTO Reaxys Pistachio Total
USPTO 84,380 84,380
Reaxys 572,876 1,316,967 1,889,843

Pistachio 435,146 7,722 139,423 582,291

3.3 Molecular Transformer

An initial attempt was made to reproduce the results from Schwaller et al. [17] on

the USPTO MIT subset. In the original research paper, results were reported on

several incarnations of the model, both on the original and augmented SMILES

data. The baseline model on the original data was performed in 500,000 learning

steps with a batch size of 4,096 and a validation batch size of 32. The model

was further enhanced by averaging the last 20 checkpoints, with each checkpoint

generated at 10,000 learning steps. Finally, several ensemble models were tested,

one of which with averaged checkpoints. In this work, we recreated the baseline

single model on the non-augmented MIT subset data. The same data and the

23



CHAPTER 3. RESULTS

same splits were used as in the original work. For this model, 300k learning steps

were used and the original train/test/validation splits (409,035/40,000/30,000)

were retained. The model was trained on a single GPU (NVIDIA Tesla V100-

SXM2 16GB) with the batch size set to 13,000 and the validation batch size left

at the default of 32. The final five checkpoints were averaged and top-1 to top-3

scores were calculated on a single run. The results are presented in table 3.6.

While the training length was reduced and a different checkpoint average was

Table 3.6: Reproduction of the single baseline model trained on the MIT subset.

Top-1 % Top-2 % Top-3 %
IBM 88.6 92.4 93.5

Reproduced 88.4 91.4 92.2

used, the results are fairly similar and confirm the reported results. Only one

training run was used, so some variability in the model is present as well, due to

the random initialization of the model weights.

The same approach was used for the full and reduced Reactlake datasets. Due

to the sheer size of these datasets, splits of 40,000 were selected both for the

test and validation sets. The remainder of the data was used in training. The

model was trained on a single GPU. The training batch size was reduced to 2,000

and the validation batch size to 8 to accommodate GPU memory requirements.

All other model parameters were kept the same. To reduce variability due to

random training weight initiation and test selection, three different runs were

performed on different splits, both for the full and reduced Reactlake datasets.

The validation loss was monitored in TensorBoard. The perplexity of two training

runs, one for the full and one for the reduced Reactlake set, is given in figure 3.6,

both with a smoothing factor of 0.6. Based on these plots, it can be argued that

(a) (b)

Figure 3.6: The perplexity of the validation steps plotted against the learning
steps for a single training run for (a) the full and (b) the reduced model.
Perplexity is a metric for the average validation loss.

the loss functions have not yet reached their minimums and additional training

runs may still provide increased model performance. However, since 1 million

learning steps took more than 64 hours to complete on a single GPU, it was
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decided not to increase the learning steps any further and the current model

output can be considered representative for the conclusions to be made in this

work. The full results of the test scores are given in table 3.7. Because no specific

subset of Reactlake was used, the results are compared against the single model

on the mixed stereochemistry included USPTO subset in the research paper by

Schwaller et al.

Table 3.7: Test set accuracies for the three model training runs for both the full
and reduced Reactlake data, compared against the single model accuracy of the
Molecular Transformer on the mixed stereochemistry USPTO subset.

Top-1 % Top-2 % Top-3 %

Full

Run 1 45.1 49.2 52.0
Run 2 45.0 49.1 51.9
Run 3 44.4 48.5 51.2

Average 44.8 48.9 51.7

Reduced

Run 1 42.7 46.9 49.7
Run 2 42.6 46.8 49.6
Run 3 43.2 47.5 50.4

Average 42.8 47.1 49.9
IBM 76.2 82.4 84.3

As is clear from these results, the Molecular Transformer model, with this set

of parameters, is not capable of providing the same accuracy on the Reactlake

data as on the USPTO data by itself. A breakdown of the origin of the different

reactions in the test set is given in table 3.8.

Table 3.8: A breakdown of the average distribution of the origin of the reactions
in the test set and their respective translation accuracies.

Amount Top-1 % Top-2 % Top-3 %

Full
Pistachio 3,906.7 (9.8%) 53.1 56.1 58.2
USPTO 2,951.0 (7.4%) 67.0 70.5 72.7
Reaxys 33,142.3 (82.9%) 41.9 46.2 49.1

Reduced
Pistachio 3,087.7 (7.7%) 45.0 48.3 50.5
USPTO 3,188.0 (8.0%) 62.7 66.7 69.2
Reaxys 33,724.3 (84.3%) 40.8 45.1 48.0

IBM USPTO 50,258 76.2 82.4 84.3

This clearly shows that the largest part of the test reaction set originates from

Reaxys, which is in line with the overall distribution in Reactlake. Because

of this, the overall accuracy results are strongly dominated by the translation

accuracy on the Reaxys samples in the test set, which has the lowest of all three

dataset accuracies. The conditional accuracy on the USPTO dataset is by far

the largest of the three and is closer to the reported result by Schwaller et al.

Deviations might in part be due to underfitting given that the loss function had
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not yet reached a minimum at 1 million learning steps. Second, these results

could be a product of differences in grammar between the reactions in the three

individual datasets, hence the varying conditional accuracy results in the test

set. The difference in grammar could be due to the reporting hueristics used for

the three different sets. A simple example is given when looking at the reaction

product distribution. In the USPTO set, only 3.3% of the reactions have more

than a single reported product. This increases to 5.4% for Pistachio and 16.5%

for Reaxys, signaling an increasing translation complexity, corresponding to the

lower prediction efficiency. With Reaxys being the dominant data source during

training, it could be that the resulting model is less performant on the USPTO

data and, in general, that combining data from different sources could lead to

lower conditional accuracies than training them separately.

A result that can be generalized among both the marginal and conditional results

is the lower accuracy in the reduced Reactlake dataset. Overall, a reduction of

2% was obtained in the top-1 accuracy, and a drop of 1.8% in the top-2 and top-3

categories. Again, this marginal result is dominated by the score of the reactions

in the Reaxys data, while the effect is larger for the Pistachio (8.1% top-1) and

the USPTO (4.3%) data. However, looking back at table 3.4, it is important to

note that the Pistachio dataset was reduced the most with only 67.9% of the

original reactions retained, and therefore, the weight of Pistachio in the reduced

Reactlake set will be smaller. Building on the prior assumption that the reaction

grammar differs from one individual dataset to another, the decrease in the

fraction of reactions from Pistachio in the reduced Reactlake set during training

could be in part responsible for the drop in accuracy. The opposite effect can be

in play for the Reaxys dataset, which can work to offset the accuracy reduction

from removing near-duplicates from its data. Although the conditional results

should not be viewed independently from the overall composition of the dataset,

the decrease in test accuracy is common among all results and can therefore be

generally attributed to the effect of removing near-duplicates from the overall

sample a priori.
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Discussion and Outlook

In this work, the use of MinHash LSH was explored as an efficient mechanism to

remove near-duplicate reactions from very large reaction datasets. To this end,

data was combined from three different sources: The publicly available USPTO

dataset and the proprietary sets Pistachio and Reaxys.

At first, an effort was made to determine a set of distance metrics to define

near-duplicates among reactions. A random set of reaction comparisons within

the USPTO dataset was generated and labeled as unique reactions. This set of

reactions was augmented by artificial near-duplicate reactions, created by two

different text-mining algorithms from the same USPTO subset. In an iterative

process, a combination of Jaccard and Hamming distances on both the reactant

and product vectors were selected and fine-tuned, until no false positive reactions

were retrieved from the pairwise comparisons within a sample of the USPTO

dataset. While this approach generated a set of rules considered to be acceptable

for the outline of this work, future research could consider improvements via a

more formal approach. Tree based machine learning methods could be trained

on top of a supervised dataset to decide on the classification of near-duplicate

and unique reactions. However, in the incarnation of the supervised reaction

set as construed for this work, misclassified reactions led to an underwhelming

performance of such classification techniques. It would prove useful to recreate a

reaction set with both unique and near-duplicate reactions, annotated by experts

in organic chemistry to improve these efforts.

To achieve a tractable runtime, MinHash LSH was succesfully implemented as a

preliminary filter to reduce the number of comparison candidates when searching

for and eliminating near-duplicate reactions in large datasets. Applying this
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algorithm to the product vector provided the best results in both processing time

and accuracy versus the ground truth. Due to the intrinsic nature of MinHash

LSH, large processing times required in a brute force comparison algorithm are

traded for the requirement of sufficient memory to store the hashed reaction

fingerprints. Although the memory requirements can be kept in check by reducing

the number of permutations in the creation of the MinHash fingerprint, this

negatively impacts both the accuracy of the estimated Jaccard similarity and the

available flexibility for selecting the best combination of block size and amount.

Using 128 permutations and an LSH query threshold of 0.5 on the product vector,

a total of 2,556,514 reactions were removed from the initial 18,727,618 reactions

with unique reaction SMILES present in the Reactlake set. While the exact

processing time is dependent on the hardware available, the algorithm is shown

to run in linear time complexity, providing proper scalability for increasingly

large datasets. In combination with the proper metrics to measure distance

between two reactions, this provides an elegant approach to cleaning reaction

datasets and removing near-duplicate reactions.

Finally, the applicability of the Molecular Transformer, developed by Schwaller

et al., was expanded from the USPTO data to the full Reactlake dataset. After

having validated the outcome of the original research paper, the same model was

trained on the concatenated USPTO, Pistachio and Reaxys reaction SMILES.

In parallel, the model was also trained on the Reactlake subset where all near-

duplicates where removed using the aforementioned approach. Accuracies of both

models were tested on a 40,000 sample test set, split from the training data. Both

the marginal accuracies and the accuracies conditional on the original reaction

set were monitored. Due to the sheer size of the training data, minimization of

the loss function was not entirely achieved after 1,000,000 learning steps. It was

concluded from the results that the combination of the three different reaction

datasets resulted in an inferior overall translation accuracy compared to using

only the USPTO reaction set. While the reactions from the USPTO set were

predicted with a higher precision than those from Pistachio and especially those

from Reaxys, by far the largest of the three, the accuracies were not as high as

those initially reported by Schwaller et al. It is hypothesized that the difference

in the performance of the Molecular Transformer between the three reaction sets

can be ascribed to differences in the composition of each of these sets. Further

research can be aimed at elucidating whether this is due to intrinsic differences

of the reaction families most common in the datasets or different reporting

hueristics used. An example was given by exploring the distribution of the

products across the reaction sets. It was shown that reactions from Reaxys were

much more likely to contain more than a single reaction product as compared to
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Pistachio and especially USPTO. Such differences in the constitution of reactions

across a mixture of datasets will automatically lead to dilution of what can be

considered the common grammar or chemical reaction heuristics and reduce

the translation accuracy. Of interest for future research would be to train the

Molecular Transformer model on each of Pistachio and Reaxys separately and

compare the results to the conditional results from the model trained on the

Reactlake dataset. It could also be explored if the parameters in the Molecular

Transformer model can be further optimized specifically for the reaction set

under analysis.

While the accuracy of the forward predictions could not be generalized over

the three different subsets in the Reactlake data, a common result is the lower

prediction average of the set where the near-duplicates where removed. Overall,

a performance reduction of 2% on the top-1 accuracy was achieved. Importantly,

the same effect was noticeable, but to different extents, on each of the subsets

in Reactlake. The largest decrease in performance was noticed in the Pistachio

subset, which was also the subset with the largest size reduction after near-

duplicate removal. This could be an effect of the high number of near-duplicates

present in the Pistachio subset, inflating the original accuracy numbers, but

it could also be a result of the smaller weight of this subset in the training

set, making it harder for the model to correctly predict test set reactions from

this subset if differences between the subsets do indeed exist. However, even

for USPTO and Reaxys, whose weights in the train, validation, and test sets

increased compared to the original Reactlake set, a reduction in accuracy can be

seen, showing the overall effect on prediction performance after removal of the

near-duplicates from the reaction set.

This shows that the removal of near-duplicate reactions is an important first step

in the preparation of any reaction dataset prior to model training, validation

and testing. As noted before, future efforts could entail training of the Molecular

Transformer model on the individual reaction subsets, with and without near-

duplicates to measure the effect over the different reaction sets, and measure

the correlation between the drop in predictive power and the number of near-

duplicates within each set individually.

In conclusion, the results in this work bring to the attention the importance of a

standardized approach of reporting chemical reactions for the success of future

efforts in reaction prediction modelling.
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