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Introduction

Even before computers as we know them today existed, there were already problems known not
to be solvable by a computer. In 1936, Alan Turing introduced a formal model of computation,
now known as the Turing machine, and used it to prove that the halting problem cannot be solved
by an algorithm. Later on, there was also interest in not only what problems a computer could
solve, but also how efficiently they can be solved, that means, how much time and memory does
an algorithm require to solve the problem. This is how the field of complexity theory emerged.
One of the most important questions within complexity theory, and computer science as a whole,
is known as the famous P vs. NP problem. Both P and NP are complexity classes, which are used
to classify problems according to their (time or space) complexity.

In this thesis, we study some of the more advanced topics within complexity theory. The first
topic we look at is randomized computation. While computers are usually seen as deterministic
machines, it is still interesting to consider a model of computation where algorithms have ac-
cess to randomness, formalized by probabilistic Turing machines. This brings us to another open
problem in complexity theory, that is, does randomness allow algorithms to solve problems more
efficiently?

The next topic we consider are interactive proof systems. An interactive proof system can be seen
as an extension to the verifier definition of NP. A proof system consists of two Turing machines (or
algorithms), a prover and a verifier. The goal of the prover is to convince the verifier of a certain
claim. The prover and verifier can interact with each other by sending messages, thus making the
proof system interactive. We can also extend this concept by making the verifier probabilistic.
This we obtain the complexity class IP, which consists of problems with such interactive proof
system. As it turns out, this is a quite powerful complexity class. In 1992, it was proven that
IP = PSPACE, where PSPACE is the class of problems that can be solved by an algorithm that
needs at most a polynomial amount of space (that is, memory). We also consider a special sort
of interactive proof system, known as a zero-knowledge proof system. In such a proof system, the
verifier can learn nothing besides the fact that the given claim is true.

For the final topic, we take a look at probabilistically checkable proofs, abbreviated as PCP. This
again, can be seen as an extension to the verifier definition of NP. The difference is that a PCP
verifier is probabilistic, and it will only read a small number of symbols of the proof. Because the
verifier is probabilistic, we allow it to make an error sometimes, that is, accept a wrong proof, but
only with a small probability that is constant (that means independent of the input). The PCP
theorem states that there exists such a PCP verifier for every problem in NP. To emphasize on the
importance of the PCP theorem, we note that the Gödel prize has been awarded in 2001 for the
original proof of the PCP theorem as well as in 2019, for the discovery of an easier proof. We also
look at an important consequence of the PCP theorem, being that, unless P = NP, there exists no
polynomial-time approximation algorithms for certain optimization problems.
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Chapter 1

Background

In this chapter, we give a short introduction to the background required to understand this thesis.
This chapter primarily contains definitions used in basic complexity theory, the definitions and
notations used in this chapter are taken from the classical textbook of Sipser [19]. We start by
introducing a formal model of computation called the Turing machine. Using this model we can
then define the time complexity of an algorithm, along with the classes P and NP. Finally we look
at NP-complete problems, which can intuitively be seen as the hardest problems in NP.

1.1 Alphabets, strings and languages

Here, we give definitions of alphabets, strings and languages. While the connection with compu-
tation might not be clear right now, it becomes clear in the sections following this.

Definition 1.1 (Alphabet) We define an alphabet to be any nonempty finite set. Elements of an
alphabet are called symbols. �

We usually use the letters Σ or Γ for alphabets.

Definition 1.2 (String) A string over an alphabet Σ is a finite sequence of symbols of Σ. We
say the length of a string u is the amount of symbols in u and is denoted by |u|. A string can
have length 0 and this specific string is called the empty string, denoted by ε. The set of all finite
strings over Σ is denoted by Σ∗. �

Definition 1.3 (Language) A language over an alphabet Σ is a set of strings over Σ. �

Definition 1.4 (Complement of a language) The complemented of a language L over an
alphabet Σ is denoted by L and is defined as L = Σ∗ \ L. �

1.2 Turing machines

Now, we are ready to introduce the Turing machine model of computation. A Turing machine
formalizes the notion of an algorithm. A Turing machine has access to a component called the
tape, serving as the memory of the machine which it can write to and read from. A tape consists
of an infinite sequence of tape cells and each tape cell contains a symbol of the tape alphabet. We
say that the first cell of this sequence is on the left side of the tape, in other words the tape is
bounded at its left side. During the computation, a Turing machine has a tape head positioned
on some cell of the tape and can only read from and write to the cell under the tape head. Also
during the computation a Turing machine will be in some state out of a finite set of states. A
computation is a sequence of steps, where each step is given by the transition function, usually
called the delta function. The transition function decides, given the current state and the symbol
currently under the tape head, the new state of the Turing machine, the symbol to write under the

5



6 CHAPTER 1. BACKGROUND

tape head and the direction to move the tape head in by one cell (left or right). At the start of a
computation the Turing machine is in the special state called the start state and its tape contains
a string called the input string (over the input alphabet) in its leftmost cells, the other cells start
with the blank symbol t. Finally a computation ends when either the accept state or reject state
is reached.

What follows is a formal definition.

Definition 1.5 (Turing machine) A Turing machine is a 7-tuple (Q,Σ,Γ, δ, q0, qaccept, qreject)
where:

• Q is the set of states,

• Σ is the input alphabet not containing the blank symbol t,

• Γ is the tape alphabet where t ∈ Γ and Σ ⊂ Γ,

• δ : Q× Γ→ Q× Γ× {L,R} is the transition function,

• q0 ∈ Q is the start state,

• qaccept ∈ Q is the accept state, and

• qreject ∈ Q is the reject state, where qreject 6= qaccept.

�

Definition 1.6 (Configuration) A configuration of a Turing machine M consists of a state q
and two strings u and v over the tape alphabet Γ and is written as uqv. During the computation
we say M is in this configuration when

• M is in state q,

• the content of the tape cells to the left of the tape head is u, and

• the content of the tape cells to the right of the tape head (including the cell under the head)
is v followed by an infinite amount of blank symbols.

�

We say that a configuration C1 yields configuration C2 when the Turing machine can go from C1

to C2 in one step of the computation. There are three special cases of configurations.

• The starting configuration of M is q0w (here, q0 is preceded by the empty string) where w
is the input string.

• An accepting configuration is any configuration of which the state is the accept state qaccept.

• A rejecting configuration is any configuration of which the state is the reject state qreject.

Both accepting and rejection configurations are called halting configurations because when reaching
either the accept state or the reject state, the computation halts. We say that a Turing machine
M accepts an input string w if a sequence of configurations C1, . . . , Ck exists, where

• C1 is the starting configuration,

• each Ci in C1, . . . , Ck−1 yields (by one step of the delta function) Ci+1, and

• Ck is an accepting configuration.

We denote the language L(M) to be the set of strings that Turing machine M accepts:

L(M) = {w |M accepts w}.

Definition 1.7 (Turing-recognizable) We say a language L over alphabet Σ is Turing-recognizable
if there exists a Turing machine M with input alphabet Σ such that L(M) = L. We also say that
M recognizes L. �
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There is an issue that could arise when working with Turing-recognizable languages. Given lan-
guage L and a Turing machine M that recognizes L, we know that if some string w is an element
of L, then M will halt after a finite number of steps. However when w is not an element of L, by
our definition it is not guaranteed that M halts at some point (but if it ever halts, it does so in
the reject state).

In the next sections, when we look at the time complexity (and in other chapters of this thesis)
it would be a lot easier to only consider Turing machines that always halt. Turing machines that
halt on all inputs are called deciders.

Definition 1.8 (Turing-decidable) A language L is called Turing-decidable if there exists a
Turing machine M that halts on all inputs such that L(M) = L. We also say that M decides
L. �

Note 1.9 In the remainder of this thesis we will make some assumptions when using Turing
machines (unless specified otherwise):

• The input alphabet is the binary alphabet Σ = {0, 1}, the symbols of which are called bits,
and the tape alphabet is Γ = {0, 1,t}.

• When we mention a Turing machine, we mean a Turing machine that halts on all inputs (a
decider).

�

1.2.1 Non-deterministic Turing machines

We look at a variant of the Turing machine, called the non-deterministic Turing machine. Non-
determinism is added by allowing a single configuration of the machine to yield possibly multiple
configurations. Then the computation is not a sequence of configurations but it can be modelled
as a tree. We say that if one of the branches of the computation tree ever reaches an accept con-
figuration, then the machine accepts. The only change needed to the definition is in the transition
function: for a non-deterministic Turing machine the transition function has the form

δ : Q× Γ→ P(Q× Γ× {L,R})

where P(S) denotes the power set of S.

In this context, we call a decider a non-deterministic Turing machine of which all branches of the
computation halt on all inputs.

It can be shown that the set of languages decidable by non-deterministic Turing machines is equal
to the set of languages decidable by deterministic Turing machines (for a proof see [19]). So, we
can say that, in terms of decidability, a non-deterministic Turing machine is just as powerful as a
deterministic Turing machine.

1.2.2 Representing objects

Until now we have seen that Turing machines take as input a string. While there are algorithms
that work on strings, we would also like to consider algorithms working with other types of objects
like numbers, graphs, sets, etc. To allow this we will encode objects to their string representation.
There are many ways to encode objects into strings however the exact method used is not very
important. We use the following notation: if we have some object O then the string representation
of O is denoted 〈O〉. We also assume that if the input of a Turing machine is supposed to be the
encoding 〈O〉 for some object O then the Turing machine will first test that the input is a valid
encoding of an object and if this is not the case the Turing machine will reject.
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1.3 Time complexity

In the previous section, we saw what it means for a language to be decidable. However, we did
not consider the time required by the computation of a Turing machine that decides a language.
It might be that for some languages it is very fast to decide membership while for other languages
this might take a very long time. That is why we give a measurement for how long a computation
takes, called the time complexity. Using this, we then show a set of languages that are considered
tractable to compute.

Definition 1.10 (Deterministic time complexity) The time complexity of a deterministic
Turing machine M is the function f : N→ N where f(n) is the maximum number of steps that M
uses on any input of length n. �

Usually, we are not interested in the exact time complexity of a Turing machine. Therefore, we use
the big-O notation, where we only consider the asymptotic behaviour of the time complexity.

Definition 1.11 (Big-O notation) Let f and g be functions f, g : N → R+. We say that
f(n) = O(g(n)) if positive integers c and n0 exist such that for every integer n ≥ n0, f(n) ≤ c·g(n).
When f(n) = O(g(n)), we say that g(n) is an asymptotic upper bound for f(n). �

Using this we introduce complexity classes, which are sets of languages that can be computed with
time complexity asymptotically bounded by the same function.

Definition 1.12 (Deterministic time complexity class) Let t : N → R+ be a function. We
define the time complexity class TIME(t(n)) to be the collection of all languages that are decidable
by a deterministic Turing machine with time complexity O(t(n)). �

Next we give the definition for the time complexity class P, the class P is considered to be the class
of languages that are efficiently computable, or tractable.

Definition 1.13 (The class P) P is the class of languages that are decidable in polynomial time
on a deterministic Turing machine, or

P =
⋃
k∈N

TIME(nk).

�

Next we will define time complexity for a non-deterministic Turing machine and the corresponding
time complexity class.

Definition 1.14 (Non-deterministic time complexity) The time complexity of a non-deterministic
Turing machine N is the function f : N→ N where f(n) is the maximum number of steps that N
uses on any branch of its computation on any input of length n. �

Definition 1.15 (Non-deterministic time complexity class) Let t : N → R+ be a func-
tion. Define the time complexity class NTIME(t(n)) to be the collection of all languages that are
decidable by a non-deterministic Turing machine with time complexity O(t(n)). �

Finally we define the class NP, the equivalent to P for non-deterministic Turing machines.

Definition 1.16 (The class NP) NP is the class of languages that are decidable in polynomial
time by a non-deterministic Turing machine.

NP =
⋃
k∈N

NTIME(nk)

�

We also define the class coNP, the class of languages whose complement is in NP.
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Definition 1.17 (The class coNP) coNP is the class of languages whose complement is in NP,
or

coNP = {L | L ∈ NP}

�

We give a second definition for NP, which informally says that NP contains all languages that can
be efficiently verified. What that means is shown in the following definitions.

Definition 1.18 (Polynomial time verifier) A verifier for a language L is a deterministic Turing
machine V , where

L = {w | V accepts 〈w, c〉 for some string c}

The time complexity of V is measured only in terms of the length of w. So a polynomial time
verifier has a time complexity polynomial in the length of w. We say a language L is polynomially
verifiable if it has a polynomial time verifier. �

The string c in the definition is called the certificate, or proof of membership.

Definition 1.19 (Verifier definition of NP) NP is the class of languages that are polynomially
verifiable. �

As an example we show that the problem of checking existence of an independent set in a graph is
polynomially verifiable and thus in NP. An independent set in a graph is a set of nodes such that
no pair of nodes in the set are neighbours. We define the problem as follows:

INDSET = {〈G, k〉 | G is a graph with an independent set of k nodes}

The following is a polynomial time verifier V for INDSET.

V = “On input 〈〈G, k〉, c〉:

1. Check if c is a set of k nodes from G.

2. Check if there is no pair of nodes in c that are neighbours in G.

3. Accept if both checks were successful, otherwise reject. ”

1.3.1 NP-completeness

There are some languages in the class NP that have the interesting property that if the language
is in P then all languages of NP are in P, or P = NP. These languages are called NP-complete. To
show this property, we make use of polynomial time reductions.

Definition 1.20 (Polynomial time computable function) A function f : Σ∗ → Σ∗ is a
polynomial time computable function if some deterministic polynomial time Turing machine M
exists that given input w halts with f(w) on its tape. We say that f is computable in polynomial
time. �

Definition 1.21 (Polynomial time reduction) We say a function f is a polynomial time re-
duction of language L1 to language L2 if

• for every string w ∈ Σ∗ we have w ∈ L1 iff f(w) ∈ L2, and

• f is computable in polynomial time.

We also say L1 is polynomial time reducible to L2, denoted by L1 ≤P L2. �

Definition 1.22 (NP-completeness) A language L is NP-complete if it satisfies the following
conditions:

• L is in NP, and

• for every L′ in NP, L′ is polynomial time reducible to L.
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We say a language is NP-hard if it satisfies the second condition. �

An example of a NP-complete language is 3SAT, containing all satisfiable 3CNF formulas (boolean
formulas in conjunctive normal form where each clause consists of 3 literals). We will not give the
proof here, but it can be found in [19].

Theorem 1.23 (Cook, 1971) 3SAT is NP-complete. �

It might seem quite challenging to prove that a certain language L is NP-complete, because we have
to show that there exists a polynomial time reduction for every language in NP to L. Fortunately
this is not necessary once we know of a single NP-complete language, as can be seen in the following
theorem.

Theorem 1.24 If L1 is NP-complete and L1 ≤P L2 with L2 ∈ NP, then L2 is NP-complete. �

To proof this, we use the fact that the composition of two polynomial time reductions is a polyno-
mial time reduction itself. So, if L1 is NP-complete we know that for every L ∈ NP there exists a
polynomial time reduction f of L to L1. Now, if there exists a polynomial time reduction g from L1

to L2 ∈ NP then g◦f is a polynomial time reduction of L to L2. And thus C is NP-complete.

To give an example we show that INDSET is NP-complete.

Theorem 1.25 INDSET is NP-complete. �

Proof. We already know that INDSET is in NP, so we only have to show that every language in NP
is polynomial time reducible to INDSET. We do this by showing a polynomial time reduction f of
3SAT to INDSET. On input a 3CNF formula φ, f(φ) will output 〈G, k〉 such that φ is satisfiable if
and only if graph G has an independent set of k nodes. The graph G will be constructed as follows:
for every clause in φ we add a group of three nodes to G, one for each literal in the clause. Two
nodes in G will share an edge when they are part of the same group or when their corresponding
literals are negations of each other. An example of this construction can be seen in Figure 1.1.

x1

x2

x3

¬x1 x4 x5

¬x3

x4

¬x5

Figure 1.1: The graph constructed by the reduction of formula φ = (x1 ∨x2 ∨x3)∧ (¬x1 ∨
x4 ∨ x5) ∧ (¬x5 ∨ x4 ∨ ¬x3). The dashed ellipses represent the groups and are only shown
for clarity.
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This reduction is correct because:

• If φ is satisfiable, then there exists some satisfying assignment. Then we can find a inde-
pendent set of size k where k is the number of clauses in φ. To do this, we will select one
node, from every three nodes corresponding to a clause, of which the accompanying literal
is true by the satisfying assignment. There must be at least one such node for each clause
because an assignment that satisfies φ satisfies every clause in φ. The selected nodes now
form an independent set because we only selected a single node per clause and we did not
select nodes corresponding to literals that are negations of each other because both literals
could not be true given the assignment. Finally, the independent set has k nodes because we
selected exactly one node per clause and there are k clauses.

• If G has an independent set of size k where k is the number of clauses in φ, we know φ is
satisfiable because we can obtain a satisfying assignment from the independent set. For every
node in the independent set, we simply make its corresponding literal true. Because nodes
of a single clause are connected the independent set has to contain a node for every clause.
And once we make some literal true we will never try to make its negation true because these
nodes are connected.

It should be clear that f can be computed in polynomial time.

To conclude this section, we define coNP-completeness and give an interesting property about
this.

Definition 1.26 (coNP-completeness) A language L is coNP-complete if it satisfies the follow-
ing conditions:

• L is in coNP, and

• for every L′ in coNP, L′ is polynomial time reducible to L.

�

Theorem 1.27 A language L is NP-complete if and only if L is coNP-complete. �

Proof. We proof the two directions.

1. Language L is NP-complete implies L is coNP-complete.

Given an NP-complete language L, we show that for every language L′ in coNP, L′ is poly-
nomial time reducible to L. Because L′ ∈ coNP, L′ ∈ NP. So, there exists a polynomial time
reduction f of L′ to L. Then, we know that for every string x, x ∈ L′ if and only if f(x) ∈ L.
This is equivalent to saying that for every string x, x ∈ L′ if and only if f(x) ∈ L. We showed
that f is also a polynomial time reduction from L′ to L.

2. Language L is coNP-complete implies L is NP-complete.

This proof is similar to the one above. Given an coNP-complete language L, we show that
for every L′ in NP, L′ is polynomial time reducible to L. Because L′ ∈ NP, L′ ∈ coNP. So,
there exists a polynomial time reduction f of L′ to L. Then, we know that for every string
x, x ∈ L′ if and only if f(x) ∈ L. This is equivalent to saying that for every string x, x ∈ L′
if and only if f(x) ∈ L. We showed that f is also a polynomial time reduction from L′ to L.

This means we can give an alternative but equivalent definition for coNP-completeness.

Definition 1.28 (coNP-completeness) A language L is coNP-complete if L is NP-complete. �
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1.4 Space complexity

In this section, we consider the amount of space a Turing machine uses instead of time. Similar to
time complexity, we define the space complexity of a Turing machine. Finally, we show the class
PSPACE and a language that is complete in this class.

Definition 1.29 (Space complexity) The space complexity of a deterministic Turing machine
M is the function f : N → N where f(n) is the maximum number of tape cells that M scans on
any input of length n.

The space complexity of a non-deterministic Turing machine N that halts on all inputs is a function
f : N → N where f(n) is the maximum number of tape cells the N scans on any branch of its
computation on any input of length n. �

Just like with time complexity, we are not interested in the exact space complexity of a Turing
machine. Therefore we introduce space complexity classes using the big-O notation.

Definition 1.30 (Space complexity classes) Let f : N → R+ be a function. The space
complexity class SPACE(f(n)) is defined as:

SPACE(f(n)) = {L | L is decided by an O(f(n)) space deterministic Turing machine}.

Similarly, the class NSPACE(f(n)) is defined as:

NSPACE(f(n)) = {L | L is decided by an O(f(n)) space non-deterministic Turing machine}.

�

Next, we define the class PSPACE.

Definition 1.31 (The class PSPACE) PSPACE is the class of languages that are decidable in
polynomial space by a deterministic Turing machine, or

PSPACE =
⋃
k∈N

SPACE(nk).

�

Just like with NP, we define PSPACE-completeness.

Definition 1.32 (PSPACE-completeness) A language L is PSPACE-complete if it satisfies the
following conditions:

• L is in PSPACE, and

• for every L′ in PSPACE, L′ is polynomial time reducible to L.

�

To give an example of a PSPACE complete language, we define the language TQBF. TQBF stands
for true quantified boolean formula and contains all fully quantified boolean formulas that evaluate
to true. A boolean formula is fully quantified if it contains no free variables, in other words, every
variable appears within the scope of some quantifier.

Theorem 1.33 TQBF is PSPACE-complete. �

We do not give the proof here, but it can be found in [19].



Chapter 2

Randomized computation

As explained in the previous chapter, when defining the class P, we attempt to define a class of
problems that are computable in practice by an algorithm, or tractable. Although the existence
of true randomness might be more of a philosophical question, nowadays a lot of algorithms act as
if they have access to randomness by using pseudo-random generators. Therefore, it is useful to
consider the effect of having access to randomness has on computation. If we allow a polynomial-
time Turing machine to have access to randomness, can it decide more languages? In this chapter,
we formalize a model of computation with access to randomness called the probabilistic Turing
machine and define classes of languages that are decidable by these. One could even view these
new classes as an alternative way of capturing languages that are computable in practice.

2.1 Probabilistic Turing machines

When we add the possibility of making random decisions, a Turing machine is obviously not
deterministic any longer. In fact, we define a probabilistic Turing machine very similarly to how
we define non-deterministic Turing machines. The difference is that we do not say that a certain
input is either accepted or rejected, but we assign a probability to both outcomes. Just like with
non-deterministic Turing machines, we only consider probabilistic Turing machines that, for every
input, halt on all branches.

Definition 2.1 (Probabilistic Turing machine) The transition function of a probabilistic Tur-
ing machine has the same form as one of a non-deterministic Turing machine, that is:

δ : Q× Γ→ P(Q× Γ× {L,R}).

However, we require that in every step of the transition function, there are at most two choices. This
means: for every state q and tape symbol a we have |δ(q, a)| ≤ 2. We call each non-deterministic
step (a step with two choices) a coin-flip step. We define the probability that a probabilistic Turing
machine M accepts an input x as the probability that an accepting branch of the computation
tree of M on input x is chosen, or

Pr[M acceptsx] =
∑

b is an accepting branch

Pr[b],

where the probability that a branch b is chosen is Pr[b] = 2−k where k is the number of coin-flip
steps on the branch b. Since there are only two possible outcomes, it follows that Pr[M rejectsw] =
1−Pr[M acceptsw]. The time and space complexity of a probabilistic Turing machine are defined
in the same way as for a non-deterministic Turing machine. �

Let us elaborate more on the probability that a probabilistic Turing machine accepts (or rejects)
an input. Say we have a probabilistic Turing machine M that, on a certain input x, has the
computation tree shown in Figure 2.1. Note that the nodes in this tree represent configurations

13
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1

Reject 1
2

1
2

Reject 1
4

Accept 1
4

Figure 2.1: An example computation tree of a probabilistic Turing machine.

of the Turing machine. Now we give a more intuitive way of thinking about the probability that
a probabilistic Turing machine accepts. Let us say that each node in the computation tree has a
certain probability of being visited. The way we calculate this probability is as follows, we start at
the root node with probability 1. Then, when a parent node has a single child node, the child node
has the same probability as its parent node. When a parent node has two child nodes (this means we
are in a coin-flip step), the probability of both of the children is half of that of the parent. Finally,
we can say that the probability that a Turing machine accepts (or rejects) is the total probability
that an accepting (or rejecting) configuration is visited. In Figure 2.1, the probability of visiting
each node is written next to the corresponding node. Now, in our example the probability that M
accepts x is the probability of visiting any accepting configuration. There is only one accepting
configuration in this tree, whose probability of being visited is 1

4 , thus we have Pr[M accepts x] = 1
4 .

For the probability that M rejects x, we have to take the sum of the probabilities that the reject
configurations are reached, so we have Pr[M rejects x] = 1

2 + 1
4 = 3

4 .

On a higher level, one can view a probabilistic Turing machine as an algorithm that can, at any
point, flip a coin and choose its next step based on the outcome of this coin-flip (where a coin-flip
has two outcomes and each outcome has probability 1

2 of occurring).

2.2 The classes RP and coRP

Now that we have defined probabilistic Turing machines, let us take a look at how powerful these
are compared to deterministic Turing machines. Say we have a probabilistic, polynomial-time
Turing machine M and a language L, with the following property: for every input x, if x ∈ L, then
Pr[M accepts x] = 1, while if x /∈ L, then Pr[M accepts x] = 0. It seems reasonable to say that
M decides the language L. However, in this case it is not very useful for M to be probabilistic,
because if M would always choose the same branch, it would be deterministic and still decide the
language L (using the same time complexity). So, access to randomness on its own surely does not
make our model of computation any more powerful. It becomes more interesting when we allow the
probabilistic Turing machine to make an error sometimes. For example, this could mean that our
probabilistic machine M sometimes (depending on the outcome of the coin-flips) rejects an input
x while x ∈ L and we still say that M decides L. It is in this way that we define randomized time
complexity classes RTIME(t(n)), where a probabilistic Turing machine is allowed to erroneously
reject an input with probability at most 1

2 .

Definition 2.2 (The class RTIME(t(n))) Let t : N→ R be a function. A language L is in the
class RTIME(t(n)) if there exists a probabilistic Turing machine M with time complexity O(t(n)),
such that, for every input x:

• if x ∈ L, then Pr[M accepts x] ≥ 1
2 , and

• if x /∈ L, then Pr[M rejects x] = 1.

�

Similar to how we defined the class P, we define the class RP.
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1

1
2

Reject 1
4

1
4

Reject 1
8

Accept 1
8

1
2

1
4

Reject 1
8

1
8

Reject 1
16

Accept 1
16

Accept 1
4

Figure 2.2: The computation tree obtained by performing error reduction.

Definition 2.3 (The class RP) We define

RP =
⋃
k∈N

RTIME(nk).

�

We say the error probability is the maximum probability that an input is wrongly rejected, that
is, rejected while being in the language. In the above definition, the error probability can be up to
1
2 . However, we could have used any constant in ]0, 1[ in the definition, without changing the class.
This is because we can perform an error reduction on these probabilistic Turing machines. As an
example, let us look back at the computation tree shown in Figure 2.1. Say this is the computation
tree of a probabilistic Turing machine M on a certain input x. We calculated that the probability
that M accepts x is 1

4 . Now, let us generalize that, say L is a language and for every input x ∈ L,
the probability that M accepts x is at least 1

4 . On the other hand, given an input x /∈ L, then
M rejects x with probability 1. This means the error probability of M is 3

4 . Note that according
to the definition we gave above, this does not prove that L ∈ RP. However, given M , we can
construct a probabilistic Turing machine M ′ for L that has a lower error probability. What M ′

does is simply running M , if M accepts, M ′ does so too. If M rejects, than M ′ will run M one
more time, and output the same as M (that is, if M accepts then M ′ accepts and if M rejects then
M ′ rejects as well). Let us look at the computation tree of M ′, on the same input as our previous
example, shown in Figure 2.2. As we can see, this computation tree is obtained by replacing the
reject nodes in the original tree by a copy of the original tree itself. Again, the probability of
visiting each node is written next to the nodes. We can now calculate the probability that M ′

accepts x, Pr[M accepts x] = 1
4 + 1

8 + 1
16 = 7

16 . So, the error probability has been reduced from 3
4

to 9
16 . While this is still not good enough to satisfy our definition, where the error probability is

at most 1
2 , we can simply repeat this error reduction technique until we get a sufficiently low error

probability. In this case we ran M 2 times, however when we run M a number of times k, the
error probability decreases exponentially in k. In this case specifically, we get an error probability
of ( 3

4 )k.

So, we can conclude that to prove that a language L is in RP, we only have to show a probabilistic
Turing machine that has some constant error probability less than 1. The same holds for languages
in RTIME(t(n)) for every function t, because running a probabilistic Turing machine with t(n)
time complexity k times, where k is a constant, takes k · t(n) time, and k · t(n) = O(t(n)).

Similar to how we define coNP, we can define the class coRP.

Definition 2.4 (The class coRP) A language L is in coRP if and only if L is in RP. �
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An interesting property of coRP is that we could have defined it in an alternative way. This
definition is similar to the one of RP, but the error is allowed when x /∈ L.

Property 2.5 A language L is in the class coRP if and only if there exists a probabilistic,
polynomial-time Turing machine M , such that, for every input x:

• if x ∈ L, then Pr[M accepts x] = 1, and

• if x /∈ L, then Pr[M rejects x] ≥ 1
2 .

�

Proof. Proving this is straightforward, given a language L ∈ RP, by definition, we have L ∈ coRP.
Let M be a probabilistic Turing machine that decides L, thus we have that for every input x, if
x ∈ L then Pr[M accepts x] ≥ 1

2 and if x /∈ L, then Pr[M rejects x] = 1. Now if we modify obtain
the probabilistic Turing machine M ′ by swapping the accept and reject states of M , then clearly
M ′ decides L and L satisfies the conditions of Property 2.5. The other way can be proved in the
same way.

2.3 An example: probabilistic primality testing

A classic example of a problem solved by probabilistic algorithms is primality testing, that is, given
a number test if it is a prime number. Before showing an algorithm to test primality, we first give
a short background of number theory.

2.3.1 Background

A natural number greater than 1 is called a prime number (or just a prime) if it is not a product of
two smaller natural numbers. A natural number that is not a prime number is called a composite
number. Two natural numbers, a and b, are called coprime if their greatest common divisor
equals 1, that is: gcd(a, b) = 1. It follows that a prime number is coprime to all natural numbers
(excluding 0) smaller than itself. We say two integers, a and b, are equivalent modulo n, for some
natural number n greater than 1, if their difference is divisible by n, in other words, there exists
an integer k such that a − b = k · n. When integers a and b are equivalent modulo n, we write
a ≡ b (mod n). Now, we show Fermat’s little theorem, which we use later in the primality testing
algorithm.

Theorem 2.6 (Fermat’s little theorem) If p is a prime number and a is coprime to p, then
ap−1 ≡ 1 (mod p). �

We also show Euclid’s lemma, which we need for the proof of the next property.

Lemma 2.7 (Euclid’s lemma) If a product of two integers, a · b is divisible by a prime number
p, then at least one of the two integers, a and b, is divisible by p. �

We say an integer a is a square root of an integer b modulo n, if a2 ≡ b (mod n). The following
property about the square roots of 1 modulo a prime number, will also be used in the primality
testing algorithm.

Property 2.8 When p is an odd prime number and x is a square root of 1 modulo p, then either
x ≡ 1 (mod p) or x ≡ −1 (mod p). �

Proof. Let p be an odd prime number and let x be a square root of 1 modulo p. Then we have
x2 ≡ 1 (mod p). From this follows:

x2 − 1 = (x− 1) · (x+ 1) ≡ 0 (mod p).

So, there exists an integer k such that (x − 1) · (x + 1) = k · p, in other words, (x − 1) · (x + 1)
is divisible by p. By Euclid’s lemma, this means that at least one of the two factors, (x − 1) and
(x+ 1), must be divisible by p.
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• If x− 1 is divisible by p, then x− 1 ≡ 0 (mod p) and thus x ≡ 1 (mod p).

• On the other hand, if x+ 1 is divisible by p, then x+ 1 ≡ 0 (mod p) and x ≡ −1 (mod p).

Example 2.9 Let us take a prime number, p = 5. Clearly, 1 and -1 are trivial square roots of 1
modulo 5. There are many more square roots of 1 modulo 5, for example 62 = 36 ≡ 1 (mod 5) or
42 = 16 ≡ 1 (mod 5). However, all these square roots are equivalent to either 1 or -1 modulo 5,
following our example, 6 ≡ 1 (mod 5) and 4 ≡ −1 (mod 5).

Let us show that Property 2.8 does not hold for square roots of 1 modulo a composite number.
Take the composite number n = 8. One of the square roots of 1 modulo 8 is 3 because 32 = 9 ≡ 1
(mod 8). And this while 3 is not equivalent to 1 or -1 modulo 8. �

2.3.2 Fermat primality test

Using Fermat’s little theorem, we can perform a very simple primality test, called the Fermat
primality test. On input a number x, we randomly choose a number a ∈ {2, . . . , x− 1} and test if
ax−1 ≡ 1 (mod x). If the test fails, we know that x is not prime. So, this test will accept prime
numbers with probability 1. However, if the test does not fail, we do not know that for sure that
x is a prime. In fact, there exist composite numbers that pass the Fermat primality test for any a
that is coprime to x. Such numbers are known as Carmichael numbers.

Definition 2.10 (Carmichael number) A Carmichael number is a composite number x, such
that for every number a coprime to x, we have:

ax−1 ≡ 1 (mod x).

�

Example 2.11 Let us give an example of the Fermat primality test. Say we want to test the
number 11 for primality (in this case, the number is indeed prime). So, we have to choose a
random a ∈ {2, . . . , 11 − 1 = 10}, let us say we picked a = 4. Then we verify that 411−1 ≡ 1
(mod 11), which is true. And thus the test accepts x as a prime.

Now, let us apply the Fermat primality test to a composite number, say 6. We choose a random
a ∈ {2, . . . , 5}, let us say 2. Then we compute 26−1 = 32, clearly 32 6≡ 1 (mod 6), and the test will
reject 6.

As a final example, let us perform the test on a Carmichael number. The smallest Carmichael
number is 561. Again, we chose a random a ∈ {2, . . . , 560}, say 326. Now we compute 326560,
we do not include the result here because this is a very large number. However, it happens that
326560 ≡ 1 (mod 561). So, the test wrongly accepts 561 as a prime number. �

Because there exist an infinite number of Carmichael numbers (see [2]), the Fermat primality test
has a serious flaw. Therefore, we show a more accurate primality test in the next subsection.

Note 2.12 While there is indeed a flaw with this test, in practice the Fermat primality test is
sometimes used before using more accurate, but also more time-consuming, primality tests. This
way, some composite numbers can already be rejected by the relatively fast Fermat primality test
before having to perform the more time-consuming tests. �

2.3.3 Miller-Rabin primality test

The more accurate probabilistic algorithm we describe here is called the Miller-Rabin primality
test [15]. This test works by checking that the input number is a strong probable prime, as defined
below, to a randomly chosen base.
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Definition 2.13 (Strong probable prime) Let n > 2 be an odd integer. We can write n as
d · 2s + 1, where d and s are integers and d is odd. Then n is called a strong probable prime to a
base a if one of the following conditions hold:

1. ad ≡ 1 (mod n), or

2. ad·2
r ≡ −1 (mod n) for some r in {0, . . . , s− 1}.

�

This test will accept primes with probability 1, as can be seen from the following property.

Property 2.14 An odd prime p, is a strong probable prime to every base a ∈ {2, . . . , p− 1}. �

Proof. Let p be an odd prime. Because p is odd, we can write p as d · 2s + 1, with d and s integers.
By Fermat’s little theorem, we know:

ad·2
s

≡ 1 (mod p)

for every a ∈ {2, . . . , p− 1}. Now, ad·2
s−1

is a square root of ad·2
s

modulo p and thus a square root
of 1 modulo p. By Property 2.8, we know that a square root of 1 modulo p is equivalent to 1 or
-1 modulo p. If ad·2

s−1 ≡ −1 (mod p), then the second condition of the definition holds, and p is

a probable prime to base a. Otherwise we know that ad·2
s−1 ≡ 1 (mod p), and then ad·2

s−2

is a
square root of 1 modulo p. Then, we can continue this reasoning. In general, either there exists an
r ∈ {0, . . . , s− 1} such that ad·2

r ≡ −1 (mod p), or ad ≡ 1 (mod p). In both cases, the definition
is satisfied.

On the other hand, unlike with the Fermat primality test, we can bound the probability that
the Miller-Rabin test (wrongly) accepts a composite number. This is shown in the following
property.

Property 2.15 A composite number n is a strong probable prime to at most 1
4 of the bases in

{2, . . . , n− 1}. �

We do not give a proof here, see [15].

Now, let us define the language that contains all prime numbers.

PRIMES = {〈n〉 | n is a prime number}.

Using the Miller-Rabin test, we can construct a Turing machine, M , for the language PRIMES.
Note that we encode numbers using their binary representation, which means that the length of
an input number n is logarithmic in n, that is |〈n〉| = blog nc+ 1.

“On input 〈n〉, with n a natural number greater than 1

1. If n = 2, accept.

2. If n is even, reject.

3. Compute integers d and s such that n = d · 2s + 1, where d is odd.

4. Choose a random a in {2, . . . , n− 1}.

5. If ad ≡ 1 (mod n), accept.

6. Repeat for r in 0, . . . , s:

(a) If ad·2
r ≡ −1 (mod n), accept.

7. If we reach this point, reject. ”
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We know by Property 2.14 that the Miller-Rabin test always accepts primes. Thus, if x ∈ PRIMES,
then Pr[M accepts x] = 1. On the other hand, Property 2.15 tells us that for at least 1

4 of the
bases we choose, the test will reject a composite number. In other words, if x /∈ PRIMES, then
Pr[M accepts x] ≤ 1

4 . From this, we conclude PRIMES ∈ coRP. Note that this means that the
complement of PRIMES,

COMPOSITES = {〈n〉 | n is a composite number, }

is in the class RP.

Note 2.16 Historically, it has long been an open question whether primality testing can be done in
(deterministic) polynomial time. Until in 2002, Agrawal, Kayal and Saxena showed a polynomial
time algorithm for testing primality, proving that PRIMES is in P, this algorithm is known as the
AKS primality test [1]. �

2.4 The class BPP

The classes RP and coRP are defined with one-sided error probabilities. We can also allow two-
sided error, this gives us the class BPP (bounded-error probabilistic polynomial-time).

Definition 2.17 (The class BPTIME(t(n))) Let t : N → R be a function. A language L is
in the class BPTIME(t(n)) if there exists a probabilistic Turing machine M with time complexity
O(t(n)), such that, for every input x:

• if x ∈ L, then Pr[M accepts x] ≥ 2
3 , and

• if x /∈ L, then Pr[M rejects x] ≥ 2
3 .

�

Again, we define the class BPP similar to how we defined the class RP.

Definition 2.18 (The class BPP) We define

BPP =
⋃
k∈N

BPTIME(nk).

�

Since we know that the constants used in the definition of RP (and therefore coRP) can be changed
without changing the class, we could change the error probability to at most 1

3 . Then, it is easy
to see that RP ⊆ BPP and coRP ⊆ BPP.

Just as with RP, the error probability can be reduced. However, error reduction for BPP works
slightly different than error reduction for RP. Say we are given a probabilistic Turing machine M
and a language L such that for every input x, we have:

• if x ∈ L, then Pr[M accepts x] ≥ c, and

• if x /∈ L, then Pr[M rejects x] ≥ c,

for some constant c ∈ ] 1
2 , 1[. Then we say that the two-sided error probability is 1− c. To reduce

this error, we construct a new probabilistic Turing machine, M ′, that runs M a constant number
of times, say k times. We let M ′ accept when more than half of the k runs of M have accepted.
Otherwise, when more than half of the k runs of M have rejected, M ′ rejects. Let us assume that
k is an odd number so we do not have to deal with the case where the number of accepting runs
is equal to the number of rejecting runs. So, we can describe M ′ as follows.

“On input x

1. Store two counters for the number of times that M accepted and rejected respectively.

2. Repeat k times:
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Run 1 Run 2 Run 3 Probability

accept accept accept 27
64

accept accept reject 9
64

accept reject accept 9
64

accept reject reject 3
64

reject accept accept 9
64

reject accept reject 3
64

reject reject accept 3
64

reject reject reject 1
64

Table 2.1: Probabilities for each possible outcome of 3 runs of M .

• Run M on input x.

• If M accepted, increment the counter for the number of accepted runs, and likewise
when M rejected.

3. If the number of accepted runs is greater than the number of rejected runs, accept.

4. Otherwise, reject. ”

Example 2.19 Say we have a probabilistic Turing machine M for a language L that is in BPP.
Now, imagine that, on a certain input x, the probability that M accepts is 3

4 . Let us look at the
probability of accepting after performing two-sided error reduction. We construct a new proba-
bilistic Turing machine M ′ that runs the original Turing machine, M , 3 times, thus we have k = 3.
Now, the probability that, for example, the first run of M accepts, the second run rejects and
the third run accepts equals Pr[M accepts x] · Pr[M rejects x] · Pr[M accepts x], which is 9

64 . In
Table 2.1 we have calculated the probabilities for all these possible outcomes of k runs.

Using this table, we can calculate the probability that, for example, 2 of the k runs accept and
one run rejects, to do this we take the sum of the probabilities of such outcomes (see the second,
third and fifth row in Table 2.1), which is 9

64 + 9
64 + 9

64 = 27
64 . The probability for each possibility is

shown in Table 2.2. Remember that when doing error reduction with a two-sided error, we accept
if and only if the number of accepting runs is greater than the number of rejecting runs. Now, we
can finally calculate the probability that our new Turing machine, M ′, accepts x. This is simply
the sum of the probabilities of obtaining an outcome where the number of accepting runs is greater
than the number of rejecting runs. In this case (see the first two rows of Table 2.2), we have

Pr[M ′ accepts x] =
27

64
+

27

64
=

54

64
.

So, if our original error probability was 1− 3
4 = 1

4 , we reduced the error to 1− 54
64 = 10

64 = 5
32 .

�

Note 2.20 We stated that the two-sided error probability can not be greater than 1
2 . To see why

this is necessary, let us consider the class of languages that have a probabilistic Turing machine
which has error probability 1

2 on both sides. We call this class BPP 1
2
, so a language L is in BPP 1

2

if there exists a probabilistic Turing machine M , such that, on every input x:

• if x ∈ L, then Pr[M accepts x] ≥ 1
2 , and

• if x /∈ L, then Pr[M rejects x] ≥ 1
2 .
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Accepting runs Rejecting runs Probability

3 0 27
64

2 1 27
64

1 2 9
64

0 3 1
64

Table 2.2: Probabilities for the number of accepting and rejecting runs out of 3 runs of M .

1

Reject 1
2

Accept 1
2

Figure 2.3: A computation tree of a probabilistic Turing machine with two-sided error
probability 1

2
.

Now, consider a Turing machine M that, on every input x, has the same computation tree shown
in Figure 2.3. As we can see, M performs a coin-flip and either rejects or accepts, depending on the
outcome of the coin-flip. So, for every input x, we have Pr[M accepts x] = 1

2 and Pr[M rejects x] =
1
2 . This means that if we take any language L, then for every input x, we have:

• if x ∈ L, then Pr[M accepts x] = 1
2 , and

• if x /∈ L, then Pr[M rejects x] = 1
2 .

Which means that every language is in BPP 1
2
, even undecidable ones, for example. So, allowing a

two-sided error probability of exactly 1
2 does not make sense. �

2.5 The class ZPP

We said earlier, that without allowing an error probability, a probabilistic, polynomial-time Turing
machine gains no power over a deterministic one. However, another way to make a probabilistic
Turing machine potentially more powerful is to loosen the time complexity bound. For example,
we could allow a probabilistic Turing machine to, sometimes, use more than polynomial time, as
long as the average time needed is polynomial. Therefore we define the expected running time of
a probabilistic Turing machine.

Definition 2.21 (The expected running time of a probabilistic Turing machine) Given
a probabilistic Turing machine M , we denote by tM (x) the running time of M on input x. Now,
tM (x) is a random variable because the amount of steps needed to halt varies over the different
branches in the computation tree. We define tM (x, b) to be the running time of M on input x
when following the branch b, in other words, this is the depth of branch b in the computation tree.
The expected running time of M on input x, is defined as∑

b

tM (x, b) · Pr[b],

where Pr[b] = 2−k where k is the number of coin-flip steps on the branch b, as we saw earlier. Note
that the sum is taken over all branches of the computation tree of M on input x.

Finally, we say M has expected running time t(n) if, for every input x, the expected running time
of M on input x is most t(|x|). �

Using this, we define the zero-error probabilistic time complexity class ZTIME(t(n)).
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Definition 2.22 (The class ZTIME(t(n))) Given a function t : N → R, a language L is in
the class ZTIME(t(n)) if and only if there exists a probabilistic Turing machine M , with expected
running time t(n), such that, for every input x:

• if x ∈ L, then Pr[M accepts x] = 1, and

• if x /∈ L, then Pr[M rejects x] = 1.

�

We define ZPP as the class of languages that can be decided in expected polynomial time with
zero error probability.

Definition 2.23 (The class ZPP) We define

ZPP =
⋃
k∈N

ZTIME(nk)

�

Something very noteworthy about this class is shown in the following property.

Property 2.24 ZPP = RP ∩ coRP. �

Proof. We prove the two inclusions.

• We first prove RP ∩ coRP ⊆ ZPP. Let L be a language in RP ∩ coRP. Let MRP be a
probabilistic, polynomial-time Turing machine that decides L according to the definition of
RP and let McoRP be one that decides L according to the definition of coRP. We construct
a probabilistic Turing machine MZPP , that works by alternating between running MRP and
McoRP until either MRP accepts or McoRP rejects, as shown below.

“On input x:

1. Keep repeating:

1.1. Run MRP until it halts. If it accepted, then accept.

1.2. Run McoRP until it halts. If it rejected, then reject.

”

Clearly, MZPP has zero error probability. Now, MRP and McoRP have time complexity that
is at most a polynomial in |x|, say this is t(|x|). The probability that MZPP has not halted

after running both machines for k · t(|x|) steps, is at most
(

1
2

)k
. The expected amount of

steps that MZPP has to simulate is thus at most

∞∑
k=1

2kt(|x|) ·
(

1

2

)k
= 2t(|x|) ·

∞∑
k=1

k

(
1

2

)k

Now, we prove that
∞∑
k=1

k

(
1

2

)k
= 2.

Consider the function

f(x) =

∞∑
k=1

xk,

if |x| < 1 we get a geometric series and thus

f(x) =
1

x− 1
− 1 =

x

1− x
.
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Now, if we multiply x with the derivate of f , we get

x · f ′(x) = x ·
∞∑
k=1

k · xk−1 =

∞∑
k=1

k · xk.

But since f(x) = x
1−x , we have:

x · f ′(x) = x · 1

(1− x)2
.

If we take x = 1
2 , then we get the desired result:

x · f ′(x) =

∞∑
k=1

k

(
1

2

)k
=

1

2
· 1(

1
2

)2 = 2.

So, MZPP has to simulate at most 4t(|x|) steps, which is a polynomial in |x|.

• Now we prove ZPP⊆ RP ∩ coRP. Let L be a language in ZPP and letMZPP be a probabilistic
Turing machine for L with expected polynomial time, and zero error probability. Let t(|x|)
be the expected running time of MZPP on input x, thus t(|x|) is a polynomial in |x|. We
construct a probabilistic Turing machine MRP , that works as follows.

“On input x:

1. Run MZPP on x for 2t(|x|) steps.

2. If MZPP has halted, then we accept if it accepted and reject if it rejected.

3. Otherwise, if MZPP has not halted, we reject. ”

Clearly, MRP runs in polynomial time. Also, when given an input x /∈ L, MRP will reject
x with probability 1. Now, for the error probability, we can use Markov’s inequality (see
Lemma 2.25 below), which implies that the probability that MZPP runs for longer than
2t(|x|) steps is at most 1

2 .

Lemma 2.25 (Markov’s inequality) If X is a non-negative random variable and a > 0,
then

Pr[X ≥ a · E[X]] ≤ 1

a
,

where E[X] denotes the expected value of the random variable X. �

So, the probability that x is rejected when x ∈ L is at most 1
2 . This proves L ∈ RP and thus

ZPP ⊆ RP. It is easy to see that ZPP is closed under complementation, and thus L ∈ ZPP
⊆ RP. This implies that L ∈ coRP and concludes the proof.



Chapter 3

Interactive proof systems

We have seen in Chapter 1 that every language in NP can be efficiently (i.e., in polynomial time)
verified when given access to a certificate (or proof of membership). In this chapter, we extend this
idea of proving membership to a verifier. This way, we explore the possibility of more powerful
interactive proof systems where we imagine a prover and a verifier that can interact with each
other by sending messages. With these proof systems, we define the class IP. As proved by Shamir
in 1992 [17], we show that IP equals PSPACE. Since currently it is not known whether NP is a
proper subset of PSPACE, there exist languages that have such interactive proof systems while it
is not known whether they are in NP. This chapter is based on Chapter 9 from the textbook of
Goldreich [10] and on Chapter 8 from the textbook of Arora and Barak [4].

3.1 The class NP as a proof system

We know from Chapter 1 that the class NP can be defined using a polynomial-time verifier that
is given a certificate. In this section, we restate this definition with a slightly different notation.
This notation will be useful later on.

A proof system consists of two entities: a prover and a verifier. We will say these are both
Turing machines, however one could also think of them as two humans, for example, one trying
to convince the other of a certain claim. Here, such claims will always be of the same form, being
that a certain string is an element of a certain language. For example, a claim could be that some
propositional formula φ is satisfiable (i.e., the representation of φ is an element of the language
containing the representations of all satisfiable formulas). It is important that the verifier and
prover can communicate with each other. Therefore, we allow them to send messages to each
other. Messages are strings over the alphabet we are using (usually that is the binary alphabet
{0, 1}). Of course, using strings over a finite alphabet, we can encode all sorts of objects, like
numbers, graphs, functions, etc. In this chapter, when we describe an interactive proof system,
the verifier will expect the messages it receives to have a certain form. When a prover sends a
message to the verifier that is not in the expected form, the verifier should simply reject.

In this section, we only allow one message to be sent from the prover to the verifier. We denote the
message (a message is a string) sent by prover P on input x by P (x). After the verifier receives
a message from the prover, it can choose to accept or reject. When a verifier V accepts after
interaction with a prover P on input x, we write ‘V ↔ P accepts x’. Similarly, when a verifier V
rejects after interaction with a prover P on input x, we write ‘V ↔ P rejects x’.

We can now reformulate the definition of NP using this notation.

Definition 3.1 (NP as a proof system) A language L is in the class NP exactly when there
exists a polynomial-time verifier V and prover P such that for every input x:

• if x ∈ L then V ↔ P accepts x, and

24
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• if x /∈ L then for every prover P ′, V ↔ P ′ rejects x.

�

Note 3.2 As seen in the definition above, when defining a proof system, we do so from the
perspective of the verifier. We make no assumptions about the prover and thus the prover is
computationally unbounded, unlike the verifier who must have a polynomial time complexity. �

Example 3.3 Let us look at a proof system for 3SAT. We know from Chapter 1 that a satisfying
assignment can be used as a certificate (or proof of membership) for 3SAT. So, in a proof system,
the prover will, given a 3CNF formula φ, simply send a satisfying assignment (if there exists one)
to the verifier. Then the verifier can check if this assignment is actually satisfying and accept or
reject accordingly.

We now take a concrete example, say φ = (¬x1)∧ (x1 ∨ x2 ∨ x3)∧ (¬x2 ∨¬x3). The prover, trying
to convince the verifier that φ is satisfiable, will send a satisfying assignment. In this case, this
could be the assignment that sets x1 to false, x2 to true and x3 to false. Then finally, the verifier
can see that φ is indeed satisfiable. This process is visualised in Figure 3.1.

Let us consider the case where we are given a unsatisfiable formula, say φ = (¬x1) ∧ (x1). Then,
when a prover sends an assignment, the assignment will not satisfy φ and the verifier will reject.
Because the verifier expects a variable assignment, when a prover sends a message that is not a
variable assignment, the verifier will always reject. Thus, there is no prover that could convince
the verifier that φ is satisfiable. �

Verifier Prover

input: (¬x1) ∧ (x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3)

x1 = false
x2 = true
x3 = false

Figure 3.1: Proof system for 3SAT.

3.2 The class IP

3.2.1 Deterministic interactive proof systems

To make a proof system more interactive we allow communication to happen in rounds. In the first
round, the prover sends a message to the verifier. Then, in the second round, the verifier sends
a message to the prover. Then the prover will send a message again, and this process continues
until the verifier decides to accept or reject. We allow both the prover and the verifier to read the
complete message history when computing the next message to send. The notation is as follows,
say a verifier, V , sends a message mi in the i’th round, then we write mi = V (x,m1, . . . ,mi−1)
where x is the input and m1, . . .mi−1 is the message history, this means that in the first round,
the prover has sent the message m1, in the second round, the verifier has sent the message m2,
and so on. Now, given verifier V , prover P and input x, we say that V ↔ P accepts x if there
exists a message history m1, . . . ,mk such that:

• for every even i ≤ k, V (x,m1, . . . ,mi−1) = mi, and
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• for every odd i ≤ k, P (x,m1, . . . ,mi−1) = mi, and

• after k rounds, the verifier V accepts.

Note 3.4 When we say a verifier V in an interactive proof system has polynomial time complexity,
we mean that V (x,m1, . . . ,mi) is computable in time bounded by a polynomial in the size of the
input, |x|. �

We define the class DIP as the class of languages that have a deterministic interactive proof
system.

Definition 3.5 (The class DIP) A language L is in the class DIP exactly when there exists an
interactive polynomial-time verifier V and prover P such that for every input x:

• if x ∈ L then V ↔ P accepts x, and

• if x /∈ L then for every prover P ′, V ↔ P ′ rejects x.

�

Example 3.6 As an example, let us look at a proof system with multiple rounds for the 3SAT
language. We can let the verifier ask the prover for a truth value of a variable each time the verifier
sends a message. Then the prover answers with “true” or “false”. Once the verifier has obtained
a truth value for every variable, the verifier can check if this is a satisfying assignment. If this is
the case, the verifier will accept, otherwise it will reject.

Next, let us show such an interaction for the formula used in Example 3.3, φ = (¬x1)∧ (x1 ∨ x2 ∨
x3) ∧ (¬x2 ∨ ¬x3). Since in our definition the prover sends the first message, but we want the
verifier to ask questions to the prover, so we simply let the prover send the empty string ε in the
first round, or m1 = P (〈φ〉) = ε. In the second round, it is the verifiers turn and let us say the
verifier wants to ask a truth value for the variable x1. To do this, we let the verifier simply sent the
name (using some representation) of that variable, thus m2 = V (〈φ〉, ε) = 〈x1〉. Now the prover
has to answer with a truth value, and since the prover is trying to convince the verifier of the fact
that φ is satisfiable, the prover should use truth values from a satisfying assignment. We use the
same assignment as in Example 3.3, and thus m3 = P (〈φ〉, ε, 〈x1〉) = “false”. And this process is
repeated for the other variables, the full interaction is shown in Figure 3.2. Finally, the verifier
will have received the full assignment and can check that φ is indeed satisfiable �

The interactive proof system seen in Example 3.6 does not seem very useful, because, as we know,
3SAT can be verified using a proof system with just a single round, so we do not need interaction
for the 3SAT language. Now, the question arises: are there cases where interaction is useful? This
would mean that interactive proof systems with multiple rounds can recognize more languages than
proof systems with just one round. As it turns out, this is not the case, as seen in the following
property.

Property 3.7 DIP = NP �

To realize this, we have to remember that we put no bounds on the time and space complexity
of the prover. This means that, given an interactive proof system with multiple rounds, one can
construct a proof system with only one round by letting the prover calculate all the messages
that the verifier would send beforehand by simulating the verifier, and then sending all questions
and answers in a single message. Clearly, the proof system with one round recognizes the same
language as the one with multiple rounds. So, adding interaction on its own does not make proof
systems more powerful.

3.2.2 Probabilistic interactive proof systems

In our search for more powerful proof systems let us consider probabilistic verifiers. When using
a probabilistic verifier, we cannot simply convert a k-round interactive proof system into one with
a single round in the same way as above. This is because the prover would have to answer all
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Verifier Prover

input: (¬x1) ∧ (x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3)

ε

〈x1〉

“false”

〈x2〉

“true”

〈x3〉

“false”

Figure 3.2: Interactive proof system for 3SAT.

possible questions the verifier could ask. Since the verifier runs is polynomial time, it can also use
a polynomial amount of random coins. This means the amount of possible questions (and answers)
could be exponential in the size of the input. A polynomial-time verifier would not be able to read
an exponential amount of answers.

Using probabilistic verifiers requires us to adjust our notation again. Now, we denote the probabil-
ity that a verifier V accepts after interaction with a prover P on input x by Pr[V ↔ P accepts x].
And the probability that verifier V sends the message m in the i-th round is denoted by
Pr[V (x,m1, . . . ,mi−1) = m].

Next, we define the class IP(k), consisting of languages that have k-round interactive proof sys-
tems.

Definition 3.8 (The class IP(k)) Given a function k : N→ N, a language L is in the class IP(k)
if and only if there exists a probabilistic polynomial-time verifier V and prover P such that for
every input x:

• an interaction of the verifier, V , with the prover, P , takes at most k(|x|) rounds, and

• if x ∈ L then Pr[V ↔ P accepts x] ≥ 2
3 , and

• if x /∈ L then for every prover P ′, Pr[V ↔ P ′ accepts x] ≤ 1
3 .

�

One could ask why the constants 2
3 and 1

3 are used. In fact these constants are quite arbitrary.
Let us define the class IPc,s(k).

Definition 3.9 Given a function k : N→ N, a language L is in the class IP(k) if and only if there
exists a probabilistic polynomial-time verifier V and prover P such that for every input x:

• an interaction of the verifier, V , with the prover, P , takes at most k(|x|) rounds, and

• if x ∈ L then Pr[V ↔ P accepts x] ≥ 1− c, and
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• if x /∈ L then for every prover P ′, Pr[V ↔ P ′ accepts x] ≤ s.

�

In the definition above, we say c is the completeness error and s is the soundness error. So, in our
definition of IP(k), both the completeness error and the soundness error are 1

3 .

Property 3.10 For all constants c, s < 1
2 , IPc,s(k) = IP(k). �

In other words, a language that has a k-round interactive proof system with completeness error c
and soundness error s, also has a k-round interactive proof system with both completeness error
and soundness error 1

3 , for all constants c, s greater than 1
2 .

Proof. We proof the two inclusions.

1. We start with IPc,s(k) ⊆ IP(k). Say we are given a language L ∈ IPc,s(k). This means L
has an interactive proof system with completeness error c and soundness error s with, say, a
verifier V and prover P . Using this, we construct a new interactive proof system with with
both completeness error and soundness error 1

3 with a verifier V ′ and P ′. The new proof
system works by running the original proof system a number of times, say n times. To keep
the number of rounds the same, we will not run the proof system n times consecutively (this
would require n · k rounds) but in parallel, this means a message in the new proof system
will consist of n messages used to simulate the original proof system. Say the input is x.
In the first round, the prover P ′ computes P (x) to obtain the message m1 and sends it to
the verifier. In the second round, the verifier V ′ runs V (x,m1) independently n times to
obtain messages m2,1,m2,2, . . . ,m2,n and sends the message m2 = 〈m2,1,m2,2, . . . ,m2,n〉 to
the prover. Then in the third round, the prover runs P (x,m1,m2,i) for each i from 1 to n to
obtain messages m3,1, . . . ,m3,n and sends the message m3 = 〈m3,1, . . . ,m3,n〉 to the verifier.
This continues, until the final round k. After that, the verifier V ′ will run V on input x
and message history m1,m2,i . . . ,mk,i for each i from 1 to n and count the number of times
V accepts and the number of times V rejects, out of the i runs. Finally if the number of
accepting runs is greater than the number of rejecting runs, V ′ will accept. Otherwise, if the
number of rejecting runs is greater than the number of accepting runs, V ′ will reject. For
simplicity, let us assume that n is odd to avoid the case where the number of accepting runs
equals the number of rejecting runs.

Now, let us analyze the completeness and soundness error of the constructed proof system.

• Say x ∈ L, we give an upper bound for the probability that V ′ rejects x. By defi-
nition we know that the probability that V is is wrong is at most c, in other words,
Pr[V rejects x] ≤ c. Now, let us look at the probability that V ′ is wrong (that is, rejects
x). The constructed verifier V ′ is wrong when it rejects r times and accepts a times out
of n times such that r > a. The probability of this happening with a accepting runs
and r rejecting runs is at most (1− c)a · cr. Let us call an outcome of n runs a rejecting
outcome when there are more rejecting runs then accepting runs of the n runs. For a
rejecting outcome, we have (1 − c)a · cr < cn, because 1 − c < c and a + r = n (we
assumed n is odd). If we take the sum of this probability over all rejecting outcomes,
we get an upper bound for the probability that V ′ rejects. The number of rejecting
outcomes is obviously less than the number of total outcomes possible, which is 2n, thus

Pr[V ′ rejects x] ≤ 2n · cn = (2 · c)n.

Now, we can find a value for n such that (2 · c)n ≤ 1
3 , that is when n ≥ log2c(

1
3 ).

• For the other case, when x /∈ L we can use the same reasoning, just using outcomes
with more accepting runs than rejecting runs instead of the other way around. Then
we get the following inequality,

Pr[V ′ accepts x] ≤ (2 · s)n.

And we can take n ≥ log2s(
1
3 ) like before.
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Finally if we take n ≥ max(log2c(
1
3 ), log2s(

1
3 )), we get the desired completeness and soundness

error, and this concludes the proof of the first inclusion.

2. The other inclusion, IPc,s(k) ⊆ IP(k), can be proven in the same way as above, using parallel
repetition, we only have to swap the constant c with 1

3 and s with 1
3 as well. Then we have

to use n parallel runs where n ≥ max(log2/3(c), log2/3(s) to obtain both completeness and

soundness error at most 1
3 .

We also define the class IP, which consists of languages that have interactive proof systems with a
polynomial amount of rounds.

Definition 3.11 (The class IP) We define

IP =
⋃
c∈N

IP(nc).

�

From the examples above, we can see that NP ⊆ IP. This also follows from the definition because
NP is defined using a deterministic verifier, which is a special case of a probabilistic verifier (with
both completeness error and soundness error equal to 0) and there is only round of interaction, so
NP ⊆ IP(1) ⊆ IP.

Example 3.12 In this example, we show an interactive proof system for GNI, a language not
known to be in NP. We define the language GNI as follows,

GNI = {〈G0, G1〉 | G0 and G1 are non-isomorphic graphs}.

We say two graphs, G0 and G1, are isomorphic (we denote this by G0
∼= G1) if and only if there

exists a bijection f : V (G0) → V (G1) such that for all u, v ∈ V (G0) it holds that (u, v) ∈ E(G0)
iff (f(u), f(v)) ∈ E(G1). Here, V (G) is the set of vertices of graph G and E(G) is the set of edges
of graph G. We will use ISO(G) to denote the set of graphs isomorphic to graph G that have the
vertex set {1, . . . , |V (G)|}, or

ISO(G) = {H | G ∼= H and V (H) = {1, . . . , |V (G)|} }.

We now describe the proof system.

1. The verifier chooses a random a ∈ {0, 1}, chooses a graph H ∈ ISO(Ga) at random, and
sends 〈H〉 to the prover.

2. After receiving 〈H〉, the prover has to figure out which of the two graphs (G0 or G1) was
used to construct H. If the prover chooses the graph Gb, he will send 〈b〉 to the verifier.

3. When the verifier receives 〈b〉, he will accept when a = b, and reject otherwise.

Note that the verifier can chose a random graph from ISO(Gb) by choosing a random bijection f :
V (Gb) → {1, . . . , |V (Gb)|} and then constructing the graph H such that V (H) = {1, . . . , |V (Gb|}
and E(H) = {(f(u), f(v)) | (u, v) ∈ E(Gb)}.

Let us now show that this proof system satisfies the definition.

If G0 � G1, then ISO(G0) and ISO(G1) are disjunct sets and thus the prover can simply send
a = 0 when G0

∼= H and a = 1 when G1
∼= H. Because the prover can always find the correct

answer, the verifier will accept with probability 1.

If G0
∼= G1, then ISO(G0) = ISO(G1) and because of this, the prover cannot distinguish between

graphs isomorphic to G0 and graphs isomorphic to G1, so it can not do anything more than guess
the answer. This means the prover will be wrong with probability at least 1

2 . Now, the verifier will
accept with probability 1

2 , while in the definition we require an error of at most 1
3 . We can fix this
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by repeating the protocol one more time (this makes the proof system require 4 rounds in total),

then the error becomes
(

1
2

)2
= 1

4 <
1
3 .

Finally, we note that the verifier can be implemented in probabilistic polynomial time. From this
example we conclude that GNI ∈ IP(4). �

3.3 IP = PSPACE

3.3.1 IP ⊆ PSPACE

In this subsection, we prove that every language decidable by an interactive proof system can also
be decided by a polynomial space (deterministic) Turing machine. This proof is inspired by the
one found in the textbook of Sipser [19].

Theorem 3.13 IP ⊆ PSPACE. �

Proof. Given an interactive verifier V for a language L ∈ IP, we construct a polynomial space
Turing machine M . When given an input x, M will calculate the maximum probability that V
will accept with after interaction with some prover P , or

p = max
P

Pr[V ↔ P accepts x].

By Definition 3.8 we know that:

• if p ≥ 2
3 , then x ∈ L, and

• otherwise p ≤ 1
3 and x /∈ L.

So, calculating p allows M to effectively decide membership of x in L. We show how to compute
p recursively on the message history, therefore we define

ph = max
P

Pr[V ↔ P accepts x starting with message history h].

Where h = m1, . . . ,mi is a history of messages with |h| = i the number of messages, and

Pr[V ↔ P accepts x starting with message history h]

is the probability that after the message history h has occurred, the verifier V will accept after
interacting with the prover P on input x. We also define h0 to be the empty message history, thus
p = ph0

. We denote the extension of message history h with message m by h,m = m1, . . . ,mi,m.
Now, the following equations hold:

• when |h| is even: ph = maxm ph,m, and

• when |h| is odd: ph =
∑
m Pr[V (x, h) = m] · ph,m.

Above, V (x, h) is the message that the verifier will send to the prover after message history h has
occurred, i.e., when h = m1, . . . ,mi, then V (x, h) = V (x,m1, . . . ,mi).

The first equation holds because when |h| is even, the prover will send a message to the verifier so
we want to find the best message the prover can send, which means finding an m that maximizes
ph,m. The second equation occurs when the verifier sends a message to the prover, here we have
to account for all possible messages the verifier could send and thus calculate a weighted average
of probabilities.

Our Turing machine M will compute p recursively, and because there at most a polynomial amount
of messages sent between the verifier and prover, the number of levels in this recursion will be at
most polynomial in the size of the input. On each level, M only requires a polynomial amount of
space, to show this we distinguish between the two cases when calculating ph.



3.3. IP = PSPACE 31

• When |h| is even, we need to compute maxm ph,m. To do this, we iterate over all possible
messages. We can bound the length of the messages by a polynomial in the size of the input
because a polynomial-time verifier cannot read longer messages. We only need to keep a
single message in memory while iterating over the messages.

• When |h| is odd, we need to compute
∑
m Pr[V (x, h) = m] · ph,m. In this case, we iterate

over all possible outcomes of coin-flips that the verifier does. Because the verifier runs in
polynomial time, the number of coin-flip steps is also bounded by a polynomial in the size
of the input. Again, we only keep a single outcome of the coin-flip steps in memory while
iterating over the outcomes of random coins.

Finally, since the amount of recursive levels is at most polynomial and the amount of space used
by each level is polynomial, M can compute p using polynomial space. Thus IP ⊆ PSPACE.

3.3.2 PSPACE ⊆ IP

Now we proof the other inclusion, this result was first prover by Shamir in 1992 [17]. However, we
show a simplified version by Shen [18], that is also found in the textbook of Goldreich [10] and the
textbook of Arora and Barak [4].

Theorem 3.14 (Shamir, 1992 [17]) PSPACE ⊆ IP �

Arithmetization of boolean formulas

Central to the proof is a technique called arithmetization of boolean formulas. For a boolean
formula φ with variables x1, . . . xn we can construct a polynomial function fφ : Nn → N, with
corresponding variables y1, . . . , yn, that has the following property. Given an assignment a1, . . . an
to variables x1, . . . xn: if the assignment satisfies φ, then fφ(t(a1), . . . , t(an)) > 0, and if φ is not
satisfied by the assignment, fφ(t(a1), . . . , t(an)) = 0, where t is a function that maps true to 1 and
false to 0.

The conversion of φ to f works as follows:

• A positive literal l = xi is converted to fl = yi.

• A negative literal l = ¬xi is converted to fl = 1− yi.

• A clause with n literals, c = (l1 ∨ · · · ∨ ln) is converted to fc =
∑n
i=1 fli .

• Finally, a conjunction of clauses c1 ∧ · · · ∧ cm is converted to
∏m
i=1 fci .

To see that this conversion indeed satisfies the above property:

• It holds trivially for literals.

• When a clause c = (l1 ∨ . . . ∨ ln) is satisfied, one the literals must be true, thus one or more
of fl1 , . . . , fln must be greater than 0 and the other equal 0, so fc > 0. Otherwise, when c is
not satisfied, than none of the literals are satisfied, so all of fl1 , . . . , fln are 0 and fc = 0.

• When a conjunction of clauses c1∧· · ·∧ cm is satisfied, all of the clauses are satisfied (fci > 0
for all ci) and

∏m
i=1 > 0. When a conjunction is not satisfied, there exists at least one clause

ci that is not satisfied, therefore fci = 0 and
∏m
i=1 = 0.

Let us give an example, say φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3), then we get

f(y1, y2, y3) = (y1 + y2 + (1− y3)) · ((1− y1) + (1− y2) + y3).

The truth table of φ, combined with the outcome of f is shown in Table 3.1. As we can see, the
outcome of fφ is 2 when φ is satisfied and 0 otherwise.
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x1 x2 x3 φ fφ
false false false true 2
false false true false 0
false true false true 2
false true true true 2
true false false true 2
true false true true 2
true true false false 0
true true true true 2

Table 3.1: The truth table of φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) combined with the
outcome of fφ.

coNP ⊆ IP

We start by proving a weaker theorem. Later on, we extend this proof to the stronger ver-
sion.

Theorem 3.15 coNP ⊆ IP. �

Proof. We show an interactive proof system for 3SAT, which is coNP-complete.1

First, we show a property of arithmetization of boolean formulas. Given a boolean formula φ, we
can convert it into the polynomial function fφ. We know that, given an assignment a1, . . . , an ∈
{true, false} to the variables x1, . . . , xn of φ, then φ is not satisfied by assignment if and only if
fφ(t(a1), . . . , t(an)) = 0. So, if for for every assignment b1, . . . bn ∈ {0, 1} to the variables y1, . . . , yn
of fφ, fφ(b1, . . . , bn) = 0, then φ is not satisfiable. Because fφ is always positive when given inputs
in {0, 1}, summing fφ over all assignments to y1, . . . , yn is 0 if and only if φ is unsatisfiable. So, φ
being not satisfiable is equivalent to the following equality:∑

y1∈{0,1}

· · ·
∑

yn∈{0,1}

fφ(y1, . . . , yn) = 0.

So, in this proof we actually show an interactive proof for claims like the equality above. Note
that a polynomial-time verifier could not evaluate the left hand side of above equality because this
would take an exponential amount of time in n, because there are an exponential amount of terms.
Let us define the function gi, obtained by stripping off the first i summations, as

gi(y1, . . . , yi) =
∑

yi+1∈{0,1}

· · ·
∑

yn∈{0,1}

fφ(y1, . . . , yn).

We can see that

gi(y1, . . . , yi) = gi+1(y1, . . . , yi, 0) + gi+1(y1, . . . , yi, 1).

Now we can describe the proof system, this will happen in n+ 1 phases, where n is the number of
variables of φ. The first phase looks as follows:

1. The prover sends the representation of h1 = g1 to the verifier. We note that g1 is a univariate
polynomial function with degree m, so can be represented in the way polynomials are usually
written, that is,

g1(y1) = a1y
m
1 + · · ·+ any1 + · · · an+1,

where a1, . . . an+1 are the coefficients.

1Note that technically, 3SAT not only contains 3CNF formulas that are not satisfiable, but also all strings that
are not 3CNF formulas. However, we ignore this because a verifier can easily check that the input is a 3CNF formula
and accept if this is not the case.
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2. The verifier computes the value of h1(0) + h1(1) (this can be done in polynomial time using
the representation shown in the previous point). If g1(0) + g1(1) 6= 0, the verifier will reject,
otherwise it will continue.

3. Finally, the verifier sends the prover a randomly chosen integer r1 ∈ [0, 9m2].

In phase i, where 0 < i ≤ n:

1. The prover sends hi, where hi(yi) = gi(r1, . . . , ri−1, yi), to the verifier.

2. The verifier computes hi(0) + hi(1) and rejects if the outcome does not equal hi−1(ri−1).

3. The verifier sends the prover a randomly chosen integer ri ∈ [0, 9m2].

Finally, in phase n+ 1:

1. The verifier checks that hn(rn) = fφ(r1, . . . , rn). If true, the verifier accepts and rejects
otherwise.

Let us now verify that this proof system is correct. When the prover follows the protocol described
above and φ is not satisfiable, then clearly the verifier will always accept. In other words, there
exists a prover P such that for every φ, if 〈φ〉 ∈ 3SAT then Pr[V ↔ P accepts 〈φ〉] = 1.

But what happens when φ is satisfiable (and thus not in 3SAT)? If the prover follows the protocol,
then the verifier will reject in the first phase because g1(0) + g1(1) 6= 0). However, we can not
assume that the prover will follow the protocol. The verifier has to reject with probability at least
2
3 when interacting with any prover. So, say the prover does not follow the protocol and sends
some h1 different from g1 in the first phase, such that h1(0) + h1(1) = 0. After the verifier has
chosen r1, we can distinguish two cases:

• When h1(r1) = g1(r1), then the prover can send h2(y2) = g2(r1, y2) in the second phase and
just continue the protocol as described above. This will make the verifier accept (wrongly).

• When h1(r1) 6= g1(r1), then if the prover sends h2 = g2(r1, y2) in the second phase, the
verifier will reject because

h2(0) + h2(1) = g2(r1, 0) + g2(r1, 1) = g1(r1) 6= h1(r1).

So, when trying to make the verifier accept, the prover must send some h2, different from g2,
such that h2(0) + h2(1) = h1(r1).

Luckily, the probability of the first case occurring is small. Consider the function d(y1) = h1(y1)−
g1(y1), since h1 and g1 both have degree at most m (when h1 has degree larger than m, the verifier
should reject), d also has degree at most m. This implies there are at most m values for y1 such that
d(y1) = 0 (remember we are assuming h1 6= g1), and definitely at most m values in {0, . . . , 9m2}.
Thus, when randomly choosing r1 ∈ {0, 9m2}, we have

Pr[h1(r1) = g1(r1)] ≤ m

9m2
.

In general, if the functions hi(yi) and gi(r1, . . . , ri−1, y1) are different, then

Pr[hi(ri) = gi(r1, . . . , ri)] ≤
m

9m2
,

when randomly choosing ri ∈ {0, . . . 9m2}. Here, r1, . . . ri−1 are already chosen and thus constant
in this context. Let us denote Ei by the event that hi(ri) = gi(r1, . . . , ri−1) in phase i, then

Pr[Ei] ≤
m

9m2
,

given that the functions hi and gi are different. Now, if we denote the event that the verifier
accepts by A, then

Pr[A] = Pr[E1] + (1− Pr[E1]) · Pr[E2] + · · ·+ (1− Pr[E1]) · · · (1− Pr[En−1]) · Pr[En].
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In other words, the verifier will accept when E1 occurs, or if E1 does not occur but E2 does, or
if E1 and E2 both do not occur but E3 does occur, and so on. Since, we know that for every i,
Pr[Ei] ≤ m

9m2 , we can give an upper bound on the probability that the verifier accepts:

Pr[A] ≤ Pr[E1] + · · ·+ Pr[En] ≤ n · m

9m2
.

Finally, since n ≤ 3m,

Pr[A] ≤ 3m2

9m2
=

1

3
.

This should explain why we chose to sample numbers between 0 and 9m2. Of course, we could
choose a larger set to sample from, in that case the probability of error becomes smaller but we
require more coin-flip steps. On the other hand, by using a smaller set, the acceptance probability
becomes higher (although we only gave an upper bound here).

Example 3.16 Let us look at an example of the proof system shown above. Say φ = (x1 ∨ x2) ∧
(¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2), a clearly unsatisfiable formula. The number of clauses, m,
is 4 and the number of variables, n, is 2. After arithmetization, we get:

fφ(y1, y2) = (y1 + y2) · ((1− y1) + y2) · (y1 + (1− y2)) · ((1− y1) + (1− y2)).

Now, we look at the interaction between the verifier and the prover.

1. The prover starts by sending the function h1, where

h1(y1) = g1(y1) =
∑

y2∈{0,1}

fφ(y1, y2) = 2y4
1 − 4y3

1 − 2y2
1 + 4y1.

2. When the verifier receives h1, it checks that h1(0) + h1(1) = 0 (in our case, this is true).

3. The verifier sends a random number r1 ∈ {0, . . . , 9m2 = 144}, as an example let us take
r1 = 17.

4. Now, the prover sends the function h2, where

h2(y2) = g2(r1, y2) = fφ(r1, y2) = y4
2 − 2y3

2 + 545y2
2 + 546y2 + 73440.

5. The verifier will check that h2(0) + h2(1) = h1(r1) (again, this is true in our example).

6. Then the verifier will again choose a random number r2 ∈ {0, . . . , 144} (since we are in the
last round, the verifier does not need to send r2 to the prover). Let us take r2 = 107 as an
example.

7. Finally, the verifier will accept if h2(r2) = fφ(r1, r2). We can verify that this is the case, thus
the verifier will accept.

�

Extending the proof system to TQBF

We show that the proof system for 3SAT can be extended to obtain a proof system for TQBF.
TQBF is the language containing all true quantified boolean formulas. We assume all quantified
boolean formulas are in the form

Q1x1Q2x2 · · ·Qnxnφ,

where each Qi ∈ {∃,∀} is a quantifier and φ is a propositional formula with variables x1, . . . xn.
This form, where all quantifiers are written at the beginning of the formula, is called the prenex
normal form. Every quantified boolean formula can be converted into an equivalent formula in
prenex normal form. We also consider only consider quantified formulas where the propositional
part is in 3CNF, any quantified formula in prenex normal form can be converted into one of which
the propositional part is in 3CNF (and the formula itself is still in prenex normal form). Since
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TQBF is a PSPACE-complete language, showing that TQBF ∈ IP, would proof that PSPACE ⊆
IP.

A naive way to extend our proof system is to extend arithmetization to quantified formulas in the
way described below.

• A quantifier-free formula φ is converted to fφ as before.

• A formula ∀xiφ is converted to
∏
yi∈{0,1} fφ(y1, . . . yi).

• A formula ∃xiφ is converted to
∑
yi∈{0,1} fφ(y1 . . . yi).

We note that given a quantified boolean formula ψ, the arithmetized formula fψ has no free
variables and thus evaluates to a constant. However, as before, this constant can not be computed
in polynomial time given the arithmetized formula, because there are an exponential amount of
terms.

This way of arithmetization works, because ψ is true if and only if fψ > 0. Now, if we define the
function g1 for a formula ψ = ∀x1∃x2 · · · ∀xnφ similar to before (that is, by stripping of the first
summation or product, in this case, we strip off a product), we get the following,

g1(y1) =
∑

y2∈{0,1}

· · ·
∏

yn∈{0,1}

fφ(y1, . . . yn).

Remember that the degree (of each variable) of fφ is at most m, where m is the number of clauses
in φ. Every time a product is applied to fφ, the degree can double, so the degree of g1 for variable
x1 could become exponentially large in n, to be more specific: up to 2n ·m (n is the number of
variables). Obviously, a polynomial function with a degree that is exponential in the input size
cannot be read by a polynomial-time verifier, because there could be an exponential amount of
coefficients. So, this naive way of arithmetization does not give us a proof system for TQBF.

To solve this, we use a linearization operation, which given a function f(y1, . . . yk), linearization
on variable yi produces a function f ′(y1, . . . , yk) such that

1. f ′ is linear (i.e., has degree at most 1) in yi, and

2. for yi ∈ {0, 1}, f ′(y1, . . . , yk) = f(y1, . . . , yk).

In other words, linearization on yi produces a function, linear in yi, that is equivalent to the original
on inputs in {0, 1}. Applying linearization is quite simple. Given a function f(y1, . . . , yk) that we
wish to linearize on yi, then the outcome is

f ′(y1, . . . , yk) = (1− yi) · f(y1, . . . , yi−1, 0, . . . , yk) + yi · f(y1, . . . , yi−1, 1, . . . , yk).

Clearly, f ′ is linear in yi, and when yi = 0, then f ′(y1, . . . , yk) = f(y1, . . . , yi−1, 0, yk) and if yi = 1
then f ′(y1, . . . , yk) = f(y1, . . . , yi−1, 1, yk).

So, when performing arithmetization of a ∀ quantifier, we first linearize the input function on
all free variables and then take the product, just like in the naive way. This way the result is a
polynomial with degree at most 2.

Example 3.17 Say we are given a quantified boolean formula,

ψ = ∀x1∃x2(x1 ∨ x2) ∧ (¬x1 ∨ ¬x2).

We show how to arithmetize this formula using the linearization operation as described above.
First, consider the propositional part,

φ = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2).

We arithmetize this in the usual way,

fφ(y1, y2) = (y1 + y2) · ((1− y1) · (1− y2)) = −y2
1 − 2y1y2 + 2y1 − y2

2 + 2y2.
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Next, we consider ψ1 = ∃x2φ, this formula can be arithmetized in the naive way (the ∃ quantifier
did not introduce problems regarding the degree of the outcome).

fψ1(y1) =
∑

y2∈{0,1}

fφ(y1, y2) = −2y2
1 + 2y1 + 1.

Finally we get to ψ = ∀x1ψ1, so we first we have to linearize fψ1 on y1, let us call the resulting
function f ′ψ1

.

f ′ψ1
(y1) = (1− y1) · fψ1(0) + y1 · fψ1(1) = (1− y1) + y1 = 1.

Coincidentally, the resulting function is constant in y1, but a constant function is also a linear
function. Now, the final step is the actual arithmetization of the ∀ quantifier as seen in the naive
way.

fψ =
∏

y1∈{0,1}

f ′ψ1
(y1) = 1.

Because fψ > 0, we now know that ψ is a true quantified boolean formula. �

Now, we can modify the proof system for 3SAT to one for TQBF by

1. allowing quantified boolean formulas, and

2. in each round, instead of stripping off a summation, strip off one of the possible operations
(being either a summation, a product or a linearization). Now, the number of rounds required
is at most n2 with n the number of variables of ψ, because for every ∀ quantifier, we require
up to n linearization operations.

This concludes the proof of theorem 3.14. More specifically, TQBF ∈ IP(n2).

3.4 Public-coin proof systems

In Example 3.12, we showed an interactive proof system for graph non-isomorphism. Looking
back, it seems quite important that the outcome of the coin-flips of the verifier can not be seen by
the prover. In fact, if the prover could see the outcome of the coin-flips, he could make the verifier
accept any input with probability 1. In this section, we consider proof systems where the prover
has access to the outcome of the coin-flips of the verifier, such proof systems are called public-coin
proof systems. These proof systems have an interesting property. Say we let the verifier send, along
with a message, the outcome of coin-flips the verifier used, then there is actually no need to send
anything but the outcome of the coin-flips because the prover can simply compute the message by
himself, given the random coins.

Definition 3.18 An interactive proof system is called a public-coin proof system when the messages
of the verifier only consist of random bits (i.e., the outcome of coin-flip steps). �

Using this definition, we define a corresponding complexity class, AM(k), first defined by Babai [6]
as the class of languages that have so-called Arthur vs. Merlin games (which we call public-coin
proofs) where Merlin (the prover) has to convince Arthur (the verifier) of a certain claim.

Definition 3.19 (The class AM(k)) Given a function k : N → N, language L is in AM(k) is
and only if there exists a public-coin proof system with at most k(|x|) rounds on any input x. �

The following theorem follows directly from the definition, because a public-coin proof system is a
special case of an interactive proof system.

Theorem 3.20 For every k : N→ N, AM(k) ⊆ IP(k). �

Interestingly, there are also relations between AM(k) and IP(k) in the other direction.

Theorem 3.21 IP ⊆
⋃
c∈N AM(nc). �
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In other words, every language in IP has a public-coin proof system with a number of rounds at
most polynomial in the size of the input.

Proof. The idea of this proof is that the proof system shown for TQBF in Section 3.3 can easily
be transformed into a public-coin proof system. The verifier can just send the random bits used
to choose the ri’s and let the prover compute the ri’s, this will not change the probability that the
verifier accepts wrongly. So, TQBF ∈ AM(n2).

Now, we give the actual proof. Given a language L in IP, we know that L is in PSPACE by Theorem
3.13. We also know that there exists a polynomial-time reduction f of L to TQBF, because TQBF
is PSPACE-complete. Because TQBF ∈ AM(n2), we can construct a public-coin proof for L using
at most |f(x)|2 rounds on any input x. Finally, since |f(x)| is polynomial in |x|, |f(x)|2 is also
polynomial in |x|, so our public coin proof system for L requires at most a polynomial amount of
rounds.

Now, we know that, for example, graph non-isomorphism also has a public-coin proof system.
However, this public-coin proof system could require a polynomial amount of rounds, while in
Example 3.12, we showed an interactive proof system with only a constant number of rounds. The
following theorem is stronger than Theorem 3.21, and implies that there exists a public-coin proof
with only a constant number of rounds for graph non-isomorphism, for example.

Theorem 3.22 (Goldwasser and Sipser, 1987 [13]) IP(k) ⊆ AM(k + 2). �

3.5 Multi-prover interactive proof systems

In this chapter, so far, we have shown potentially more powerful proof systems than the ones
used to define the class NP. These interactive proofs could be used as an alternative definition to
what one might consider to be an efficient proof system. However, we said these interactive proof
systems are potentially more powerful than NP proof systems because currently, it is not known
if IP = PSPACE or not. In this section, we show a type of proof system that is provably more
powerful than NP proof systems. To do this, we add multiple provers to an interactive proof system
to obtain a multi-prover interactive proof system. In a multi-prover interactive proof system, the
verifier will interact with provers P1, . . . Pn where in each odd round the verifier sends a (possibly
different) message to every prover and in even rounds each prover sends a message back to the
verifier. The amount of provers, l, must be bounded by a polynomial in the size of the input. We
do not allow the provers to communicate between each other, a prover Pi only has as access to the
input string and the message history between himself and the verifier. We denote the probability
that a verifier V accepts after interaction with provers P1, . . . Pl on input x by Pr[V ↔ P1, . . . Pl].
Now, we can define the class MIP(k) for multi-prover interactive proofs with k rounds, similar to
how we defined IP(k).

Definition 3.23 (The class MIP(k)) Given a function k : N→ N, a language L is in the class
MIP(k) if and only if there exists a probabilistic polynomial-time verifier V and provers P1, . . . Pl
such that, on every input x:

• an interaction of the verifier with the provers takes at most k(|x|) rounds, and

• if x ∈ L then Pr[V ↔ P1, . . . Pl accepts x] ≥ 2
3 , and

• if x /∈ L then for all provers P ′1, . . . P
′
l , Pr[V ↔ P ′1, . . . P

′
l ] ≤ 1

3 .

�

We also define MIP, the class of languages with a polynomial amount of rounds.

Definition 3.24 (The class MIP) We define

MIP =
⋃
c∈N

MIP(nc).
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�

The following theorem shows the power of multi-prover interactive proof systems. It states that
every language decidable in non-deterministic exponential time has a multi-prover interactive
proof system (and this with only two provers and a constant number of rounds). Let us first
define the class of languages decidable in non-deterministic exponential time, NEXPTIME =⋃
c∈N NTIME(2n

c

).

Theorem 3.25 (Babai, Fortnow and Lund, 1992 [7]) MIP = NEXPTIME �

This is interesting, because we can separate NP from NEXPTIME using the non-deterministic
time hierarchy theorem, as seen below. We first give the definition of time-constructable functions,
which are used in the theorem.

Definition 3.26 (Time-constructable function) A function f : N→ R, where f(n) is at least
O(n log n), is called time-constructable if there exists a Turing machine, M , that, given a string
1n, halts with the binary representation of f(n) on its tape in time at most O(f(n)). �

Theorem 3.27 (Non-deterministic time hierarchy theorem [8]) Given functions f : N→ R
and g : N → R, if g is a time-constructable function and f(n + 1) = o(g(n)), then NTIME(f) (
NTIME(g). �

Thus, due to the non-deterministic time hierarchy, we know that NP ( NEXPTIME = MIP.



Chapter 4

Zero-knowledge proof systems

In the previous chapter, when defining interactive proof systems, we always assumed that the
verifier does not trust the prover. This means that we have to choose the verifier such that no
prover could convince (with high probability) the verifier of a false claim. Now, what happens
if the prover does not trust the verifier either? Let us say we have a prover trying to convince
a verifier of the claim that a certain 3CNF formula is satisfiable. The prover could simply send
a satisfying assignment to the verifier. This way, the verifier will be convinced that the formula
indeed is satisfiable, but the verifier also learns a satisfying assignment for the formula. However,
maybe the prover wants to keep this assignment secret. Now, we get to the question we focus on in
this chapter: is it possible to prove the satisfiability of a 3CNF formula such that the verifier learns
nothing but the fact that the formula is satisfiable? Such proof systems are called zero-knowledge
proof systems. This chapter is based on Chapter 9 from the textbook of Goldreich [10], Chapter
8 from the textbook of Arora and Barak [4] and on the paper of Goldwasser, Micali and Rackoff
[12], where zero-knowledge proof systems were first defined.

4.1 Background: circuit complexity

Here, we show an alternative way of formalising computation. This section serves as background
to the remainder of this chapter. The definitions used are from the textbook of Sipser [19].

Definition 4.1 (Boolean circuit) A Boolean circuit is a collection of gates and inputs connected
by wires. Cycles are not permitted. Gates take three forms: AND gates, OR gates and NOT
gates. �

The wires in a circuit carry Boolean values. The AND, OR and NOT gates have one or more input
wires and one or more output wires. They set the value of the output wire to the value obtained
by applying the logical operators AND, OR and NOT as we know them to the input value(s). One
of the gates of the circuit functions as the output gate. A Boolean circuit C with n inputs, outputs
the value C(a1, . . . an) where a1, . . . an ∈ {0, 1} are the input values.

Definition 4.2 (Circuit family) A circuit family C is an infinite list of circuits (C0, C1, C2, . . . ),
where Cn has n inputs. We say that C decides a language L if for every string w ∈ {0, 1}∗, we
have w ∈ L if and only if C|w|(w) = 1. �

Definition 4.3 (Circuit size) The size of a Boolean circuit is the number of gates that it contains.
�

Definition 4.4 (Size complexity) The size complexity of a circuit family C is the function
f : N→ N such that f(n) is the size of Cn. �

We say a circuit family C is polynomial-sized if the size complexity of C is bounded by some
polynomial.

39
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4.2 Definition of a zero-knowledge proof system

It seems quite difficult to give a definition a proof systems where the verifier learns nothing. Instead,
we define a zero-knowledge proof as one where the verifier learns nothing that it cannot compute
by itself (that is, in polynomial time). To formalise this, we consider the messages that the verifier
sees when interacting with the prover, the messages a verifier sees are random (because the verifier
is probabilistic), so these messages have a certain probability distribution. Now, one can see that
a verifier does not gain any knowledge when the verifier can take samples from this distribution
by itself. While we could define zero-knowledge proofs in this way, we use a less strict definition,
that is, we say that a verifier learns nothing if it can take samples from a distribution that is
indistinguishable from the original by a polynomial-time algorithm. We define what it means that
two random variables are indistinguishable in the following subsection.

4.2.1 Indistinguishability of random variables

We do not consider random variables on their own, but probability ensembles, which are sets of
random variables. Such probability ensemble is always related to a language such that for each
string in the language, the ensemble contains a random variable.

Definition 4.5 (Probability ensemble) A probability ensemble over a language L is a set
U = {U(x) | x ∈ L}, where U(x) is a random variable for x ∈ L. �

Now, we can define indistinguishability of these probability ensembles. To do this, we first define
the concept of a negligible function, which (intuitively) is a function that asymptotically decreases
faster than any polynomial.

Definition 4.6 (Negligible function) A function f : N→ R is negligible if and only if for every
c ∈ N, there exists a x0 ∈ N such that f(x) < 1

xc for all x ≥ x0. �

Now, we get to the most important concept needed when defining zero-knowledge proofs. We
will see later that the messages a verifier sees in an interactive proof system form a probability
ensemble. Informally, for every input, the verifier will see a different distribution of messages that
he receives from the prover. Say we have a probability ensemble U , which represents the messages
our verifier sees. So, when given input x the verifier sees samples of U(x). Now, when can we
say that the verifier learns nothing from these samples? Well, this is the case when the verifier
could generate samples from a random variable U ′(x) (this means U ′ is a probability ensemble as
well), which is indistinguishable from U(x). Two probability ensembles U,U ′ are indistinguishable
if no probabilistic Turing machine, on input x, can distinguish between samples of U(x) and
samples from U ′(x) with non-negligible probability. We specifically consider the case when the
probability ensembles cannot be distinguished in polynomial time, this is called computational
indistinguishability.

We define two probability ensembles to be computationally indistinguishable if it is not possible
to distinguish samples of the ensembles in polynomial time with a non-negligible probability. In
the definition, we use polynomial-sized circuits instead of a polynomial-time Turing machine. Note
that this gives us a stricter definition. Given a polynomial-sized circuit family C, a probability
ensemble U over a language L and a string y ∈ L, we denote the probability that C accepts x,
when x is sampled from U(y), as Prx←U(y)[C accepts x].

Definition 4.7 (Computational indistinguishability) Two probability ensembles U and U ′

over a language L are called computationally indistinguishable if for all polynomial-sized circuit
families C, the function d, defined as below, is negligible.

d(n) = max
y∈Ln

| Pr
x←U(y)

[C accepts x]− Pr
x←V (y)

[C accepts x]|

where Ln = {x | x ∈ L and |x| = n} (that is, the set of strings in L with length n). �

We have said that a verifier gains no knowledge when it can take samples from a probability
ensemble that is indistinguishable from the probability ensemble of the messages sent by the prover
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(there is a different random variable for each input). So, we still have to define when a distribution
can be sampled from in polynomial time.

Definition 4.8 (Simulator) A simulator S is a probabilistic, polynomial-time Turing machine
with an input and output tape. We say the output of S on input x is the string found on the output
tape after S halts, when starting with x on its input tape. Because the simulator is probabilistic,
the output is a random variable, we denote this random variable by S(x). �

Definition 4.9 (Computational approximability) A probability ensemble U over a language
L is computationally approximable if there exists a simulator S such that the probability ensemble
{S(x) | x ∈ L} and U are computationally indistinguishable. �

4.2.2 Computational zero-knowledge

We now formalise the distribution of messages the verifier sees when interacting with the prover,
we call this the view of a verifier.

Definition 4.10 (The view of a verifier) When a verifier V interacts with a prover in a k-
round interactive proof system, we say the view of the verifier is the tuple containing all exchanged
messages, (m1, . . .mk). Because a verifier is probabilistic, the view of the verifier is the outcome
of a random variable. For verifier V and input x, we use VIEWV (x) to denote this random
variable. �

As we can see, we can use the view of the verifier to obtain a probability ensemble over a language
L: {VIEWV (x) | x ∈ L}. When this ensemble is computationally approximable, the verifier does
not learn anything from interacting with the prover. We could now define a zero-knowledge proof
system this way. However, there is a problem with this definition. Say, a verifier V interacts
with prover P , we know that the verifier learns nothing from a single run of the proof system,
but what happens if the verifier interacts a second time with the prover, and keeps the messages
of the previous run. In that case, can we still ensure the verifier learns nothing? Not with the
proposed definition, therefore we change the definition of the verifier and his view to formalise the
idea that a verifier can have some extra information at hand (the message history of previous runs
is a possibility, but we do not restrict it to that). We let the verifier have an extra read-only tape
that contains an auxiliary input, which can be any string with length polynomial in the length of
the actual input. Using this, we change the definition of the view of a verifier.

Definition 4.11 (Auxiliary-input view) For verifier V , input x and auxiliary input z, we say
VIEWV (x, z) is the random variable that represents the possible outcomes of the view of V . �

Now, we can finally give the definition of a zero-knowledge proof, which is defined as a interactive
proof system with the added constraint that no verifier can make the prover output messages
according to a distribution that is not computationally approximable.

Definition 4.12 (Zero-knowledge proof system) A zero-knowledge proof system is an in-
teractive proof system with a verifier V and prover P with one additional constraint: for every
verifier V ′ and constant c ∈ N, the probability ensemble {VIEWV ′(x, z) | x ∈ L and |z| ≤ |x|c} is
computationally approximable. �

We also define the class of languages that have zero-knowledge proofs.

Definition 4.13 (The class ZK) A language L is in the class ZK if L has a zero-knowledge proof
system. �

Note 4.14 In the definition above, we only compare the distributions for cases where the input is
in the language (that is, x ∈ L). This is because we use the probability ensemble {VIEWV ′(x, z) |
x ∈ L and |z| ≤ |x|c}. This means that, for the zero-knowledge constraint, we only consider an
honest prover (that is, a prover that is not trying to proof a wrong claim). �
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Example 4.15 Let us give an example of a proof system that is not a zero-knowledge proof system.
Take the (non-interactive) proof system shown in Example 3.3 for the 3SAT language, where, on
input a formula φ, the prover simply sends a satisfying assignment for φ. Since in this example the
verifier does not send any message, the view of all possible verifiers are the same. Now, if we want to
approximate the probability ensemble associated with the view using a simulator, that, on input φ,
has to compute a satisfying assignment for φ. It is not known whether this is possible in polynomial
time. So, unless P = NP, the proof system in Example 3.3 is not a zero-knowledge proof system.
Note that if P = NP, all languages in NP trivially have zero-knowledge proof systems, because the
prover does not even need to send any messages since the verifier can decide membership by itself
(that is, in polynomial time). �

4.3 The existence of zero-knowledge proofs

Now, let us get back to the question we asked ourself in the introduction, is there a zero-knowledge
proof system for the 3SAT language? Currently, this is not known. However, it is known that under
a certain assumption, there are zero-knowledge proofs for every language in NP. This assumption
is the existence of a non-uniform one-way function. Let us start by defining a one-way function,
as hinted to by the name, intuitively, a one-way function is a function that is easy to evaluate but
hard to invert.

Definition 4.16 (One-way functions) A polynomial-time computable function f : {0, 1}∗ →
{0, 1}∗ is one-way if for every probabilistic polynomial-time algorithm M , we have that, given an
input f(x), M cannot compute a string y such that f(y) = f(x) with a non-negligible probability.
In other words, the function p(n) = Pr[f(M(f(x))) = f(x)] (where M(f(x)) denotes the output
of M when given input f(x) and x is chosen uniform at random from {0, 1}n) is a negligible
function. �

Property 4.17 The existence of a one-way function implies P 6= NP. �

Proof. We prove the contraposition: if P = NP, then there exists no one-way function. Assume,
by contradiction, that f is a one-way function and P = NP. Let L = {〈1l, x0, y〉 | ∃x : |x| =
l, f(x) = y and x0 is a prefix of x}. Clearly, L is in NP, because we can take x as a certificate,
a polynomial-time verifier then only has to check that |x| = l, f(x) = y (by definition, one-way
functions are computable in polynomial time) and x0 is a prefix of x. Because of our assumption,
we have L ∈ P. Say M is a polynomial Turing machine that decides L. Now, consider the following
algorithm, A:

“On input 〈y, 1l〉:

1. Let x0 = ε.

2. For every i from 1, . . . l, do:

2.1. Run M on input 〈1i, x00, y〉.

2.2. If M accepts, set x0 = x00.

2.3. Otherwise, set x0 = x01.

3. Output x0. ”

Note that x00 means the string x0 appended with the symbol 0, and likewise for x01. It should
be clear that, on input 〈y, 1l〉, A outputs a value x such that f(x) = y, if there exists such x of
length l. Also, A uses only a polynomial amount of time, because M also only uses a polynomial
amount of time. Now, look at the function p(l) = Pr[f(A(〈f(x), 1l〉)) = f(x)], where x is sampled
uniformly at random from the set of all strings of length l. Then, A(f(x), 1l) will output a x′ such
that f(x′) = f(x), so p(l) = 1, for every l. This is clearly a non-negligible function and thus f is
not a one-way function. This is a contradiction and concludes the proof.
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A non-uniform one-way function is defined using families of boolean circuits instead of probabilistic
polynomial-time Turing machines.

Definition 4.18 (Non-uniform one-way functions) A polynomial-time computable function
f : {0, 1}∗ → {0, 1}∗ is one-way if for every polynomial-sized circuit family C, we have that,
given an input f(x), C cannot compute a string y such that f(y) = f(x) with a non-negligible
probability. In other words, the function p(n) = Pr[f(C(f(x))) = f(x)] (where C(f(x)) denotes
the output of C when given input f(x) and x is chosen uniform at random from {0, 1}n) is a
negligible function. �

Theorem 4.19 (Goldreich, Micali and Widgerson, 1991 [11]) If there exists a non-uniform
one-way function then NP ⊆ ZK. �



Chapter 5

Introduction to the PCP theorem
and the hardness of
approximation

In the definition of the class NP, we have seen the concept of a verifier. In this chapter, we introduce
a new type of verifier called a PCP verifier (PCP stands for probabilistically checkable proof ). Using
these PCP verifiers an alternative definition of the class NP is possible. This result is known as the
PCP theorem, proven by Arora et al. in 1998 [5]. Remarkably, they have been awarded the Gödel
prize for this result in 2001. One of the reasons why the PCP theorem is important is that it was
used to prove the hardness of approximation for many problems. We will show some examples of
problems that have such a hardness of approximation. This chapter is based on chapter 9 from
the textbook of Goldreich [10] and on chapter 11 from the textbook of Arora and Barak [4]. Some
of the definitions are taken from [9].

5.1 The PCP theorem

The PCP theorem gives an alternative definition of the class NP. This definition is similar to the
verifier definition of the class NP seen in Chapter 1 because it also uses a verifier. The difference
is that the PCP theorem states that every language in NP can be probabilistically verified by only
looking at a portion of the proof of membership (or certificate). We call such a verifier a PCP
verifier. A PCP verifier is a probabilistic Turing machine. We allow a PCP verifier to have a
one-sided error similar to coRP. This means that even when the input is not in the language, the
verifier may still accept with some probability called the soundness error.

We say that the random complexity of a probabilistic Turing machine M is bounded by r : N→ N
if, for every input x, the computation tree of M on input x contains at most r(|x|) coin-flip steps
on a single branch. Intuitively, the random complexity puts an upper bound on the amount of coin
tosses during the computation.

A PCP verifier also does not have to read the entire proof of membership but it can choose which
bits to read. To make this possible we allow random access to the proof. When we say a Turing
machine M has random access to proof π, denoted by Mπ, we modify M by adding a tape called
the address tape. When M writes a string u over the alphabet {0, 1} on the address tape it will
receive the value of π[i] where π[k] is the k-th bit of π and i ∈ N is the number with binary
representation u. We say that u is the address of the i-th bit of π. The action of reading a bit is
called a query.

We say that the query complexity of a Turing machine Mπ with access to proof π is bounded by
q : N→ N if, for every input x, M makes at most q(|x|) queries to the proof.

44
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Definition 5.1 (PCP verifier) We say a language L has a (r, q)-PCP verifier with soundness
error s if there exists a polynomial-time probabilistic Turing machine V such that on input x:

• V has random complexity O(r(|x|)),

• V has query complexity O(q(|x|)),

• if x ∈ L then there exists a proof π such that Pr[V π acceptsx] = 1, and

• if x /∈ L then for every proof π, Pr[V π acceptsx] ≤ s.

�

Note 5.2 We say a PCP verifier is non-adaptive if the addresses it queries from the proof only
depend on the input and the outcome of random coins. This means that an answer to some query
cannot have an effect on the addresses that will be queried later on by the verifier. Given a non-
adaptive (r, q)-PCP verifier and an input x the amount of possible addresses the verifier could
query is at most q(|x|) · 2r(|x|). Because of this we can assume without loss of generality that the
length of a proof is at most q(|x|) · 2r(|x|). From now on we assume that all PCP verifiers are
non-adaptive. �

Next, we define the complexity class PCPs(r, q).

Definition 5.3 (Complexity class PCPs(r, q)) PCPs(r, q) is the class of languages that have
a (r, q)-PCP verifier with soundness error s. �

We note that changing the soundness error does not change the complexity class, as shown in the
following theorem.

Theorem 5.4 For every s1, s2 ∈ ]0, 1[, PCPs1(r, q) = PCPs2(r, q). �

Proof. Take s1 and s2 in ]0, 1[. We assume without loss of generality that s1 ≤ s2. We prove the
two directions.

• PCPs1(r, q) ⊆ PCPs2(r, q). Let L be a language in PCPs1(r, q). Let V be a (r, q)-PCP verifier
with soundness error s1 that decides L. When a verifier has soundness error (at most) s1

then it clearly also has soundness error at most s2 ≥ s1. So L is also in PCPs2(r, q).

• PCPs1(r, q) ⊇ PCPs2(r, q). Let L be a language in PCPs2(r, q). Let V be a (r, q)-PCP
verifier with soundness error s2 that decides L. We can construct a (r, q)-PCP verifier V ′

with soundness error at most s1 that decides L. The verifier V ′ works by running V a
constant number of times, c. It will accept if and only if all of the c runs accept. Because
the c outcomes of these runs are independent of each other, the soundness error of V ′ is s2

c.

So if we take c =
⌈
logs2(s1)

⌉
, we get soundness error s2

dlogs2
(s1)e ≤ s1.

Because of this we simply use the notation PCP(r, q) to denote the class of languages decided by
a (r, q)-PCP verifier with some constant soundness error s ∈ ]0, 1[.

Example 5.5 (A language with a PCP verifier) In this example we use the language GNI
(graph non-isomorphism), defined as

GNI = {〈G0, G1〉 | G0 and G1 are not isomorphic}.

Where 〈G0, G1〉 is the binary representation of graphs G0 and G1. The exact representation used
is not very important as long as it is a reasonable one. Graphs G0 and G1 are isomorphic is
there exists a bijection f : VG0

→ VG0
such that for all u, v ∈ VG0

it holds that (u, v) ∈ EG0
iff

(f(u), f(v)) ∈ EG1 . Here, VG is the set of vertices of graph G and EG is the set of edges of graph
G.

We show a PCP verifier V for GNI. The verifier V works as follows, on input x = 〈G0, G1〉 and
random access to proof π:
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1. Choose, uniformly at random, a ∈ {0, 1} and say b = 1− a (so b is the element that was not
chosen).

2. Choose, uniformly at random, a bijection f : VGa
→ VGb

.

3. Construct a new graph H with VH = {f(u) | u ∈ VGa
} and EH = {(f(u), f(v)) | (u, v) ∈

EGa
}.

4. Query the proof π at location i where i is the natural number that has 〈Ga〉 as its binary
representation.

5. If the result of the query, π[i], equals a then accept, otherwise reject.

The correctness of this verifier relies on the fact the graph isomorphism is a transitive property,
this means that if graphs G1 and G2 are isomorphic and G2 and graph G3 are isomorphic then G1

and G3 are also isomorphic. Because graphs are isomorphic exactly when there exists a bijection
between them satisfying the aforementioned condition, the constructed graph H is taken uniformly
at random from the set of all graphs (with vertex set VGb

) isomorphic to the chosen graph Ga.
So, if G0 and G1 are not isomorphic then the prover can distinguish isomorphisms of G0 from
isomorphisms of G1 and thus create a proof that will always make the verifier accept by putting
a 0 on locations that have an address equal to the binary representation of some isomorphism of
G0 and similarly putting a 1 on locations with addresses coinciding with the representation of an
isomorphism of G1. This is possible because if G0 and G1 are not isomorphic then no graph is
isomorphic with both G0 and G1. However, if G0 and G1 are isomorphic then all graphs isomorphic
with G0 are also isomorphic with G1. Because both graphs have an equal chance of being chosen
in the first step, there is no proof that would make the verifier accept with probability higher than
1
2 .

The amount of random coins used in step 1 is 1 and in step 2 is at most O(n2) with n = |x| the
size of the input. The remaining steps do not use any random coins so the total amount of random
coins used is polynomial in n so r = O(n2). The amount of bits read from the proof is exactly one
so q = O(1). Finally it should be clear that the verifier has time complexity at most polynomial
in the size of the input.

From this example, we conclude: GNI ∈ PCP(nk, 1) for some constant k. �

Now we are ready to show the PCP theorem. This theorem says that every language in NP can
be probabilistically verified using only O(log n) random coins and O(1) queries.

Theorem 5.6 (PCP theorem [5]) NP = PCP(log n, 1) �

Because the proof of this theorem is quite long we will not see it here but in Section 5.3.

5.2 The hardness of approximation

One of the reasons the PCP theorem is so important is that it is used to prove the hardness of
approximation for many optimization problems. Until now we have only seen decision problems
where the output is a binary yes or no (or accept and reject in a Turing machine). On the other
hand, an optimization problem is solved by finding a solution to some input such that an objective
function is either maximized or minimized.

Definition 5.7 (Optimization problem) An optimization problem Π is defined by:

• a function solΠ that maps an input to the set of solutions for that input, and

• an objective function objΠ that maps an input x and a solution y for x to a real number.

For a maximization problem the goal is, given an input x, to find a solution y such that objΠ(x, y)
is maximal. Then the optimal value of the objective function for x is

optΠ(x) = max
y∈solΠ(x)

objΠ(x, y).
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For a minimization problem the goal is to find a solution such that the objective function is minimal
so the optimal value of the objective function is

optΠ(x) = min
y∈solΠ(x)

objΠ(x, y).

�

To give an example of an optimization problem, we take a look at the decision problem INDSET
that asks if there exists an independent set of some size in a graph.

INDSET = {〈G, k〉 | G is a graph with an independent set of k nodes}.

The optimization version of this problem would be to find the maximum independent set of a
graph, called max-INDSET. Here the solutions of an input graph G are all independent sets of G.
The objective function, given a graph and an independent set, outputs the number of nodes in the
independent set.

It should be clear that, unless P = NP, there are no polynomial time algorithms solving the
optimization version of an NP-hard problem. Now, an interesting question to ask is whether there
exist polynomial time algorithms that approximate these optimization problems. This is what we
look at in this section. Let us first define what an approximation algorithm is.

Definition 5.8 (Approximation algorithm) Given an optimization problem Π, an algorithm
A is a ρ-optimal approximation of Π with ρ ∈ ]0, 1[ if on input x, A outputs A(x) = y such that y
is a solution for x and

• for maximization problems: objΠ(x, y) ≥ ρ · optΠ(x), or

• for minimization problems: objΠ(x, y) ≤ 1
ρ · optΠ(x).

�

Example 5.9 Consider the optimization version of 3SAT, called max-3SAT, in which we want
to find a variable assignment to the input formula φ such that the fraction of satisfied clauses is
maximal. Thus, max-3SAT is a maximization problem where the solutions are variable assign-
ments and the objective function is the fraction of satisfied clauses. As it turns out, there is a
very straightforward 1

2 -optimal approximation algorithm for max-3SAT. This algorithms works by
outputting the variable assignment that sets all variables to either true or false, whichever satisfies
the most clauses. One can see that this will always satisfy half of the clauses because each clause
is satisfied by at least one of the two possible assignments. Because it always satisfies half of the
clauses, it definitely satisfies at least 1

2 times the maximal fraction of satisfiable clauses.

To give a concrete example, let

φ = (¬x1) ∧ (x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3).

Consider the assignment a1 that maps all variables to true, and a2 that maps all variables to false.
Now, the number of clauses of φ that are satisfied by a1 is 1, while for a2, the number of satisfied
clauses is 2, which is more than half. Note that φ is satisfiable. �

5.2.1 Constraint satisfaction problems

Before going further, we define constraint satisfaction problems which we will use in a theorem
equivalent to the PCP theorem. This equivalent theorem is then used to prove the hardness of the
approximations of some problems. The definitions used are from [9].

Definition 5.10 (Constraint) Given a set of variables V = {v1, . . . , vn} and an alphabet Σ, a
q-ary constraint over alphabet Σ and variables V is a tuple (R, i1, . . . , iq), where:

• R ⊆ Σq is the set of tuples of variable assignments that would satisfy the constraint, and

• i1, . . . , iq ∈ N are indices to the variables that the constraint depends on.
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A constraint is satisfied by an assignment a : V → Σ if (a(vi1), . . . , a(viq )) ∈ R. �

Definition 5.11 (Constraint satisfaction problem) The constraint satisfaction problem over
an alphabet Σ (CSPΣ) is the problem of, given a set of constraints {c1, . . . , cm} over alphabet Σ
and variables V , deciding if there exists an assignment to V that satisfies all constraints. �

The accompanying optimization problem is called max-CSPΣ which is the problem of finding an
assignment of the variables that maximizes the amount of constraints satisfied by that assignment.
We call the unsat-value of a CSPΣ instance C, denoted by UNSAT(C), the minimum fraction of
constraints that are not satisfied over all variable assignments. A CSP instance C is satisfiable if
and only if UNSAT(C) = 0. The solutions to a CSP instance are assignments to the variables of the
instance and the objective function, given a CSP instance and a variable assignment, outputs the
fraction of constraints satisfied by the assignment. The optimal value is thus the maximal fraction
of constraints satisfied by a single assignment, which is 1 in the case where the CSP instance is
satisfiable.

We denote q-CSPΣ to be the constraint satisfaction problem where all constraints are q-ary. Re-
spectively we denote max-q-CSPΣ as the problem of maximizing the amount of satisfied constraints
in a CSP instance where all constraints are q-ary.

Now we can show the following theorem which is equivalent to the PCP theorem and we will call
this the hardness of approximation version of the PCP theorem.

Theorem 5.12 There exists a q and an alphabet Σ such that for every language L ∈ NP there
exists a polynomial-time reduction f of L to q-CSPΣ such that:

• x ∈ L =⇒ UNSAT(f(x)) = 0, and

• x /∈ L =⇒ UNSAT(f(x)) ≥ 1
2 .

�

The following is a proof that Theorem 5.6 and Theorem 5.12 are equivalent.

Proof. First we prove that Theorem 5.6 implies Theorem 5.12.

Let L be any language in NP. Because of Theorem 5.6 there exists a (r, q)-PCP verifier V for L
where r = O(log n) and q = O(1). Now, consider the reduction f that, given input x, constructs
the q-CSP instance f(x) = C where C contains a constraint cw for every possible outcome w
of r random coins. The constraint cw = (R, i1, . . . iq) has as relation R ⊆ Σq that contains all
combinations of query answers that would make V accept given random coins w, and i1, . . . , iq are
the indices of symbols in the proof that would be queried by V given random coins w.

This set of constraints can be constructed in polynomial time, because the amount of constraints
equals the amount of possible outcomes of the random coins, which is 2r = 2O(logn) and thus is
polynomial in n = |x|. Each constraint is computed by simulating V for every possible combination
of q query answers, there are 2q = 2O(1) = O(1) such combinations and it is given that V can be
simulated in polynomial time.

It should also be clear that when x ∈ L then the CSP instance C is satisfiable and UNSAT(C) = 0.
In the case of x /∈ L we know that there is no proof that makes the verifier accept on more than
half the possible outcomes of random coins. It follows that no variable assignment will satisfy more
than half of the constraints of C so UNSAT(C) ≥ 1

2 .

Now we proof the other direction: Theorem 5.12 implies Theorem 5.6.

Say L is a language in NP. We have to proof that there exists a (log n, 1)-PCP verifier V for L
given that there exists a polynomial-time reduction f from L to max-q-CSP such that:

• x ∈ L =⇒ UNSAT(f(x)) = 0, and

• x /∈ L =⇒ UNSAT(f(x)) ≥ 1
2 .
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The verifier works as follows.

V = “On input x and random access to proof π:

1. Run f to on x to obtain the CSP instance C = f(x).

2. Randomly select one of the constraints c = (R, i1, . . . , iq) of C.

3. Query the proof at locations i1, . . . , iq and call the answers a = (a1, . . . , aq).

4. If a ∈ R accept, otherwise reject. ”

In other words, the proof is a variable assignment for the CSP obtained by the reduction f . The
verifier will select a random constraint and check if it is satisfied by the variable assignment.

The verifier runs in polynomial time because it is given that f is computable in polynomial time
and the other steps are also possible in time at most polynomial in the input size n = |x|.

For the soundness and completeness requirements, we have:

• If x ∈ L then f(x) is satisfiable so there exists a proof (variable assignment) such that V
always accepts.

• If x /∈ L then UNSAT(f(x)) ≥ 1
2 so for every variable assignment the probability that a

randomly selected constraint is unsatisfied is at least 1
2 . It follows that for every proof the

verifier accepts with at most probability 1
2 .

This theorem implies what we call hardness of approximation for max-q-CSP, the reason should
become clear from the following corollary.

Corollary 5.13 Assuming P 6= NP, there exists a q such that there exists no polynomial time
1
2 -optimal approximation algorithm for max-q-CSP. �

Proof. We proof this by contradiction. Assume P 6= NP and that for every q there exists a polyno-
mial time 1

2 -optimal approximation algorithm for max-q-CSP. Now we can construct a polynomial
time algorithm that can decide every language in NP given the reduction from Theorem 5.12 called
f :

“On input x:

1. Construct CSP instance C = f(x).

2. Run A on C.

3. If the outcome of A is an assignment satisfying more then a 1
2 fraction of the constraints of

C, accept.

4. Otherwise reject. ”

Where A is the polynomial time 1
2 -optimal approximation algorithm guaranteed by our assumption.

Of course, when we have a polynomial time algorithm for every language in NP, then P = NP and
this is a contradiction.

5.2.2 Examples of hardness of approximation

Now that we have shown Theorem 5.12 to be equivalent to the PCP theorem, we can use it to
prove hardness of approximation for other problems. To do this we use gap-preserving reductions,
that given input instances with a gap in their optimal values output instances also with a gap in
their optimal values.

The first problem we look at is the optimization version of 3SAT, max-3SAT. Max-3SAT is the
problem of finding a variable assignment for which the amount of satisfied clauses is maximal. Like
with CSP we denote UNSAT(φ) to be the minimum fraction of unsatisfied clauses of the 3CNF
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formula φ over all variable assignments. Again as with CSP the solutions are variable assignments
and the objective function is the amount of satisfied clauses.

Theorem 5.14 There exists a ρ ∈ ]0, 1[ such that for every language L ∈ NP there exists a
polynomial-time reduction f of L to 3SAT such that:

x ∈ L =⇒ UNSAT(f(x)) = 0, and

x /∈ L =⇒ UNSAT(f(x)) ≥ ρ. �

Proof. We use Theorem 5.12 so we know that for every language L in NP there exists a polynomial-
time reduction f mapping strings to q-CSP instances, for some constant q, such that:

• x ∈ L =⇒ UNSAT(f(x)) = 0, and

• x /∈ L =⇒ UNSAT(f(x)) ≥ 1
2 .

We show a gap-preserving reduction g of such q-CSP instances to 3CNF formulas, the composition
of g and f will then be the reduction needed. Reduction g works as follows, given as input q-CSP
instance C. We can convert a constraint c = (R, i1, . . . , iq) to at most 2q CNF clauses each having
q literals. We can do this by converting R to DNF clauses and taking the negation of the resulting
DNF formula. Let φ be the conjunction of these clauses of every constraint of C, so φ contains
at most m · 2q clauses in total, each with q literals, where m is the amount of constraints in C.
It is important to note that when any variable assignment to C violates at least a fraction b of
the constraints then at least a b

2q fraction of the clauses of φ are violated given any assignment.
Finally we convert φ into a 3CNF formula φ′ which contains at most q ·m · 2q clauses. We do this
by converting every clause c = (x1 ∨ · · · ∨ xn) to one or more clauses with 3 literals as follows:

• If n = 3 we simply keep c itself.

• If n < 3 we repeat one of the literals in c until there are 3 literals. For example we convert
c = (x1 ∨ x2) to c′ = (x1 ∨ x2 ∨ x2).

• If n > 3 we add variables y1, . . . , yn−2 and convert c to the following clauses: (x1 ∨x2 ∨ y1)∧
(¬y1 ∨ x3 ∨ y2) ∧ · · · ∧ (¬yn−2 ∨ xn−1 ∨ xn)

Note that this conversion does not produce an equivalent formula but has the property that φ′ is
satisfiable if and only if φ is satisfiable. Now when any assignment violates at least fraction c of
the clauses of φ then at least a fraction c

q of the clauses of φ′ are always violated. So φ′ violates at

least a fraction b
q·2q of its clauses where b is the unsat-value of C.

Now the composition of reductions g and f gives us the reduction we need:

• If x ∈ L then the CSP instance f(x) is satisfiable and so is the 3CNF formula g(f(x)).

• If x /∈ L then UNSAT(f(x)) ≥ 1
2 and UNSAT(g(f(x))) ≥ 1

2·q·2q .

As a second example we show a similar result for max-INDSET. We define IS as the function that
maps a graph to the fraction of nodes that are member of the largest independent set.

Theorem 5.15 There exists a ρ ∈ ]0, 1[ such that the ρ-optimal approximation of max-INDSET
is NP-hard. There exists a ρ ∈ ]0, 1[ such that for every language L ∈ NP there exists a reduction
f of L to INDSET such that:

• x ∈ L =⇒ IS(f(x)) = 1
3 , and

• x /∈ L =⇒ IS(f(x)) < ρ
3 .

�

Proof. We use the same reduction used to proof NP-completeness of INDSET in Chapter 1. Let
us call this reduction f . Remember that f(φ) = 〈G, k〉 where G is a graph and k is the number
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of clauses in φ. For every clause in φ there is a group of 3 nodes in G, one for each literal in the
clause. Nodes are connected when they are part of the same group or when their associated literals
are negations of each other.

Let L be some language in NP. We will use the reduction g of 3SAT to L shown in Theorem 5.14.
If we compose the reductions g and f we can see that:

• If x ∈ L then UNSAT(g(x)) = 0, let m be the number of clauses in g(x) and G = f(g(x)).
The number of nodes in G is 3m and the number of nodes in the largest independent set is
m so IS(f(g(x)) = 1

3 .

• If x /∈ L then UNSAT(g(x)) ≥ ρ for some constant ρ as guaranteed by Theorem 5.14. Again
let m be the number of clauses in g(x) and G = f(g(x)). Because the maximum fraction of
satisfied clauses is less than ρ, the number of nodes in the largest independent set of G is
less than ρ ·m. So the fraction of nodes in the largest independent set is less than ρ

3 .

5.3 Proof of the PCP theorem

5.3.1 Expander graphs

Intuitively, expander graphs are graphs that are ‘well-connected’ while at the same time being
‘sparse’. Note that we do not say of a single graph that it is an expander graph (or not). Instead,
we use a certain property of a graph that measures how ‘good’ of an expander graph it is. In this
section, we define two such expansion properties of a graph, and how they are related to each other.
This section is based on a survey of expander graphs by Hoory, Linial and Widgerson [14].

From now on, when talking about graphs, we mean undirected multigraphs. In a multigraph, we
allow there to be multiple edges between any two nodes. We also allow loops, a loop in a graph is
an edge that connects a node to itself. See Figure 5.1 for an example of an undirected multigraph
with loops, there are two edges between node B and node C, and both node A and node D have a
loop.

A B C D

Figure 5.1: An example of an undirected multigraph with loops.

The degree of a node is the number of edges connected to it. We say a graph is regular if all of
its nodes have the same degree. More specifically, we say a graph is d-regular if all of its nodes
have degree d. As an example, let us look at the degree of the nodes of the graph shown in
Figure 5.1.

• The node A has one loop, and is connected to node B by one edge, thus the degree of A is 2.

• The node B is connected to node A with one edge and connected to node C with two edges,
thus its degree is 3.

• The node C is connected to node D with one edge and connected to node B with two edges,
so its degree is 3.

• The node D is connected to node C with one edge and has one loop, so its degree is 2.

Edge expansion ratio

Given a graph G = (V,E), and two sets of nodes, S, T ⊆ V , we denote the number of edges
connecting a node in S with a node in T by E(S, T ). The edge boundary of a set of nodes S ⊆ V is
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the number of edges connecting a node in S to a node outside S, which can be written as E(S, S),
where S = V \ S.

Next, we define the first expansion property, known as the edge expansion ratio of a graph.

Definition 5.16 (Edge expansion ratio) Given a graph G = (V,E), the edge expansion ratio
of G, denoted by h(G), is defined as:

h(G) = min
S∈H

E(S, S)

|S|
,

where

H = {S | S ⊆ V and 0 < |S| ≤ |V |
2
}.

�

Intuitively, a graph G = (V,E) has a high edge expansion ratio if every subset S ⊆ V has a lot of
outgoing edges, that is, S has a large edge boundary.

Example 5.17 Let us calculate the edge expansion ratio of the graph shown in Figure 5.1. We
have the node set V = {A,B,C,D}. If we consider the subset S = {A}, than we have

E(S, S)

|S|
=

1

1
= 1.

One can verify that is the minimum for any subset of nodes of size less than |V |
2 , thus the edge

expansion ratio of the graph equals 1. �

In the introduction, we stated that ‘good’ expander graphs are ‘well-connected’. Consider the
graph shown in Figure 5.2, this graph is disconnected and should thus be a ‘bad’ expander. Take
the set of nodes S = {D,E} of one of the connected components in the graph. Then clearly we
have E(S, S) = 0 and thus the edge expansion ratio of the graph is 0, which is the smallest possible
value for an edge expansion ratio. It should be easy to see that, in general, every disconnected
graph has an edge expansion ratio of 0.

A

B C

D

E

Figure 5.2: An example of a disconnected graph.

As an example of a ‘well-connected’ graph, let us take the complete graph with 5 nodes, K5, shown
in Figure 5.3. Because there are 5 nodes, we only have to consider subsets of nodes with a size up
to 2. For every subset of nodes of size 1, the edge boundary is 4 and for every subset of nodes of
size 2, the edge boundary equals 6. Thus

h(K5) = min

{
4

1
,

6

2

}
= 3.

We also stated that good expander graphs should be ‘sparse’, and by that we mean that the
ratio of edges to nodes is low. Therefore, we do not consider a graph on its own, but a family of
graphs.

Definition 5.18 (Family of graphs) A family of graphs is a set F = {G1, G2, G3, . . . }, which
for every i ∈ N contains a graph Gi where Gi has exactly i nodes. �
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A

B

CD

E

Figure 5.3: The complete graph K5.

To get sparse graphs, we consider families of graphs of which all graphs are d-regular for some
constant d. Now, we can define families of expander graphs, these consists of d-regular graphs for
some constant d and have a edge expansion ratio greater than some constant.

Definition 5.19 (Family of expander graphs) Given d ∈ N and h0 ∈ R with h0 > 0, a
family of d-regular graphs F is called a family of h0-expander graphs if for every Gi ∈ F , we have
h(Gi) ≥ h0. �

Now, it is interesting to consider graphs that can be efficiently constructed, therefore we define
polynomial-time constructible families of graphs.

Definition 5.20 (Polynomial-time constructible family of graphs) A family of graphs F =
{G1, G2, G3, . . . } is constructable in polynomial-time if there exists an algorithm that, given as
input a number i ∈ N, outputs the graph Gi and runs in time at most a polynomial in i. �

The following theorem states that there exist polynomial-time constructible families of expander
graphs. We do not prove this here, but an example of such constructible family can be found in
[16].

Theorem 5.21 There exist a d ∈ N and a h0 ∈ R with h0 > 0, such that there exists a polynomial-
time constructible family of d-regular graphs F = {G1, G2, G3, . . . }, with h(Gi) ≥ h0 for every
Gi ∈ F , that is, a family of h0-expander graphs. �

Eigenvalue gap

Let us move on to the second expansion parameter, called the eigenvalue gap. This parameter is
derived from the eigenvalues of the adjacency matrix of a graph.

From now on, we assume that there is some order associated with the nodes of a graph. So, when
we say the i-th node, we mean the node that comes on the i-th place in that order. Now, we define
the adjacency matrix of a graph.

Definition 5.22 The adjacency matrix of a graph G = (V,E), denoted by A(G), is an n × n
matrix with n = |V |, such that A(G)ij equals the number of edges between the i-th node and the
j-th node. �

Example 5.23 Let us look at the adjacency matrix of the graph, G, shown in Figure 5.1. We
order the nodes alphabetically, so the order is A,B,C,D. We get:

A(G) =


1 1 0 0
1 0 2 0
0 2 0 1
0 0 1 1


Note that:
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• the elements on the diagonal of the adjacency matrix are equal to the number of loops on
the corresponding nodes;

• since we are dealing with undirected graphs, the adjacency matrix is always symmetrical;
and

• the sum of the elements on the i-th row is equal to the degree of the i-th node, and, because
the matrix is symmetric, the sum of the elements on the i-th column is also equal to the
degree of the i-th node.

�

Next, we define the eigenvalues of a symmetric matrix.

Definition 5.24 Given a symmetric matrix A ∈ Rn×n, the eigenvalues of A are λ1 ≥ λ2 ≥ · · · ≥
λn ∈ R where, for each eigenvalue λi, there exists a vector ~vi ∈ Rn, with ~vi 6= ~0, called an
eigenvector, such that A~vi = λi~vi, this means: the result of the multiplication of matrix A with
vector ~vi is equal to the result of the (scalar) multiplication of λi with ~vi. �

Note 5.25 In the following, when we talk about eigenvalues of a graph, we mean the eigenvalues
of the adjacency matrix of the graph. �

There are some interesting properties of the eigenvalues of a graph. First, we show that we can
bound the absolute value of the eigenvalues of regular graphs.

Property 5.26 Given a d-regular graph G, if λ is an eigenvalue of A(G) then |λ| ≤ d. �

Proof. Say G is a d-regular graph with adjacency matrix A = A(G). Let n be the number of nodes
of G. Let λ be an eigenvalue of A and let ~v ∈ Rn be a corresponding eigenvector. Thus we have

A~v = λ~v.

Now, take vm to be the largest component (in absolute value) of ~v and let ~u = ~v
vm

(vm can not be

zero since that would imply ~v = ~0 which is not an eigenvector). Then, the largest component of ~u,
say uk, equals 1, where the position of uk in ~u is k. Since ~u is also an eigenvector, we have

A~u = λ~u.

From this follows that

|(Ak1, Ak2, . . . , Akn) · ~u| = |λuk| = |λ|.

In other words, the absolute value of the dot product of the k-th row of A with the vector ~u equals
|λ|. Then we have:

|λ| = |(Ak1, Ak2, . . . , Akn) · ~u|

=

∣∣∣∣∣
n∑
i=1

Akiui

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

Akiuk

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

Aki

∣∣∣∣∣ = |d| = d.

The last equality holds because the sum of the components of a row in the adjacency matrix equals
the degree of the corresponding node. Because in this case the graph is d-regular, this is d.

Not only are the absolute values of the eigenvalues of regular graphs bounded by the degree, we
can also show that the largest eigenvalue of a regular graph is equal to the degree.
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Property 5.27 Given a d-regular graph G and its adjacency matrix A = A(G), with λ1 ≤ λ2, · · · ≤
λn the eigenvalues of A, then λ1 = d. �

Proof. Say G is a d-regular graph with adjacency matrix A = A(G). Let n be the number of nodes
of G. Let ~1 ∈ Rn be the vector whose elements are all 1. Consider the result of A ·~1:

A ·~1 =

(
n∑
i=1

A1i,

n∑
i=1

A2i, . . . ,

n∑
i=1

Ani

)
.

Because the sum of each row in the adjacency matrix equals the degree, d, we have:

A ·~1 = (d, d, . . . d) = d~1.

So, d is an eigenvalue of A with corresponding eigenvector ~1. By Property 5.26, we know that
there is no eigenvalue greater than d, thus d is the largest eigenvalue of A, or λ1 = d.

Definition 5.28 Given a d-regular graph G and its adjacency matrix A = A(G), with λ1 ≤
λ2, · · · ≤ λn the eigenvalues of A, the eigenvalue gap of G is defined as d− λ2. �

Note that since λ1 = d, the eigenvalue gap is equal to λ1−λ2, which explains the name ‘eigenvalue
gap’.

Example 5.29 Consider the graph shown in Figure 5.4, which is obtained by adding an edge from
node A to node D to the graph shown in Figure 5.1. The result is a 3-regular graph. The adjacency
matrix of this graph is shown below.

A(G) =


1 1 0 1
1 0 2 0
0 2 0 1
1 0 1 1


The eigenvalues of the adjacency matrix are:

λ1 = 3

λ2 = 1

λ3 =
√

2− 1

λ4 = −1−
√

2.

Thus the eigenvalue gap of this graph is λ1 − λ2 = 2.

A B C D

Figure 5.4: The graph shown in Figure 5.1 with an added edge to make it 3-regular.

�

The following theorem shows that the eigenvalue gap and the edge expansion ratio of a graph are
related to each other. This means that the eigenvalue gap can also be used as a measure for how
‘well-connected’ the graph is. We do not give a proof here, but it can be found in [3].

Theorem 5.30 If G is a d-regular graph with edge expansion ratio h(G) and eigenvalue gap d−λ2,
then:

d− λ2

2
≤ h(G) ≤

√
2d(d− λ2).

�
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Because disconnected graphs have an edge expansion ratio of 0, it follows that disconnected graphs
have an eigenvalue gap of 0 as well.

Example 5.31 Let us look back at the disconnected graph shown in Figure 5.2. Clearly, this
graph is 2-regular. The adjacency matrix is show below.

A(G) =


0 1 1 0 0
1 0 1 0 0
1 1 0 0 0
0 0 0 0 2
0 0 0 2 0


The eigenvalues of the adjacency matrix are:

λ1 = 2

λ2 = 2

λ3 = −1

λ4 = −1

λ5 = −2.

And as we can see, the eigenvalue gap is indeed λ1 − λ2 = 0. �

Because of the relation between the edge expansion ratio and the eigenvalue gap, when we can
construct graphs with an edge expansion ratio greater than some constant, we obtain graphs with
an eigenvalue gap greater than some constant. Thus, using Theorem 5.20 we can show that there
exists a polynomial-time constructible family of graphs with an eigenvalue gap greater than some
constant.

Theorem 5.32 There exists a d ∈ N and a λ ∈ R with λ > 0, such that there exists a polynomial-
time constructible family of d-regular graphs F = {G1, G2, G3, . . . }, where, for every Gi ∈ F , the
eigenvalue gap of Gi is at least λ. �

Random walks on expander graphs

One of the nice properties of expander graphs is that when taking a random walk on an expander
graph, the resulting probability distribution converges rapidly to the uniform distribution over the
nodes of the graph. Let us start by defining (random) walks on a graph.

Definition 5.33 A walk on a graph G = (V,E) is a sequence of nodes v1, v2, . . . ∈ V such that,
for every index i, the nodes vi and vi+1 are connected with an edge. �

Definition 5.34 A random walk on a graph G = (V,E) is a walk v1, v2, . . . such that vi+1 is
selected uniformly at random from the neighbors of vi and v1 is chosen from some initial probability
distribution π1. With a random walk we associate probability distributions π1, π2, . . . such that,
for every index i, πi(x) is the probability that vi = x with x ∈ V , in other words, πi(x) is the
probability that node x is reached in the i-th step of the random walk. �

The following theorem states that there is relation between the behaviour of a random walk on a
graph and the eigenvalues of the graph, we do not give a proof here. Given a d-regular graph G
with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, we define λ(G) = max(|λ2|, |λn|), that is, the second-largest
eigenvalue in absolute value.

Theorem 5.35 Given a d-regular graph G = (V,E) with λ(G) = λ and F ⊆ E a subset of the
edges without loops. Let π1 be the probability distribution obtained when randomly choosing a
edge from F and then choosing one of the two endpoints of that edge at random. In other words,
π1(x) equals the fraction of edges incident to the node x that are in F , divided by 2. Then, the
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probability that a random walk with initial distribution π1 chooses an edge in F on the i + 1-th
step, is at most

|F |
|E|

+

(
λ

d

)i
.

�

However, now, we require a bound on the absolute value of the second and last eigenvalue, instead
of just on the second eigenvalue. Fortunately, there also exist polynomial-time constructible graph
families where λ(G) is at most some constant for every graph G in the family.

Theorem 5.36 There exists a d ∈ N and a λ ∈ R with λ < d, such that there exists a polynomial-
time constructible family of d-regular graphs F = {G1, G2, G3, . . . }, where, for every Gi ∈ F , we
have λ(Gi) ≤ λ. �

5.3.2 Constraint graph coloring problem

The problem we will be working with in the proof is called the constraint graph coloring problem,
abbreviated as CGC. The input of the constraint graph coloring problem is a constraint graph over
some alphabet. It can be seen as a generalisation of the 3-coloring problem of graphs where:

1. we allow any number of colors, where the set of colors is called the alphabet, and

2. instead of allowing only inequality constraints on the edges (in the 3-coloring problem, colors
of nodes that are connected with an edge must be different), we allow any (binary) constraint
on the edges.

Definition 5.37 A constraint graph over the alphabet Σ is a tuple (G,C), where:

• G = (V,E) is an undirected multigraph, and

• the function C : E → P(Σ×Σ) associates with each edge, e ∈ E, a constraint C(e) ⊆ Σ×Σ,
where C(e) consists of satisfying assignments to the two endpoints of the edge.

�

We say an assignment a : V → Σ satisfies a constraint graph ((V,E), C) over the alphabet Σ if for
every edge e = (u, v) ∈ E, we have (a(u), a(v)) ∈ C(e). We say a constraint graph ((V,E), C) over
Σ is satisfiable if there exists an assignment a : V → Σ that satisfies the constraint graph.

Now, the constraint graph coloring problem over an alphabet Σ can be defined as follows:

CGCΣ = {〈(G,C)〉 | (G,C) is a constraint graph over Σ and (G,C) is satisfiable }.

We can prove that this language is NP-complete when the alphabet contains 3 or more symbols.
To do this, we reduce from the language 3COLOR, which is a typical example of an NP-complete
language.

3COLOR = {〈G〉 | the graph G is colorable with 3 colors}.

Property 5.38 For every alphabet Σ with |Σ| ≥ 3, CGCΣ is NP-complete. �

Proof. We have to proof that CGCΣ is in NP, and that every language in NP is polynomial-time
reducible to CGCΣ.

1. First we show that CGCΣ ∈ NP for every alphabet Σ, this is straightforward. A polynomial-
time verifier can take as certificate a satisfying assignment for the constraint graph given as
input.
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2. Let Σ be an alphabet such that |Σ| ≥ 3. Take 3 distinct symbols from Σ and call them r, g,
and b respectively. We describe a reduction, f , from 3COLOR to CGCΣ. On input a graph
G = (V,E), the reduction will output a constraint graph f(G) = (G,C) over the alphabet
Σ, where the constraints are such that, for every edge e ∈ E, the associated constraint is

C(e) = {(r, b), (r, g), (b, r), (b, g), (g, r), (g, b)},

that is, the inequality constraint. Then it is easy to see that if a graph G is 3-colorable, then
the constraint graph f(G) is satisfiable. While on the other hand, if G is not 3-colorable,
then the constraint graph f(G) is not satisfiable, note that f(G) can not be satisfied by an
assignment that uses elements in Σ \ {r, g, b} because these elements do not occur in the
constraints. Finally, f is clearly computable in polynomial time.

Now, let us consider the optimization version of this problem, called max-CGCΣ, when using
alphabet Σ. Similarly to the unsat-value of a constraint satisfaction problem, we define the unsat-
value of a constraint graph A = (G,C) as the minimum amount of unsatisfied constraints over all
possible assignments, denoted by UNSAT(A).

As we saw in Section 5.2, we know that Theorem 5.12, restated below, is equivalent to the PCP
theorem.

Theorem 5.12 There exists a q and an alphabet Σ such that for every language L ∈ NP there
exists a polynomial-time reduction f of L to q-CSPΣ such that:

• x ∈ L =⇒ UNSAT(f(x)) = 0, and

• x /∈ L =⇒ UNSAT(f(x)) ≥ 1
2 .

�

Now, because we know that CGCΣ is NP-complete when |Σ| ≥ 3, if we can show a polynomial-
time reduction f of CGCΣ to q-CSP, for some q, such that, on input a constraint graph A =
(G,C):

• if A is satisfiable, then UNSAT(f(A)) = 0, and

• if A is not satisfiable, then UNSAT(f(A)) ≥ 1
2 ,

then we have proven the PCP theorem.

But first, let us proof the following lemma.

Lemma 5.39 For every Σ with |Σ| ≥ 3, there exists a polynomial-time reduction f of CGCΣ to
2-CSPΣ, that, on input a constraint graph A over Σ, outputs a 2-CSPΣ instance C such that:
UNSAT(A) = UNSAT(C). �

Proof. There is a trivial correspondence between constraint graphs and binary CSP instances over
the same alphabet. Then, any assignment for the constraint graph can be converted into one for
the CSP instance such that the same number of constraints are satisfied, and vice-versa. Thus the
unsat-value of the constraint graph is equal to the unsat-value of the CSP instance.

This means that, to prove the PCP theorem, we only have to show, for some Σ with |Σ| ≥ 3,
a polynomial-time reduction of the CGCΣ problem to itself such that, the unsat-value of satisfi-
able instances stays 0, while the unsat-value of unsatisfiable instances becomes becomes at least
1
2 .
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5.3.3 Overview of the proof

In this subsection, we give an overview of the complete proof. Like we said in the previous
subsection, to prove the PCP theorem, we show, for some alphabet Σ with |Σ| ≥ 3, a reduction of
CGCΣ to itself such that the unsat-value of unsatisfiable constraint is greater than some constant.
This reduction consists of 3 important steps, each with a corresponding lemma explained below.
But first, let us define the ‘size’ of a graph as the sum of the number of nodes and edges, so, given
a graph G = (V,E) we write size(G) = |V | + |E|. This proof given here is based on the proof by
Dinur [9].

The first lemma we use, shows that any constraint graph can be converted, in polynomial time, to
a constraint graph where the underlying graph is a d-regular expander graph, for some constant d.
It is important that the size of the resulting graph is only a constant factor greater than the input
graph. This lemma is used as a sort of preprocessing step, therefore we call it the preprocessing
lemma.

Lemma 5.40 (The preprocessing lemma) There exist constants d ∈ N, λ ∈ R and β1 ∈ R
with λ < d and 0 < β1 < 1, such that there exists a polynomial-time algorithm that, on input a
constraint graph (G,C) over an alphabet Σ, outputs a constraint graph (G′, C ′) over Σ, such that:

• the graph G′ is d-regular with at least one loop on every node;

• λ(G′) ≤ λ;

• size(G′) = O(size(G));

• UNSAT(G′) ≥ β1 ·UNSAT(G′); and

• if UNSAT(G) = 0, then UNSAT(G′) = 0 (in other words, when the input graph is satisfiable,
so is the output graph).

�

The proof of this lemma is given in Subsection 5.3.4.

Note that when we apply the preprocessing step, the unsat-value of the resulting graph is less
than or equal to the unsat-value of the original graph, and this while we are trying to increase
the unsat-value, at least for unsatisfiable constraint graphs. However, this problem is solved using
the next step, where we increase the unsat-value of unsatisfiable constraint graphs. Again, we do
this while only increasing the size of the graph by a constant factor. Since we are increasing, or
amplifying, the gap between the unsat-values of satisfiable and unsatisfiable constraint graphs, the
next step is called the gap amplification step.

Lemma 5.41 (Gap amplification lemma) Given λ ∈ R, d ∈ N and an alphabet Σ, with λ < d,
there exists a β2 > 0 and a polynomial-time algorithm that, on input a number t ∈ N and a
constraint graph (G,C) where G is a d-regular graph with at least one loop on every node and

where λ(G) ≤ λ, outputs a constraint graph (G′, C ′) over the alphabet Σd
dt/2e

such that:

• UNSAT(G′) ≥ β2

√
t ·min(UNSAT(G), 1

t ),

• if UNSAT(G) = 0, then UNSAT(G′) = 0, and

• size(G′) = O(dt · size(G′)).

�

The proof of this lemma is given in Subsection 5.3.5.

Note that the type of constraint graph required in the gap amplification step can be given by the
preprocessing step. While this step does indeed amplify the gap in unsat-values, we are left with a
problem: the output constraint graph uses a different alphabet, one whose size depends on:

1. the alphabet, Σ, of the input constraint graph,

2. the degree, d, of the input constraint graph, and
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3. the value of the parameter t.

This is problematic because, as we see later, these steps will be run multiple times in order to
amplify the gap up to constant. Then however, the alphabet could grow to a non-constant size,
while we need a reduction that transforms an input constraint graph over some alphabet into an
output constraint graph over the same alphabet. Fortunately, we can solve this problem using an
alphabet reduction step, show in the lemma below.

Lemma 5.42 (Alphabet reduction lemma) There exists a 0 < β3 < 1, an alphabet Σ0, with
|Σ0| ≥ 3, and a polynomial-time algorithm that, on input a constraint graph (G,C) over some
alphabet Σ, outputs a constraint graph (G′, C ′) over Σ0 such that:

• size(G′) = O(size(G)),

• UNSAT(G′) ≥ β3 ·UNSAT(G), and

• if UNSAT(G) = 0, then UNSAT(G′) = 0.

�

For details of the proof of this lemma, we refer to [9]. Note that, just like with the preprocessing
step, the gap between unsat-values can decrease during this step.

Now, using the 3 steps described above, we can show that the unsat-value of a constraint graph can
be doubled (up to a maximum), while only increasing the size of the graph by a constant factor.
This is shown in the following lemma.

Lemma 5.43 There exists an alphabet Σ, with |Σ| ≥ 3, and a constant 0 < α < 1, such that
there exists a polynomial-time algorithm that, on input a constraint graph (G,C) over Σ, outputs
a constraint graph (G′, C ′) over Σ such that:

• size(G′) = O(size(G)),

• UNSAT(G′) ≥ min(2 ·UNSAT(G), α), and

• if UNSAT(G) = 0, then UNSAT(G′) = 0.

�

Proof. Take Σ as the Σ0 guaranteed to exist by Lemma 5.42. Now, the algorithm works as follows:

“On input a constraint graph (G,C) over Σ:

1. Apply the preprocessing step to (G,C) to obtain the constraint graph (G1, C1) over Σ.

2. Apply the gap amplification step to (G1, C1) to obtain the constraint graph (G2, C2) over

Σd
dt/2e

, where d is the degree of G1 (see below for the choice of t).

3. Finally, apply the alphabet reduction step to (G2, C2) to obtain the constraint graph (G3, C3)
over Σ, this is our output. ”

Now, we have that size(G1) = O(size(G)), size(G2) = O(dt · size(G1)) and size(G3) = O(size(G2)).
Thus, because we choose d and t as constants, size(G3) = O(size(G)). We also know that
UNSAT(G3) = 0 if UNSAT(G) = 0. The only requirement left to prove is:

UNSAT(G3) ≥ min(2 ·UNSAT(G), α),

for some constant α. By Lemma 5.42, Lemma 5.41 and Lemma 5.40, we have, respectively:

UNSAT(G3) ≥ β3 ·UNSAT(G2)

≥ β3 · β2

√
t ·min(UNSAT(G1),

1

t
)

≥ β3 · β2

√
t ·min(β1 ·UNSAT(G),

1

t
)
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Now, if we take

t =

⌈(
2

β1β2β3

)2
⌉
,

then we get

UNSAT(G3) ≥ β3 · β2

√
t ·min(β1 ·UNSAT(G),

1

t
)

≥ 2

β1
·min(β1 ·UNSAT(G),

1

t
)

= min(2 ·UNSAT(G),
2

tβ1
)

And thus we get

α =
2

tβ1
=

2⌈(
2

β1β2β3

)2
⌉
· β1

.

Note that α is a constant because β1, β2 and β3 are constants.

5.3.4 Proof of the preprocessing lemma

The preprocessing step exists of 2 steps itself. In the first step, we convert the input constraint
graph into a d-regular constraint graph for some constant d. In the second step, we convert the
d-regular constraint graph into an expander graph.

Converting to a regular graph

Here, we show a method to convert an input constraint graph into a d-regular constraint graph,
for some d, such that if the input graph is satisfiable, so is the output graph, and when the input
graph is unsatisfiable, the unsat-value of the output graph is at most some factor smaller than
the unsat-value of the input graph, where the factor only depends on d, and thus is constant in
function of the input graph. We start by describing the method and the intuition behind it, and
prove its correctness afterwards.

First, let us show how we convert an input graph into a regular graph, ignoring the constraints for
now. For each node v in the original graph, we create a group g(v) of nodes in the output graph.
The number of nodes in the group g(v) equals the degree of v. In other words, with each edge e
incident to v, we associate a node (v, e) in g(v). Formally, when given as input a graph G = (V,E),
the output graph G′ = (V ′, E′) will have the node set

V ′ = {g(v) | v ∈ V },

where
g(v) = {(v, e) | e ∈ E and e is incident to v}.

For the edges, we distinguish between two (multi)sets of edges, E1 and E2, such that E′ = E1 ∪
E2.

• E1 consists of edges between nodes of different groups. We connect two nodes of different
groups if and only if these two nodes are associated to the same edge in the original graph.
Formally:

E1 = {{(v, e), (u, e)} | e = {v, u} and e ∈ E}.

Note that {(v, e), (u, e)} in the above equation is the (undirected) edge between the nodes
(v, e) and (u, e), where (v, e) is the node in g(v) associated with edge e (of the original graph
G), as explained before.

• E2 consists of edges between nodes of the same group. We connect nodes of a group such
that every node in the group is connected to d0 other nodes in the same group, for some d0.
We explain more specifically how to do this when considering constraints, later on.
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It should be clear now, that the resulting graph is d-regular, with d = d0 + 1. We can also already
look at the size of the output graph. The number of nodes in the output graph G′ = (V ′, E′),
when the input graph is G = (V,E), is at most the number of edges in G multiplied by two, note
that this is exact when there are no loops in G. The number of edges in G′ equals at most the
amount of nodes in G′ times the degree of G′ (because G′ is regular). So we have:

|V ′| ≤ 2 · |E|
|E′| ≤ d · |V ′|

where d is the degree of G′. Now, consider the size of G′:

size(G′) = |V ′|+ |E′|
≤ 2 · |E|+ d · |V ′|
≤ (2 + 2d) · |E|
≤ (2 + 2d) · size(G),

proving that the size of the output graph is only a constant factor larger than the size of the input
graph (assuming d is a constant, at least).

A B

CD

e1

e2e3 e4

Figure 5.5: An example input graph, the edges are given names e1 to e4.

Before considering the constraints on the resulting graph, let us give an example of such output
graph. Take the graph shown in Figure 5.5, with nodes {A,B,C,D} and edges e1 = {A,B},
e2 = {A,C}, e3 = {A,D} and e4 = {B,C}. Now consider, for example, the group g(A), because
the node A is incident to the three edges e1, e2 and e3, the group g(A) will consist of the three
nodes (A, e1), (A, e2) and (A, e3). Because e1 = {A,B}, the node (A, e1) is connected to the
node (B, e1), similarly, because e2 = {A,C}, nodes (A, e2) and (C, e2) are connected, and so on.
The output graph is shown in Figure 5.6, the edges connecting nodes within the same group are
omitted.

Now, let us consider the constraints we put on the output graph. We keep working with the
same alphabet as the input constraint graph. The constraints on edges between nodes of different
groups will have the same constraint as the associated edge in the input constraint graph. Thus,
for example, if we have the input constraint graph (G,C) where G is the graph shown in Figure 5.5
and we have the output graph (G′, C ′) with G′ the graph as shown in Figure 5.6, the constraint
on the edge between nodes (A, e1) and (B, e1) will be the same as the constraint of e1, that is,
C ′((A, e1), (B, e1)) = C(e1).

For the edges between nodes in the same group, we use the equality constraint. As an example,
the equality constraint over the alphabet {r, g, b} is:

{(r, r), (g, g), (b, b)}.

In general, the equality constraint over an alphabet Σ is

{(σ1, σ2) | σ1, σ2 ∈ Σ and σ1 = σ2}.
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(A, e1)

(A, e2)(A, e3)

. . .

(B, e1)

(B, e4)

. . .

(C, e4)(C, e2) . . .(D, e3)

Figure 5.6: An example of the output graph obtained after the conversion of the graph
shown in Figure 5.5 to a regular graph. The dashed ellipses represent the groups and their
inner edges have been omitted for now.

It is quite straightforward to see that if the input constraint graph is satisfiable, then the output
constraint graph is also satisfiable. Given a satisfying assignment a : V → Σ × Σ for the input
graph, the following assignment a′ : V ′ → Σ× Σ will satisfy the output graph:

a′((v, e)) = a(v).

Because it assigns the same symbol to all nodes in a group, the constraints on edges between
nodes in the same group, which are equality constraints, are satisfied. Secondly, because the
constraints on nodes of different groups are the same as the constraints on the associated edges,
and the symbols assigned to nodes in the output graph are the same as the symbols assigned to
the associated nodes in the input graph, the constraints between nodes in different groups are also
satisfied.

However, what can we say about the unsat-value of the output graph when the input graph is
not satisfiable? Remember that we want the unsat-value of the output to be at most a constant
fraction smaller than the unsat-value of the input. So, it should not be possible to create an
assignment that a violates ‘much’ smaller fraction of constraints than the unsat-value of the input
graph. Say we have an input constraint graph A = ((V,E), C) and d-regular output constraint
graph B = ((V ′, E′), C ′). Now, assignments for the output graph that assign the same symbol to
all nodes in the same group, will only violate edges between nodes of different groups, but will
violate at least a

|E| ·UNSAT(A)

|E′|
fraction of the constraints. Because we know that |E′| ≤ 2d · |E|, we have

|E| ·UNSAT(A)

|E′|
≥ 1

2d
·UNSAT(A).

So, for these assignments, the unsat-value can only decrease by a constant factor (assuming d is a
constant), which is what we want.
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Unfortunately, we also have to consider assignments to the output constraint graph that do not
assign the same symbol to all nodes in the same group. Note that we have not yet specified how
to place edges between nodes of the same group. Consider an assignment to the output constraint
graph, this assignment will assign a symbol of the alphabet to each node in the output graph. More
intuitively, an assignment to a node (v, e) can be seen as an ‘opinion’ on the assignment of v, in the
original graph. Then, we want to make sure that if there is a lot of disagreement on the assignment
of a certain node, than there are also a lot of edges (in the output graph) whose constraints are
violated (that is, not satisfied). This is the case when, in some group g(v), every set of nodes (in
the output graph) that have the same opinion on the assignment to v, are connected to a lot of
nodes that have a different opinion. This intuitive idea is captured by the ‘well-connectedness’ of
expander graphs. Therefore, we use an expander graph to fill in the edges inside a group.

Now that we have described the first step of the preprocessing step, we prove its correctness in the
following lemma.

Lemma 5.44 There exists a constant d ∈ N with d > 1 and a constant c ∈ R, with 0 < c ≤ 1,
such that there exists a polynomial-time algorithm that, on input a constraint graph A = (G,C)
over alphabet Σ , outputs a constraint graph B = (G′, C ′) over alphabet Σ, such that:

• the graph G′ is d-regular,

• size(G′) = O(size(G)),

• UNSAT(B) ≥ c ·UNSAT(A), and

• if UNSAT(A) = 0, then UNSAT(B) = 0.

�

Proof. Let A = (G,C), with G = (V,E), be the input constraint graph. The algorithm will output
the constraint graph B = (G′, C ′), with G′ = (V ′, E′), in the following way.

• The nodes are

V ′ = {g(v) | v ∈ V },

with

g(v) = {(v, e) | e ∈ E and e is incident to v}.

• The edges are E′ = E1 ∪ E2, where

E1 = {{(v, e), (u, e)} | e = {v, u} and e ∈ E},

and

E2 = {E(Xv) | v ∈ V },

where E(Xv) are the edges of the graph Xv, which is a d0-regular expander graph with
h(Xv) ≥ h, for some constants d0 and h, with Xv having as nodes g(v). Note that such
graphs are guaranteed to exist and constructible in polynomial time by Theorem 5.20.

• The constraints are C ′ : V ′ → Σ× Σ, such that

C ′({(v1, e1), (v2, e2)}) =

{
c= if v1 = v2

C(e1) if v1 6= v2

where c= denotes the equality constraint. The first case specifies the constraints of edges
between nodes in the same group, while the second case specifies the constraints of edges
between nodes of different groups. Note that in the second case, when v1 6= v2, the edges are
equal, e1 = e2, otherwise {(v1, e1), (v2, e2)} would not be an edge.

Now, it is clear that the resulting graph is d-regular, with d = d0 + 1. Also, we have already shown
that size(G′) = O(size(G)
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When UNSAT(A) = 0, there exists an assignment a : V → Σ× Σ that satisfies A. If we take the
assignment a′ : V ′ → Σ× Σ where

a′((v, e)) = a(v),

then a′ is a satisfying assignment for B, thus UNSAT(B) = 0.

Finally, we have to prove that

UNSAT(B) ≥ c ·UNSAT(A),

for some constant c.

Define UNSATa(A) to be the fraction of constraints violated by assignment a for the constraint
graph A. Clearly, UNSATa(A) ≥ UNSAT(A) for all a, and

UNSAT(A) = min
a

UNSATa(A).

Now, take an assignment a′ forB with minimal unsat-value, that means UNSATa′(B) = UNSAT(B).
Using this, consider the assignment a for A, where

a(v) = arg max
σ

|{(u, e) | u = v and a′((u, e)) = σ}|,

in other words, the assignment a takes the ‘popular opinion’ of a′ for every node v, that is, the
syumbol assigned the most to nodes in the group g(v). Note that, for a node (u, e), if u = v, then
(u, e) ∈ g(v). Let F ⊆ E be the edges of A that are violated by a and let F ′ ⊆ E′ be the edges of
B that are violated by a′. Then we have

|F |
|E|

= UNSATa(A) ≥ UNSAT(A)

and
|F ′|
|E′|

= UNSATa′(B) = UNSAT(B).

Define the set S ⊆ V ′ as

S =
⋃
v∈V
{(u, e) | u = v and a′((u, e)) 6= a(v)},

in other words, S is the set of nodes in B that do not agree with the popular opinion. Now,
consider an edge e = {v, u} in A, and the corresponding edge e′ = {(v, e), (u, e)} in B. When e
is in F , then either e′ ∈ F ′ or one of the two endpoints is in S. This is true because when e′ is
not in F ′ (thus not violated by a′), and both endpoints of e′ are in S (that is, they both agree
with the popular opinion), then e is not violated by the popular opinion assignment a because the
constraint on e and e′ are the same. This means that, for every edge e ∈ F , we have at least one
element in F ′ or S, thus

|F ′|+ |S| ≥ |F | ≥ |E| ·UNSAT(A).

Now, we distinguish between two cases.

• When |F ′| ≥ |F |2 , then we have:

|F ′| ≥ |F |
2
≥ |E|

2
·UNSAT(A).

If we divide this by |E′| we get:

|F ′|
|E′|

= UNSAT(B)

≥ |E|
2 · |E′|

·UNSAT(A)

≥ |E|
4d · |E|

·UNSAT(A)

≥ 1

4d
·UNSAT(A).
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• On the other hand, if |F ′| < |F |
2 , then |S| must be greater than |F |2 . Define Sv,σ as:

Sv,σ = {(u, e) ∈ S | u = v and a((u, e)) = σ},

in other words, Sv,σ is the set of nodes in group g(v), with opinion σ where σ is different from

the popular opinion. Then |Sv,σ| ≤ |g(v)|
2 , because otherwise, σ would be the popular opinion.

Now, we use the fact that edges connecting nodes of the same group form an expander graph.
So, we know that the edge expansion ratio of such graph is greater than some constant h.
This means that the edge boundary of Sv,σ (relative to the group g(v)) is at least h · |Sv,σ|,
or

E(Sv,σ, Sv,σ) ≥ h · |Sv,σ|,
where Sv,σ = g(v) \ Sv,σ. Every edge that connects a node in Sv,σ to a node in g(v) but
outside Sv,σ, is violated by a′ because all the edges connecting nodes in the same group have
the equality constraint while the two nodes must have a different assignment. So, in a group
g(v), there are at least ∑

σ

h

2
· |Sv,σ|

constraints violated, and in the whole graph B, there are at least

|F ′| ≥
∑
v

∑
σ

h

2
· |Sv,σ|

=
h

2
·
∑
v

∑
σ

|Sv,σ|

=
h

2
· |S|

≥ h

4
· |F |.

If we divide by |E′| we get:

|F ′|
|E′|

= UNSAT(B)

≥ h · |F |
4 · |E′|

≥ h · |F |
8d · |E|

≥ h

8d
·UNSAT(A).

So, if we take

c = min(
1

4d
,
h

8d
),

then we have UNSAT(B) ≥ c ·UNSAT(A).

Converting to an expander graph

Here we show a method to convert a constraint graph produced by the previous step into a
constraint graph of which the graph is an expander graph. To do this, we require another property
of the eigenvalues of a matrix, being that the second largest eigenvalue in absolute value is equal
to what is known as the Rayleigh quotient, as shown in the following property.

Property 5.45 Given matrix A, with eigenvalues λ1 ≤ λ2, · · · ≤ λn, then:

max(|λ2|, |λn|) = max
‖x‖,x⊥~1

|〈x,Ax〉|,

where ‖x‖ denotes the norm of the vector x, x ⊥ ~1 means that x is orthogonal to the vector ~1
(whose components are all 1), and 〈x,Ax〉 is the dot product of x and Ax. �
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The next property follows directly from this.

Property 5.46 Given a d-regular graph G with adjacency matrix A = A(G), with eigenvalues
λ1 ≤ λ2, · · · ≤ λn, then:

λ(G) = max
‖x‖,x⊥~1

|〈x,Ax〉|,

�

Lemma 5.47 There exist constants dc ∈ N with d > 1, and λ ∈ R with 0 < λ < dc, such that
there exists a polynomial-time algorithm that, on input a d-regular constraint graph A = (G,C)
over alphabet Σ, outputs a constraint graph B = (G′, C ′) over alphabet Σ, such that:

• the graph G′ is (dc + d+ 1)-regular,

• every node in G′ has at least one loop,

• λ(G′) ≤ λ+ d+ 1 < dc + d+ 1,

• size(G′) = O(size(G)),

• UNSAT(B) ≥ d
d+dc+1 ·UNSAT(A), and

• if UNSAT(A) = 0, then UNSAT(B) = 0.

�

Proof. Let A = (G,C), with G = (V,E), be the input constraint graph. The algorithm will output
the constraint graph B = (G′, C ′), with G′ = (V ′, E′), in the following way.

• The nodes stay the same, that means V ′ = V .

• The edges are E′ = E1 ∪E2 ∪E3. First we take the edges of A, thus E1 = E. Then, we add
a loop to every node, thus

E2 = {(v, v) | v ∈ V }.
Finally, we add the edges of an expander graph, so

E3 = E(Xn),

where Xn is a dc-regular expander graph with n nodes where λ(Xn) ≤ λ for some constant
λ, and n equals the number of nodes in G, n = |V |. Note that such graphs are guaranteed
to exist and constructible in polynomial time by Theorem 5.36.

• The constraints are defined as follows:

C ′(e) =

{
C(e) if e ∈ E
Σ× Σ if e /∈ E

This means that the constraints on the edges taken from the input graph remain the same,
while the constraints on the added edges are always satisfied.

Note that, when we say E′ = E1 ∪ E2 ∪ E3, we are taking the union of multisets, which means
all edges are simply added together. To clarify this, we can look at the adjacency matrix of the
output graph, A(G′), which then equals A(G) + I + A(Xn), where I denotes the identity matrix,
which has 1 on its diagonal elements and 0 everywhere else.

It is easy to see that the resulting graph is (dc + d + 1)-regular, and that the resulting graph has
at least one loop on every node. We can write λ(G′) as:

λ(G′) = max
‖x‖,x⊥~1

|〈x,A(G′)x〉|

≤ max
‖x‖,x⊥~1

|〈x,A(G)x〉|+ max
‖x‖,x⊥~1

|〈x, Ix〉|+ max
‖x‖,x⊥~1

|〈x,A(Xn)x〉|

≤ λ(G) + 1 + λ(Xn)

≤ d+ 1 + λ.
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For the size of the resulting graph, we have:

size(G′) = |V ′|+ |E′|
= |V |+ (|E|+ |V |+ dc · |V |)
≤ |E|+ (dc + 2) · |V |
≤ (dc + 2) · (|V |+ |E|)

Thus size(G′) = O(size(G)).

Now, let us look the unsat-value of the output constraint graph. If UNSAT(A) = 0, then there
exists a satisfying assignment for A, and because we only added edges with constraints that are
always satisfied, the same assignment will also satisfy B, thus UNSAT(B) = 0. On the other hand,
because we added dc + 1 edges which are always satisfied, we have:

UNSAT(B) =
d

d+ dc + 1
·UNSAT(A).

Combining the steps

Now that we have proven the correctness of both steps, we can prove the preprocessing lemma,
restated below.

Lemma 5.40 (The preprocessing lemma) There exist constants d ∈ N, λ ∈ R and β1 ∈ R
with λ < d and 0 < β1 < 1, such that there exists a polynomial-time algorithm that, on input a
constraint graph (G,C) over an alphabet Σ, outputs a constraint graph (G′, C ′) over Σ, such that:

• the graph G′ is d-regular with at least one loop on every node;

• λ(G′) ≤ λ;

• size(G′) = O(size(G));

• UNSAT(G′) ≥ β1 ·UNSAT(G′); and

• if UNSAT(G) = 0, then UNSAT(G′) = 0 (in other words, when the input graph is satisfiable,
so is the output graph).

�

Proof. The algorithm works as follows. Given a constraint graph A = (G,C) over alphabet Σ as
input, we apply Lemma 5.44 to obtain the constraint graph B = (G1, C1) over Σ. Then, we apply
Lemma 5.47 to obtain the constraint graph C = (G2, C2), this is the output constraint graph. The
properties listed below follow immediately from Lemma 5.44 and Lemma 5.47.

• The graph G2 is d-regular, for some constant d, and has at least one loop on every node;

• λ(G2) ≤ λ, for some constant λ < d;

• size(G2) = O(size(G);

• if UNSAT(A) = 0, then UNSAT(C) = 0.

The only thing left to prove is that UNSAT(C) ≥ β1 · UNSAT(A), for some constant β1 with
0 < β1 < 1. By Lemma 5.44, we have:

UNSAT(B) ≥ c ·UNSAT(A),

where c is a constant with 0 < c ≤ 1. By Lemma 5.47, we have:

UNSAT(C) ≥ d

d+ dc + 1
·UNSAT(B),
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where dc is a constant. Combining this, we get:

UNSAT(C) ≥ d · c
d+ dc + 1

UNSAT(A).

So if we take β1 = d·c
d+dc+1 , we get the desired result. Note that β1 is constant because d, c, and dc

are all constant.

5.3.5 Proof of the gap amplification lemma

To perform gap amplification on an input constraint graph, we perform a technique known as graph
powering to the input graph.

Definition 5.48 (Graph powering) Given as input a d-regular constraint graph A = ((V,E), C)
over alphabet Σ and a number t ∈ N with t > 1, we define the constraint graph At = ((V ′, E′), C ′)

over Σd
dt/2e

as follows.

• The nodes stay the same, V ′ = V .

• The edges of the output graph correspond to t-step walks in the input graph, that is, the
number of edges between two nodes u and v in the output graph equals the number of t-step
walks between u and v in the input graph.

• For the constraints let us first look at the alphabet, which is Σd
dt/2e

. An assignment to a node
u in the output constraint graph, can then be seen as an opinion of u on the symbols assigned
to the nodes in its neighbourhood. We define the neighbourhood of a node u as the set of

nodes that are reachable with a dt/2e-step walk, denoted by Γ(u). Then, a symbol in Σd
dt/2e

can be seen as assignment itself, assigning a symbol (in Σ) to each node in Γ(u), assuming

we use some ordering on the nodes. When a node u is assigned a symbol σ ∈ Σd
dt/2e

, we
denote the opinion of u on a node v in its neighbourhood, by σv. Note that there are exactly
ddt/2e walks of length dt/2e starting from the same node. However, since some walks may
end in the same node, we have Γ(u) ≤ ddt/2e, for every node u.

Now, we want the constraint of an edge e = {u, v} in the output graph to be satisfied
if the symbols that u and v assign to their neighbours satisfy the edges in the original

graph. Formally, when e = {u, v} ∈ E′, we have (σ1, σ2) ∈ C ′(e), for σ1, σ2 ∈ Σd
dt/2e

, if
and only if for all neighbours u′ ∈ Γ(u) and v′ ∈ Γ(v) such that {u′, v′} ∈ E, we have
(σ1,u′ , σ2,v′) ∈ C({u′, v′}). In other words, an edge {u, v} in the output graph is satisfied if
every edge (in the input graph) between a neighbour of u and a neighbour of v is satisfied
by the symbols that u and v assign to these neighbours (that is, their opinion on them).

�

Some notes are in order here:

• When computing the output constraint graph At = (G′, C ′) where A = (G,C), we can
obtain the adjacency matrix of G′ as the adjacency matrix of G to the power t, that is
A(G′) = A(G)t.

• We defined the neighbourhood of a node u as the set of nodes that can be reached by a walk
of exactly dt/2e steps, starting in u. This means that a node adjacent to u, that is, they are
connected by an edge, is not guaranteed to be a member of the neighbourhood of u. This, of
course, seems counter-intuitive. However, in the gap amplification lemma, we only apply the
graph powering technique to graphs with at least one loop on every node. In that case, the
neighbourhood of a node is the set of nodes that can be reached by a walk of at most dt/2e
steps (instead of exactly). This is true because any walk with less than dt/2e steps can be
converted to one with exactly dt/2e steps with the same end node, by repeatedly following
the loop on the end node.

• When a node u is in the neighbourhood of a node v, then v is in the neighbourhood of u.
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Now, we prove the following lemma, which immediately implies the gap amplification lemma,
Lemma 5.41.

Lemma 5.49 Given λ ∈ R, d ∈ N and an alphabet Σ, with λ < d, there exists a β2 > 0, such
that for every number t ∈ N, with t > 1, and for every constraint graph A = (G,C) over Σ, where
G is a d-regular graph with at least one loop on every node and where λ(G) ≤ λ, the following
properties hold for the constraint graph B = At = (G′, C ′):

• size(G′) = O(dt · size(G));

• if UNSAT(A) = 0, then UNSAT(B) = 0;

• UNSAT(B) ≥ β2

√
t ·min(UNSAT(A), 1

t ).

�

Proof. Let us start by proving the first property:

size(G′) = O(dt · size(G)).

To do this, we need two observations:

1. In the original graph, G, the number of nodes is at most 2 times the number of edges,
|V | ≤ 2 · |E|, this is true for any connected graph, and our graph is connected because we
have λ(G) ≤ λ < d;

2. The number of t-step walks starting from a single node in the original graph is exactly dt.
Thus the number of edges in the output graph is at most dt times the number of nodes,
|E′| = dt · |V ′| = dt · |V |.

Using these observations, we get:

|E′| = dt · |V | ≤ 2dt · |E|.

Filling this into the size of G′ gives us:

size(G′) = |V ′|+ |E′|
= |V |+ |E′|
≤ |V |+ dt · |V |
≤ (dt + 1) · (|V |+ |E|)
= O(dt · size(G)).

Next, we prove the second property: if UNSAT(A) = 0, then UNSAT(B) = 0. Assume UNSAT(A) =

0, and take a satisfying assignment a : V → Σ. Then, we construct the assignment a′ : V → Σd
dt/2e

as follows. For every node u we assign a symbol a′(u) = σ ∈ Σd
dt/2e

such that for every v in Γ(u),
we have σv = a(v). In other words, we let the opinion of a node u on a neighbour v be the symbol
that a assigns to v. Now, a′ is clearly a satisfying assignment for the output constraint graph, B.

The final property that we have to prove is:

UNSAT(B) ≥ β2

√
t ·min(UNSAT(A),

1

t
).

To do this, we make use of Lemma 5.50, shown below. This lemma says that for every assignment
a′ we take for B, there exists an assignment a for A such that

UNSATa′(B) ≥ β2

√
t ·min(UNSATa(A),

1

t
).

So, if we take a′ as the assignment with minimal unsat-value, we get

UNSAT(B) = UNSATa′(B) ≥ β2

√
t ·min(UNSATa(A),

1

t
) ≤ β2

√
t ·min(UNSAT(A),

1

t
),

which concludes this proof.
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The following lemma is really the core of the gap amplification lemma, because it shows that the
gap in unsat-values is effectively increased by applying the graph powering operation.

Lemma 5.50 Given λ ∈ R, d ∈ N and an alphabet Σ, with λ < d, there exists a β2 > 0, such that
for every number t ∈ N, with t > 1, and for every constraint graph A = (G,C) over Σ, where G
is a d-regular graph with at least one loop on every node and where λ(G) ≤ λ, we have that for

every assignment a′ : V → Σd
dt/2e

for the constraint constraint graph B = At = (G′, C ′), there
exists an assignment a : V → Σ, such that:

UNSATa′(B) ≥ β2

√
t ·min(UNSATa(A),

1

t
).

�

Proof. We first give an intuitive explanation of the proof. Similar to what we did in the proof
of the first step of the preprocessing lemma, given an assignment for B, we construct a popular
opinion assignment for A, which has a lower unsat-value. Say we are given an assignment a′ for
B, then the popular opinion assignment for A is defined as:

a(u) = arg max
σ∈Σ

|{v | v ∈ Γ(u) and a′(v) = σ}|.

In other words, to every node u, we assign the symbol which most nodes in the neighbourhood of u
have as opinion on u. Now, we can relate the fraction of edges in B that are violated to the fraction
of edges in A that are violated. Say we were to chose t edges from the graph of A, uniformly at
random, then the probability that we chose one or more edges violated by a is approximately equal
to t · UNSATa(A) (this is a very rough estimate, but we do this to keep the intuitive explanation
simpler). Now, remember that our input graph is an expander graph, and that random walks
on expander graphs converge rapidly to the uniform distribution, as seen in Theorem 5.35. Now,
taking a random t-step walk in A is equivalent to taking a random edge in B. And when taking
a random edge in B, the probability that we chose an edge violated by a′ equals UNSATa′(B).
On the other hand, that probability will be close to the estimate we gave for uniform sampling,
t ·UNSATa(A). This is the intuitive idea of how to relate the fraction of violated edges of A by a
to the fraction of violated edges of B by a′.

Now, we prove the lemma. Let A = (G,C) be a constraint graph over alphabet Σ where G is
a d-regular constraint and λ(G) ≤ λ for some constant λ < d. Let B = At = (G′, C ′) for some
number t > 1. Let a′ be an assignment for B and let a be the popular assignment of a′, that is

a(u) = arg max
σ∈Σ

|{v | v ∈ Γ(u) and a′(v) = σ}|.

Let F ⊆ E be a subset of edges which constraints are violated by a, such that:

• if UNSATa(A) < 1
t , then we have |F ||E| = UNSATa(A), this means |F | consists of all violated

edges;

• otherwise, take F such that |F | =
⌊
|E|
t

⌋
.

Now, we clearly have
|F |
|E|
≤ min(UNSATa(A),

1

t
).

This will be useful later on.

With each edge in E′, we can associate a t-step walk in the graph of A, as can be seen from the
description of the graph powering operation. We denote the walk associated with an edge e ∈ E′
by w(e) = (v0, v1, . . . , vt). We say a walk (v0, v1, . . . vt) is hit by its i-th edge if

• {vi−1, vi} ∈ F , and

• a′(v0)vi−1 = a(vi−1) and a′(vt)vi = a(vi).
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Now, if for some edge e ∈ E′, the associated walk w(e) is hit on any edge, then e is violated by a′.
This is true because if {vi−1, vi} ∈ F , then

(a(vi−1), a(vi)) /∈ C({vi−1, vi}),

and thus
(a′(v0)vi−1

, a(vt)vi) /∈ C({vi−1, vi}),

which implies that (a′(v0), a′(vt)) /∈ C ′(e), by definition of the constraints C ′, which means that e
is violated by a′. Let us focus on the middle part of the walks, that is, where the indices are in

I = {i | t
2
−
√
t < i ≤ t

2
+
√
t}.

We define N(e) as the number of edges hit in the middle part of the walk associated with e, or

N(e) = |{i | i ∈ I and w(e) is hit by its i-th edge}|.

If we randomly chose an edge e from E′, then the probability that N(e) is greater than 0 must be
less than the fraction of violated edges of B. So, we have

Pr[N(e) > 0] ≤ UNSATa′(B).

If we can prove that

β2

√
t · |F |
|E|
≤ Pr[N(e) > 0],

for some constant β2, then the lemma is proven because

UNSATa′ ≥ Pr[N(e) > 0] ≥ β2

√
tmin(UNSATa(A),

1

t
).

To prove this, let us, for now, assume the following claims are true:

1. E[N(e)] ≥ c1
√
t |F ||E| , for some constant c1; and

2. E[N(e)2] ≤ c2
√
t |F ||E| , for some constant c2.

Here, E[N(e)] is the expected value of N(e) when randomly choosing e ∈ E′. Now we can use the
following lemma, which is a result in probability theory and we do not give a proof here.

Lemma 5.51 For any non-negative random variable X, with Pr[X = 0] 6= 1, we have

Pr[X > 0] ≥ E[X]2

E[X2]
.

�

If we apply this to our claims, we get

Pr[N(e) > 0] ≥ E[N(e)]2

E[N(e)2]
≥ c21
c2
·
√
t · |F |
|E|

.

So, when we take β2 =
c21
c2

, the lemma is proven.

Let us prove these claims.

Proof of claim 1 Let Ni(e) be a function such that, for i ∈ I, we have Ni(e) = 1 if the walk
associated with e is hit by its i-th edge, and Ni(e) = 0 otherwise. Then, clearly

N(e) =
∑
i∈I

Ni(e).
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And, by the linearity of the expected value,

E[N(e)] =
∑
i∈I

E[Ni(e)].

Consider the outcome of E[Ni(e)], which equals the fraction of edges e in E′ of which the associated
walk w(e) is hit by its i-th edge. In other words, this is the probability that, when choosing a
random edge e ∈ E′, the associated walk w(e) is hit by its i-th edge. Thus,

E[Ni(e)] = Pr[Ni(e) = 1].

As we know, choosing a random edge in E′ is equivalent to making a random t-step walk in the
original graph, G, starting in a random node. A way to obtain these random t-step walks is the
following, given some i ∈ I:

1. Choose an edge {u, v} ∈ E uniformly at random from the original graph.

2. Choose a random walk of i− 1 steps starting in node u, (u = vi−1, vi−2, . . . v0).

3. Choose a random walk of t− i steps starting in node v, (v = vi, vi+1, . . . vt).

4. Output the walk (v0, v1, . . . vt).

Clearly, the walks obtained this way are distributed uniformly over all t-step walks. Now, the edge
produced in step 1, {u, v} is the i-th edge of the walk. So, by definition, the walk is hit by its i-th
edge if {u, v} ∈ F , a′(v0)u = a(u) and a′(vt)v = a(v). The probability that {u, v} is in F equals
|F |
|E| . So we can write Pr[Ni(e)] as

Pr[Ni(e)] =
|F |
|E|
· pu · pv,

where pu is the probability that a′(v0)u = a(u), and likewise, pv is the probability that a′(vt)v =
a(v). Consider the random variable Xu,l such that Pr[Xu,l = σ], with σ ∈ Σ, equals the probability
that, when taking a random l-step walk starting in u we reach a node w (that is, the last node in
the walk) such that a′(w)u = σ. Then we can write

pu = Pr[Xu,i−1 = a(u)] and pv = Pr[Xv,t−i = a(v)].

It can be proven that there exists a constant c3 such that for all l, if |l− t
2 | ≤

√
t
2 , then Pr[Xu,l =

σ] ≥ c3 · Pr[Xu,t/2 = σ]. We do not give a proof here, but we refer the reader to [9] for a proof.
However, the intuitive idea is that random walks of length l are similar to random walks of length
t
2 as long as l is close to t

2 and the graph contains at least one loop on every node, as we assume

in this lemma. Note that for every l ∈ I, we have |l − t
2 | ≤

√
t
2 .

Applying this to pu and pv, we get:

Pr[Ni(e) = 1] =
|F |
|E|
· pu · pv

≥ |F |
|E|
· c3 Pr[Xu,t/2 = a(u)] · c3 Pr[Xv,t/2 = a(v)]

Remember that a is the popular opinion assignment. This means that, for every node u, a(u) is
chosen to maximise the number of neighbours (reachable within t

2 steps) of u with the opinion
a(u) on u. In other words, a(u) is chosen such that Pr[Xu,t/2 = a(u) is maximal. This implies that

Pr[Xu,t/2 = a(u)] ≥ 1

|Σ|
.
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Using this, we get

Pr[Ni(e) = 1] ≥ |F |
|E|
· c3 Pr[Xu,t/2 = a(u)] · c3 Pr[Xv,t/2 = a(v)]

≥ |F |
|E|
·
(
c3
|Σ|

)2

Finally, we get

E[N(e)] =
∑
i∈I

E[Ni(e)]

=
∑
i∈I

Pr[Ni(e) = 1]

≥
∑
i∈I

|F |
|E|
·
(
c3
|Σ|

)2

≥ |I| · |F |
|E|
·
(
c3
|Σ|

)2

=
√

2 ·
√
t ·
(
c3
|Σ|

)2

· |F |
|E|

Note that the last equality holds because |I| = 2
√

t
2 =
√

2
√
t. Thus we have proven claim 1 with

c1 =
√

2 ·
(
c3

|Σ|

)2

.

Proof of claim 2 Let Z(e) be the number of times that the walk associated with the edge e ∈ E′
intersects with F in the middle part, I. Clearly, N(e) ≤ Z(e), for all e ∈ E′, so we have

E[N(e)2] ≤ E[Z(e)2].

Define Zi(e) such that, for i ∈ I, Zi(e) = 1 if the i-th edge of the walk associated with e is in F ,
otherwise Zi(e) = 0. Then,

Z(e) =
∑
i∈I

Zi(e).

By the linearity of the expected value, we get

E[Z(e)2] =
∑
i∈I

E[Zi(e) · Z(e)]

=
∑
i∈I

∑
j∈I

E[Zi(e) · Zj(e)]

=
∑
i∈I

E[Zi(e)] + 2 ·
∑
i,j∈I
j>i

E[Zi(e)Zj(e)].

In the last equality, the first sum represents the cases where i = j, because Zi(e) · Zi(e) = Zi(e).
Note that, because Zi(e) and Zj(e) can take only values in {0, 1}, the product Zi(e) · Zj(e) can
also only take values in {0, 1}. So we have, for every i, j ∈ I,

E[Zi(e)Zj(e)] = Pr[Zi(e)Zj(e) = 1].

Also note that, for every i ∈ I, we have Pr[Zi(e) = 1] = |F |
|E| , so

∑
i∈I

E[Zi(e)] ≤ |I| ·
|F |
|E|

.
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Using the fact that Zi(e)Zj(e) = 1 if and only if both Zi(e) and Zj(e) are 1, we get

Pr[Zi(e)Zj(e) = 1] = Pr[Zi(e)] · Pr[Zj(e) | Zi(e) = 1] =
|F |
|E|
· Pr[Zj(e) = 1 | Zi(e) = 1].

Where Pr[Zj(e) | Zi(e) = 1] is the conditional probability, that means the probability that Zj(e) =
1 given that Zi(e) = 1.

Now, assume for a moment that i = 1 and j > i. Then Pr[Zj(e) = 1 | Z1(e) = 1] denotes the
probability that, starting with a node incident to an edge in F , the j-th edge is in F . We can see
this by thinking of the walk associated with the edge e, w(e) = (v0, v1, . . . vt), because we are given
that Z1(e) = 1, we know that the edge {v0, v1} is in F . So, we are looking for the probability that,
when randomly choosing a t-step walk with the first edge in F , the j-th edge of the walk is in F .
When thinking of expander graphs, this should sound familiar. In fact, because we have λ(G) ≤ λ,
we can apply Theorem 5.35. This gives us

Pr[Zj(e) = 1 | Z1(e) = 1] ≤ |F |
|E|

+

(
λ

d

)j−2

.

We note that the random walk starts in v1, because the first edge is already given, we need j − 2
steps to get to the j-th edge. Now, if j > i > 1, we simply ignore the first i− 1 steps and we get a
similar result, just for walks of length j − i− 1 instead of j − 2. Thus:

Pr[Zj(e) = 1 | Zi(e) = 1] ≤ |F |
|E|

+

(
λ

d

)j−i−1

.

So, finally we get

E[Z(e)2] =
∑
i∈I

E[Zi(e)] + 2 ·
∑
i,j∈I
j>i

E[Zi(e)Zj(e)]

≤ |I| · |F |
|E|

+ 2 · |F |
|E|
·
∑
i,j∈I
j>i

(
|F |
|E|

+

(
λ

d

)j−i−1
)

≤
√

2 · |F |
|E|

+ 2 ·
(
|F |
|E|

)2

· |I|2 +
|F |
|E|
·
∑
i,j∈I
j>i

(
λ

d

)j−i−1

≤
√

2 · |F |
|E|

+ 2

(
|I| · |F |
|E|

)2

+
|F |
|E|
·
∑
i,j∈I
j>i

(
λ

d

)j−i−1

≤
√

2 · |F |
|E|

+ 2

(
|I| · |F |
|E|

)2

+
|F |
|E|
· |I| ·

√
2t∑

i=1

(
λ

d

)i
.

We note that

|I| · |F |
|E|
≤
√

2t · 1

t
=
√

2 ·
√
t

t
=

√
2√
t
≤
√

2.

Looking at the summation in the last inequality:

√
2t∑

i=1

(
λ

d

)i
≤
∞∑
i=1

(
λ

d

)i
=

1

1− λ
d

.

Filling this in gives us
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E[Z(e)2] ≤
√

2 · |F |
|E|

+ 2
√

2 · |I| · |F |
|E|

+
|F |
|E|
· |I| · 1

1− λ
d

=

(
√

2 + 2
√

2 · |I|+ |I| · 1

1− λ
d

)
· |F |
|E|

=

(
√

2 + 4
√
t+
√

2
√
t · 1

1− λ
d

)
· |F |
|E|

≤

(
√

2 + 4 +

√
2

1− λ
d

)
·
√
t · |F |
|E|

This proves claim 2 with

c2 =
√

2 + 4 +

√
2

1− λ
d

.



Conclusion

During the writing of this thesis, I have learnt a lot and gained many insights into these more
advanced topics in the field of computational complexity. Originally, the goal was to mainly
focus on the PCP theorem, its proof and its consequences. However, in the process I realized
that treating the full proof of the PCP theorem was a bit too ambitious. To be specific, the
alphabet reduction step of the proof was emitted because it requires results in Fourier analysis.
Therefore, the scope of the thesis changed, becoming broader, to include topics like randomized
computation and interactive proof systems, while still covering a significant part of the proof of
the PCP theorem. I believe it was very insightful to study some of the alternative (non-trivial)
characterizations of existing complexity classes, like PSPACE = IP, NP = PCP(log n, 1), ZPP =
RP ∩ coRP, . . . , especially when writing out the proof myself, for some of these. I also learned
about some topics that I was not yet familiar with, like number theory, where I used Fermat’s little
theorem to explain probabilistic primality tests. Or expander graphs, which are used in the proof
of the PCP theorem, and have many applications in theoretical computer science and other fields
(see [14] for a survey of the applications of expander graphs).
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Appendix A

Nederlandstalige samenvatting

A.1 Inleiding

Al van voor het bestaan van computers zoals we ze nu kennen, kende men problemen die niet
opgelost kunnen worden door een computer. Zo bedacht Alan Turing in 1936 een formeel mo-
del om een algoritme te beschrijven, vandaag gekend als de Turing machine, en bewees daarbij
dat het halting probleem niet opgelost kan worden door een Turing machine. Er werd niet al-
leen onderzocht of problemen wel of niet oplosbaar zijn door algoritmes, maar ook hoe efficiënt
een algoritme een probleem kan oplossen, dat wil zeggen, hoeveel tijd en/of geheugen er nodig
is. Zo kwam de complexiteitstheorie tot stand, waarin men de computationele complexiteit van
problemen onderzoekt. Een van de belangrijkste vraagstukken binnen de complexiteitstheorie, en
misschien wel binnen de informatica in zijn geheel, is het fameuze P vs. NP probleem. P en NP
zijn beide complexiteitsklassen, die een manier bieden om problemen te classificeren volgens hun
complexiteit.

In deze thesis bestuderen we enkele geavanceerde onderwerpen binnen de complexiteitstheorie.
Het eerste onderwerp dat we bekijken is willekeurigheid in algoritmes. Alhoewel computers in
principe deterministische machines zijn, is het toch interessant om een model te bekijken waarin
algoritmes toegang hebben tot willekeurigheid. Tegenwoordig weten we trouwens niet eens of we,
door algoritmes toegang te geven tot willekeurigheid, problemen efficiënter kunnen oplossen of niet,
wederom een open vraag binnen de complexiteitstheorie.

Als tweede onderwerp bekijken we interactieve bewijssystemen. Hier vertrekken we vanuit het feit
dat de klasse NP kan gedefinieerd worden gebruikmakende van een bewijssysteem. Een bewijssys-
teem bestaat uit twee computers (of algoritmes, Turing machines, . . . ), een prover en een verifier.
Deze twee kunnen met elkaar communiceren door het verzenden van berichten. De prover probeert
dan de verifier te overtuigen van een bepaalde bewering, door het verzenden van een bewijs van
die bewering. We kunnen dit concept uitbreiden door interactie toe te laten, dat wil zeggen dat
de prover en de verifier meerdere berichten naar elkaar mogen verzenden, en tegelijkertijd door de
verifier toegang te geven tot willekeurigheid. Zo verkrijgen we een zeer krachtig type van bewijs-
systemen. Er werd namelijk bewezen, in 1992, dat er zo een bewijssysteem bestaat voor elke taal
in PSPACE, dat is de klasse van problemen die opgelost kunnen worden door een algoritme dat
hoogstens een polynomiale hoeveelheid geheugen gebruikt. Daarnaast bekijken we nog een bepaald
type van bewijssystemen, genaamd zero-knowledge proof systems. Dat zijn bewijssystemen waarbij
de verifier niets bijleert, buiten het feit dat de gemaakte bewering al dan niet waar is.

Ten slotte bekijken probabilistically checkable proofs, afgekort PCP. Dat kan men ook zien als een
soort van bewijssysteem, echter is deze niet interactief, de prover zou dan maar een enkel bericht
verzenden, namelijk het bewijs zelf. Daarom is het handiger om het te vergelijken met een klassiek
bewijs, zoals we dat kennen uit de wiskunde, het verschil daarbij is dan weer het probabilistische
aspect van een PCP. Het is zo dat een PCP verifier maar een klein aantal, willekeurig gekozen,
symbolen uit het bewijs leest en aan de hand daarvan zal het zijn oordeel maken. Daarbij laten we
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toe dat de verifier af en toe een fout oordeel maakt, dat wil zeggen, een bewijs goedkeurt terwijl
het foutief is, echter mag dat maar gebeuren met een kleine kans die onafhankelijk is van de invoer.
De PCP stelling zegt dat er zo een PCP verifier bestaat voor elk probleem in NP. Om het belang
van de PCP stelling te benadrukken, vermelden we dat in 2001, de Gödel prijs werkt uitgereikt
voor het origineel bewijs van de PCP stelling, alsook in 2019 voor een eenvoudiger bewijs. We
bekijken ook belangrijk gevolg van de PCP stelling, namelijk dat er voor bepaalde optimalisatie
problemen er geen poylnomiale-tijd benaderingsalgoritme bestaat, tenzij P = NP.

A.2 Achtergrond

Hier geven we een korte, informele introductie tot de complexiteitstheorie. De formele definities
zijn te vinden in Hoofdstuk 1. In de complexiteitstheorie willen we formaliseren hoe moeilijk (dat
wil zeggen, hoeveel tijd het kost) het is om een bepaald probleem op te lossen voor een algoritme.
Dan hebben we natuurlijk een formeel model nodig om algoritmes te beschrijven, hiervoor maken
we gebruik van Turing machines. Conceptueel kan zo een Turing machine gezien worden als een
apparaat dat als invoer een string krijgt, daar een aantal berekeningen op doet, en uiteindelijk
kan kiezen om deze invoer te accepteren of af te wijzen. Een string is een reeks van symbolen
uit een bepaald alfabet. We zeggen dat de taal die een Turing machine herkend gelijk is aan de
verzameling van alle strings die de Turing machine accepteert. De manier waarop Turing machines
gedefinieerd zijn sluit niet uit dat een Turing machine oneindig lang zou blijven rekenen, en dus
nooit de invoer zal accepteren of afwijzen. Echter zullen we in de complexiteitstheorie enkel werken
met Turing machines die altijd stoppen na een eindig altijd stappen, ongeacht de invoer. Zo een
Turing machine word ook wel een beslisser genoemd.

Het aantal stappen die een Turing machine nodig heeft in zijn berekening gegeven een bepaalde
invoer, noemen we de uitvoertijd van die machine voor die bepaalde invoer. In de complexiteits-
theorie zijn we vooral gëınteresseerd in het asymptotisch gedrag van de uitvoertijd in functie van
de lengte van de invoer. We zeggen dat een Turing machine M als tijdscomplexiteit een functie
f : N → R heeft als voor elke invoer x, met |x| de lengte van x, de uitvoertijd van M op x hoog-
stens f(|x|) bedraagt. Om het asymptotisch gedrag te bekijken, maken we gebruik van de grote-O
notatie, beschreven in Hoofdstuk 1. Dan zeggen we dat een Turing machine M als tijdscomplexi-
teit O(f) heeft, met f : N → R een functie, als er een functie g : N → R bestaat zodanig dat
g = O(f) en M tijdscomplexiteit g heeft. Als volgende zeggen we dat een een Turing machine M
een polynomiale tijdscomplexiteit heeft als er een veelterm (of polynoom) p bestaat zodanig dat
M tijdscomplexiteit O(p) heeft.

Nu zijn we klaar om de complexiteitsklasse P te definiëren. Een complexiteitsklasse is eenvoudigweg
een verzameling van talen. De complexiteitsklasse P bestaat uit alle talen die beslist worden door
een Turing machine met polynomiale tijdscomplexiteit. De klasse P wordt wel eens aanzien als de
klasse van talen die efficiënt te beslissen zijn.

Een andere klasse die we definiëren is NP. Een taal L behoort tot NP als lidmaatschap van L
in polynomiale tijd geverifieerd kan worden. Dat betekent dat er een Turing machine M met
polynomiale tijdscomplexiteit bestaat zodanig dat een invoer x tot de taal L behoort als en slechts
als er een string c bestaat zodanig dat M de string x, c accepteert. De string c wordt het certificaat
genoemd en kan gezien worden als een bewijs voor het lidmaatschap van x in L. Er bestaat een
alternatieve, maar equivalente, definitie voor de klasse NP, waar gebruik gemaakt wordt van niet-
deterministische Turing machines. Vandaar komt ook de naam van de klasse NP, dat is een
afkorting voor non-deterministic polynomial time.

Het al dan niet gelijk zijn van de klassen P en NP is een bekende open vraag. Er zijn bepaalde talen
in NP met een opmerkelijke eigenschap, namelijk dat als die taal beslist kan worden in polynomiale
tijd, dan kunnen alle talen in NP in polynomiale tijd beslist worden, en dat zou betekenen dat
P gelijk is aan NP. Zo een taal wordt NP-compleet genoemd, voor een formele definitie van NP-
compleetheid verwijzen we opnieuw naar Hoofdstuk 1.
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A.3 Willekeurigheid in algoritmes

Deze sectie is een samenvatting van Hoofdstuk 2. Op het eerste zicht lijkt het niet erg nuttig
om algoritmes willekeurige beslissingen te laten maken, aangezien, in de realiteit, computers enkel
deterministische berekeningen kunnen uitvoeren. Toch worden veel computerprogramma’s geschre-
ven alsof ze toegang hebben tot willekeurigheid, dan wordt er gebruik gemaakt van zogenaamde
pseudo-random generators. Daarom is het interessant om te kijken wat er gebeurt wanneer we in
ons formeel model algoritmes toegang geven tot willekeurigheid. Om dit te doen, gebruiken we
een aangepaste versie van de Turing machine, genaamd de probabilistische Turing machine. Een
probabilistische Turing machine kan, op eender welk punt in de berekening, een conceptuele munt
opgooien, en aan de hand van de uitkomst daarvan, zijn volgende stap bepalen. Een alternatieve,
maar equivalente, formulering is dat een probabilistische Turing machine een willekeurige bit (0 of
1) kan genereren, en aan de hand daarvan zijn volgende stap bepaalt. Nog verschillend van een
Turing machine, zullen we bij een probabilistische Turing machine een kans toekennen aan de ge-
beurtenis dat de machine een gegeven invoer accepteert. Zo kan bijvoorbeeld een probabilistische
Turing machine een bepaalde invoer met 75% kans accepteren en met 25% kans afwijzen.

Gebruikmakende van probabilistische Turing machines, kunnen we nieuwe klassen van talen de-
finiëren. De eerste die we hiervan bekijken, is de klasse RP, dat staat voor randomized polynomial
time. In de definitie van de klasse RP laten we toe dat de probabilistische Turing machine af en
toe een eenzijdige fout maakt, dat wil zeggen dat de machine een invoer die in de taal behoort
toch, met kleine kans, mag afwijzen. Langs de andere kant moet de machine een invoer die niet
tot de taal behoort altijd afwijzen. Daarnaast definiëren we ook de klasse coRP, waarbij een pro-
babilistische Turing machine, opnieuw met kleine kans, een fout mag maken op een invoer die niet
tot de taal behoort.

Een klassiek voorbeeld van een probabilistisch algoritme is het testen van priemgetallen. Een na-
tuurlijk getal is een priemgetal als het geen product is van twee kleinere natuurlijke getallen. In de
context van complexiteitstheorie, kijken we naar de taal PRIMES, die bestaat uit de voorstellingen
van alle priemgetallen. In Sectie 2.3 beschrijven we het Miller-Rabin algoritme, een probabilistische
test voor priemgetallen. De Miller-Rabin test zal een priemgetal altijd accepteren, en zal samenge-
stelde getallen met grote kans afwijzen. Daardoor weten dat de taal PRIMES tot de klasse coRP
behoort. Een belangrijk detail hierbij is dat, alhoewel de Miller-Rabin test een samengesteld getal
foutief zal accepteren met kans hoogstens 25%, de kans op een foute uitkomst zo klein gemaakt kan
worden als men maar wil (maar niet 0), door de test herhaaldelijk uit te voeren. Het is zelfs zo dat
dit voor elke taal in RP en coRP mogelijk is. Nog een merkwaardigheid is dat het lang een open
vraag was of priemgetallen al dan niet getest kunnen worden in (deterministische) polynomiale
tijd (en dus of PRIMES deel uitmaakt van P). Deze vraag werd in 2002 positief beantwoord door
Agrawal, Kayal en Saxena door het uitvinden van de, naar hen vernoemde, AKS test. Nu kan
men zich afvragen of er dan wel talen bestaan in RP of coRP die niet in de klasse P behoren.
Het antwoord daarop is nog niet gekend, dit is dan ook één van de vele open vragen binnen de
complexiteitstheorie.

Er zijn nog complexiteitsklassen die men kan definiëren met probabilistische Turing machines. Zo is
er de klasse BPP, een afkorting voor bounded-error probabilistic polynomial-time. Het verschil met
RP en coRP is dat we bij deze een tweezijdige fout toelaten. Dat wil zeggen dat een probabilistische
Turing machine een invoer die tot de taal behoort met kleine kans mag afwijzen, alsook een invoer
die niet tot de taal behoort met kleine kans mag accepteren. Het is makkelijk om in te zien dat
beide RP en coRP een deelverzameling zijn van BPP. Ook bij BPP kan de kans op een fout zo
klein gemaakt worden als men maar wil.

Ten slotte hebben we het ook nog over de klasse ZPP, een afkorting voor zerro-error probabilistic
polynomial time. Zoals uit de naam valt af te leiden, laten we het hier inderdaad niet toe om
een fout te maken. Wat we wel toelaten, is dat de uitvoertijd, afhankelijk van uitkomst van de
opgegooide munten, meer dan polynomial mag zijn. Langs de andere kant moet, gegeven een
invoer, de gemiddelde uitvoertijd wel hoogstens een veelterm zijn in functie van de lengte van de
invoer. Opmerkelijk aan de klasse ZPP is dat ze gelijk is aan de intersectie tussen RP en coRP,
een bewijs hiervan is te vinden in Sectie 2.5.
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Verifier Prover

invoer: (¬x1) ∧ (x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3)

x1

“onwaar”

x2

“waar”

x3

“onwaar”

Figuur A.1: Interactief bewijssysteem voor de taal 3SAT.

A.4 Interactieve bewijssystemen

Deze sectie is een samenvatting van Hoofdstuk 3 en Hoofdstuk 4. Hier kijken we naar de kracht
van bewijssystemen. Een bewijssysteem bestaat uit twee Turing machines, een verifier en een
prover. Deze twee kunnen berichten naar elkaar toe sturen. Op die manier zal de prover proberen
de verifier te overtuigen van een bepaalde bewering. Die beweringen zullen altijd van dezelfde
soort zijn, namelijk dat een bepaalde string een element is van een bepaalde taal. Een voorbeeld
van zo een bewering is: een string x is element van de taal PRIMES, dan is de bewering eigenlijk
equivalent met de bewering dat a een priemgetal is, waarbij a het getal is met voorstelling x. Een
ander voorbeeld is: een string x is element van de taal 3SAT en dan is de bewering equivalent met
de bewering dat φ satisfiable is, waarbij φ de 3CNF formule met voorstelling x is. Zoals we kunnen
zien is het op deze manier mogelijk om allerlei soorten beweringen uit te drukken.

We hebben de klasse NP gedefinieerd gebruikmakende van een certificaat. We kunnen dit echter
ook bekijken als een bewijssysteem waarbij de prover het certificaat als bericht verzend naar de
verifier. Dus we stellen vast dat talen met een bewijssysteem waarbij enkel de prover een bericht
stuurt overeenkomen met talen in NP. De vraag is nu wat er gebeurt als we interactieve bewijssys-
temen toelaten, dat wil zeggen dat de prover en de verifier meerdere berichten naar elkaar mogen
verzenden. Laten we als voorbeeld een interactief bewijssysteem voor de taal 3SAT tonen. Stel we
hebben de 3CNF formule

φ = (¬x1) ∧ (x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3).

Het bewijssysteem werkt als volgt. De verifer verzend telkens een bericht met de naam van een
variabele in φ naar de prover. Daarop zal de prover antwoorden met een waarheidstoekenning
(waar of onwaar) voor die variabele. Eenmaal de verifier een waarheidstoekenning heeft voor elke
variabele in φ, zal de verifier controleren of die waarheidstoekenning φ waar maakt. Als dat zo
is, kan de verifier φ accepteren, anders wordt φ afgewezen. Een voorbeeld van zo een interactie is
gëıllustreerd in Figuur A.1. Merk op dat in het voorbeeld de waarheidstoekenning, gegeven door
de prover, de formule φ waar maakt.

Men kan zich vragen stellen over het nut van een interactief bewijssysteem voor de taal 3SAT,
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omdat 3SAT tot NP behoort weten we namelijk dat er een bewijssysteem is voor 3SAT waarbij
enkel de prover een bericht naar de verifier verzend. Dat bericht kan bijvoorbeeld bestaan uit een
waarheidstoekenning voor alle variabelen.

Het is zo dat het toevoegen van interactie op zich weinig verandert aan de kracht van een bewijs-
systeem. Om dit in te zien, moet men weten dat we geen limiet leggen op de tijdscomplexiteit
van de prover (we doen dit overigens wel voor de verifier, die moet polynomiale tijdscomplexiteit
hebben). Dat betekent dat de prover alle mogelijke berichten van de verifier op voorhand kan
berekenen en dus in principe alle antwoorden daarop al verzenden naar de verifier in het eerste
bericht.

Het is pas als we de verifier probabilistisch maken, dat het interessanter wordt. Dan kan de prover
natuurlijk nog altijd op voorhand alle mogelijke berichten van de verifier berekenen, maar dat
zouden er nu exponentieel veel kunnen zijn in functie van de lengte van de input, en dan zou de
verifier niet alle mogelijke antwoorden kunnen lezen in polynomiale tijd. Nu kunnen we de klasse
IP definiëren, die bestaat uit alle talen met een interactief bewijssysteem met probabilistische
verifier. In 1992 toonde Shamir aan dat IP = PSPACE [17], een bewijs hiervan is gegeven in
Sectie 3.3. Dit resultaat toont de kracht van interactieve bewijssystemen aan. Hierbij moeten
we wel opmerken dat het niet geweten of NP al dan niet gelijk is aan PSPACE. We kunnen
echter nog een uitbreiding van interactieve bewijssystemen, namelijk het toelaten van meerdere
provers (die niet met elkaar mogen communiceren). De klasse die daaruit voortkomt is MIP en
daarvan is bewezen dat ze gelijk is aan NEXP, een klasse waarvan NP een strikte deelverzameling
is. Dus interactieve bewijssystemen met meerdere provers zijn bewijsbaar krachtiger dan het type
bewijssysteem gebruikt in de definitie van NP.

Een speciaal type van bewijssystemen zijn de zogenaamde zero-knowledge proof systems. Dat zijn
bewijssystemen waarbij de verifier, intüıtief gezien, niets geen informatie verkrijgt over de invoer
buiten het feit dat de bewering al dan niet waar is. Dit wordt geformaliseerd door ervoor te zorgen
dat alle berichten die de verifier ontvangt, ook door de verifier zelf gegenereerd kunnen worden. Een
belangrijke stelling hieromtrent werd in 1991 bewezen door Goldreich, Micali en Widgerson [11],
die zegt dat alle talen in NP een zero-knowledge proof system hebben, onder de veronderstelling
dat one-way functies bestaan.

A.5 De PCP stelling

Laten we terugkijken naar de definitie van NP. Daar zeiden we dat een taal een element is van
NP als deze in polynomiale tijd geverifieerd kan worden, met behulp van een certificaat. In deze
sectie maken we een aantal aanpassingen aan die definitie om zo een nieuwe complexiteitsklasse
te verkrijgen. Om te beginnen laten we de verifier probabilistisch zijn, hierbij laten we ook een
eenzijdige fout toe, waardoor een invoer die niet tot de taal behoort, met een kleine kans toch
geaccepteerd mag worden, net zoals bij coRP. Ten tweede zetten we een limiet op het aantal munten
dat de verifier mag opgooien en op het aantal symbolen dat hij mag lezen uit het certificaat. De
resulterende verifier noemen we een PCP verifier, waarbij PCP staat voor probabilistically checkable
proof. Er is aangetoond dat elke taal in NP een PCP verifier heeft die een logaritmisch aantal
munten opgooit en een constant aantal symbolen bekijkt van het certificaat. Dit resultaat staat
bekend als de PCP stelling, we geven hiervan een deel van het bewijs, in Sectie 5.3.

Een belangrijk gevolg van de PCP stelling is dat de benadering van bepaalde optimalisatie proble-
men een eigenschap hebben die vergelijkbaar is met het concept van NP-compleetheid. Dit betekent
dat als er een algoritme met polynomiale tijdscomplexiteit bestaat voor één van die problemen, dan
is P gelijk aan NP. Als voorbeeld van een optimalisatie probleem nemen we max-3SAT, waarbij
het de bedoeling is om een waarheidstoekenning te vinden die het aantal satisfied clauses in een
gegeven 3CNF formule maximaliseert. We zeggen dat een benaderingsalgoritme voor max-3SAT
c-optimaal is als het altijd een waarheidstoekenning vind die minstens c maal het maximum aantal
clauses satsfied. Zo bestaat er een eenvoudig benaderingsalgoritme voor max-3SAT dat 1

2 -optimaal
is. Een gevolg van de PCP stelling is echter dat er een constante c bestaat zodanig dat er geen
c-optimaal benaderingsalgoritme bestaat voor max-3SAT met polynomiale tijdscomplexiteit, tenzij
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P gelijk is aan NP.
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