
Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Infinite spaces : procedural generation of virtual environments with self-overlapping
geometry for infinite walking

Hannes Keunen
Scriptie ingediend tot het behalen van de graad van master in de informatica

2020
2021

PROMOTOR :

Prof. dr. Philippe BEKAERT

COPROMOTOR :

Prof. dr. Fabian DI FIORE

BEGELEIDER :

dr. Jeroen PUT

De heer Bram VAN DEURZEN

De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee
universiteiten in twee landen: de Universiteit Hasselt en Maastricht University.

Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Infinite spaces : procedural generation of virtual environments with self-overlapping
geometry for infinite walking

Hannes Keunen
Scriptie ingediend tot het behalen van de graad van master in de informatica

PROMOTOR :

Prof. dr. Philippe BEKAERT

COPROMOTOR :

Prof. dr. Fabian DI FIORE

BEGELEIDER :

dr. Jeroen PUT

De heer Bram VAN DEURZEN

Infinite Spaces
Procedural generation of Virtual Environments with Self-overlapping

Geometry for Infinite Walking

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Computer Science

by

Hannes Keunen

Supervisors:

prof. dr. Philippe Bekaert (promotor)

prof. dr. Fabian di Fiore (co-promotor)

dr. Jeroen Put (Begeleider)

Hasselt University

Faculty of Sciences

June 2021

2

Acknowledgements

Of course this thesis does not stand alone. I would like to thank all the people who have

given me help and support while writing my thesis and developing Infinite Spaces.

First of all, I would like to thank my tutor, Dr. Jeroen Put for his guidance throughout

the whole process. You helped me find the right direction, see the forest through the trees

again when it was needed, and guided me in completing my thesis.

Along with Jeroen, I want to thank Bram van Deurzen for helping me with the user

study. Your advice and feedback were invaluable to make this happen, because I had no

prior experience with doing user studies.

I would also like to mention my promotor, Professor Philippe Bekaert, though he was

unable to assist me due to health issues. I also want to thank Professor Fabian di Fiore for

his enthousiasm when I first mentioned this as a potential subject for my thesis, because

otherwise I would probably not even have started with this subject.

Finally, I want to thank my friends from my student fanfare, Ambifaarke. You gave

me the distraction that I needed to keep motivated during the coronavirus pandemic, first

with our online game nights, and later the rehearsals and spontaneous campfire nights.

3

4

Abstract

A major challenge in virtual reality applications, is to accommodate real walking in large

virtual environments when physical space is limited. A great deal of research has already

been focused on developing methods to redirect users to stay within the bounds of a limited

tracking area. However, this has mostly been used in hand-crafted virtual environments.

This thesis aims to develop a system for procedurally generating an infinite virtual world

where users can walk around indefinitely, without stepping out of the tracking area, and

without exposing the redirection techniques that are used. The resulting technique and

application are called Infinite spaces.

To test that Infinite Spaces actually meets those requirements, a small user study

was conducted. Test participants were asked to perform three test tasks, to evaluate

the performance of the generated environments in terms of subjective sense of presence,

orientation, and perception of the redirection techniques that were used. Unfortunately,

due to the current coronavirus pandemic, not many people were allowed to participate in

the study so the results were not as accurate as they might have been otherwise.

The pilot study did suggest that procedural generation did not have a negative impact

on orientation in the virtual environment, and the environments performed quite well in

terms of subjective presence, even though they are physically impossible. Participants did

suspect some of the redirection techniques that were used, but none of them found this

troublesome to the overall experience.

This suggests that Infinite Spaces is indeed a good system for infinite walking in a

limited amount of physical space. Because of the limited user study, further research is

required to draw definitive conclusions. Also, there are still many ways in which Infinite

Spaces can be extended to create interesting-looking virtual worlds that are suitable for

real applications.

5

6

Samenvatting

Virtual reality headsets zijn de laatste jaren wijd commercieel beschikbaar, en daarmee

wordt het gebruik daarvan ook steeds populairder in virtual reality games en andere

toepassingen. Maar een van de grootste uitdagingen bij het maken van zulke applicaties,

is nog steeds om een geschikte manier te vinden om rond te wandelen in een virtuele

omgeving. Daar bestaan verschillende opties voor, maar echt wandelen blijft de meest

natuurlijke methode. Dat is natuurlijk een probleem als de virtuele wereld groter is dan

de fysieke ruimte die beschikbaar is voor de gebruiker. In dat geval zouden er technieken

moeten worden toegepast waarmee de gebruiker subtiel wordt omgeleid om binnen een

bepaald gebied te blijven.

Een tweede uitdaging bij het maken van virtual reality-toepassingen, is simpelweg

de hoeveelheid werk die nodig is om een virtuele omgeving met de hand op te bouwen.

Dit is eigenlijk niet specifiek een uitdaging voor virtual reality, maar voor alle soorten

toepassingen. In veel gevallen is dat natuurlijk onvermijdelijk. Denk maar een een game

zoals Super Mario Galaxy1, waar elk level een eigen structuur, doel, en zelfs eigen regels

kan hebben. Bij dat soort toepassingen is het opbouwen van een virtuele wereld juist een

onmisbaar deel van het ontwikkelingsproces.

In andere toepassingen is het juist wel mogelijk om dat handwerk, of toch een groot

deel ervan, te vervangen door algoritmes die automatisch inhoud genereren. Zulke meth-

odes kunnen worden gebruikt door een ontwikkelaar of artiest om bepaalde inhoud te

genereren, die uiteindelijk wordt meegeleverd met de applicatie. Maar dat kan ook wor-

den gebruikt door de applicatie zelf, wanneer die wordt uitgevoerd door de gebruiker.

Een goed voorbeeld daarvan is het spel Minecraft2, waar een een oneindige, automatisch

gegenereerde wereld juist een onmisbaar deel uitmaakt van het spel.

Het automatisch genereren van oneindige werelden is een interessant idee, maar hoe kan

dat worden toegepast in virtual reality-toepassingen? Het lijkt onmogelijk om oneindig

rond te wandelen binnen een beperkte fysieke ruimte. Of zijn er manieren om toch de

illusie van een oneindige virtuele wereld op te wekken?

Zoals eerder al kort aangehaald, bestaan er inderdaad technieken die ervoor zorgen dat

de gebruiker onopgemerkt wordt omgeleid, om zo de illusie te creëren van een veel grotere

virtuele omgeving dan de eigelijke fysieke ruimte. In de wetenschappelijke literatuur wordt

verwezen naar die technieken met de term redirected walking.

De focus bij redirected walking ligt vaak bij technieken die toestaan om rond te wan-

1https://en.wikipedia.org/wiki/Super_Mario_Galaxy
2https://www.minecraft.net/

7

https://en.wikipedia.org/wiki/Super_Mario_Galaxy
https://www.minecraft.net/

delen in omgevingen uit de echte wereld, of die tenminste mogelijk zouden zijn in de echte

wereld. Een voorbeeld daarvan zou een virtuele rondleiding van een gebouw kunnen zijn.

In zulke toepassingen worden meestal de bewegingen van de gebruiker gemanipuleerd, bi-

jvoorbeeld door constant de omgeving lichtjes rond hen te laten draaien, waardoor ze in

een cirkel worden geleid terwijl het lijkt alsof ze gewoon in een rechte lijn wandelen.

In andere toepassingen is het echter niet altijd nodig om omgevingen te modelleren

die de regels van de echte wereld volgen. In zulke gevallen kan de structuur van de wereld

zelf worden gemanipuleerd om de illusie van een veel grotere ruimte te creëren. Dat wordt

gewoonlijk gedaan door subtiele veranderingen te introduceren terwijl de gebruiker afgeleid

is, of door verschillende gebieden in de virtuele omgeving dezelfde fysieke ruimte te laten

innemen. Zulke onmogelijkheden kunnen in veel gevallen worden gëıntroduceerd zonder

dat de gebruiker het meteen opmerkt, of tenminste op zo’n manier dat de illusie van een

samenhangende ruimte niet wordt verbroken.

Het doel van deze thesis is dus om een methode te vinden waarmee een oneindig grote

virtuele omgeving kan worden gegenereerd terwijl de gebruiker rondwandelt binnen een

beperkte fysieke ruimte. Hierbij mogen de gebruikte technieken voor het omleiden van

gebruikers niet duidelijk merkbaar zijn voor de gebruiker, of tenminste niet op een manier

die als storend wordt ervaren. De techniek die wordt gepresenteerd, en de bijhorende

applicatie, zullen Infinite Spaces worden genoemd.

Het doel van Infinite Spaces is niet om omgevingen uit de echte wereld na te maken,

maar eerder om omgevingen te genereren die er op het eerste zicht realistisch uit zien,

maar niet noodzakelijk dezelfde regels volgen. Dit soort omgevingen is bruikbaar voor

applicaties waar de structuur van de wereld zelf niet belangrijk is, maar de inhoud wel.

Enkele voorbeelden zijn een shooter game, of een virtuele trainingsomgeving voor soldaten

of revalidatiepatiënten.

Om Infinite Spaces te ontwikkelen, werd verder gewerkt op een bestaande techniek voor

redirected walking, die flexible spaces wordt genoemd. In flexible spaces wordt een virtuele

wereld opgebouwd uit kleine kamers die onderling verbonden zijn met gangen. Wanneer

de gebruiker van de ene kamer naar de andere wil gaan, wordt de volgende kamer telkens

op een willekeurige positie in de omgeving geplaatst. Vervolgens wordt er automatisch

een gang gegenereerd om die kamer te kunnen bereiken. Wanneer de gebruiker dan de

volgende kamer binnen gaat, worden de vorige kamer en de gang onmiddellijk verwijderd.

Door de willekeurige plaatsing van de kamers kan het zijn dat kamers en gangen met elkaar

overlappen, maar door de complexiteit van de gangen wordt dat doorgaans niet opgemerkt

door gebruikers.

In flexible spaces worden virtuele omgevingen gedefinieërd door middel van een vaste

connectiviteitsgraaf. Infinite Spaces werkt daarop verder door ook die graaf automatisch

te genereren terwijl de gebruiker rondwandelt in de virtuele omgeving. Op die manier

wordt er effectief een oneindige virtuele wereld opgebouwd.

De werelden die worden gegenereerd door Infinite Spaces, zijn vervolgens getest in een

kleinschalige pilot study. Omwille van de huidige Coronapandemie, was een volledige user

8

study jammer genoeg niet mogelijk. De omgevingen zijn getest op vlak van orientatiegevoel

van gebruikers, en detectie van overlappingen en veranderingen in de structuur van de

werelden. Er werd ook kort gekeken naar de gebruikte aanwijzingen voor orientatie, en

subjectief gevoel van aanwezigheid in de virtuele omgeving.

De tests werden uitgevoerd in het demolokaal van het Expertisecentrum voor Digitale

Media (EDM) in Diepenbeek, met een HTC Vive headset en één Valve Index controller

om te interageren met elementen in de omgeving. De ruimte in het lokaal was beperkt tot

een speelveld van 4× 4 meter. Aangezien de test binnen plaats vond, moesten deelnemers

een mondmasker dragen, en werden er ramen open gezet om de ruimte te verluchten. De

headset, de controller en de laptop om de vragenlijst in te vullen, werden tussen de tests

door ontsmet om besmetting te vermijden.

Ondanks het kleine aantal testpersonen, heeft de pilot study toch voor een aantal

interessante inzichten gezorgd. Het eerste doel van de studie was om erachter te komen of

het automatisch genereren van de omgeving al dan niet een negatieve invloed heeft op het

orientatiegevoel van gebruikers. Uit de resultaten leek het erop dat dat niet het geval is,

maar een studie met meer deelnemers is nodig om sluitende conclusies te kunnen trekken.

Door de beperkte hoeveelheid fysieke ruimte die beschikbaar was voor de tests, hadden

alle testpersonen het vermoeden dat sommige ruimtes in de omgeving met elkaar moesten

overlappen. Een van de deelnemers zei ook dat hij eerder al had gelezen over het gebruik

van overlappende ruimtes voor redirected walking. Toch werden overlappingen nooit als

storend ervaren. Achteraf werd ook telkens gevraagd om een plattegrond te tekenen van

de omgeving. Daaruit bleek dat, afgezien van de persoon die hier al voorkennis over had,

gebruikers zwaar onderschatten in welke mate ruimtes met elkaar overlappen.

Uit de studie bleek ook dat veranderingen in de omgeving door de meeste gebruikers

niet werden opgemerkt. Duidelijke veranderingen vinden plaats wanneer een gebruiker een

kamer binnengaat, en vervolgens terug gaat via dezelfde gang. Normaal wordt de gang

dan opnieuw gegenereerd, waardoor die een andere vorm kan hebben. Eén deelnemer heeft

dat wel meerdere keren opgemerkt. Een goede verbetering is dus om altijd de structuur

van de laatste gang die de gebruiker gevolgd heeft, te onthouden.

Als laatste werd ook kort gekeken naar aanwijzingen voor oriëntatie. Tijdens de pilot

study stond in elke kamer van de virtuele omgeving een object in een bepaalde kleur.

Elke deur kreeg de kleur van de kamer waar die naartoe leidde. Op die manier konden

gebruikers zich oriënteren in de omgeving. Uit de studie bleek dat die kleurcodering voor

de meeste gebruikers voldoende was om hun weg te vinden. Maar voor een echte applicatie

is het waarschijnlijk niet echt wenselijk om felgekleurde objecten doorheen de omgeving

te plaatsen. Verder onderzoek zou kunnen uitwijzen wat nog meer goede aanwijzingen

zouden kunnen zijn voor orientatie in dit soor virtuele omgevingen.

Hoewel Infinite Spaces op zich al een vrij flexibel en krachtig systeem is, zijn er nog

veel mogelijke verbeteringen en uitbreidingen mogelijk. In de huidige implementatie ziet

elke kamer er vrij eenvoudig uit, en zijn alle kamers ook ongeveer hetzelfde. Een eerste

mogelijke uitbreiding zou zijn om meer variatie toe te laten in de grootte, vorm en inkled-

ing van de kamers. Dat zou kunnen worden gëımplementeerd door aan elke kamer een

9

specifiek type te geven, zoals ”slaapkamer” of ”keuken”, en op basis daarvan de inkleding

te bepalen. Afhankelijk van de toepassing zou op die manier ook functionaliteit kunnen

worden toegevoegd aan kamers. Dit zou waarschijnlijk ook handig zijn als aanwijzing voor

orientatie.

Een volgende mogelijke verbetering zit in de manier waarop de connectiviteitsgraaf

van de virtuele omgeving wordt gegenereerd. Op dit moment heeft die graaf een boom-

structuur, wat wil zeggen dat er geen cycli mogelijk zijn. In de meeste toepassingen zou

het waarschijnlijk beter zijn om wel cycli toe te laten. Dat kan nog verder worden ver-

beterd door meer geavanceerde methoden te gebruiken voor het genereren van grafen,

zoals graph grammars of L-systemen. Daarmee zouden bijvoorbeeld regels kunnen worden

gedefinieerd die bepalen welke kamers met elkaar verbonden kunnen zijn en welke niet.

Een keuken zou bijvoorbeeld niet verbonden kunnen worden met een slaapkamer, maar

wel met een vooraadkamer of een eetzaal.

Tot nu toe is Infinite Spaces beperkt tot binnenomgevingen, maar met slim gebruik

van textures zou het misschien ook mogelijk zijn om buitenomgevingen te simuleren. Een

andere mogelijkheid zou zijn om hoogteverschillen te simuleren, bijvoorbeeld door middel

van een haptische simulatie van een lift.

Tenslotte zijn er nog enkele mogelijkheden voor verder onderzoek. De pilot study werd

uitgevoerd op een redelijk kleine ruimte van 4×4 meter, wat ervoor zorgde dat alle kamers

met elkaar moesten overlappen. Een grotere ruimte zou kunnen zorgen voor meer variatie

in de layout van de omgeving, en zou er dus voor kunnen zorgen dat onmogelijkheden min-

der snel worden opgemerkt. Anderzijds is 4×4 meter nog steeds een vrij grote ruimte voor

een gemiddelde eindgebruiker. Het zou dus ook interessant zijn om te onderzoeken wat de

minimale grootte is om Infinite Spaces goed te laten werken. In kleinere ruimtes zou het

misschien ook interessant zijn om Infinite Spaces te combineren met andere technieken

voor redirected walking, waarbij ook de bewegingen van de gebruiker worden gemanip-

uleerd.

Over het algemeen is dus gebleken dat Infinite Spaces een zeer krachtig en flexibel

systeem is, dat in veel verschillende toepassingen gebruikt zou kunnen worden. Bij gebrek

aan een volledige user study, kunnen er nog geen sluitende conclusies worden getrokken,

maar de pilot study heeft al enkele veelbelovende inzichten kunnen geven. Verder onder-

zoek zou daar nog meer duidelijkheid in kunnen brengen, en kunnen aantonen hoe Infinite

Spaces nog verder kan worden uitgebreid en verbeterd.

10

Contents

1 Introduction 13

1.1 Background: Virtual Reality . 13

1.1.1 Creating Virtual Environments . 13

1.1.2 Infinite Worlds in Virtual Reality . 14

1.2 Goal . 14

1.2.1 Applications . 14

1.2.2 Requirements . 15

1.3 Outline . 15

2 Related work 17

2.1 Redirected Walking . 17

2.1.1 Manipulation of self-motion . 17

2.1.2 Manipulation of virtual space . 18

2.2 Procedural Content Generation . 20

2.3 Rendering Impossible Spaces . 22

3 Infinite Spaces 25

3.1 Environment Generation . 25

3.1.1 Generating Rooms and Corridors . 25

3.1.2 Removing Rooms and Corridors . 29

3.2 Framework . 29

3.2.1 Rendering Portals . 29

3.2.2 Object Picking . 29

3.2.3 OpenVR . 31

3.3 Implementation . 31

3.3.1 Placement in virtual space . 31

3.3.2 Minimap . 33

4 Evaluation 35

4.1 Evaluation Criteria . 35

4.1.1 Orientation . 35

4.1.2 Change detection . 35

4.1.3 Overlap detection . 36

4.2 Test setup . 36

11

CONTENTS

4.2.1 Experimental Design . 36

4.2.2 Participants . 37

4.2.3 Apparatus . 37

4.2.4 Procedure . 37

4.3 Preliminary Results . 38

4.3.1 Orientation . 38

4.3.2 Change and Overlap Detection . 39

4.3.3 Subjective Presence . 41

5 Conclusion 43

5.1 Extending Infinite Spaces . 43

5.1.1 Room Types . 44

5.1.2 Graph Generation . 44

5.1.3 Outdoor Environments . 44

5.1.4 Elevation . 45

5.1.5 Combining with Other Techniques 45

5.2 Further Testing . 45

5.2.1 Tracking Area Size . 45

5.2.2 Orientation Cues . 45

A Questionnaire 47

A.1 SUS Presence Questionnaire . 47

A.2 Change and overlap detection . 48

A.3 Orientation . 48

12

Chapter 1

Introduction

1.1 Background: Virtual Reality

With Head-Mounted displays (HMDs) being commercially available for everyone, their use

is becoming increasingly popular in Virtual Reality games and other applications. How-

ever, one of the most fundamental challenges in developing Virtual Reality applications

remains choosing the right method for users to walk around in a virtual environment.

Different alternatives for walking in a virtual environment exist, such as using a joystick,

point-and-click methods for teleporting, and real walking. Real walking seems like the

preferred method when exploring a large, immersive virtual environment. But unfortu-

nately, this is not always a viable solution due to space constraints on the user’s end. If

a virtual environment is larger than the actual space available to the user, it would be

impossible to explore the whole environment without being redirected in some way.

1.1.1 Creating Virtual Environments

Before addressing how that first challenge can be overcome, let us first talk about a

second challenge in the creation of virtual environments. This second challenge is the

sheer amount of manual labor required to build large, hand-crafted environments. In

applications where the structure of the environment is essential, this is often unavoidable.

This does not only apply to environments for virtual reality applications, but actually

to all types of virtual worlds, including video games. One could think of a video game

like Super Mario Galaxy1, where each level has its own distinct structure, goal, and even

specific rules. In those types of applications, the creation of virtual worlds is a core part

of the development process, and cannot be avoided.

In other applications, however, it may be possible to skip all or most of the manual

labor by using algorithms to generate the environment, or parts of it. So-called procedural

content generation methods may by used by artists to help them create assets that are

later shipped by the game or application, but procedural content generation may also be

used by the game itself at run-time. A good example is the game Minecraft2, where an

infinite, procedurally generated world is an essential gameplay concept.

1https://en.wikipedia.org/wiki/Super_Mario_Galaxy
2https://www.minecraft.net/

13

https://en.wikipedia.org/wiki/Super_Mario_Galaxy
https://www.minecraft.net/

CHAPTER 1. INTRODUCTION

1.1.2 Infinite Worlds in Virtual Reality

Procedural generation of truly infinite virtual worlds like Minecraft does, is an exciting

idea, but how would this apply to virtual reality? It would seem impossible to let players

roam around freely in an infinite, procedurally generated virtual world, while they stay

within the constrained space of their own living room. Or are there ways to simulate this

as realistically as possible?

In fact, there exist a number of techniques to redirect users in some way, to make sure

they never step out of the tracking area, while still having the illusion of a seamless virtual

world that is potentially much larger than the tracking area. Those techniques are usually

referred to as redirected walking (RDW).

Redirected walking is often focused on allowing users to walk around naturally in large

environments from the real world. An example might be a virtual tour of a real building.

In those particular applications, the player’s motions are usually manipulated, for example

to direct them in a circle by slightly, but unnoticeably, rotating the environment around

them.

However, in other applications it may not be necessary to model environments from

the real world. In those cases, the structure of the virtual environment itself may be

manipulated, instead of the player’s motions. This is often achieved by introducing subtle

changes to the structure of the environment, or by letting different parts of the environment

occupy the same space. With some care, such impossibilities may be introduced without

immediately being exposed to the user, or at least in such a way that it does not completely

break the immersion of the virtual environment.

1.2 Goal

The goal of this thesis is essentially to find a method to generate an infinitely large virtual

environment while the user is walking around, all within a restricted amount of physical

space. The user should be able to walk around indefinitely in this environment with

an Head-Mounted Display, without stepping outside the tracking area. This should be

possible without directly exposing the techniques used, or at least not in a way that is

troublesome to the user, creating the illusion of a truly infinite virtual environment. The

technique and corresponding application presented in this thesis, will be referred to as

Infinite Spaces.

1.2.1 Applications

The intended purpose of Infinite Spaces is not to recreate environments from the real

world, but to generate environments that at first glance look like they could be built in

the real world, but do not necessarily follow the same rules. These kinds of environments

may be useful for applications where the structure of the environment is not important,

but the content is. Example applications could include a VR shooter game, or a virtual

training environment for soldiers or rehabilitation patients.

14

1.3. OUTLINE

1.2.2 Requirements

Environments generated by Infinite Spaces should conform to some requirements in terms

of realism and usability. A user study was conducted to compare different techniques, and

to compare Infinite Spaces with an existing technique.

1. Orientation

Users should be able to orientate themselves in the environment without too much

effort. Techniques to facilitate orientation should be implemented when needed.

2. Realism

Users should not be able to notice the redirection techniques used in the environment.

This includes changes to its structure and parts that overlap with each other.

1.3 Outline

The following steps were taken in order to achieve the goals described above:

1. First, a study of existing literature on redirected walking, procedural content gen-

eration, and rendering worlds with impossible geometry was performed. This is

discussed in Chapter 2.

2. Based on some of the related work, an application was built that matches the re-

quirements described in the previous section. The implementation of the application,

and the framework that was used to build it, are described in Chapter 3.

3. A user study was performed to compare different techniques against the requirements

described in the previous section, and to compare infinite spaces with an existing

technique. The exact goals, setup and results of this user study are described in

Chapter 4.

4. Finally, based on the results from the user study, some potential options for fu-

ture extensions to Infinite Spaces and further research on infinite virtual worlds are

discussed in Chapter 5.

15

CHAPTER 1. INTRODUCTION

16

Chapter 2

Related work

This chapter discusses some of the existing work this thesis builds upon. Section 2.1

discusses existing techniques for redirected walking. In Section 2.2, some existing tech-

niques for procedural content generation are discussed. Finally, Section 2.3 discusses the

use of virtual portals for rendering scenes, and how this can be used to build impossible

environments.

2.1 Redirected Walking

Several different methods for walking in virtual environments exit. Possible techniques

include real walking, flying, walking-in-place, etc. It has been shown that real walking

is the preferred method in terms of subjective presence [27], orientation, and reducing

motion sickness [4]. A collection of techniques has been proposed to accomodate real

walking in large virtual environments, when physical space is limited. These techniques

are collectively referred to as redirected walking (RDW) [19]. A taxonomy of the techniques

discussed in this section is shown in Table 2.1.

Methods for RDW can be roughly separated into two categories: approaches that ma-

nipulate the user’s motion in physical space, and approaches that manipulate the structure

of the virtual environment itself. We may also differentiate between subtle techniques,

which are usually not noticed by most users, and overt techniques, which are usually de-

tected by the user. The use of overt techniques may be necessary when the user reaches

the limits of the physical tracking space and needs to be redirected. Williams et al. [31]

have proposed three such overt techniques: freeze-backup, freeze-turn, and 2:1 turn. While

those techniques obviously break the immersion of the virtual environment, they may be

necessary to avoid accidents when the user steps out of the tracking area.

2.1.1 Manipulation of self-motion

In the first class of techniques, the mapping between the user’s rotation and movement is

manipulated. The original idea was to rotate the scene around the user so that they stay

within the tracking area. The original paper on Redirected Walking described a simple

method where users were directed towards some objects in the scene. Each time they

reached an object and turned around to face the next object, the scene was unnoticeably

17

CHAPTER 2. RELATED WORK

Redirected Walking

Manipulation of

self-motion

Rotational Gains [19]

Translational Gains [9]

Curvature Gains [13]

Bending Gains

Manipulation of

virtual space

Change Blindness Redirection [24]

Impossible Spaces [25]

Flexible Spaces [28]

Overt techniques freeze-backup, freeze-turn, 2:1 turn [31]

Table 2.1: Taxonomy of redirected walking techniques

rotated to amplify the user’s rotation and allow them to reach the next object while staying

within the tracking area. This is shown in Figure 2.1.

Another simple example is the so-called seven-league-boots technique [9]. This tech-

nique scales the user’s steps, increasing the size of the virtual environment relative to the

size of the tracking space.

When curvature gains [13] are employed, the user has the illusion of walking in a

straight path while actually walking along a curved path in physical space. At a speed

of 0.75m/s, users are able to walk along a circle of approximately 10m without noticing.

This detection treshold increases at higher walking speeds.

Figure 2.2 summarizes the different types of gains that can be used to manipulate the

player’s motion. Other reorientation methods include subtly rotating the scene while the

user’s attention is captured by some distractor [7], or even during eye blinks [2].

2.1.2 Manipulation of virtual space

The second category consists of approaches that manipulate the structure of the envi-

ronment itself. E. Suma et al. proposed impossible spaces [25], an approach which uses

self-overlapping architecture. This allows rooms in an indoor virtual environment to oc-

cupy the same physical space, and therefore compresses large indoor environments in

a much smaller physical space. Figure 2.3 illustrates the ”expanding room” technique

demonstrated in [25], where rooms are expanded to maximally fill the available physical

space with 50% overlap. Further research has shown that the shape and length of the

corridor connecting two overlapping rooms, influences the user’s ability to actually detect

that the rooms overlap [29].

In the paper on impossible spaces, the authors also refer to earlier work where users are

transported from one location to another within the VE through virtual portals [3, 22].

A second approach is to exploit change blindness [20], or the user’s inability to notice

subtle changes to the environment, when distracted by a simple task. E. Suma et al. [24]

used this to change the location of doors and corridors in a VE, creating the illusion that

users were in a large office building, while they were actually walking in circles in a small

tracking space of 4.3m × 4.3m. This technique is illustrated further in Figure 2.4. A

18

2.1. REDIRECTED WALKING

Figure 2.1: Paths taken by users in the original RDW paper. The top (blue) shows the

view of the virtual environment. The bottom (red) shows their actual path in the tracking

space. The blue crosses in the top image indicate locations of objects that users are

directed towards. Each time a user reaches such an object and takes a 90 degree turn

towards the next object, the scene rotated 90 degrees in the same direction as well, so

that the user actually has to take a 180 degree turn in order to face the next object in

the virtual scene. This way the user actually walks back and forth in the tracking area,

as can be seen in the red image. Image from [19].

Figure 2.2: The different types of gains to manipulate the player’s motion. (a) Rotational

gains, as described in the original paper on Redirected Walking. (b) Translational gains,

analogous to the seven-league-boots technique. (c) Curvature gains, where the player is

redirected in a circle while it appears as if they are walking straight. (d) Bending gains,

where curvatures in the player’s virtual path are amplified. Images from [14].

19

CHAPTER 2. RELATED WORK

Figure 2.3: The ”expanding room” approach used in Impossible spaces [25]. As the user

walks through the corridor from room 1 to room 2, room 2 is expanded to overlap with

room 1. Images from [25].

user study has shown that most users did indeed not notice the changes introduced in

the virtual environment. An interesting detail is that even though changes were mostly

unnoticed, most users did have the sense that they were walking in circles.

Flexible spaces [28] combines the approaches from impossible spaces and change blind-

ness redirection, by combining the use of overlapping rooms with procedurally generated

corridors which dynamically change location and shape based on the user’s current posi-

tion within the tracking area. The virtual environment in flexible spaces consists of small

rooms which are interconnected by corridors. Whenever the user wants to go from one

room to the next, the next room is placed at a completely random position in the tracking

space. This means that rooms may even fully overlap. Next, a corridor is randomly gener-

ated to connect both rooms. The corridor is immediately deleted after the user enters the

next room. Because the layout of the environment is constantly changing, flexible spaces

avoids a buildup of knowledge about its structure. Therefore, users have to rely on other

clues for orientation. This is done by color-coding rooms and the doors that lead to them.

A pilot study [30] on flexible spaces has shown that this is indeed a good method to

create immersive virtual environments for applications where the content of the environ-

ment is more important than its structure. The authors mentioned a virtual museum as

a possible example application.

2.2 Procedural Content Generation

Procedural content generation (PCG) is the use of algorithms to automatically generate

content as opposed to manually creating it, and has been used in games since the early

20

2.2. PROCEDURAL CONTENT GENERATION

(a) (b) (c) (d)

Figure 2.4: Change blindness redirection [25]. (a) The users enters the first room. (b)

While the user is distracted by a simple task, the room changes shape and the door is

moved to a different location. (c) The user exits the room through the new door. (d)

The user enters the next room, which occupies the same physical space as the first room.

Images from [24].

Figure 2.5: Examples of layouts generated by the flexible spaces algorithm. Image from

[28].

21

CHAPTER 2. RELATED WORK

eighties. Early games using PCG include Rogue1 (1980) and Elite2 (1984). Some modern-

day titles are Minecraft3 and No Mans’s Sky4. PCG can be used dynamically at run-time,

where content is generated as the user requires it (such as world generation in Minecraft),

or by artists during development to aid the creation of regular content to be shipped by

the game. PCG methods have also been employed in architectural applications, where

buildings [11, 12], indoor environments [5, 8] and even cities [12, 15] can be procedurally

generated.

Traditional PCG methods include, but are not limited to, pseudo-random number

generators (PRNGs), noise algorithms [16, 17], or generative grammars like shape gram-

mars [23], graph grammars [6] and L-systems [18]. Generative grammars are often used in

architectural applications. An example of such a generative grammar is CGA Shape [12],

a shape grammar which can efficiently generate massive cities with high level of detail.

L-systems, which are usually used for modelling plants, have also been used for modelling

buildings [15].

A system that generates rooms of a single-story residential house, within a given floor-

plan, is given in [11]. This is achieved by using a graph grammar to generate a graph

where each node represents a room. When generating the room graph, each room is given

a specific type, like foyer or bathroom. After generating the room graph, each room is

given an exact location and size within the house.

2.3 Rendering Impossible Spaces

One way to render impossible virtual environments such as those described in impossible

spaces [25], is through the use of virtual portals. The use of virtual portals in computer

graphics was originally intended as a visibility detection method for rendering indoor

environments [1,10,26]. In this method, an indoor environments consists of a set of cells,

connected by portals. Visible cells are then rendered in a hierarchical order, starting from

the cell the user is currently in. If a cell contains a portal to a different cell, the content

of that cell is rendered as well, but is clipped by the portal. This is done recursively

until no more portals are visible. This method makes sure that only potentially visible

objects are rendered instead of the whole scene, and could dramatically improve rendering

performance in large environments.

The original use of portals in computer graphics can easily be adapted to turn a

portal into a mirror, or even to make it ’look at’ a completely different location in the

environment. Games like Portal5, Antichamber6 and Manifold Garden7 use this technique

to allow players to teleport through the environment, and to create impossible, Escher-

esque environments.

1https://en.wikipedia.org/wiki/Rogue_(video_game)
2https://en.wikipedia.org/wiki/Elite_(video_game)
3https://www.minecraft.net/
4https://www.nomanssky.com/
5https://store.steampowered.com/app/400/Portal/
6https://store.steampowered.com/app/219890/Antichamber/
7https://manifold.garden/

22

https://en.wikipedia.org/wiki/Rogue_(video_game)
https://en.wikipedia.org/wiki/Elite_(video_game)
https://www.minecraft.net/
https://www.nomanssky.com/
https://store.steampowered.com/app/400/Portal/
https://store.steampowered.com/app/219890/Antichamber/
https://manifold.garden/

2.3. RENDERING IMPOSSIBLE SPACES

Figure 2.6: The cells-and-portals method for rendering indoor environments. The player

is located in the second room from the bottom-left, where the white lines converge. The

white lines indicate which parts of the environment are visible and which parts are not.

The red lines indicate a part of the environment that is visible through a reflection in a

mirror. Only cells (rooms) that are partly visible, are rendered. Image from [10].

23

CHAPTER 2. RELATED WORK

24

Chapter 3

Infinite Spaces

The implementation of Infinite Spaces is largely based on the flexible spaces [28] paper.

The main difference is that new rooms are generated on the fly as the user is walking,

instead of using a fixed set of rooms. The generated environment will have a tree structure,

where from each room, the user can either go back to the previous room, or continue to

a room that has not been visited before. New rooms can be generated indefinitely. As

in flexible spaces, each room is square, and two rooms are always connected through a

randomly generated corridor.

Section 3.1 gives a high-level explanation of how rooms and corridors are generated.

Section 3.2 proceeds by explaining which framework was used and how it works, how this

could be used to build impossible worlds like those in Infinite Spaces, and how it was

extended to suit all the needs of Infinite Spaces. Section 3.3 then explains how this was

applied to actually implement the application.

3.1 Environment Generation

When the application is started, the environment consists of only a single square room,

with a random amount of doors. Each of those doors will open up to a corridor leading to

a different room once the user clicks on it. Walking through the environment by opening

doors and entering new rooms, will gradually build up an environment graph. Since doors

can only either lead to the previous room, or to a new room, this graph actually has a

tree structure.

3.1.1 Generating Rooms and Corridors

Whenever the user clicks on a closed door, a new corridor to the next room is generated.

If the next room has not been visited before, its node in the environment tree must be

generated first. When generating a new node, the application chooses at least one and

up to three sides where the room is connected to subsequent rooms. The next room is

then assigned a position in physical space. As in flexible spaces, the position of each room

is chosen randomly, so rooms may even fully overlap. Finally, a corridor is generated

between the current room and the next. This is also very similar to the algorithm from

25

CHAPTER 3. INFINITE SPACES

flexible spaces. The complete process of opening a door and placing a room and a corridor

is as follows:

1. The user clicks on a closed door in the current room.

2. If the door’s target room has not been visited before, its node is generated first.

(a) At least one, and up to three connections to subsequent rooms are chosen in

the new room.

3. The target room is placed at a random position in the environment. The only

constraint is that the space between the target room and the border of the tracking

area is equal to or greater than the width of a corridor, so it is possible to place a

door on any side of the room.

4. The position of the opened door is taken as a starting point S of the corridor.

5. An intermediary point I is selected randomly. I may not be inside or behind the

current room or inside the target room, and the horizontal and vertical distance

from S must be equal to or greater than the corridor width. If no suitable position

for I is found, the algorithm returns to step 3.

6. An additional point a0 is picked to connect the points S and I. The only constraint

is that a0 does not lie inside or behind the first room, because otherwise it can only

be reached by taking a 180 degree turn in S.

7. The end point E of the corridor is selected as the door in the target room that is

closest to I. E must also be reachable from I without taking a 180 degree turn, and

without intersecting with the second room, and the horizontal and vertical distance

between I and E must be equal to or greater than the corridor width. If no suitable

choice for E is found, the algorithm returns to step 3.

8. A second additional point a1 is picked to connect the points I and E. Because of

the requirements for E, there is always a suitable position for a1.

9. The corridor mesh is generated and placed in the environment.

The algorithm is illustrated in more detail in Figure 3.1. Figure 3.2 shows an example

where a valid I point was picked in step 5, but no valid E point could be found in step 7.

When this happens, the algorithm simply restarts from step 3, and picks a new position

for the room.

It should be clear from Figure 3.1 that there are at least some instances where the

algorithm can find a suitable corridor layout. But are there cases where it is impossible to

find a valid layout? From experience, it seemed like this never caused any problems, even

with a rather small tracking area. The user study was conducted with a tracking area of

4 × 4 meters and no problems were encountered where no corridor could be generated.

Figure 3.3 illustrates why, for suitable room and tracking area sizes, a valid corridor layout

can always be found. This also shows how a larger tracking area can allow more flexibility

in corridor layouts.

26

3.1. ENVIRONMENT GENERATION

R0
S

R1

(a)

R0
S

R1

I

(b)

R0
S

R1
E

I

a0

a′0

(c)

R0
S

R1
E

I

a0

a1

a′1

(d)

Figure 3.1: The algorithm for generating corridors. (a) From room R0, the user has

selected a door leading to room R1. R1 is placed at a random location inside the tracking

area. The corridor’s start point is located at S. (b) An intermediate point I is selected

randomly, but outside both R0 and R1. (c) A first a point is selected between S and I.

Both a0 and a′0 are valid points, but a0 is selected randomly out of the two. E is selected

as the end point of the corridor because it is the closest potential end point to I. (d) a

second a point is selected between I and E. Since a′1 cannot be reached directly from I

without doing a 180 degree turn, a1 is the only valid option.

27

CHAPTER 3. INFINITE SPACES

R0

R1
S

a0 I

E0

E1

E2

E3

Figure 3.2: An instance where no valid E point could be found. Possible E points are

evaluated in a counterclockwise order starting from E0. E0 is invalid because a corridor

from I to E0 would intersect with R1. E1 and E2 are invalid because they are too close to

I along the z and x axes respectively. E3 is invalid because it can only be reached from I

by taking a 180 degree turn.

.

S

R0

(a)

S

R0

(b)

Figure 3.3: Two examples of simple environments with the positions where an intermediate

point can not be placed marked in gray. (a) uses a tracking area of 4×4 meters, and (b) a

tracking area of 5×5 meters. Both use a room size of 2×2 meters and a minimal corridor

length of 0.7 meters. This does not take the placement of the second room into account,

but intuitively, because a room can never cover all available space for I, it should be clear

that there is always some valid position for I.

28

3.2. FRAMEWORK

3.1.2 Removing Rooms and Corridors

In flexible spaces, corridors are immediately removed after a user enters a new room.

So even when the user immediately wants to returns to the same room, the corridor is

completely regenerated. This avoids a buildup of knowledge about the structure of the

environment, because otherwise overlaps may be detected more easily. But, as was already

pointed out by the authors of flexible spaces, a disadvantage is that those changes to the

corridor layout can easily be detected by users. To avoid this, they suggested that it may

be better to keep the last corridor, and only delete it when the user opens a new one.

Both strategies are actually implemented in infinite spaces. As will be explained in

Chapter 4, one of the goals of the user study was to find out if keeping the last corridor

does indeed reduce the risk of users noticing the change in the corridor’s layout.

3.2 Framework

The application is implemented using a framework that is publicly available online1. The

framework can be used to build a virtual world that consists of objects and portals. Portals

are used as described in section 2.3, to teleport the player to different places in the virtual

world. With a bit of thought, this can be used to build an environment where different

parts can overlap with each other.

The idea is that the virtual environment is subdivided in separate sections that do

not overlap with themselves, but can overlap with each other. Each section is then placed

at different positions in the framework’s virtual coordinate system so that they do not

interfere with each other, and are connected through virtual portals. This is demonstrated

in Figure 3.4.

3.2.1 Rendering Portals

The main purpose of the framework is to render a world with virtual portals. When

rendering a portal, the part of the scene that is visible through the portal, is rendered

to an off-screen texture first. To do this, the camera is first transformed by the matrix

associated with the portal, and then the view frustrum is clipped to make sure that only

the parts of the scene that are visible through the portal, are rendered. The rendered

texture is then mapped on a rectangle at the position of the portal in the scene. This is

done recursively up to some predefined maximum recursion depth.

3.2.2 Object Picking

In infinite spaces, players should be able to click on doors to open them. Unfortunately,

the original framework did not have a feature where players could click on objects. So

this had to be implemented manually with OpenGL. To achieve this, each object was

given a unique identifier. Each frame, the identifier of each visible object is rendered to

an off-screen texture at the on-screen coordinates where it should be visible. When the

1https://github.com/HackerPoet/NonEuclidean

29

CHAPTER 3. INFINITE SPACES

R0

R1

(a)

P0 R0

P ′
0

P1 P ′
1

P2

R1P ′
2

(b)

Figure 3.4: (a) The floorplan of a simple virtual environment consisting of two overlapping

rooms R0 and R1, and a corridor between them. Notice that the corridor also overlaps

with itself. (b) To construct the VE from (a), it is decomposed into four separate sections.

Each room is its own section, and the corridor is also split in two section because it overlaps

with itself. Each section of the VE is placed at a different position in the virtual world,

and the player is teleported between them through portals. This creates the illusion of a

seamless virtual world with areas that overlap with each other.

30

3.3. IMPLEMENTATION

user presses the left mouse button (or uses the trigger on their controller when using an

HMD), the framework reads the pixel at the center of this identifier texture. If a valid

object identifier is read, the framework assumes that this is the object that the player has

clicked on.

3.2.3 OpenVR

The original framework was intended for desktop applications, and not for virtual reality.

Because it was directly implemented using C++ and OpenGL, support for OpenVR had

to be implemented directly with C++ and OpenGL as well. This is where it became clear

that it would probably have been a better choice to use a game engine like Unity, because

it turned to be quite a lot of work to get OpenVR to work with the framework.

3.3 Implementation

Section 3.1 described how rooms and corridors are layed out in physical space. The final

piece of the puzzle is to find a way to give every object a position in the virtual coordinate

system, so that everything can be rendered without objects interfering with each other.

3.3.1 Placement in virtual space

First, the virtual environment is decomposed in different sections, as was explained in

Figure 3.4. Next, each section had to be assigned some position in virtual space. This is

done as demonstrated in Figure 3.5. The virtual coordinate system is subdivided in cells

of the same size as the physical tracking area. Each section of the virtual environment is

placed in its own cell. This makes sure that overlapping objects never interfere with each

other.

Internally, rooms and corridors are kept in simple arrays. When placing a room or a

corridor, its cell is picked based on its index in the array. Rooms are always placed in

cells along the x = 0 axis. So, the first room is placed in the first cell along the x = 0

axis, the second room in the second cell, and so on. The same happens with the first and

second part of each. For example, with a tracking area of 4 × 4 meters, the first part of

each corridor is placed in cells along the x = 4 axis, and the second part along the x = 8

axis. This also has the advantage that the position of the player in virtual space can at

any time be reduced to the coordinates of the cell they are currently in, and thus to the

room the player is currently in.

Say for example that the player is at the virtual coordinates (1.5, 9), in a tracking area

of 4 × 4 meters. If we divide those coordinates by the room size, and then round up or

down to the nearest integer, we obtain the cell coordinates (0, 2). Because the x-coordinate

is 0, and rooms are placed along the x = 0 axis, we now know that the player must be

in a room. Because the y-coordinate of the cell is 2, the player must be in the second

room. This was a good way to determine the index of the current room after the player

was teleported through a portal.

31

CHAPTER 3. INFINITE SPACES

R0

R1

S

I

E

(a)

-2
-2

2 6 10

2

6

R0S

R1E

S

I
I

E

(b)

Figure 3.5: Placement of the different sections of a virtual environment in the virtual

coordinate system. (b) shows how the environment from (a) would be layed out by the

application. The virtual coordinate system is first subdivided in cells of the size of the

physical tracking space, which is 4 × 4 meters in this case. Each section of the virtual

environment is placed in its own cell, at the position it would have in physical space, but

relative to the center of the cell. Rooms are placed along the x = 0 axis, the first part of

each corridor in the second cell along the x axis, and the second part of each corridor in

the third cell along the x axis.

32

3.3. IMPLEMENTATION

Figure 3.6: The minimap, showing two overlapping rooms connected by a corridor. The

red point indicates the current position of the player.

3.3.2 Minimap

Before testing with an head-mounted display, there was no way of knowing that the player

did actually stay within some limited amount of physical space. Therefore a small map

of the environment was displayed in the top-right corner of the screen. This map simply

shows the player’s position, and all rooms and corridors that are currently active inside

the environment. While this was not part of the final application, it was still a great tool

for debugging the generation and placement algorithms from Sections 3.1 and 3.3. Figure

3.6 shows an example of what this looks like in the application.

33

CHAPTER 3. INFINITE SPACES

34

Chapter 4

Evaluation

A user study was performed to evaluate the performance of infinite spaces in terms of

orientation, change detection and overlap detection.

Section 4.1 describes those three criteria in more detail, and how they could be eval-

uated. Section 4.2 describes how a set of test cases was derived from those criteria, and

how the actual tests were performed. Section 4.3 discusses the results of the user study.

4.1 Evaluation Criteria

Based on the goals and requirements mentioned in Section 1.2, three evaluation criteria

were selected.

4.1.1 Orientation

The first criterium is the ability of users to orientate themselves in the environment.

Specifically, the goal was to compare Infinite Spaces to flexible spaces, to see if and how

random generation impacts the ability of users to orientate themselves in the environment.

This was done by letting users walk through two variants of the virtual environment:

one where the environment graph is generated randomly, and a second one where the

environment graph is hard-coded. So this second test case is actually the same as flexible

spaces. Afterwards, users were asked to rate how easy or hard it was for them to find

their way in the environment. As an objective measure for orientation, the time each user

needed to perform a simple retrieval task was recorded as well.

4.1.2 Change detection

A second goal was to see if the method for generating corridors from flexible spaces could

be improved by always keeping the last corridor, and thereby reducing the chance that

changes in the environment are detected by users. To test this, users were again asked to

walk through two different variants of the environment. In the first variant, corridors were

removed immediately after the user entered a room. In the second one, the structure of

the last corridor was kept until the user opened a new corridor. The hypothesis was that,

if the user decided to go back via the same corridor immediately after entering a room,

35

CHAPTER 4. EVALUATION

A B C

C A B

B C A

Figure 4.1: Latin square design for three test cases, as used in the user study.

the chance of the user noticing this change would be lower. In the flexible spaces paper,

the authors already mentioned that this could be a possible improvement, hence why it

seemed to be a good test case. To test this, users were asked about a number of things

they may or may not have noticed during their time in the virtual environment.

4.1.3 Overlap detection

The third and final objective was to examine whether or not users are able to notice

overlapping parts in the environment. Each time users walked through the environment,

they were asked to draw a sketch of its layout. They were also asked some questions

about the arrangement of the room, and whether or not the virtual environment would

be possibe to build in the real world.

4.2 Test setup

Before starting the actual test, users were first asked to sign a consent form. Then, they

had the chance to perform a small training task to become familiar with the structure of

the environment, and the task they had to perform in the actual test cases.

During the user study, participants were asked to perform three different test cases,

each corresponding to one or several of the evaluation criteria listed in the previous sec-

tion. After each test case, they were asked to perform some evaluation tasks to evaluate

those criteria. The order in which participants performed the different test cases, was

balanced by means of a latin square design, as shown in Figure 4.1. This design is used to

reduce order-effects, where learning from one test case can have an influence on the user’s

performance on the next one.

4.2.1 Experimental Design

The criteria described in the previous section were reduced to three test cases:

• TC1: An environment with a fixed connectivity graph as apposed to generating it

on the fly.

• TC2: An environment with an automatically generated connectivity graph, where

corridors are removed immediately after entering a room.

• TC3: An environment with an automatically generated connectivity graph, where

the last corridor is always kept alive until the user opens a new one, to reduce the

chance that changes in the corridor layout are noticed by users.

36

4.2. TEST SETUP

Like in flexible spaces, each room was color-coded, along with each door that led to it.

Participants were specifically asked to use the color-coding as a cue for orientation. This

was done so they would pay less attention to the structure of the environment, and thus

hopefully be less likely to notice overlaps and changes in the environment.

The time required to perform each test case was also recorded. This was not only

an objective measure for the participant’s sense of orientation, but was also used as an

incentive for users to perform the task as quickly as possible. So this was also a way to

distract users from the structure of the environment, along with the color-coding of the

rooms and doors.

4.2.2 Participants

The user study took place at the Expertise centre for Digital Media (EDM), in Diepenbeek.

Unfortunately due to the Coronavirus pandemic, no external participants were allowed at

the EDM. This meant that only students, researchers and EDM staff were allowed to

participate in the study. This was actually a major drawback because many of the people

who work at the EDM already had a lot of experience with virtual reality. One of the

participants even mentioned that he had already read about the use of overlapping spaces

before. A second drawback was simply the fact that not many people were available to

participate in the study. Three people were able to participate; two males and one female.

4.2.3 Apparatus

The study was performed with an HTC Vive headset and one Valve Index controller for

selecting doors and target objects. The size of the tracking area was 4 × 4 meters, which

is actually much smaller than the one used for flexible spaces, but still large enough to

generate interesting-looking environments. In this case, the size of the tracking area was

constrained by the size of the demo room, and the length of the cable of the HMD.

Due to the current Coronavirus pandemic, some additional safety measures had to

be taken into account. Participants obviously had to wear a face mask during the test.

Between each test, the HMD, the controller and the laptop for filling in the questionnaire

were properly sanitized. Also, the HMD was equipped with a disposable cover which could

be replaced between each test, to facilitate sanitization. Because the user study took place

in May, it was warm enough outside to open some windows to ventilate the room.

4.2.4 Procedure

For each test case, users were asked to perform a simple retrieval task. In some rooms a

colored object was placed as a ”target” object, which users could ”pick up” by looking at it

and then pressing the trigger on the controller of the HMD. In each task, users were asked

to find two of those objects, and then to immediately return to the room they initially

started in via the same way.

After each test case, participants were first asked to draw a sketch of the structure

of the environment. The goal was to see if, and to what extent, overlaps were detected

37

CHAPTER 4. EVALUATION

TC1 TC2 TC3

How difficult did you find it to orien-

tate yourself while searching for the

objects?

2.75 ± 1.3 2.5 ± 1.1 3.0 ± 1.6

How difficult did you find it to find

your way back to the starting room?

2.75 ± 1.5 2.75 ± 1.5 2.75 ± 1.8

Table 4.1: Average results on the questions about orientation.

during their time in the environment. A set of colored pencils was availabe to also indicate

the color of each room.

Next, they were asked to fill in the questionnaire given in appendix A. First, the SUS

presence questionnaire [21] was used to rate their subjective sense of presence in the virtual

environment. Next, they were asked to rate a number of statements about things that may

or may not have happened during their time in the virtual environment, from 0 (=”Did

not notice or did not happen”) to 5 (=”Very obvious”). This list included questions about

changes and other impossibilities in the environment, along with some decoy statements,

to distract the participants from the actual goal of the study. Finally, the questionnaire

included some statements about their sense of orientation, and the usefulness of the color-

coding used in the virtual environment, which they had to rate from 1 (=”Totally disagree)

to 5 (=”Totally agree”).

4.3 Preliminary Results

Because of the small number of participants, no final conclusions could be drawn from the

test study. Therefore, this is regarded more like a pilot study rather than an actual user

study. But still, some interesting insights were provided.

4.3.1 Orientation

The first test criterium was to see whether procedural generation affects the ability of

users to orient themselves in the virtual environment. From the pilot study, it seemed

that participants did not notice any difference between test cases TC1 and TC2. This

suggests that procedural generation has no effect on orientation. Table 4.1 shows the

average responses to the questions about orientation for test cases TC1 and TC2. A

repeated measures ANOVA test shows that there is no significant difference between the

two (p = 0.24 for the first question and p = 1.0 for the second question), but some further

testing with more participants is required to draw a definitive conclusion.

One of the questions stated that ”It felt as if I was being turned around all the time”.

This does actually constantly happen intrinsically because the environment has to be

generated in such a way that the user always stays inside the tracking area. One of the

participants actually mentioned that this had to be the case, but that he just could not

figure out when or how it happened. The answers to this question actually varied a lot,

with an average score of 2.3/5 and a standard deviation of 1.2. The reason for this response

38

4.3. PRELIMINARY RESULTS

is probably that this redirection happens so subtly that it is not immediately noticeable,

but it just has to happen because of the small tracking area. Multiple participants also

said that they did not really pay attention to the structure of the corridors. They were

really just walking from room to room, and just followed the corridors because they had to,

but the shape did not really matter. A reason for this may be the fact that the structure of

the environment is not used as an explicit cue for orientation, in favor of the color-coding.

The questionnaire also included some questions about color-coding of the rooms and

the doors as a cue for orientation. From the questionnaire, it seemed that this was indeed

a good orientation cue. The question whether the color-coding of the doors alone was

useful for orientation was answered with an average score of 4.4/5. The question whether

it was also sufficient, without the coloring of the rooms, was answered much lower, with

an average score of 3.4. But then the last question, which stated that the color-coding

of the rooms, alongside that of the doors, was necessary as an orientation cue, had an

average score of 4.1. This shows that the combination of the two was a good choice

of an orientation cue for these test cases. Further research may be done to find other,

maybe more subtle orientation cues for these kinds of virtual environments. One of the

participants did mention that during one of the test tasks, he had only looked at the color-

coding on the doors, and actually thought that the color-coding of the rooms themselves

was removed.

4.3.2 Change and Overlap Detection

Because of the small tracking area, all participants suspected that there had to be some

amount of overlap in the virtual environments. But the question about overlap perception

(”Some rooms seemed to be closer to each other than should be possible.”) was still

answered with a rather low average confidence of 1.6/5 (σ = 1.3). Only one participant

answered this with a higher confidence, but he also mentioned that he had read about

techniques with overlapping spaces before.

This can also be seen in the floor plans each participant drew of the environment.

Only the person that already knew about the use of overlapping spaces, drew a somewhat

realistic map of the environment. This is shown in Figure 4.2c Interestingly enough, he

still thought that the layout of the environment was fixed and never suspected that any

changes had happened during the test. The participant that drew the floor plan in Figure

4.2a did suspect that some rooms were located in more or less the same place. However,

her floor plan does not have any overlaps. Figure 4.2b does show some amount of overlap,

but still underestimated a lot. This again might be because, even though users know

that there has to be some amount of overlap, it is still perceived as a natural-looking

environment as long as users do not pay to much attention to its structure.

In the question about changes in the shape of the environment (”I have seen something

in the virtual world change shape.”), only one of the participants seemed to have noticed

changes in the layout of a corridor with high confidence. All others answered this question

with a score of 0(=”Did not notice or did not happen”). This might suggest that most

users actually do not notice any changes, even in test cases TC1 and TC2, where corridors

were immediately removed when the user entered a room. On the other hand, when a

39

CHAPTER 4. EVALUATION

(a) (b)

(c)

Figure 4.2: Some floor plans drawn by three different test participants. (a) has absolutely

no overlap, (b) does have some overlap, but it is underestimated a lot. (c) is the closest

to something that could actually be generated by Infinite Spaces

40

4.3. PRELIMINARY RESULTS

Q1 Q2 Q3 Q4 Q5 Q6

x 5.1 4.8 5.6 5.2 4.6 5.2

s 0.9 1.2 0.8 0.8 1.0 1.3

Table 4.2: SUS presence scores. Questions are listed in A.1

player does notice the change, it is usually with a high confidence. Further testing is

required to see if this is actually the case.

4.3.3 Subjective Presence

Table 4.2 shows the average scores on the SUS presence questionnaire. A question that

was particularly interesting, is Q5, where users were asked if the virtual environment is

in any way similar to other places in the real world. That question was answered with an

average score of 4.6. This is interesting because the worlds generated by Infinite Spaces

are impossible, so they are definitely unlike the real world. This again suggests that even

though participants knew that they were being redirected, and that rooms had to overlap

with each other, this was not troublesome to them.

41

CHAPTER 4. EVALUATION

42

Chapter 5

Conclusion

This thesis described Infinite Spaces, a system for real walking in an infinite, procedurally

generated virtual environment, while the user stays within the bounds of a tracking area.

This was based on an existing technique, called flexible spaces, first introduced in [28]. The

main contribution of this thesis was to extend flexible spaces to generate a truly infinite

virtual environment.

Because of the Coronavirus pandemic, it was impossible to perform a full user study to

test Infinite Spaces and to compare it to flexible spaces, so only a small pilot study could

be done. The three major test criteria were orientation, detection of changes in corridor

layout, and detection of overlapping parts of the environment. Subjective presence and

the use of orientation cues were investigated shortly as well.

From the pilot study, it appeared that procedural generation probably has little to

no impact on the sense of orientation. Overlaps were almost always suspected, but none

of the participants seemed to find it disturbing. Changes in corridor layout were noticed

in some cases, which suggests that it would indeed be a good idea to keep track of the

last corridor the user has opened, or perhaps even keep a buffer of n corridors alive. The

color-coding of the rooms and the doors, which were used as cues for orientation, did

indeed seem to be sufficient, but some further research may still be done to find other,

more suitable cues for these kinds of virtual environments.

In the following sections, some potential future work is explored. Section 5.1 lists some

ways in which Infinite Spaces may be extended and improved to suit to different use cases.

Section 5.2 discusses some possibilities for further research about virtual environments like

those in Infinite Spaces.

5.1 Extending Infinite Spaces

Though Infinite Spaces is already a quite powerful and flexible system, there may still be

many ways to extend it and make it even more flexible and adapt it to more use cases.

This section explores some potential improvements and extensions.

43

CHAPTER 5. CONCLUSION

5.1.1 Room Types

Currently, Infinite space only supports simple environments consisting of square rooms,

without too much decorations in them. There is a system to assign a type to each room,

but currently this is only used to pick the texture for the room, and to determine whether

it should contain a target object or not. This may easily be extended to control many more

parameters, like size and shape of the room, objects inside the room, and so on. In some

applications, like games, this may even add functionality to rooms. For example, think

of a roguelike dungeon game with treasure rooms, enemy rooms and a boss room. More

variation between different types of rooms may also facilitate orientation in the virtual

environment, and distract users even more from the impossibilities in the structure of the

environment.

One of the test participants also mentioned that he found it hard to recall each in-

dividual room as a distinct space, because all rooms looked more or less the same. This

may suggest that distinct room types may also have an influence on the subjective sense

of presence.

5.1.2 Graph Generation

Another potential improvement, related to the room types discussed above, lies in the fact

that currently, all virtual environments generated by Infinite Spaces have a tree structure.

this means that from any room in the environment, one can only go back to its parent

room, or go further to a room that was not reachable from any other previous room. It

was implemented this way because it seemed easier at the time. But for most applications,

it may be better to also allow loops in the environment graph.

To improve this even more, environment graph generation may be controlled by some

procedural graph generation method discussed in Section 2.2. For example, a generative

grammar may be used to control which types of rooms can be connected to each other

and which can not, similar to how one would not expect a kitchen to be connected to a

bedroom, but rather to a dining room or a pantry. Graph generation methods may also

generate complete substructures of many different rooms at once instead of just one room

at a time. Something like this could result in more coherent environments being generated.

5.1.3 Outdoor Environments

Although Infinite spaces seems to be limited to indoor environments, there may still be

ways to simulate outdoor environments as well. For example, cube maps may be used

to make rooms look like larger open spaces. Of course there must be some way to limit

the movement of the user to stay within the actual rooms and corridors. Also, enough

occluding elements must be kept in place to not expose the techniques used by Infinite

Spaces. A simple example might be a hedge maze where intersections and larger open

spaces are represented by rooms. The top of the maze might be open to the sky, which is

rendered by using a cube map around the player.

44

5.2. FURTHER TESTING

5.1.4 Elevation

The idea of adding elevation to virtual environments was also shortly mentioned in [30].

The authors suggested that this might be implemented by replacing a corridor by some-

thing like a haptic elevator simulation. This would be especially useful if the tracking area

is very small, because adding multiple levels can allow for a denser environment layout.

5.1.5 Combining with Other Techniques

As mentioned several times, Infinite Spaces is based on an existing technique, called flex-

ible spaces. In [30], the authors of flexible spaces mentioned that this may be combined

with techniques for redirected walking that manipulate the player’s motion. For example,

curved corridors may be generated with splines or bezier curves, and then bending gains

may be added as the user is walking through such corridors.

5.2 Further Testing

Apart from the fact that there were not enough test participants, some additional testing

may be useful for Infinite Spaces. For example, as was already mentioned in the previ-

ous section, more variation and customization between different types of rooms may also

facilitate orientation in the virtual environment, and distract users even more from the

impossibilities in the structure of the environment. So naturally, this would be a good test

case as well.

5.2.1 Tracking Area Size

Another drawback of the user study was the limited size of the tracking area. The demo

room at the EDM allowed for a tracking area of only approximately 4 × 4 meters, while

the initial tests for flexible spaces were done in a much larger tracking area [28]. In fact,

all test participants noticed that rooms in Infinite Spaces overlapped with each other,

even though none of them found it disturbing. However, earlier studies [29] have shown

that overlaps are detected less easily with longer, more complex corridors. Therefore, a

larger tracking area may have the same effect because corridors can then also be longer

and more complex. An interesting question would thus be to what extent the size of the

virtual rooms and the physical tracking area affects the perception of overlap and changes

in a virtual environment.

On the other hand, although still not very large, typical end users do not have a free

space of 4× 4 meters in their living room. So another interesting research question might

be how small a tracking area can be for Infinite Spaces to work well.

5.2.2 Orientation Cues

In the current implementation of Infinite Spaces and during the user study, users oriented

themselves by looking at the colors of the rooms and the doors leading to them. This is

necessary because the structure of the environment itself cannot be used for orientation,

45

CHAPTER 5. CONCLUSION

since it is constantly changing. From the user study, it seemed that this color-coding was

sufficient as a cue for orientation. However, it is hard to find enough distinct colors for

each room, especially in an infinite environment, and it is probably not always desirable

to place bright-colored objects around a virtual environment in a real-world application.

An example of a different orientation cue may be to display room numbers on each door.

Or maybe with more distinct room types, the layout of each room may even be a cue in

itself, so it may not even be necessary to add additional cues. Though orientation cues

are beyond the scope of this thesis, they were explored shortly in the user study, and may

be an interesting subject for future research on this kind of virtual environments.

46

Appendix A

Questionnaire

During the user study, participants were asked to answer the following questions after each

test case.

A.1 SUS Presence Questionnaire

The SUS (Slater-Usoh-Steed) questionnaire [21] is used to let users rate their sense of

subjective presence in a virtual environment.

1. Please rate your sense of being in the virtual environment, on the following scale

from 1 to 7, where 7 represents your normal experience of being in a place.

I had a sense of ”being there” in the virtual environment:

(1) Not at all. (7) Very much.

2. To what extent were there times during the experience when the virtual environment

was the reality for you?

There were times during the experience when the virtual environment was the reality

for me...

(1) At no time. (7) Almost all the time.

3. When you think back about your experience, do you think of the virtual environment

more as images that you saw, or more as somewhere that you visited? The virtual

environment seems to me to be more like...

(1) Images that I saw. (7) Somewhere that I visited.

4. During the time of the experience, which was strongest on the whole, your sense of

being in the virtual environment, or of being elsewhere?

I had a stronger sense of...

(1) Being elsewhere. (7) Being in the virtual environment.

5. Consider your memory of being in the virtual environment. How similar in terms of

the structure of the memory is this to the structure of the memory of other places

you have been today? By ”structure of the memory”, consider things like the extent

to which you have a visual memory of the virtual environment, whether that memory

47

APPENDIX A. QUESTIONNAIRE

is in color, the extent to which the memory seems vivid or realistic, its size, location

in your imagination, the extent to which it is panoramic in your imagination, and

other such structural elements.

I think of the virtual environment as a place in a way similar to other places that

I’ve been today...

(1) Not at all. (7) Very much so.

6. During the time of the experience, did you often think to yourself that you were

actually in the virtual environment?

During the experience I often thought that I was really standing in the virtual

environment...

(1) Not very often. (7) Very much so.

A.2 Change and overlap detection

Participants were asked to rate a number of statements about things they may have noticed

in the environment, from 0 (=”did not notice or did not happen”) to 5 (”very obvious”).

Some of these quetions are actually decoy questions to distract the participants from the

actual goal of the study. Those are marked in cursive.

1. I have seen something in the virtual world change shape.

2. I have seen something in the virtual world change size.

3. I have seen something in the virtual world move.

4. It felt as if I was being turned around all the time.

5. It felt as if the virtual world was turning around me.

6. Some rooms seemed to be larger than should be possible.

7. Some rooms seemed to be closer to each other than should be possible.

8. Some corridors seemed to be longer than should be possible.

A.3 Orientation

To examine their sense of orientation, participants were first asked to rate they thought

they were able to orient themselves in the environment, on a scale from 1 (=”very easy”)

to 5 (=”very hard”). Again, decoy questions are marked in cursive

1. How difficult did you find it to orient yourself while searching for the objects?

2. How difficult did you find it to find your way back to the starting room?

3. How difficult did you find it to find enough objects?

48

A.3. ORIENTATION

Finally, users were asked to rate a number of statements about the usefulness of the

color-coding in the environment, on a scale from 1 (=”totally disagree”) to 5(”=totally

agree”)

1. The color-coding of the doors was useful to find my way in the environment.

2. The color-coding of the doors was sufficient to find my way in the environment.

3. The color-coding of the pillars, along with the doors, was useful to find my way in

the environment.

4. The color-coding of the pillars, along with the doors, was sufficient to find my way

in the environment.

49

APPENDIX A. QUESTIONNAIRE

50

Bibliography

[1] J. M. Airey. Increasing update rates in the building walkthrough system with auto-

matic model-space subdivision and potentially visible set calculations. 1990.

[2] B. Bolte et al. Subliminal reorientation and repositioning in immersive virtual envi-

ronments using saccadic suppression. 2015.

[3] G. Bruder et al. Arch-explore: A natural user interface for immersive architectural

walkthroughs. 2009.

[4] S. Chance et al. Locomotion mode affects the updating of objects encountered during

travel: The contribution of vestibular and proprioceptive inputs to path integration

of painting and sculpture. 1998.

[5] A. Dahl and L. Rinde. Procedural generation of indoor environments. 2008.

[6] H. Ehrig et al. Introduction to graph grammars with applications to semantic net-

works. 1992.

[7] T. Grechkin. Towards context-sensitive reorientation for real walking in virtual reality.

2015.

[8] E. Hahn et al. Persistent realtime building interior generation. 2006.

[9] V. Interrante et al. Seven league boots: A new metaphor for augmented locomotion

through moderately large scale immersive virtual environments. 2007.

[10] D. Luebke and C. Georges. Portals and mirrors: Simple, fast evaluation of potentially

visible sets. 1995.

[11] J. Martin. Algorithmic beauty of buildings: Methods for procedural building gener-

ation. 2005.

[12] P. Müller et al. Procedural modeling of buildings. 2006.

[13] C. T. Neth et al. Velocity-dependent dynamic curvature gain for redirected walking.

2012.

[14] N. Nilsson et al. 15 years of research on redirected walking in immersive virtual

environments. 2018.

[15] Y. I. H. Parish and P. Müller. Procedural modeling of cities. 2001.

51

BIBLIOGRAPHY

[16] K. Perlin. An image synthesizer. 1985.

[17] K. Perlin. Noise hardware. 2001.

[18] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants. 1991.

[19] S. Razzaque. Redirected walking. 2001.

[20] D. Simons and D. Levin. Change blindness. 1997.

[21] M. Slater et al. Using presence questionnaires in reality. 2000.

[22] F. Steinicke et al. Does a gradual transition to the virtual world increase presence?

2009.

[23] G. Stiny et al. Shape grammars and the generative specification of painting and

sculpture. 1971.

[24] E. A. Suma et al. Leveraging change blindness for redirection in virtual environments.

2011.

[25] E. A. Suma et al. Impossible spaces: Maximizing natural walking in virtual environ-

ments with self-overlapping architecture. 2012.

[26] S. J. Teller. Visibility computation in densely occluded polyhedral environments.

1990.

[27] M. Usoh et al. Walking > walking-in-place > flying, in virtual environments. 1999.

[28] K. Vasylevska and H. Kaufmann. Flexible spaces: Dynamic layout generation for

infinite walking in virtual environments. 2013.

[29] K. Vasylevska and H. Kaufmann. Influence of path complexity on spatial overlap

perception in virtual environments. 2015.

[30] K. Vasylevska and H. Kaufmann. Compressing vr: Fitting large virtual environments

within limited physical space. 2017.

[31] B. Williams et al. Exploring large virtual environments with an hmd when physical

space is limited. 2007.

52

	Introduction
	Background: Virtual Reality
	Creating Virtual Environments
	Infinite Worlds in Virtual Reality

	Goal
	Applications
	Requirements

	Outline

	Related work
	Redirected Walking
	Manipulation of self-motion
	Manipulation of virtual space

	Procedural Content Generation
	Rendering Impossible Spaces

	Infinite Spaces
	Environment Generation
	Generating Rooms and Corridors
	Removing Rooms and Corridors

	Framework
	Rendering Portals
	Object Picking
	OpenVR

	Implementation
	Placement in virtual space
	Minimap

	Evaluation
	Evaluation Criteria
	Orientation
	Change detection
	Overlap detection

	Test setup
	Experimental Design
	Participants
	Apparatus
	Procedure

	Preliminary Results
	Orientation
	Change and Overlap Detection
	Subjective Presence

	Conclusion
	Extending Infinite Spaces
	Room Types
	Graph Generation
	Outdoor Environments
	Elevation
	Combining with Other Techniques

	Further Testing
	Tracking Area Size
	Orientation Cues

	Questionnaire
	SUS Presence Questionnaire
	Change and overlap detection
	Orientation

