
Faculty of Sciences
School for Information Technology

Master of Statistics and Data Science
Master's thesis

Assessing performance of heuristic-based biological alignment algorithms

Violet Ankunda
Thesis presented in fulfillment of the requirements for the degree of Master of Statistics and Data Science,

specialization Bioinformatics

2020
2021

SUPERVISOR :

Prof. dr. Dirk VALKENBORG

SUPERVISOR :

Dhr. Dirk VAN HYFTE

Transnational University Limburg is a unique collaboration of two universities in two
countries: the University of Hasselt and Maastricht University.

Faculty of Sciences
School for Information Technology

Master of Statistics and Data Science
Master's thesis

Assessing performance of heuristic-based biological alignment algorithms

Violet Ankunda
Thesis presented in fulfillment of the requirements for the degree of Master of Statistics and Data Science,

specialization Bioinformatics

SUPERVISOR :

Prof. dr. Dirk VALKENBORG

SUPERVISOR :

Dhr. Dirk VAN HYFTE

Acknowledgments

I thank the Almighty God for all the guidance and protection He has given me and seeing

me through my education.

To my family especially my mother, Mrs Kyoheirwe Jenny, my brothers, Turibamwe Gordon

and Tusiime Graham, my sisters, Abenawe Fortunate and Ahabwe Viola, thank you so much

for all the support, love , care and encouragement.

I am deeply grateful to my supervisors, Prof. dr. Dirk Valkenborg and Dr. Dirk Van Hyfte

for their dedication, support and encouragement throughout this master thesis period.

My heart felt gratitude also goes to the Biostrand team; Sébastien Lemal, Yegor Korovin,

Christophe Van Neste, and Georgios Triantopoulos for sacrificing their time, supporting me

and working tirelessly to make this master thesis successful. Thank you for being a good

team to work with.

I equally appreciate my lecturers at Hasselt University and VLIR-UOS for this scholarship

in order to purse my Master’s degree.

I would also like to thank Dr John Mulindwa Kitayimbwa for his encouragement and guid-

ance. Thank you for always believing in me.

Finally, to my friends; Moses Kivumbi (Uganda), Alma Muropa (Zimbabwe), Lembris

Njotto (Tanzania), Josline Otieno (Kenya), Caroline Namanya (Uganda) and all others,

thank you so much for all the support and encouragement.

i

Abstract

Sequence alignment is the process of comparing different sequences by searching for

a series of individual characters. The most common Bioinformatics tool for sequence

alignment is BLAST. Current state-of-the-art biological sequence alignment algorithms

such as BLAST relies on heuristics and dynamical programming based on probabilis-

tic models: this impacts their performance and scalability as they are prone to error

propagation [1]. Moreover, these algorithms perform analysis within a so-called query

window defined as the most similar region to that of the query sequence, with a risk of

missing homologies outside that window which may possibly remain relevant.

The main purpose of this Master Thesis project is to evaluate the performance of

BLAST, retrieve homologous sequences of given queries from a set of well known protein

sequences, as well as evaluating how different metrics can be used for performance.

To study the variation in BLAST performance with respect to the default ones, BLAST

was run against the PDB data while modifying one parameter at a time, ROC and

precision-recall curves were plotted for various results of varied parameters. To assess

the overall performance, area under the curve was calculated for each of the graphs.

The results indicated a marginal difference between the performance of BLAST using

default parameters and modifying the parameters.

Key Words: Sequence Alignment, BLAST, ROC, Precision-recall curve

ii

Contents

1 INTRODUCTION 1

1.1 Overview . 1

1.1.1 Basic Local Alignment Search Tool (BLAST) 1

1.2 Research Questions . 3

1.3 Data Description . 3

1.3.1 Protein Data Bank (PDB) . 3

1.3.2 Structural Classification of Proteins - extended (SCOPe) 4

2 METHODOLOGY 5

2.1 Query Set Preparation . 6

2.2 Parameters Modified . 6

2.2.1 Expect Value . 6

2.2.2 K-mers (Word Size) . 7

2.2.3 Substitution Matrices . 7

2.2.4 Gap Penalties . 8

2.2.5 Integration of Low Complexity Regions 8

2.3 Classification of BLAST Results . 9

2.3.1 Positives . 10

2.3.2 Negatives . 11

2.4 Receiver Operating Characteristic (ROC) 11

2.5 Precision-Recall Curve . 12

2.6 Area Under Curve (AUC) . 12

3 RESULTS 13

3.1 Summary Statistics . 13

3.2 Family . 15

3.2.1 E-Value . 15

3.2.2 K-mers (Word Size) . 16

3.2.3 Substitution Matrices . 17

3.2.4 Gap Penalties . 18

3.2.5 Integration of Low Complexity Regions 19

3.3 Super-family . 20

3.3.1 E-Value . 20

3.3.2 K-mers (Word Size) . 21

3.3.3 Substitution Matrices . 22

3.3.4 Gap Penalties . 23

3.3.5 Integration of Low Complexity Regions 24

3.4 Fold . 25

3.4.1 E-Value . 25

iii

3.4.2 K-mers . 26

3.4.3 Substitution Matrices . 27

3.4.4 Gap Penalties . 28

3.4.5 Integration of Low Complexity Regions 30

3.5 Class . 30

3.5.1 E-Value . 30

3.5.2 K-mers . 31

3.5.3 Substitution Matrices . 32

3.5.4 Gap Penalties . 33

3.5.5 Integration of Low Complexity Regions 34

4 DISCUSSION 37

5 CONCLUSION 38

6 REFERENCES 39

7 APPENDIX 41

7.1 Python Codes . 41

iv

List of Tables

1 Different BLAST programs . 1

2 A 2 × 2 confusion matrix . 9

3 Different metrics for varying e-value . 16

4 Different metrics for word size for maximum threshold 17

5 Different metrics for scoring matrices at family level 18

6 Different metrics for gap penalties for optimum threshold at family level . . 19

7 Different metrics for filtering LCR for maximum threshold 20

8 Different metrics for varying e-value on super-family level 21

9 Different metrics for different word sizes for maximum threshold at super-

family . 22

10 Different metrics for different scoring matrices at super-family 23

11 Different metrics for gap penalties for super-family 24

12 Different metrics for LCR for super-family 25

13 Different metrics for varying e-value on fold level 26

14 Different metrics for varying word sizes based on fold 27

15 Different metrics for different substitution matrices based on fold 28

16 Different metrics for gap penalties for fold group 29

17 Different metrics for LCR for fold level . 30

18 Different metrics for varying e-value on class level 31

19 Different word size value metrics on the class level 32

20 Different scoring matrix metrics on the class level 33

21 Different metrics for gap penalties for class group 34

22 Different metrics for LCR for class classification 35

List of Figures

1 Growth of the number of structures in PDB data (1976 - 2021). Adapted

from http://www.rcsb.org/ . 4

2 SCOP hierarchical classification of proteins. Adapted from https://scop.

berkeley.edu/help/ver=2.07 . 5

3 Overview of the methodology . 6

4 BLOSUM62 scoring matrix . 8

5 Classification of BLAST results . 9

6 Histogram of the length of the sequences (left) and the number of the se-

quences returned by BLAST(right) . 14

7 Bar plot of the query sequences with number of sequences returned by BLAST 14

8 ROC curve (left) and Precision-recall curve (right) for different e-values at

the family level. 15

v

http://www.rcsb.org/
https://scop.berkeley.edu/help/ver=2.07
https://scop.berkeley.edu/help/ver=2.07

9 ROC curve (left) and Precision-recall curve (right) for different word size

values at the family level. 16

10 ROC curve (left) and Precision-recall curve (right) for different scoring ma-

trices. 17

11 ROC curve (left) and Precision-recall curve (right) for different gap penalties. 18

12 ROC curve (left) and Precision-recall curve (right) for filtering out LCR and

no filtering. 19

13 ROC curve (left) and Precision-recall curve (right) for filtering out LCR and

no filtering. 21

14 ROC curve (left) and Precision-recall curve (right) for different word size

values based on super-family. 22

15 ROC curve (left) and Precision-recall curve (right) for different substitution

matrices based on super-family. 23

16 ROC curve (left) and Precision-recall curve (right) for different gap penalties

based on super-family. 24

17 ROC curve (left) and Precision-recall curve (right) while filtering out LCR

and no filtering. 25

18 ROC curve (left) and Precision-recall curve (right) for varying e-values based

on fold level. 26

19 ROC curve (left) and Precision-recall curve (right) for different word size

values based on fold. 27

20 ROC curve (left) and Precision-recall curve (right) for different substitution

matrices based on fold. 28

21 ROC curve (left) and Precision-recall curve (right) for different gap penalties

based on fold. 29

22 ROC curve (left) and Precision-recall curve (right) for LCR based on fold

level. 30

23 ROC curve (left) and Precision-recall curve (right) for varying e-values based

on class level. 31

24 ROC curve (left) and Precision-recall curve (right) for different word sizes

based on class level. 32

25 ROC curve (left) and Precision-recall curve (right) for different substitution

matrices based on class level. 33

26 ROC curve (left) and Precision-recall curve (right) for different gap penalties

based on class level. 34

27 ROC curve (left) and Precision-recall curve (right) for LCR based on class

level. 35

28 ROC (left) and Precision-recall curve (right) for BLAST results with default

parameters at different SCOPe levels. 36

vi

29 ROC (left) and Precision-recall (right) of the default parameters with and

without the sequences with the highest number of sequences returned 36

vii

1 INTRODUCTION

1.1 Overview

Sequence alignment is the process of comparing different sequences by searching for a series

of individual characters or character patterns that have the same arrangement in both

sequences [2]. Sequence alignments are either local or global. Local alignment aims to find

the best match between two sequences while global alignment aims to find the best match

over the whole length of the sequences. Similarity searching is effective because proteins

that share statistically significant sequence similarity can be inferred to be homologous,

and homologous proteins share similar structures and, often, similar functions [3].

The discovery of sequence homology or similarity to a known protein or family of proteins

often provides the first clues about, the function of a newly sequenced gene. As the DNA

and amino acid sequence databases continue to grow in size they become increasingly useful

in the analysis of newly sequenced genes and proteins because of the greater chance of find-

ing such homologies [4]. The commonest Bioinformatics tool for evaluating the similarity

between biological sequences is Basic Local Alignment Search Tool (BLAST) [4].

1.1.1 Basic Local Alignment Search Tool (BLAST)

BLAST is an algorithm used for comparison of amino acid sequences of different proteins or

the nucleotides sequences of nucleic acid. BLAST was invented in 1990 and has since then

become the defacto standard in search and alignment tools. Through a BLAST search, one

can compare a query sequence with a database of sequences, and thereby identify library

sequences that share resemblance with the query sequence above a certain threshold [2].

BLAST searches through a large database of known sequences to find sequences that are

similar to the query sequence. This tool can be used via a web interface or as a stand-alone

tool to compare a user’s query to a database of sequences [5].

BLAST offers different types of searches and the choice of which one to use depends on the

objective and the type of data used. Table 1 shows the different BLAST programs with

the different types of data to be used:

Table 1: Different BLAST programs

Program Query Sequence Type Target Sequence Type

BLASTN Nucleotide Nucleotide

BLASTP Protein Protein

BLASTX Nucleotide (translated) Protein

TBLASTN Protein Nucleotide (translated)

TBLASTX Nucleotide (translated) Nucleotide (translated)

Source: http://www.ncbi.nlm.nih.gov/blast

1

http://www.ncbi.nlm.nih.gov/blast

The most common searches are BLASTN and BLASTP, but this projects focuses on

BLASTP.

Besides sequence similarity searching, BLAST can be used to locate domains and identify

folds

How BLAST works

BLAST is based on a heuristic algorithm [5]. A heuristic algorithm is an algorithm that is

built to solve a problem faster and in a more efficient way.

Using the heuristic search, BLAST assumes that if two sequences are similar, there is a

short sequence that they share in common. BLAST finds all possible short sequences in

the query sequence and locates them in the large database. This process is called seeding.

For example, for BLASTP, the default word size is 3, W=3. If a query sequence has

ABCDE, the searched words are ABC, BCD, CDE. After synthesizing words for a given

sequence of interest, neighborhood words are also assembled. Once both words and neigh-

borhood words are organized, they are compared with the database sequences in order to

find matches [2]. A scoring matrix for example BLOSUM62, BLOSUM45 is used to score

each of the matched short sequences. Therefore, each short sequence will have an alignment

score basing on which scoring matrix used. These short sequences are then extended in

both directions by BLAST if the score is above a predefined threshold and if it can not ex-

tend further, it joins the residues with gaps. However this extension can either improve the

alignment score or reduce the score. Once the sequence is extended as further as possible,

the result is a High Scoring Pair (HSP). The HSP is scored and lastly the significance of

the HSP score is evaluated. If the score is less than the predefined threshold, the extension

of the alignment is stopped.

Since such algorithms like BLAST assume for two sequences to be similar, there is a short

sequence common in both sequences, it performs analysis within a query window. It uses

the short similar sequence in both sequences. Because of this, there is a risk of missing

homologies outside that window which may be relevant. For example, given two protein

sequence alignments below, basing on the word size defined, BLAST would find a short

word similar in both sequences.

Alignment 1:

P Y D N G F S F L K S E L A G

| | | | | |
A G L S G F S F L K A M F D R

Alignment 2:

P Y D N G F S F L K S E L A G

| | | | | | | |
P A D L G K S M L N S R L K G

2

Sequences in alignment 1 share a word in common, ‘GFSFLK’ and has 6 out of 15 identical

amino acids. On the other hand, sequences in alignment 2 do not share a word in common,

however has 8 out 15 identical amino acids. Because BLAST first locates the similar region,

it may miss a case in alignment 2 and report the case in alignment 1.

1.2 Research Questions

The main objective of this project is to evaluate the performance of BLAST, to retrieve

homologous sequences from a set of well-known proteins with respect to different parame-

ters.

In addition to that, it is to evaluate how different metrics can be used for the performance

measurement.

The results to the above objectives will provide a compilation of performance assessment

to understand the strengths and weaknesses of BLAST.

This project also aims to formalize the methodology using state-of-the-art statistical anal-

ysis.

Lastly, is to use this framework to compare BLAST with other heuristic- based biological

alignment algorithms.

In order to compare competing algorithms, we are investigating highly curated data sets

for our benchmarking study. The benchmark data that is chosen comes from Structural

Classification of Proteins-extended and Protein Data Bank and represents protein structures

that are closely related. Therefore, in this master thesis, we conduct a sensitivity study that

investigates how the results in terms of false positive and false negative will change upon

different parameter settings for the BLAST algorithm. Such a study is important because

for a comparison among competing algorithms it is of needed that BLAST is operating on

the particular data set in an optimal way to avoid a flawed comparison.

1.3 Data Description

In this subsection, the data used for this project is described. To run the BLAST software,

two sets of data are needed, that is to say, the query sequence to search for and the database

to search against. The database to search against is also called the target sequence.

1.3.1 Protein Data Bank (PDB)

In this project, the PDB data was used as the target sequence. The PDB is an open source

database for the three-dimensional structural data of large biological molecules, such as

proteins and nucleic acids. The data is submitted by Biologists and Biochemists from all

over the world who use X-ray crystallography or NMR spectroscopy to capture it. Proteins

in the PDB database are uniquely identified by protein ids.

3

In the early days of the PDB, data were distributed via magnetic tape and later by CD-

ROM. Now there is an ftp site, https://www.wwpdb.org/ftp/pdb-ftp-sites that con-

tains the data in three formats: PDB, mmCIF-PDBx and PDBML-XML [7].

Figure 1: Growth of the number of structures in PDB data (1976 - 2021). Adapted from

http://www.rcsb.org/

Figure 1 displays the growth in the number of structures in the PDB which continues

to increase each year. At present (May, 2021), there are 177,910 structures in the PDB

archives.

1.3.2 Structural Classification of Proteins - extended (SCOPe)

Nearly all proteins have structural similarities with other proteins and, in many of these

cases, share a common evolutionary origin [10]. The Structural Classification of Proteins

(SCOP) database aimed to provide a detailed and comprehensive description of the struc-

tural and evolutionary relationships between all proteins of known structure [9]. SCOPe

data is a database that extends the SCOP data. It classifies proteins based on similarities

of their structures and amino acid sequences.

The proteins in this database are classified hierarchically with a number of levels. The

fundamental unit of classification is a domain in the experimentally determined protein

structure [10].

The classification of the proteins is as follows:

Species: proteins that have a distinct protein sequence that is naturally occurring or arti-

ficially created variants [10].

4

https://www.wwpdb.org/ftp/pdb-ftp-sites
http://www.rcsb.org/

Protein: grouping together similar sequences of essentially the same functions that either

originate from different biological species or represent different isoforms within the same

species [10].

Family: categorizing proteins with similar sequences but different functions.

Super-family: bridging together protein families with common functional and structural

features inferred to be from a common evolutionary ancestor [10].

Fold: superfamilies that have similar structures are grouped together.

Class: Different folds are grouped into different classes basing on their secondary structure

content and organisation.

The hierarchical classification of the proteins is shown in Figure 2.

Figure 2: SCOP hierarchical classification of proteins.

Adapted from https://scop.berkeley.edu/help/ver=2.07

Crystal structure of selenomethionine substituted isoflavanone 4’-O-methyltransferase is an

example of an annotated sequence with protein id, ‘1ZHF’ and below is how it is classified

according to SCOPe.

Class, a: All alpha proteins

Fold, a.4: DNA/RNA-binding 3-helical bundle

Superfamily, a.4.5: “Winged helix” DNA-binding domain

Family, a.4.5.0: automated matches

The SCOPe data, version 2.07 which was used for this project can be accessed freely via

the link https://scop.berkeley.edu/downloads/ver=2.07.

2 METHODOLOGY

To be able to assess the performance of BLAST, BLAST results with modified parameters

were analysed. However, before the parameters of BLAST were modified, a query set was

prepared. The flow chart in Figure 3 provides an overview of the methodology.

5

https://scop.berkeley.edu/help/ver=2.07
https://scop.berkeley.edu/downloads/ver=2.07

Figure 3: Overview of the methodology

2.1 Query Set Preparation

A query set was generated from the SCOPe data. The SCOPe data used had 276,231

rows with 87,225 unique protein ids. To get rid of sequences with more than one chain

and protein tags, proteins sequences/protein ids with only one full chain were selected.

This generated a subset with 2,158 unique protein ids. 100 sequence ids of different SCOPe

families were randomly selected from the subset generated. A set of these sequences formed

the query set that was used for the analysis.

2.2 Parameters Modified

Like any other algorithm, BLAST too has parameters which were modified to assess the

variation in performance. BLAST was run using the query set generated in Section 2.1 and

the PDB database as the target sequence while adjusting the parameters.

The parameters modified were:

2.2.1 Expect Value

Expect value (e-value) is the number of matches you expect to be found by chance. The

lower the e-value, the better the alignment. E-value is defined as:

E = Kmne−λS

where, K and λ are parameters, m is the query sequence length, n is the target sequence

(database) length and S is the score. This implies that increasing either of sequences in-

6

creases e-value, nevertheless e-value decreases exponentially as score increases. The default

expect threshold for BLASTP is 10. This implies that alignments that score an e-value

greater than 10 are not returned. Increasing the default threshold increases the number of

alignments generated.

The rule of thumb for different values of e-value is given below:

- e-value < 10e-100 : Identical sequences.

- 10e-100 < e-value < 10e-50: Almost identical sequences.

- 10e-50 < e-value < 10e-10: Closely related sequences.

- 10e-10 < e-value < 1: Could be a true homologue.

- e-value > 1: Proteins are most likely not related

2.2.2 K-mers (Word Size)

K-mers refers to all possible sub sequences of length k in a query sequence. For example,

given a sequence ABCD, all the possible 2-mers are : AB, BC, CD. BLAST assumes if two

sequences are similar, then they share a word in common. BLAST first breaks the query

sequences into short sequences that are of length k, it then searches and locates all the k-

mers in the large database. Only the short sequences found in the target are used to build

the alignment and assigned a score. Also neighborhood words for each k-mers is generated

with a score above the predefined threshold. BLAST then extends these short sequences

in both directions. The default word size for BLASTP is W = 3 (3-mers). Increasing the

word size reduces the number of seeds and the number of hits because it requires longer

continuous matches. Reducing the word size produces more hits since it requires short sub

sequences to be matched.

2.2.3 Substitution Matrices

Scoring matrices or substitution matrix is a collection of scores for aligning nucleotides or

amino acids with one another [17]. The scoring matrix can affect the algorithm’s ability

to identify distantly related sequences. BLASTP assigns a similarity score to each pair of

the aligned sequences [11]. The commonest substitution matrices used are: Point Accepted

Mutation (PAM) [15] and Blocks Substitution Matrices (BLOSUM) [16]. Different PAM or

BLOSUM like: PAM250, PAM30, PAM70 BLOSUM45, BLOSUM80 matrices can be used

depending on the target sequences whether most similar sequences or distant sequences.

The number attached to the matrix is the evolutionary distance. Low values of PAM target

aligments that are higly similar while high PAM values target weaker alignments. On the

other hand, BLOSUM high values target highly similar alignments while low BLOSUM

values are bettter for distantly related sequences. The default substitution matrix for

7

Figure 4: BLOSUM62 scoring matrix

BLASTP is BLOSUM62 which target alignments with 20 – 30% identity [12]. Figure 4

shows the BLOSUM62 scoring matrix. The matrix is symmetric and therefore only the

lower entries are shown.

2.2.4 Gap Penalties

Once BLAST locates the short similar sequences in the target sequence, it extends it in

both directions. However, if it can not be extended, BLAST joins it with a gap in order to

generate a proper alignment. The penalty for the creation of a gap should be large enough

that gaps are introduced only where needed, and the penalty for extending a gap should

take into account the likelihood that insertions and deletions occur over several residues at

a time [18]. The default setting for gap penalties in BLASTP is 11 for opening a new gap

and 1 for extending an already existing gap.

2.2.5 Integration of Low Complexity Regions

Low-complexity regions (LCRs) in protein sequences are regions containing little diversity

in their amino acid composition [19]. A major problem with low-complexity sequences

arises in sequence homology searches. Because of the repetitive nature of these sequences,

one might detect many high-scoring similarities that are biologically meaningless [20]. To

be able improve sequence similarity searching, BLASTP uses SEG [21] to filter out regions

of low complexity in the query sequence. While SEG is quite effective in determining low-

complexity segments, it is sensitive to the choice of parameters. SEG uses four parameters,

8

including the window size and the low (trigger) complexity [20].

2.3 Classification of BLAST Results

For each query sequence, BLAST was run against the PDB database while modifying the

parameters and the results from BLAST search were classified accordingly. BLAST returns

a number of sequences that it finds similar from the PDB database to the query sequence.

BLAST results were classified as either True Positives (TP), False Positives (FP), True

Negatives (TN) or False Negatives (FN) with respect to family, super-family, fold and class

as per the classifications of the SCOPe data. Figure 5 displays how each sequence returned

by BLAST for every query sequence was classified.

Figure 5: Classification of BLAST results

Given these four outcomes, a 2 × 2 confusion matrix can be generated and this is shown

in Table 2 for each of the query sequence:

Table 2: A 2 × 2 confusion matrix

Predicted
Total

Positive Negative

Actual
Positive TP FN P

Negative FP TN N

9

2.3.1 Positives

For each query sequence, all sequences returned by BLAST as similar to the query sequence

were classified as positives which were further categorised as either True Positives or False

Positives.

True Positive (TP)

A sequence returned by BLAST for a certain query was considered a true positive under a

given SCOPe classification if it’s SCOPe code was the same as the the SCOPe code of the

query sequence regarding the same classification group. For example, given a query sequence

with protein id ‘2GFS’, the corresponding SCOPe family code is ‘d.144.1.7’, ‘d.144.1’ is the

corresponding SCOPe super-family code, ‘d.144’ is the corresponding SCOPe fold code and

‘d’ is the class of the protein. A sequence returned by BLAST was considered a true positive

of the query sequence ‘2GFS’ if it’s SCOPe family code is ‘d.144.1.7’ with regards to family

annotation, ‘d.144.1’ with respect to the super-family annotation, ‘d.144’ with respect to

the fold annotation and ‘d’ as per the class group. However, if a sequence is a TP in the

family group, it is certainly a TP regarding super-family annotation, fold annotation and

the class annotation.

False Positive (FP)

A sequence returned by BLAST for a certain query sequence was considered a false positive

if it’s SCOPe classification code is not equal to the SCOPe classification code of the query

sequence under the same classification annotation. With regards to the SCOPe family,

a sequence was classified as FP if it’s SCOPe family code is not the same as the query

SCOPe family code. Under the super-family annotation, this sequence was considered a

false positive if the SCOPe super-family code is not equal to the SCOPe super-family of

the query sequence. As for the fold annotation, a sequence was regarded as FP if it’s

SCOPe fold code is not the same as the query SCOPe fold code. Concerning the class

classification, it was regarded as FP if it’s SCOPe class code is different from the query

SCOPe class code.

For example, with sequence ‘2GFS’ as a query sequence, BLAST returns a number of

sequences from the PDB database that it finds similar to ‘2GFS’. Suppose one of sequences

returned by BLAST is ‘1IH0’ with SCOPe family code ‘a.39.1.5‘, this sequence would be

considered as a FP, in all the SCOPe classifications for query sequence ‘2GFS’. However

considering a sequence, ‘4ANS’ with SCOPe family code ‘d.144.1.0’ would be classified as a

FP under the family annotation but a TP under the super-family, fold and class annotations.

If a sequence is a FP under the class annotation, it is certainly a FP in all the other

classifications.

Sequence alignments returned by BLAST that are not annotated, that is to say, the sequence

10

does not exist in the SCOPe database were not considered for further analysis.

2.3.2 Negatives

Negatives considered were all the sequences in the SCOPe database that were not returned

by BLAST for each given query sequence. Negatives were also further categorised as True

Negatives or False Negatives with regards to all the four SCOPe classifications.

True Negative (TN)

TN were generated as sequences not returned by BLAST and have a different SCOPe code

from the query sequence SCOPe code with respect to family, super-family, fold and class

for each query sequence.

False Negative (FN)

A sequence in SCOPe but not returned by BLAST for a given query sequence was considered

FN if the sequence’s SCOPe code is the same as the SCOPe code of the query sequences

following the family, superfamily, fold and class annotations.

2.4 Receiver Operating Characteristic (ROC)

ROC graph is a 2-dimensional graph for visualising and assessing the performance of an

algorithm or classifier. It is generated by plotting the True Positive Rate (TPR) on the

y-axis and the False positive rate (FPR) on the x-axis for all possible thresholds. An ROC

graph depicts relative trade-offs between benefits (true positives) and costs (false positives)

using different thresholds [13].

For each threshold used, a confusion matrix as shown in Table 2 is generated.

TPR which is also known as the recall or sensitivity is the proportion of the positives that

are correctly classified as positives. This is the percentage of all sequences whose SCOPe

code is equal to the query sequence SCOPe code that BLAST returns. In other words, of

all the sequences that have the same SCOPe code as the query sequence, what percentage

is returned by BLAST.

TPR can be calculated as:

TPR =
TP

P
=

TP

(TP + FN)

FPR is the proportion of the negatives that are incorrectly classified as the positives. This

is the percentage of all sequences whose SCOPe code is not equal to the query sequence

SCOPe code but are returned by BLAST. In other words, of all sequences that have a

different SCOPe code from the query sequence, what percentage is returned by BLAST.

11

These sequences are classified incorrectly by BLAST.

FPR can be calculated as:

FPR =
FP

N
=

FP

(FP + TN)

FPR can also be calculated as 1 - Specificity, where specificity is the proportion of negatives

that are correctly classified.

2.5 Precision-Recall Curve

Precision is the proportion of true positives of the total true positives and false positives.

Precision describes how good an algorithm is at classifying the positive sequences.

Precision can be calculated as:

Precision =
TP

(TP + FP)

Recall is the proportion of the true positives of the total true positives and negatives. Recall

is the same as sensitivity as described in Section 2.4

Precision recall curve is a 2 dimensional plot of precision on the y-axis and recall on the

x-axis for different thresholds.

2.6 Area Under Curve (AUC)

The AUC measures the entire area under the ROC or Precision-Recall curve. It summarizes

the overall performance of an algorithm over all possible thresholds. An ideal ROC curve

will hug the top left corner, so the larger the AUC, the better the algorithm [14]. A perfect

algorithm has AUC = 1

12

3 RESULTS

In this section, a comparison of the results while adjusting the parameters is presented. The

technique used for adjusting the parameters was the One Variable At Time (OVAT). OVAT

is varying one variable while keeping other parameters at default. For a given classification

level, and a given class of parameters with BLAST, the total TP was calculated as the sum

of all the TP from each query sequence. Total FP was the total sum of all the FP from

each query sequence. For each query sequence, the FN were added up to get the total FN

and also the TN were summed to get the total TN.

For example, suppose under the family classification level with default parameters, each

sequence in the query set obtains BLAST results which can be classified as TP, FP, TN

and FN. The total TP under this case is the sum of all the TP in each query sequence, FP

is the sum of all FP generated in all the query sequence, total FN is the total of all FN

from all the query sequences and finally the total TN is the summation of all the TN from

all the query sequences.

3.1 Summary Statistics

The length of the sequences in the query set is shown in Figure 6 (left) and it shows that

most of the sequences have between 100 and 400 amino acids. 1FTQ is the longest sequence

with 842 amino acids while 1QG9 has the least amino acids, 21. The distribution of the

number of sequences returned by BLAST for each query sequence using default parameters

is shown in a histogram in Figure 6 (right) which suggests different sets of sequences where

the most of the query sequences had less than 250 sequences returned by BLAST and a few

extreme sequences. Figure 7 shows the number of sequences returned by BLAST for each

sequence in the query set using BLAST default parameters. Two sequences; 2GFS (2251)

and 4HVI (2253) had the highest number of sequences returned.

13

Figure 6: Histogram of the length of the sequences (left) and the number of the sequences

returned by BLAST(right)

Figure 7: Bar plot of the query sequences with number of sequences returned by BLAST

14

3.2 Family

The analysis at the family level is presented in this subsection.

3.2.1 E-Value

The e-value was adjusted to different values, e-value = 5, e-value = 10, e-value = 1,000,

e-value = 10,000 and e-value =1,000,000. E-value = 5, 10, 1,000, 10,000 display the same

ROC curve as shown in Figure 8. This is because one is a subset of the other that is to say,

for e-value = 5, BLAST returns sequence with e-value ≤ 5, e-value = 10, BLAST returns

sequences with e-value ≤ 10. This implies sequences returned by BLAST when e-value =

5 are the same sequences returned by BLAST with a few more with e-value > 5 but less

than 10. Therefore, increasing e-value increases the number of hits which gains more TP

but at the same time generate more FP. Precision-recall curve on the other hand shows all

e-values have the same precision-recall curve.

Figure 8: ROC curve (left) and Precision-recall curve (right) for different e-values at the

family level.

Table 3 shows the different metrics for varying e-value and it shows that increasing the e-

value increases the AUC for both the ROC and the precision curve since increasing e-value

increases the hits too.

15

Table 3: Different metrics for varying e-value

E-value FPR TPR Recall Precision AUC(ROC) AUC (PR)

5 0.000186 0.153100 0.153100 0.644746 0.0000205 0.1126765

10 0.000194 0.154007 0.154007 0.636957 0.0000217 0.1132590

1,000 0.000202 0.155852 0.155852 0.629817 0.0000230 0.1144353

10,000 0.000207 0.156291 0.156291 0.625947 0.0000237 0.1147117

1,000,000 0.000220 0.156502 0.156502 0.623853 0.0000253 0.1148576

3.2.2 K-mers (Word Size)

BLAST allows for adjusting the word size with 2, 3, 4, 5, 6 and 7. Starting with short

sequences of size either 2, 3, 4, 5, 6 or 7 yields quite the same results with changing

thresholds. All word sizes increase the the true positive rate, false positive rate as they

reduce precision as shown in Figure 9 with a slight reduction of true positives with W=3

after threshold = 0.000185.

Figure 9: ROC curve (left) and Precision-recall curve (right) for different word size values

at the family level.

Table 4 shows the different metrics of the performance of BLAST using different word sizes

at optimum threshold. All metrics for the different word sizes are approximately the same

with very small differences. AUC of the ROC curve and other metrics keep increasing until

word size of length, 7 where it reduces again. This implies that using word size = 7 yields

poor performance.

16

Table 4: Different metrics for word size for maximum threshold

Word size FPR TPR Recall Precision AUC(ROC) AUC (PR)

2 0.000192 0.154971 0.154971 0.640576 0.0000215 0.1139959

3 0.000194 0.154007 0.154007 0.636957 0.0000217 0.1132590

4 0.000199 0.156020 0.156020 0.634256 0.0000225 0.1146248

5 0.000200 0.155806 0.155806 0.632584 0.0000226 0.1144736

6 0.000200 0.156086 0.156086 0.633000 0.0000226 0.1146603

7 0.000197 0.155905 0.155905 0.635657 0.0000223 0.1145480

3.2.3 Substitution Matrices

The substitution matrices used were BLOSUM45 and BLOSUM90 besides BLOSUM62.

BLOSUM45 targets distantly related proteins and BLOSUM90 targets highly similar pro-

teins. Figure 10 shows that modifying the substitution matrix results into quite similar

results. They all perform equally the same. This may be as a result that BLOSUM45 is for

distantly related proteins and therefore closely related proteins are not reported. Consid-

ering BLOSUM90, it is for more related proteins and therefore distantly related proteins

are not reported. Some alignments are not returned by BLAST hence losing a number of

TP in both cases and this leads to quite similar metrics.

Figure 10: ROC curve (left) and Precision-recall curve (right) for different scoring matrices.

Table 5 shows the different metrics at optimal threshold and it shows that BLOSUM62

performs slightly better than BLOSUM45 and BLOSUM90 since it’s AUC = 0.0000217 is

17

the greatest of them all and the AUC of the precision-recall curve.

Table 5: Different metrics for scoring matrices at family level

Scoring matrix FPR TPR Recall Precision AUC(ROC) AUC (PR)

BLOSUM45 0.000185 0.152440 0.152440 0.645282 0.0000204 0.1122344

BLOSUM62 0.000194 0.154007 0.154007 0.636957 0.0000217 0.1132590

BLOSUM90 0.000181 0.152175 0.152175 0.649684 0.0000197 0.1121721

3.2.4 Gap Penalties

There are quite a number of options to open a new gap and extend an already existing gap

while using BLAST. BLAST allows the following gap penalties: (6, 2), (7, 2), (8, 2), (9, 1),

(9, 2), (10, 1), (10, 2), (11, 1), (11, 2), (12, 1), (13, 1) and (32767, 32767) for (gap opening,

gap extension). Figure 11 suggests that these gap penalties modify the results of BLAST

quite the same except for one gap penalty with gap opening = 32767 and gap extension =

32767. This deviates much further from all the other gap penalties which can be seen in

both the ROC curve and the precision-recall curve in Figure 11. Since the gap penalty for

creating and extending a gap is very high, this results into very few significant alignments

hence a very a low positive rate. Gap penalties (6, 2), (7, 2), (8, 2), (9, 1), (10, 1) increase

the true positive rate much faster than the default.

Figure 11: ROC curve (left) and Precision-recall curve (right) for different gap penalties.

Gap penalty with gap opening = 12 and gap extension = 1 performs slightly better than

18

the default gap penalty as displayed in Table 6 by comparing their AUC for the ROC curve

and precision-recall curve.

Table 6: Different metrics for gap penalties for optimum threshold at family level

Opening Extend FPR TPR Recall Precision AUC (ROC) AUC (PR)

6 2 0.000184 0.154352 0.154352 0.649019 0.0000203 0.1199286

7 2 0.000191 0.154831 0.154831 0.641490 0.0000214 0.1143908

8 2 0.000190 0.153990 0.153990 0.641380 0.0000212 0.1134075

9 1 0.000189 0.154596 0.154596 0.644178 0.0000208 0.1195106

9 2 0.000191 0.153232 0.153232 0.639720 0.0000213 0.1111300

10 1 0.000191 0.154451 0.154451 0.640534 0.0000213 0.1169126

10 2 0.000190 0.152457 0.152457 0.638994 0.0000212 0.1092184

11 1 0.000194 0.154007 0.154007 0.636957 0.0000217 0.1132590

11 2 0.000189 0.152013 0.152013 0.639646 0.0000210 0.1092626

12 1 0.000194 0.153546 0.153546 0.635442 0.0000218 0.1121785

13 1 0.000191 0.152618 0.152618 0.637662 0.0000213 0.1116719

32767 32767 0.000182 0.146203 0.146203 0.639238 0.0000198 0.1078841

3.2.5 Integration of Low Complexity Regions

Figure 12: ROC curve (left) and Precision-recall curve (right) for filtering out LCR and no

filtering.

19

Figure 12 displays the ROC curve and the precision-recall curves of the performance of

BLAST while filtering out the LCR in contrast to not filtering them out. The difference in

the results when LCR’s are filtered and when not filtered is marginal. This may be because

most of our sequences in the query set did not have LCR’s and therefore no regions were

filtered when SEG was applied. However, the results in Table 7 show the metrics of the two

instances are approximately the same with the filtering LCR generating less values since

SEG eliminates the LCR which would result into meaningless similarities.

Table 7: Different metrics for filtering LCR for maximum threshold

Filtering LCR FPR TPR Recall Precision AUC (ROC) AUC (PR)

Yes 0.000187 0.153596 0.153596 0.644725 0.0000205 0.1130313

No 0.000194 0.154007 0.154007 0.636957 0.0000217 0.1132590

3.3 Super-family

Analysis was also done on the super-family level of SCOPe data and the results are presented

in this section.

3.3.1 E-Value

Figure 13 shows that as e-value increases both the true positive rate and false positive

increase. However at the start, false positive rate and precision are constant. This is due

to the fact that BLAST generates more hits when using a high e-value. However, some

of these hits may be TP which contributes to the increase in true positive rate and some

are FP which contribute to the false positive rate. Conversely, the precision also reduces

further with high values of e-value.

20

Figure 13: ROC curve (left) and Precision-recall curve (right) for filtering out LCR and no

filtering.

The AUC in Table 8 increases as e-value increases. This means that BLAST performs

better with higher e-value, however it is at the cost of generating more false positives. As

more TP are generated, more FP are also generated.

Table 8: Different metrics for varying e-value on super-family level

E-value FPR TPR Recall Precision AUC(ROC) AUC (PR)

5 0.000032 0.082613 0.082613 0.938391 0.0000025 0.0762634

10 0.000038 0.083335 0.083335 0.929567 0.0000030 0.0769384

1,000 0.000041 0.085097 0.085097 0.925392 0.0000033 0.0786142

10,000 0.000043 0.085795 0.085795 0.922160 0.0000035 0.0792658

1,000,000 0.000047 0.086663 0.086663 0.919945 0.0000038 0.0800691

3.3.2 K-mers (Word Size)

Figure 14 shows the ROC curve and precision recall curve while using different word sizes

at the super-family level. These graphs suggest that initially the all word sizes generate

no FP until a threshold = 1.06e-147 where they all start generating FP similarly except

for W=3 and W=2 that generates less FP than the other word sizes. This implies that

increasing the word size increases the true positive rate or recall but committing more false

positives for the ROC (left). On the other hand, the precision for larger word sizes is higher

than the precision for small word sizes with the same true positive rate.

21

Figure 14: ROC curve (left) and Precision-recall curve (right) for different word size values

based on super-family.

Word size = 5 and word size = 6 have better performance as compared to other word

sizes with the greatest AUC as shown in Table 14, however they still have the highest false

positive rate.

Table 9: Different metrics for different word sizes for maximum threshold at super-family

Word size FPR TPR Recall Precision AUC(ROC) AUC(PR)

2 0.000038 0.083418 0.083418 0.930018 0.0000030 0.0770186

3 0.000038 0.083335 0.083335 0.929567 0.0000030 0.0769384

4 0.000039 0.084634 0.084634 0.927894 0.0000031 0.0781986

5 0.000040 0.084682 0.084682 0.927251 0.0000032 0.0782451

6 0.000040 0.084792 0.084792 0.927400 0.0000032 0.0783496

7 0.000038 0.084523 0.084523 0.929424 0.0000031 0.0780945

3.3.3 Substitution Matrices

Substitution matrices at the super-family are more or less the same until threshold =

0.011 when BLOSUM62 has higher true positive and higher precision than BLOSUM45

and BLOSUM90.

22

Figure 15: ROC curve (left) and Precision-recall curve (right) for different substitution

matrices based on super-family.

The metrics in Table 15 show that BLOSUM62 performs better than BLOSUM45 and

BLOSUM90 according to the AUC of the curves.

Table 10: Different metrics for different scoring matrices at super-family

Scoring Matrix FPR TPR Recall Precision AUC (ROC) AUC(PR)

BLOSUM45 0.000035 0.081650 0.081650 0.932229 0.0000027 0.0752364

BLOSUM62 0.000038 0.083335 0.083335 0.929567 0.0000030 0.0769384

BLOSUM90 0.000032 0.081434 0.081434 0.937825 0.0000025 0.0750716

3.3.4 Gap Penalties

Adjusting for gap penalties shows that the less penalty on gap opening increases the true

positive rate and reduces precision much higher than the default while a higher penalty on

gap opening results into less true positive and reduces the precision much less as compared

to the default gap penalty. Since the penalty for opening a gap is small, it results into

high alignment scores hence more hits. The metrics in Table 11 show that gap penalty (6,

2) performs the worst as compared to the rest of the gap penalties because the less the

penalty, the more the alignments which may even be meaningless.

23

Figure 16: ROC curve (left) and Precision-recall curve (right) for different gap penalties

based on super-family.

Table 11: Different metrics for gap penalties for super-family

Opening Extend FPR TPR Recall Precision AUC (ROC) AUC (PR)

6 2 0.000029 0.083404 0.083404 0.945811 0.0000023 0.0797779

7 2 0.000035 0.083682 0.083682 0.934959 0.0000028 0.0775262

8 2 0.000035 0.083144 0.083144 0.933931 0.0000028 0.0767478

9 1 0.000032 0.083691 0.083691 0.940479 0.0000025 0.0798868

9 2 0.000038 0.082465 0.082465 0.928493 0.0000030 0.0752420

10 1 0.000035 0.083489 0.083489 0.933806 0.0000028 0.0785703

10 2 0.000039 0.081949 0.081949 0.926352 0.0000030 0.0741285

11 1 0.000038 0.083335 0.083335 0.929567 0.0000030 0.0769384

11 2 0.000039 0.081523 0.081523 0.925232 0.0000030 0.0738146

12 1 0.000039 0.082985 0.082985 0.926259 0.0000030 0.0761846

13 1 0.000039 0.082158 0.082158 0.925829 0.0000030 0.0753821

32767 32767 0.000042 0.077782 0.077782 0.917355 0.0000030 0.0703041

3.3.5 Integration of Low Complexity Regions

Figure 17 suggests that filtering LCR and not filtering modify the BLAST results the same

way until threshold = 0.011 where the results when filtering show a slightly less rate in true

positive and precision.

24

Figure 17: ROC curve (left) and Precision-recall curve (right) while filtering out LCR and

no filtering.

Table 12 shows that filtering produces lower metric values since BLAST ignores the LCR’s

that would cause excess FP.

Table 12: Different metrics for LCR for super-family

LCR FPR TPR Recall Precision AUC (ROC) AUC(PR)

Filtering 0.000035 0.082446 0.082446 0.933347 0.0000027 0.0761233

No filtering 0.000038 0.083335 0.083335 0.929567 0.0000030 0.0769384

3.4 Fold

BLAST performance was also assessed on the SCOPe fold level and below are the results.

3.4.1 E-Value

Increasing e-value increases the number of alignments returned by BLAST. Figure 18 shows

that higher values of e-value result into higher values of the true positive rate , higher values

of false positive rate and reduces precision as compared to the small values of e-value. This

means that TP are generated more but also FP are committed more as you increase e-value.

Table 13 displays higher AUC values for higher values of e-value which would imply better

performance level, however these values also generate a lot of FP.

25

Figure 18: ROC curve (left) and Precision-recall curve (right) for varying e-values based

on fold level.

Table 13: Different metrics for varying e-value on fold level

E-value FPR TPR Recall Precision AUC(ROC) AUC (PR)

5 0.000032 0.051110 0.051110 0.939983 0.0000015 0.0471915

10 0.000037 0.051580 0.051580 0.931606 0.0000018 0.0476319

1,000 0.000040 0.052632 0.052632 0.927584 0.0000020 0.0486354

10,000 0.000042 0.053026 0.053026 0.924333 0.0000021 0.0490040

1,000,000 0.000046 0.053561 0.053561 0.922109 0.0000023 0.0494992

3.4.2 K-mers

The ROC and precision-recall curves in Figure 19 suggest that larger word size values

generate higher values of true positive rate as compared to small word sizes. They also

reduce precision moderately more than the small word size. The AUC of the ROC curve as

displayed in Table 14 increases with increase in word size, however increasing further than

6 drops the AUC hence poor performance of BLAST.

26

Figure 19: ROC curve (left) and Precision-recall curve (right) for different word size values

based on fold.

Table 14: Different metrics for varying word sizes based on fold

Word size FPR TPR Recall Precision AUC (ROC) AUC(PR)

2 0.000037 0.051633 0.051633 0.932056 0.0000018 0.0476832

3 0.000037 0.051580 0.051580 0.931606 0.0000018 0.0476319

4 0.000038 0.052384 0.052384 0.929965 0.0000019 0.0484129

5 0.000039 0.052414 0.052414 0.929320 0.0000019 0.0484416

6 0.000039 0.052482 0.052482 0.929467 0.0000019 0.0485063

7 0.000037 0.052316 0.052316 0.931501 0.0000018 0.0483488

3.4.3 Substitution Matrices

BLOSUM45 and BLOSUM90 perform quite similar, however BLOSUM62 has a better per-

formance level than BLOSUM45 and BLOSUM90 as displayed in both ROC and precision-

recall curves in Figure 20. Further more, the metrics in Table 15 also show that BLO-

SUM62 has a better overall performance with a higher AUC portrayed in both the ROC

and precision-recall.

27

Figure 20: ROC curve (left) and Precision-recall curve (right) for different substitution

matrices based on fold.

Table 15: Different metrics for different substitution matrices based on fold

Scoring matrix FPR TPR Recall Precision AUC (ROC) AUC(PR)

BLOSUM45 0.000035 0.050526 0.050526 0.934038 0.0000017 0.0465684

BLOSUM62 0.000037 0.051580 0.051580 0.931606 0.0000018 0.0476319

BLOSUM90 0.000031 0.050398 0.050398 0.939719 0.0000015 0.0464710

3.4.4 Gap Penalties

Lower values of gap penalty perform better than the higher values of penalty with less

false positive rate and high true positive rate as shown in Figure 21. Gap penalty (32767,

32767) performs much worse than all the others gap penalties. Precision on the other hand

also shows that gap penalties with less penalty on opening have a better performance level.

This is because they result into more hits hence an increase in TP.

28

Figure 21: ROC curve (left) and Precision-recall curve (right) for different gap penalties

based on fold.

Table 16: Different metrics for gap penalties for fold group

Opening Extend FPR TPR Recall Precision AUC (ROC) AUC (PR)

6 2 0.000028 0.051603 0.051603 0.947539 0.0000014 0.0493669

7 2 0.000034 0.051772 0.051772 0.936661 0.0000017 0.0479743

8 2 0.000034 0.051438 0.051438 0.935574 0.0000017 0.0474914

9 1 0.000031 0.051788 0.051788 0.942329 0.0000015 0.0494419

9 2 0.000037 0.051027 0.051027 0.930277 0.0000018 0.0465691

10 1 0.000035 0.051663 0.051663 0.935647 0.0000017 0.0486290

10 2 0.000038 0.050709 0.050709 0.928143 0.0000018 0.0458823

11 1 0.000037 0.051580 0.051580 0.931606 0.0000018 0.0476319

11 2 0.000039 0.050448 0.050448 0.927030 0.0000018 0.0456897

12 1 0.000038 0.051368 0.051368 0.928367 0.0000019 0.0471708

13 1 0.000038 0.050843 0.050843 0.927684 0.0000018 0.0466617

32767 32767 0.000041 0.048136 0.048136 0.919152 0.0000017 0.0435271

Table 16 displays the various metrics of gap penalties at the optimum threshold and it shows

that gap penalty (6, 2) produces the worst results with the least AUC and gap penalty (12,

1) performs the best with the highest AUC, however it is not best when regarding the AUC

of the precision recall curve.

29

3.4.5 Integration of Low Complexity Regions

Like the classifications before, that is to say family, super-family, Figure 22 of both the

ROC and the precision recall curves show that filtering the LCR’s generates less positive

rate as compared to running BLAST with LCR’s included. The reason is that LCR’s causes

misaligments which are reported as significant yet they are actually insignificant. This is

further displayed in Table 17 which also indicates low metric values of filtering.

Figure 22: ROC curve (left) and Precision-recall curve (right) for LCR based on fold level.

Table 17: Different metrics for LCR for fold level

LCR FPR TPR Recall Precision AUC (ROC) AUC(PR)

Filtering 0.000035 0.050955 0.050955 0.934037 0.0000017 0.0470490

No filtering 0.000037 0.051580 0.051580 0.931606 0.0000018 0.0476319

3.5 Class

In regards to the class classification level, the analysis is presented below.

3.5.1 E-Value

Higher e-values modify BLAST results with more TP and FP. At the start, the ROC and

precision-recall curve is the same for all the e-values until threshold = 1.06e-147 where

higher values of e-values deviate from the lower values of e-value as displayed in Figure 23.

This is because higher values of e-value lead to more sequences (hits) returned by BLAST

30

which can be classified as TP or FP. Table 18 shows increasing values of AUC for both the

ROC curve and the precision-recall curve as the e-values increase. The higher the AUC,

the better the performance however such big values of e-values also generate high values of

FP since the false positive rate in both Figure 23 and Table 18 show a rising trend.

Figure 23: ROC curve (left) and Precision-recall curve (right) for varying e-values based

on class level.

Table 18: Different metrics for varying e-value on class level

E-value FPR TPR Recall Precision AUC(ROC) AUC (PR)

5 0.000031 0.002474 0.002474 0.952859 0.000000071 0.002286511

10 0.000035 0.002505 0.002505 0.947515 0.000000081 0.002315892

1,000 0.000038 0.002557 0.002557 0.944924 0.000000088 0.002366115

10,000 0.000039 0.002580 0.002580 0.943102 0.000000093 0.002387899

1,000,000 0.000042 0.002643 0.002643 0.942434 0.000000100 0.002446726

3.5.2 K-mers

Larger word sizes increase true positive rate and false positive slightly much more than the

word size = 2 and word size = 3 as shown in Figure 24. Precision also decreases more when

using lower word size values as shown in Figure 24.

31

Figure 24: ROC curve (left) and Precision-recall curve (right) for different word sizes based

on class level.

Word size = 3 generates the least false positive rate, a true positive rate ≈ word size = 2

and the highest precision. This means it predicts the positives much better than the other

word sizes. Unfortunately, it has the least AUC for the ROC as displayed in Table 19.

Table 19: Different word size value metrics on the class level

Word size FPR TPR Recall Precision AUC (ROC) AUC(PR)

2 0.000036 0.002504 0.002504 0.946800 0.000000082 0.002315499

3 0.000035 0.002505 0.002505 0.947515 0.000000081 0.002315892

4 0.000037 0.002544 0.002544 0.946137 0.000000085 0.002354631

5 0.000037 0.002547 0.002547 0.946005 0.000000086 0.002357409

6 0.000037 0.002551 0.002551 0.946133 0.000000086 0.002360518

7 0.000036 0.002537 0.002537 0.946180 0.000000085 0.002347515

3.5.3 Substitution Matrices

BLOSUM62 generates more true positive rate as compared to BLOSUM45 and BLOSUM90.

There is a marginal difference between the curves of BLOSUM45 and BLOSUM90 as shown

in Figure 25 however BLOSUM62, BLOSUM90 generate more false positives as they gain

more true positives. The precision on the other hand decreases much faster for BLOSUM45

and BLOSUM90 than BLOSUM62.

32

Figure 25: ROC curve (left) and Precision-recall curve (right) for different substitution

matrices based on class level.

The metrics in Table 20 show that BLOSUM62 performs much better than BLOSUM45 and

BLOSUM90 in accordance to the AUC of both the ROC and the precision-recall curves.

Table 20: Different scoring matrix metrics on the class level

Scoring matrix FPR TPR Recall Precision AUC (ROC) AUC(PR)

BLOSUM45 0.000034 0.002446 0.002446 0.947119 0.000000078 0.002257007

BLOSUM62 0.000035 0.002505 0.002505 0.947515 0.000000081 0.002315892

BLOSUM90 0.000031 0.002438 0.002438 0.952070 0.000000070 0.002250480

3.5.4 Gap Penalties

Figure 26 shows that a less penalty on gap opening increases the true positive rate and false

positive much higher than a higher penalty on gap opening. The precision also decreases

faster for the less penalty on gap openings than higher penalty on gap opening. The metrics

in Table 21 show that the gap penalty (6, 2) performs the worst according the AUC of the

ROC, however according to the AUC of the precision-recall curve, gap penalty (32767,

32767) performs the worst. This is because the gap penalty (32767, 32767) produces more

false positives which reduce precision since alignments can not be extended because of the

high penalty.

33

Figure 26: ROC curve (left) and Precision-recall curve (right) for different gap penalties

based on class level.

Table 21: Different metrics for gap penalties for class group

Opening Extend FPR TPR Recall Precision AUC (ROC) AUC (PR)

6 2 0.000029 0.002484 0.002484 0.955419 0.000000069 0.002377492

7 2 0.000034 0.002506 0.002506 0.949602 0.000000079 0.002324131

8 2 0.000034 0.002491 0.002491 0.948788 0.000000078 0.002301825

9 1 0.000031 0.002501 0.002501 0.953356 0.000000073 0.002389299

9 2 0.000036 0.002476 0.002476 0.945581 0.000000082 0.002263087

10 1 0.000033 0.002505 0.002505 0.950031 0.000000078 0.002359296

10 2 0.000036 0.002464 0.002464 0.944540 0.000000083 0.002233024

11 1 0.000035 0.002505 0.002505 0.947515 0.000000081 0.002315892

11 2 0.000037 0.002453 0.002453 0.943906 0.000000083 0.002225098

12 1 0.000036 0.002500 0.002500 0.946327 0.000000083 0.002299170

13 1 0.000036 0.002473 0.002473 0.944990 0.000000083 0.002272833

32767 32767 0.000037 0.002353 0.002353 0.940999 0.000000075 0.002134233

3.5.5 Integration of Low Complexity Regions

Filtering increases the true positive rate but reducing precision. However, the increase is

slightly less as compared to when the low complexity regions are not filtered out as shown

in Figure 27. The metrics in Table 22 also shows that filtering out the LCR results in less

34

metrics.

Figure 27: ROC curve (left) and Precision-recall curve (right) for LCR based on class level.

Table 22: Different metrics for LCR for class classification

LCR FPR TPR Recall Precision AUC (ROC) AUC(PR)

Filtering 0.000034 0.002469 0.002469 0.948044 0.000000078 0.002282623

No filtering 0.000035 0.002505 0.002505 0.947515 0.000000081 0.002315892

Further more, an ROC and precision-recall curve of all the BLAST results with default

parameters are shown in Figure 28. The plot suggests family level has the highest true

positive rate, false positive rate and the least precision while class level has the least true

positive rate and least precision at the maximum threshold. This shows that BLAST

retrieves more true positives at the family level and keeps reducing in performance from

super-family to class.

35

Figure 28: ROC (left) and Precision-recall curve (right) for BLAST results with default

parameters at different SCOPe levels.

Figure 29: ROC (left) and Precision-recall (right) of the default parameters with and without

the sequences with the highest number of sequences returned

Figure 7 showed sequences 2GFS and 4HVI had the highest sequences returned by BLAST.

An ROC and precision-recall curve with and without the sequences are shown in Figure

29. The plots show that the two sequences have an effect on the true positive rate, false

36

positive rate and precision. The figure shows the curve without 2GFS and 4HVI has a

higher true positive with a low false positive rate. The precision-recall curve shows that

the results with 2GFS and 4HVI reduce the precision much faster and further.

4 DISCUSSION

BLAST is a heuristic based algorithm for evaluating sequence similarity searching. How-

ever, it performs this analysis based on a short sequence from a query sequence that is

common in both the query and the target sequences with a risk of missing relevant homolo-

gies. In this project, we assessed the variation of BLAST performance using different values

of parameters (e-value, k-mers, scoring matrix, gap penalties, low complexity regions) with

respect to the default ones. The evaluation of BLAST was done basing on four levels (clas-

sifications) of SCOPe: family, super-family, fold and class.

Considering the family group, the performance of BLAST with the default parameters and

the modified parameters were marginal according to the ROC curve and the precision-recall

curves. A big change was seen in gap penalties where gap penalty (32767, 32767) curves

drift from the default curves. The AUC was approximately the same for all BLAST results

≈ 0.00002 for ROC. Additionally, the AUC of the precision-recall curve was roughly around

0.11 for all the BLAST results, false positive rate was around 0.0002, true positive rate was

approximately 0.1500 and precision was about 0.6400.

The super-family analysis did not show numerous difference as well albeit, the metrics were

adjusted. The false positive rate reduced to around 0.00004, the true positive rate decreased

to about 0.08000 and precision rose to 0.93000. The AUC of the curves at the super-family

level for the ROC and precision recall curves were approximately 0.000003 and 0.070000

respectively which implies BLAST performs less better than at the family level.

When looking at the fold group, the performance of BLAST between the modified and the

default parameters was more or less the same except for the gap penalty (32767, 32767)

which showed further performance from other gap penalties. The false positive rate is about

0.00004, which means no new FP are accumulated that were initially TP in the previous

level. The true positive rate drops to about 0.05 and precision at this SCOPe classification

was approximately 0.93. Both the ROC curve and the precision-recall curve show a reduc-

tion in performance of BLAST at this level since their values reduce to about 0.0000017 for

the ROC and 0.05 for the precision-recall curve.

Regarding the class group, the variation in BLAST performance between different param-

eters was not significant with AUC of about 0.0000001 for the ROC and 0.002 for the

precision-recall curve. The performance metrics, true positive rate was about 0.00003, true

37

positive rate was around 0.002 and precision increased to 0.94.

The false positive rate reduced because of a reduction in FP that are used to compute it

at every level since a sequence classified as a FP at a family level can be classified as a TP

at super-family, fold level and class level. There seemed to be an increase in the FN from

group to group which also leads to reduction in the true positive rate. The increase in TP

increase the precision at each classification.

Other studies also show using larger word size improves performance of the program. Longer

seeds would be expected to improve sensitivity of BLAST searches [22]. Further more,

BLAST with default parameters is not efficient enough for LCR analysis which is due to

the fact that it is designed to search for evolutionary relationships between regular protein

sequences and significance of matches in the presence of low complexity segments is over-

estimated hence meaningless similarities are found significant [23, 20]. When considering

whether to change gap penalties to improve search selectivity for a particular protein fam-

ily, gap penalties should be increased [12].

Although ROC is a good measure for performance evaluation of an algorithm, it is appro-

priate when the observations between the classes (positives and negatives) are balanced.

As BLAST is based on a heuristic approach, it is widely used because of its speed and

flexibility, nevertheless, BLAST’s running time has been found to be proportional to the

size of the database [24] and since the amount of biological data produced is constantly

increasing, this affects BLAST’s efficiency. In addition to that, the overall AUC did not

indicate BLAST as a good performing algorithm.

5 CONCLUSION

Generally, higher e-values, larger word sizes, less gap penalties, BLOSUM62 and filtering

with SEG had the better performance among the results. Higher e-values generate more

hits which improves performance. Larger word sizes reduce the number of seeds generated

but improves sensitivity and therefore improves the true positive rate. Less gap penalties

perform better since they have low penalties and therefore lead to longer alignments. More

alignments can be extended with less penalties hence more hits. BLOSUM62 produces

sensitive results since it extends the alignments to as far as the non-homologous regions.

The metrics keep reducing as you change from the family level to super-family, fold and

class. We would recommend further analysis while changing more than one parameter.

38

6 REFERENCES

[1] M. W. Gonzalez and W. R. Pearson, Nucleic Acids Research, Vol. 38, No. 7, 2177–2189

(2010)

[2] Donkor, Eric & Dayie, Nicholas & Adiku, Theophilus. (2014). Bioinformatics with basic

local alignment search tool (BLAST) and fast alignment (FASTA). Journal of Bioinfor-

matics and Sequence Analysis. 6. 1-6. 10.5897/IJBC2013.0086.

[3] Gonzalez MW, Pearson WR. Homologous over-extension: a challenge for iterative sim-

ilarity searches. Nucleic Acids Res. 2010;38(7):2177-2189. doi:10.1093/nar/gkp1219

[4] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, David J. Lipman,

Basic local alignment search tool, Journal of Molecular Biology, Volume 215, Issue 3,

1990, Pages 403-410.

[5] Ye J, McGinnis S, Madden TL. BLAST: improvements for better sequence analysis.

Nucleic Acids Res. 2006;34(Web Server issue):W6-W9. doi:10.1093/nar/gkl164

[6] Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN,

Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. doi:

10.1093/nar/28.1.235. PMID: 10592235; PMCID: PMC102472.

[7] Berman, Helen. (2008). The Protein Data Bank: A historical perspective.

Acta crystallographica. Section A, Foundations of crystallography. 64. 88-95.

10.1107/S0108767307035623.

[8] http://www.rcsb.org/

[9] Lo Conte L, Ailey B, Hubbard TJ, Brenner SE, Murzin AG, Chothia C. SCOP: a

structural classification of proteins database. Nucleic Acids Res. 2000;28(1):257-259.

doi:10.1093/nar/28.1.257

[10] Fox, Naomi & Brenner, Steven & Chandonia, John-Marc. (2013). SCOPe: Structural

Classification of Proteins - Extended, integrating SCOP and ASTRAL data and classifi-

cation of new structures. Nucleic acids research. 42. 10.1093/nar/gkt1240.

[11] Mills LJ, Pearson WR. Adjusting scoring matrices to correct overextended alignments.

Bioinformatics. 2013;29(23):3007-3013. doi:10.1093/bioinformatics/btt517

[12] Pearson WR. Selecting the Right Similarity-Scoring Matrix. Curr Protoc Bioinformat-

ics. 2013;43:3.5.1-3.5.9. doi:10.1002/0471250953.bi0305s43

[13] Fawcett, Tom. (2004). ROC Graphs: Notes and Practical Considerations for Re-

searchers. Machine Learning. 31. 1-38.

39

http://www.rcsb.org/

[14] Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. An Introduction to

Statistical Learning : with Applications in R. New York :Springer, 2013.

[15] Dayhoff MO, Schwartz RM, Orcutt BC: A model of evolutionary change in proteins.

In: Atlas of Protein Sequence and Structure, vol. 5. Edited by Dayhoff MO. Washington

DC: National Biomedical Research Foundation;. 1978, 345-352.

[16] Henikoff S, Henikoff JG: Amino acid substitution matrices from protein blocks. Proc

Natl Acad Sci USA. 1992, 89: 10915-10919.

[17] Altschul, Stephen. (2008). Substitution Matrices.

10.1002/9780470015902.a0005265.pub2.

[18] Pertsemlidis, A., Fondon, J.W. Having a BLAST with bioinformatics (and avoiding

BLASTphemy). Genome Biol 2, reviews2002.1 (2001). https://doi.org/10.1186/gb-2001-

2-10-reviews2002

[19] Coletta A, Pinney JW, Soĺıs DY, Marsh J, Pettifer SR, Attwood TK. Low-

complexity regions within protein sequences have position-dependent roles. BMC Syst

Biol. 2010;4:43. Published 2010 Apr 13. doi:10.1186/1752-0509-4-43

[20] Sharon, Itai & Birkland, Aaron & Chang, Kuan & El-Yaniv, Ran & Yona, Golan.

(2005). Correcting BLAST e-Values for Low-Complexity Segments. Journal of com-

putational biology : a journal of computational molecular cell biology. 12. 980-1003.

10.1089/cmb.2005.12.980.

[21] Wootton, J. C. & Federhen, S. (1993). Statistics of local complexity in aminoacid

sequences and sequence databases. Comp. Chem. 17, 149-163

[22] Shiryev SA, Papadopoulos JS, Schäffer AA, Agarwala R. Improved BLAST searches

using longer words for protein seeding. Bioinformatics. 2007 Nov 1;23(21):2949-51. doi:

10.1093/bioinformatics/btm479. Epub 2007 Oct 6. PMID: 17921491.

[23] Jarnot, Patryk & Ziemska-Legiecka, Joanna & Grynberg, Marcin & Gruca, Aleksan-

dra. (2020). LCR-BLAST—A New Modification of BLAST to Search for Similar Low

Complexity Regions in Protein Sequences. 10.1007/978-3-030-31964-9 16.

[24] Wattanapomprom, Warin & Nupairoj, Natawut & Chongstitvatana, Prabhas. (2002).

Improving the Performance of BLAST in a Memory Limited Environment.

40

7 APPENDIX

7.1 Python Codes

Query set Preparation

import pandas as pd

pd.options.mode.chained_assignment = None

import numpy as np

import os

import matplotlib.pyplot as plt

from matplotlib import pyplot

df = pd.read_table("/Users/violet/Downloads/ncbi-blast-2.11.0+/blast/db/SCOPe/

dir.cla.scope.2.07-stable.txt", delim_whitespace=True, header = None, skiprows = 4,

names = ["annotation_id", "pdb_id", "domain", "scope_family", "", " "])

df_sub = df[df[’pdb_id’].isin(df[’pdb_id’].value_counts()

[df[’pdb_id’].value_counts()==1].index)]

df_sub2 = df_sub[df_sub[’domain’].map(len) == 2]

n = 100

top_fam = df_sub2[’scope_family’].value_counts()[:n].index.tolist()

df_sub2 = df_sub2[df_sub2[’scope_family’].isin(top_fam)]

df_sub3 = df_sub2.groupby("scope_family", group_keys=False).apply(lambda group_df:

group_df.sample(1, random_state=1))

queryset = df_sub3.sample(n = 100, replace = False, random_state = 1)

queryset.to_csv("queryset.csv", header=True, index=False)

Running BLAST in bash with default parameters

This was used to run Query set against the PDB while changing the parameters of interest

#!/bin/bash

for input in *.fasta

do

echo "Processing $input"

infile=$input

prot=pdbaa

output="results_"$infile$".txt"

blastp -query $infile -db $prot -max_target_seqs 5000 -evalue 10

-outfmt 6 -out $output

done

41

Summary statistics

Calculating sequence length

path = "/Users/violet/Downloads/ncbi-blast-2.11.0+/blast/db/Queries"

i = 0

nested = []

for file in os.listdir(path):

if file.endswith(".fasta"):

i += 1

row = []

row.append(file.split("_")[0])

file_path = os.path.join(path, file)

f = open(file_path, "r")

lines = f.readlines()[1:]

for line in lines:

length = len(line. rstrip())

row.append(length)

nested.append(row)

print(i)

column_names = ["Sequence", "length"]

sequence_length = pd.DataFrame(nested, columns = column_names)

Plot histogram

Sequence = sequence_length[’Sequence’].tolist()

Sequence_length = sequence_length[’length’].tolist()

plt.figure()

plt.figure(figsize = (7, 7))

plt.hist(Sequence_length, density=False, bins=50)

plt.ylabel(’frequency’)

plt.xlabel(’Length’)

#plt.show()

plt.savefig(’Images/histogram_sequence.png’)

Number of sequences returned by BLAST

path = "/Users/violet/Downloads/ncbi-blast-2.11.0+/

blast/db/e_value/results_evalue_10"

file_length = []

for file in os.listdir(path):

if file.endswith(".fasta.txt"):

file_b = []

42

file_path = os.path.join(path, file)

blast_result = pd.read_table(file_path, delim_whitespace=True,

names=["qseqid", "sseqid", "pident", "length",

"mismatch", "gapopen", "qstart", "qend", "sstart",

"send", "evalue", "bitscore"])

blast_df = blast_result.drop_duplicates(subset=’sseqid’,

inplace=False).reset_index(drop=True)

query_id = blast_df.iloc[0,0].split("|")[0].split("_")[0]

file_b.append(query_id)

file_b.append(len(blast_df))

file_length.append(file_b)

column_names = ["Pdb_id", "length"]

query_length = pd.DataFrame(file_length, columns = column_names)

Bar plot

id = query_length[’Pdb_id’].tolist()

length = query_length[’length’].tolist()

fig = plt.figure(figsize = (20, 10))

plt.xticks(rotation=90)

plt.bar(id, length, color =’blue’,

width = 0.4)

plt.xlabel("Protein ID")

plt.ylabel("Length")

plt.savefig(’Images/barplot.png’)

Histogram

plt.figure()

plt.figure(figsize = (7, 7))

plt.hist(length, density=False, bins=30)

plt.ylabel(’frequency’)

plt.xlabel(’Length’)

plt.savefig(’Images/histogram.png’)

Classifying BLAST results

subset = df[[’annotation_id’, ’pdb_id’, ’domain’, ’scope_family’]]

def pdb_chain(pdb_id, domain):

return pdb_id.upper() + ’_’ + domain[0].upper()

43

subset[’pdb_chain’] = subset.apply(lambda row: pdb_chain(row[’pdb_id’],

row[’domain’]), axis=1)

queries = pd.read_csv("/Users/violet/Documents/UHasselt/Sem4/Master_Thesis/

queryset.csv", usecols = [’pdb_id’,’domain’, ’scope_family’])

def unique_scope_family(scope_family_in):

return ’ ’.join(set(scope_family_in.split(’ ’)))

Positives

def assigning(path):

directory = os.listdir(path)

for file in directory:

if file.endswith(".fasta.txt"):

print(file, end = ", ")

file_path = os.path.join(path, file)

if os.stat(file_path).st_size != 0:

blast_result = pd.read_table(file_path, delim_whitespace=True,

names=["qseqid", "sseqid", "pident", "length", "mismatch",

"gapopen", "qstart", "qend", "sstart", "send",

"evalue", "bitscore"])

blast_df = blast_result.drop_duplicates(subset=’sseqid’,

inplace=False).reset_index(drop=True)

df_merge_tmp = pd.merge(blast_df, subset, left_on=’sseqid’,

right_on=’pdb_chain’, how = "left").fillna(’-’)

df_groupby = df_merge_tmp.fillna(’-’).groupby(’sseqid’,

as_index=False).agg({’scope_family’: ’ ’.join})

df_groupby[’scope_family’] = df_groupby.apply(lambda row:

unique_scope_family(row[’scope_family’]), axis=1)

df_merge = pd.merge(blast_df, df_groupby, on = "sseqid",

how = "left")

blast_df_merge = df_merge[df_merge[’scope_family’]

!= ’-’].copy().reset_index(drop=True)

query_id=blast_df.iloc[0,0].split("|")[0].split("_")[0].lower()

query_scope_id=queries[queries[’pdb_id’]==query_id][’scope_family’].

iloc[0]

scope_id = query_scope_id

for item in blast_df_merge.index:

if len(set(blast_df_merge[’scope_family’][item].split(’ ’))

& set([scope_id])) > 0:

blast_df_merge.at[item, ’scope_family_annotation’] = "TP"

else:

44

blast_df_merge.at[item, ’scope_family_annotation’] = "FP"

for item in blast_df_merge.index:

if len(set([’.’.join(i.split(’.’)[:3]) for i in

blast_df_merge[’scope_family’][item].split(’ ’)]) &

set([’.’.join(scope_id.split(’.’)[:3])])) > 0:

blast_df_merge.at[item, ’superfamily_annotation’] = "TP"

else:

blast_df_merge.at[item, ’superfamily_annotation’] = "FP"

for item in blast_df_merge.index:

if len(set([’.’.join(i.split(’.’)[:2]) for i in

blast_df_merge[’scope_family’][item].split(’ ’)]) &

set([’.’.join(scope_id.split(’.’)[:2])])) > 0:

blast_df_merge.at[item, ’fold_annotation’] = "TP"

else:

blast_df_merge.at[item, ’fold_annotation’] = "FP"

for item in blast_df_merge.index:

if len(set([’.’.join(i.split(’.’)[:1]) for i in

blast_df_merge[’scope_family’][item].split(’ ’)]) &

set([’.’.join(scope_id.split(’.’)[:1])])) > 0:

blast_df_merge.at[item, ’class_annotation’] = "TP"

else:

blast_df_merge.at[item, ’class_annotation’] = "FP"

blast_df_merge.to_csv(file_path+"_annotated.csv", header=True,

index=False)

else:

print(file_path + " is empty")

else:

continue

return None

Negatives

def negatives(path):

directory = os.listdir(path)

for file in directory:

if file.endswith(".fasta.txt"):

print(file, end = ", ")

file_path = os.path.join(path, file)

if os.stat(file_path).st_size != 0:

blast_result = pd.read_table(file_path, delim_whitespace=True,

45

names=["qseqid", "sseqid", "pident", "length",

"mismatch", "gapopen", "qstart", "qend", "sstart",

"send", "evalue", "bitscore"])

blast_df = blast_result.drop_duplicates(subset=’sseqid’,

inplace=False).reset_index(drop=True)

query_id = blast_df.iloc[0,0].split("|")[0].split("_")[0].lower()

scope_id=queries[queries[’pdb_id’]==query_id][’scope_family’].iloc[0]

merge_blast_scope= pd.merge(blast_df, subset, left_on=’sseqid’,

right_on=’pdb_chain’, how = "inner")

blast_df_negatives=subset[(~subset.pdb_chain.isin

(merge_blast_scope.sseqid))].reset_index(drop=True)

blast_df_negatives[’scope_family_annotation’] = np.where

(blast_df_negatives[’scope_family’].values== scope_id, "FN", "TN")

for index in blast_df_negatives.index:

if ’.’.join(blast_df_negatives.at[index, ’scope_family’].

split(’.’)[:3]) == ’.’.join(scope_id.split(’.’)[:3]):

blast_df_negatives.at[index, ’superfamily_annotation’] = "FN"

else:

blast_df_negatives.at[index, ’superfamily_annotation’] = "TN"

for index in blast_df_negatives.index:

if ’.’.join(blast_df_negatives.at[index, ’scope_family’].

split(’.’)[:2]) == ’.’.join(scope_id.split(’.’)[:2]):

blast_df_negatives.at[index, ’fold_annotation’] = "FN"

else:

blast_df_negatives.at[index, ’fold_annotation’] = "TN"

for index in blast_df_negatives.index:

if ’.’.join(blast_df_negatives.at[index, ’scope_family’].

split(’.’)[:1]) == ’.’.join(scope_id.split(’.’)[:1]):

blast_df_negatives.at[index, ’class_annotation’] = "FN"

else:

blast_df_negatives.at[index, ’class_annotation’] = "TN"

blast_df_negatives.to_csv(file_path+"_negatives.csv",

header=True, index=False)

else:

print(file_path + " is empty")

else:

continue

return None

46

Calculating Metrics

Threshold

path = "/Users/violet/Downloads/ncbi-blast-2.11.0+/blast/db/e_value/

results_evalue_10"

directory = os.listdir(path)

frames = []

for file in directory:

if file.endswith(".fasta.txt"):

file_path = os.path.join(path, file)

if os.stat(file_path).st_size != 0:

frame = pd.read_table(file_path, delim_whitespace=True,

names=["qseqid", "sseqid", "pident", "length",

"mismatch", "gapopen", "qstart", "qend", "sstart",

"send", "evalue", "bitscore"])

frames.append(frame)

else:

print(file_path + " is empty")

else:

continue

all_results = pd.concat(frames)

thr = all_results[’evalue’].unique().tolist()

thr.sort()

thr = thr[::30] + [10]

Family group

def calculates_negatives(path):

scope_TN = 0

scope_FN = 0

i = 0

for file in os.listdir(path):

if file.endswith("_negatives.csv"):

i += 1

file_path = os.path.join(path, file)

if os.stat(file_path).st_size != 0:

df_neg = pd.read_csv(file_path, sep = ",")

tn_df = len(df_neg[df_neg[’scope_family_annotation’] == "TN"])

scope_TN += tn_df

fn_df = len(df_neg[df_neg[’scope_family_annotation’] != "TN"])

47

scope_FN += fn_df

else:

continue

print(i)

return scope_TN, scope_FN

def calculates_family_metrics(path, thresholds):

fpr = []

tpr = []

recall = []

precision = []

metrics = []

scope_TN, scope_FN = calculates_negatives(path)

print(scope_TN, scope_FN)

for threshold in thresholds:

#print(threshold, end =", ")

new_row = []

new_row.append(threshold)

TP = 0

FP = 0

TN = scope_TN

FN = scope_FN

for file in os.listdir(path):

if file.endswith("_annotated.csv"):

file_path = os.path.join(path, file)

if os.stat(file_path).st_size != 0:

blast_assigned = pd.read_csv(file_path, sep = ",")

query_id = blast_assigned.iloc[0,0].

split("|")[0].split("_")[0].lower()

scope_id = queries[queries[’pdb_id’]==query_id]

[’scope_family’].iloc[0]

positives = blast_assigned[blast_assigned[’evalue’]<=threshold]

TP_b = len(positives[positives[’scope_family_annotation’] == "TP"])

TP += TP_b

FP_b = len(positives[positives[’scope_family_annotation’] != "TP"])

FP += FP_b

negatives = blast_assigned[blast_assigned[’evalue’]>threshold]

negatives[’scope_family_annotation’] = np.where

(negatives[’scope_family_annotation’].values== "FP", "TN", "FN")

48

TN_b = len(negatives[negatives[’scope_family_annotation’] == "TN"])

FN_b = len(negatives[negatives[’scope_family_annotation’] != "TN"])

TN += TN_b

FN += FN_b

else:

continue

else:

continue

new_row.append(TP)

new_row.append(FP)

new_row.append(TN)

new_row.append(FN)

fpr.append(FP/(FP + TN))

new_row.append(FP/(FP + TN))

tpr.append(TP/(TP + FN))

new_row.append(TP/(TP + FN))

recall.append(TP/(TP + FN))

new_row.append(TP/(TP + FN))

precision.append(TP/(TP + FP))

new_row.append(TP/(TP + FP))

metrics.append(new_row)

return fpr, tpr, recall, precision, metrics

Super-family

def calculates_negatives(path):

scope_TN = 0

scope_FN = 0

i = 0

for file in os.listdir(path):

if file.endswith("_negatives.csv"):

i += 1

file_path = os.path.join(path, file)

if os.stat(file_path).st_size != 0:

df_neg = pd.read_csv(file_path, sep = ",")

tn_df = len(df_neg[df_neg[’superfamily_annotation’] == "TN"])

scope_TN += tn_df

fn_df = len(df_neg[df_neg[’superfamily_annotation’] != "TN"])

scope_FN += fn_df

else:

49

continue

print(i)

return scope_TN, scope_FN

def calculates_superfamily_metrics(path, thresholds):

fpr = []

tpr = []

recall = []

precision = []

metrics = []

scope_TN, scope_FN = calculates_negatives(path)

print(scope_TN, scope_FN)

for threshold in thresholds:

#print(threshold, end =", ")

new_row = []

new_row.append(threshold)

TP = 0

FP = 0

TN = scope_TN

FN = scope_FN

for file in os.listdir(path):

if file.endswith("_annotated.csv"):

file_path = os.path.join(path, file)

if os.stat(file_path).st_size != 0:

blast_assigned = pd.read_csv(file_path, sep = ",")

query_id = blast_assigned.iloc[0,0].split("|")[0].split("_")[0].

lower()

scope_id = queries[queries[’pdb_id’]==query_id][’scope_family’].

iloc[0]

positives = blast_assigned[blast_assigned[’evalue’]<=threshold]

TP_b = len(positives[positives[’superfamily_annotation’] == "TP"])

TP += TP_b

FP_b = len(positives[positives[’superfamily_annotation’] != "TP"])

FP += FP_b

negatives = blast_assigned[blast_assigned[’evalue’]>threshold]

negatives[’superfamily_annotation’] = np.where

(negatives[’superfamily_annotation’].values== "FP", "TN", "FN")

TN_b = len(negatives[negatives[’superfamily_annotation’] == "TN"])

FN_b = len(negatives[negatives[’superfamily_annotation’] != "TN"])

TN += TN_b

50

FN += FN_b

else:

continue

else:

continue

new_row.append(TP)

new_row.append(FP)

new_row.append(TN)

new_row.append(FN)

fpr.append(FP/(FP + TN))

new_row.append(FP/(FP + TN))

tpr.append(TP/(TP + FN))

new_row.append(TP/(TP + FN))

recall.append(TP/(TP + FN))

new_row.append(TP/(TP + FN))

precision.append(TP/(TP + FP))

new_row.append(TP/(TP + FP))

metrics.append(new_row)

return fpr, tpr, recall, precision, metrics

Fold group

def calculates_negatives(path):

scope_TN = 0

scope_FN = 0

i = 0

for file in os.listdir(path):

if file.endswith("_negatives.csv"):

i += 1

file_path = os.path.join(path, file)

if os.stat(file_path).st_size != 0:

df_neg = pd.read_csv(file_path, sep = ",")

tn_df = len(df_neg[df_neg[’fold_annotation’] == "TN"])

scope_TN += tn_df

fn_df = len(df_neg[df_neg[’fold_annotation’] != "TN"])

scope_FN += fn_df

else:

continue

print(i)

return scope_TN, scope_FN

51

def calculates_fold_metrics(path, thresholds):

fpr = []

tpr = []

recall = []

precision = []

metrics = []

scope_TN, scope_FN = calculates_negatives(path)

print(scope_TN, scope_FN)

for threshold in thresholds:

#print(threshold, end =", ")

new_row = []

new_row.append(threshold)

TP = 0

FP = 0

TN = scope_TN

FN = scope_FN

for file in os.listdir(path):

if file.endswith("_annotated.csv"):

file_path = os.path.join(path, file)

if os.stat(file_path).st_size != 0:

blast_assigned = pd.read_csv(file_path, sep = ",")

query_id = blast_assigned.iloc[0,0].split("|")[0].split("_")[0].

lower()

scope_id = queries[queries[’pdb_id’]==query_id][’scope_family’].

iloc[0]

positives = blast_assigned[blast_assigned[’evalue’]<=threshold]

TP_b = len(positives[positives[’fold_annotation’] == "TP"])

TP += TP_b

FP_b = len(positives[positives[’fold_annotation’] != "TP"])

FP += FP_b

negatives = blast_assigned[blast_assigned[’evalue’]>threshold]

negatives[’fold_annotation’] = np.where

(negatives[’fold_annotation’].values== "FP", "TN", "FN")

TN_b = len(negatives[negatives[’fold_annotation’] == "TN"])

FN_b = len(negatives[negatives[’fold_annotation’] != "TN"])

TN += TN_b

FN += FN_b

else:

continue

52

else:

continue

new_row.append(TP)

new_row.append(FP)

new_row.append(TN)

new_row.append(FN)

fpr.append(FP/(FP + TN))

new_row.append(FP/(FP + TN))

tpr.append(TP/(TP + FN))

new_row.append(TP/(TP + FN))

recall.append(TP/(TP + FN))

new_row.append(TP/(TP + FN))

precision.append(TP/(TP + FP))

new_row.append(TP/(TP + FP))

metrics.append(new_row)

return fpr, tpr, recall, precision, metrics

Class group

def calculates_negatives(path):

scope_TN = 0

scope_FN = 0

i = 0

for file in os.listdir(path):

if file.endswith("_negatives.csv"):

i += 1

file_path = os.path.join(path, file)

if os.stat(file_path).st_size != 0:

df_neg = pd.read_csv(file_path, sep = ",")

tn_df = len(df_neg[df_neg[’class_annotation’] == "TN"])

scope_TN += tn_df

fn_df = len(df_neg[df_neg[’class_annotation’] != "TN"])

scope_FN += fn_df

else:

continue

print(i)

return scope_TN, scope_FN

def calculates_class_metrics(path, thresholds):

fpr = []

53

tpr = []

recall = []

precision = []

metrics = []

scope_TN, scope_FN = calculates_negatives(path)

print(scope_TN, scope_FN)

for threshold in thresholds:

#print(threshold, end =", ")

new_row = []

new_row.append(threshold)

TP = 0

FP = 0

TN = scope_TN

FN = scope_FN

for file in os.listdir(path):

if file.endswith("_annotated.csv"):

file_path = os.path.join(path, file)

if os.stat(file_path).st_size != 0:

blast_assigned = pd.read_csv(file_path, sep = ",")

query_id = blast_assigned.iloc[0,0].split("|")[0].split("_")[0].

lower()

scope_id = queries[queries[’pdb_id’]==query_id][’scope_family’].

iloc[0]

positives = blast_assigned[blast_assigned[’evalue’]<=threshold]

TP_b = len(positives[positives[’class_annotation’] == "TP"])

TP += TP_b

FP_b = len(positives[positives[’class_annotation’] != "TP"])

FP += FP_b

negatives = blast_assigned[blast_assigned[’evalue’]>threshold]

negatives[’class_annotation’] = np.where

(negatives[’class_annotation’].values== "FP", "TN", "FN")

TN_b = len(negatives[negatives[’class_annotation’] == "TN"])

FN_b = len(negatives[negatives[’class_annotation’] != "TN"])

TN += TN_b

FN += FN_b

else:

continue

else:

continue

new_row.append(TP)

54

new_row.append(FP)

new_row.append(TN)

new_row.append(FN)

fpr.append(FP/(FP + TN))

new_row.append(FP/(FP + TN))

tpr.append(TP/(TP + FN))

new_row.append(TP/(TP + FN))

recall.append(TP/(TP + FN))

new_row.append(TP/(TP + FN))

precision.append(TP/(TP + FP))

new_row.append(TP/(TP + FP))

metrics.append(new_row)

return fpr, tpr, recall, precision, metrics

Without 2GFS and 4HVI

def without_2GFS_negatives(path):

scope_TN = 0

scope_FN = 0

i = 0

for file in os.listdir(path):

if file.endswith("_negatives.csv"):

if file.split("_")[1] == "2GFS" or file.split("_")[1] == "4HVI":

continue

else:

i += 1

file_path = os.path.join(path, file)

if os.stat(file_path).st_size != 0:

df_neg = pd.read_csv(file_path, sep = ",")

tn_df = len(df_neg[df_neg[’scope_family_annotation’] == "TN"])

scope_TN += tn_df

fn_df = len(df_neg[df_neg[’scope_family_annotation’] != "TN"])

scope_FN += fn_df

else:

continue

print(i)

return scope_TN, scope_FN

def without_2GFS(path, thresholds):

fpr = []

tpr = []

55

recall = []

precision = []

metrics = []

scope_TN, scope_FN = without_2GFS_negatives(path)

print(scope_TN, scope_FN)

for threshold in thresholds:

#print(threshold, end =", ")

new_row = []

new_row.append(threshold)

TP = 0

FP = 0

TN = scope_TN

FN = scope_FN

i = 0

for file in os.listdir(path):

if file.endswith("_annotated.csv"):

if file.split("_")[1] == "2GFS" or file.split("_")[1] == "4HVI":

continue

else:

i += 1

file_path = os.path.join(path, file)

if os.stat(file_path).st_size != 0:

blast_assigned = pd.read_csv(file_path, sep = ",")

query_id = blast_assigned.iloc[0,0].split("|")[0].split("_")[0].

lower()

scope_id = queries[queries[’pdb_id’]==query_id][’scope_family’].

iloc[0]

positives = blast_assigned[blast_assigned[’evalue’]<=threshold]

TP_b = len(positives[positives[’scope_family_annotation’] == "TP"])

TP += TP_b

FP_b = len(positives[positives[’scope_family_annotation’] != "TP"])

FP += FP_b

negatives = blast_assigned[blast_assigned[’evalue’]>threshold]

negatives[’scope_family_annotation’] = np.where

(negatives[’scope_family_annotation’].values== "FP", "TN", "FN")

TN_b = len(negatives[negatives[’scope_family_annotation’] == "TN"])

FN_b = len(negatives[negatives[’scope_family_annotation’] != "TN"])

TN += TN_b

FN += FN_b

else:

56

continue

else:

continue

print(i, end = ", ")

new_row.append(TP)

new_row.append(FP)

new_row.append(TN)

new_row.append(FN)

fpr.append(FP/(FP + TN))

new_row.append(FP/(FP + TN))

tpr.append(TP/(TP + FN))

new_row.append(TP/(TP + FN))

recall.append(TP/(TP + FN))

new_row.append(TP/(TP + FN))

precision.append(TP/(TP + FP))

new_row.append(TP/(TP + FP))

metrics.append(new_row)

return fpr, tpr, recall, precision, metrics

ROC

The ROC and precision-recall curve code was used to plot the ROC curves and

precision-recall curves by changing the parameter (e-value, wordsize, matrix, LCR)

and the classification (family, super-family, fold and class)

plt.figure(1)

plt.figure(figsize=(10, 10))

plt.plot(fpr_fam_word2, tpr_fam_word2, "k", label="word size = 2")

plt.plot(fpr_fam_word3, tpr_fam_word3, "r", label="word size = 3 (Default)")

plt.plot(fpr_fam_word4, tpr_fam_word4, "b", label="word size = 4")

plt.plot(fpr_fam_word5, tpr_fam_word5, "y", label="word size = 5")

plt.plot(fpr_fam_word6, tpr_fam_word6, "m", label="word size = 6")

plt.plot(fpr_fam_word7, tpr_fam_word7, "g", label="word size = 7")

plt.xlabel(’False positive rate’)

plt.ylabel(’True positive rate’)

plt.legend()

#plt.show()

plt.savefig(’Images/Family/ROC_word_size_fam.png’)

Precision-recall curve

plt.figure(2)

57

plt.figure(figsize=(10, 10))

plt.plot(recall_fam_word2, precision_fam_word2, "k", label="word size =2")

plt.plot(recall_fam_word3, precision_fam_word3, "r", label="word size = 3

(Default)")

plt.plot(recall_fam_word4, precision_fam_word4, "g", label="word size = 4")

plt.plot(recall_fam_word5, precision_fam_word5, "b", label="word size = 5")

plt.plot(recall_fam_word6, precision_fam_word6, "m", label="word size = 6")

plt.plot(recall_fam_word7, precision_fam_word7, "y", label="word size = 7")

pyplot.xlabel(’Recall’)

pyplot.ylabel(’Precision’)

plt.legend()

#plt.show()

plt.savefig(’Images/Family/PR_word_size_fa.png’)

58

	INTRODUCTION
	Overview
	Basic Local Alignment Search Tool (BLAST)

	Research Questions
	Data Description
	Protein Data Bank (PDB)
	Structural Classification of Proteins - extended (SCOPe)

	METHODOLOGY
	Query Set Preparation
	Parameters Modified
	Expect Value
	K-mers (Word Size)
	Substitution Matrices
	Gap Penalties
	Integration of Low Complexity Regions

	Classification of BLAST Results
	Positives
	Negatives

	Receiver Operating Characteristic (ROC)
	Precision-Recall Curve
	Area Under Curve (AUC)

	RESULTS
	Summary Statistics
	Family
	E-Value
	K-mers (Word Size)
	Substitution Matrices
	Gap Penalties
	Integration of Low Complexity Regions

	Super-family
	E-Value
	K-mers (Word Size)
	Substitution Matrices
	Gap Penalties
	Integration of Low Complexity Regions

	Fold
	E-Value
	K-mers
	Substitution Matrices
	Gap Penalties
	Integration of Low Complexity Regions

	Class
	E-Value
	K-mers
	Substitution Matrices
	Gap Penalties
	Integration of Low Complexity Regions

	DISCUSSION
	CONCLUSION
	REFERENCES
	APPENDIX
	Python Codes

