
Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Analyzing the expressiveness of code querying and code mining through logic

Jasper Steegmans
Scriptie ingediend tot het behalen van de graad van master in de informatica

2020
2021

PROMOTOR :

Prof. dr. Jan VAN DEN BUSSCHE

BEGELEIDER :

Prof. dr. Stijn VANSUMMEREN

De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee
universiteiten in twee landen: de Universiteit Hasselt en Maastricht University.



Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Analyzing the expressiveness of code querying and code mining through logic

Jasper Steegmans
Scriptie ingediend tot het behalen van de graad van master in de informatica

PROMOTOR :

Prof. dr. Jan VAN DEN BUSSCHE

BEGELEIDER :

Prof. dr. Stijn VANSUMMEREN





Contents

1 Introduction 9
1.1 Code Pattern Mining . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Query Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Finite Model Theory 13
2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Building blocks . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Relationships . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4 Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.5 Non-definability . . . . . . . . . . . . . . . . . . . . . . . 23
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Nederlandse Samenvatting

In de informatica-industrie worden er gigantische hoeveelheden code geschreven.
Zo had Google bijvoorbeeld in 2015 ongeveer twee miljard lijnen aan code over
al hun producten heen. Met zulke grote hoeveelheden code, is het moeilijk
om een overzicht te hebben en geen enorm grote hoeveelheden gedupliceerde
code te hebben. Hiervoor werden er binnen software-engineering verschillende
patronen ontwikkeld. Deze patronen zorgen er voor dat de code op zo’n manier
gestructureerd wordt dat ze gemakkelijk hergebruikt kon worden. Echter, niet
iedere programmeur weet deze patronen goed toe te passen of kent ze volledig
niet. Daardoor is het een interessante oefening om door een stuk bestaande
code te gaan en te onderzoeken welke patronen er bestaan. Dit noemt men
code patronen minen. Dit kan dan aantonen dat bepaalde patronen verkeerd
toegepast worden of dat er code is die vaak voor komt en die beter in een eigen
functie kan gestopt worden.

In code patronen minen beschouwen we een stuk code eigenlijk als data. Dit
is in tegenstelling tot het normale geval, waar we code beschouwen als iets
wat moet worden uitgevoerd. We zouden ons dan ook de vraag kunnen stellen
of we dit niet in een database kunnen doen. Een database er namelijk voor
gemaakt om efficiënt vragen te kunnen beantwoorden. Als we de code kunnen
opslaan als data in een database is het misschien mogelijk om hier vragen over
te stellen. Het is misschien zelfs mogelijk om volledige algoritmes die aan code
patronen minen doen te schrijven als een query in zo’n database. Als dat het
geval is, zou dat er toe leiden dat er gemakkelijk nieuwe soorten algoritmes die
aan code patronen minen doen, kunnen worden bedacht en getest. Ook zou
het veel gemakkelijker worden om vragen te stellen over de gevonden patronen
om zo enkel de nuttigste patronen terug te geven. Daarom zullen we dus een
querytaal ontwikkelen over een speciaal soort database en aantonen wat wel en
niet mogelijk is met deze query taal een subsets hiervan.

Eindige Model Theorie

Om de kunnen bewijzen dat een query niet kan worden uitgedrukt in een
query taal, kunnen de resultaten van de eindige model theorie gebruikt worden.
Aantonen dat iets kan uitgedrukt worden is gemakkelijk, namelijk we geven
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simpelweg de formule die de query uitdrukt. Aantonen dat iets niet kan wor-
den uitgedrukt is moeilijker. Typisch moeten we hiervoor aannemen dat iets
uitgedrukt kan worden, dan een eigenschap gebruiken en dan leidt de toepas-
sing van die eigenschap tot een contradictie. Uit deze contradictie kunnen we
dan afleiden dat onze aanname dat de query kan worden uitgedrukt niet juist
is. Maar om tot zo’n contradictie te komen hebben we eerst de eigenschappen
nodig. Deze eigenschappen kunnen we vinden in de eindige model theorie voor
logica’s. Uiteraard moeten we dan onze query talen nog omzetten naar logica’s
om deze te kunnen gebruiken, maar hier komen we later op terug.

We beginnen in de eindige model theorie met een woordenschat en een struc-
tuur over die woordenschat te definiëren. Dit zijn de elementen waarover we
een formule zullen evalueren. We introduceren ook eindige structuren en classen
van structuren. Een klasse van een structuur is simpelweg een set van struc-
turen die gesloten is onder isomorphismen. Daarna definiëren we een query
over een klasse van structuren. Vervolgens introduceren we de verschillende
relaties die structuren en klassen kunnen hebben met elkaar. Zo introduceren
we bijvoorbeeld isomorphismen, een substructuur zijn van een structuur en een
subklasse zijn van een klasse. Een laatste relatie die we introduceren is het
partieel isomorfisme tussen twee structuren. Vervolgens definiëren we enkele ei-
genschappen zoals gesloten zijn onder isomorphismen en bewaard blijven onder
isomorphismen. Hierna gaan we over tot de logica’s. We definiëren een logica
en het concept dat een query L-definieerbaar is voor een bepaalde logica L.
Vervolgens definiëren we enkele belangrijke logica’s, namelijk de propositionele
logica, eerste-orde logica en tweede-orde logica. We introduceren ook verschil-
lende velden binnen model theorie. Deze velden zijn de klassieke model theorie,
onderzoek naar lokale definieerbaarheid en de eindige model theorie. We doen
dit omdat alle concepten die we tot nu toe gëıntroduceerd hebben allemaal van
toepassing zijn op heel de model theorie. We geven ook enkele subsets van de
tweede-orde logica, namelijk de universele en de existentiële tweede orde logica
en hun monadische tegenhangers.

Vervolgens gaan we over tot het introduceren van het concept van onde-
finieerbaarheid en geven we enkele tools die hiervoor gebruikt worden. We
geven de compactheidsstelling en de methode van ultraproducten als de eigen-
schappen waarmee we contradicties kunnen bereiken. Hierna beschrijven we
een Ehrenfeucht-Fräıssé spel en wat een winnende strategie is voor zo’n game.
Vervolgens introduceren we de equivalentie relaties tussen structuren over een-
zelfde woordenschat, waarbij de Duplicator een winnende strategie heeft voor
het r ronden Ehrenfeucht-Fräıssé spel. We introduceren zo een relatie dus voor
iedere r. Hierna introduceren we kwantor rang voor een formule in de eerste-
orde logica. Met deze kwantor rang definiëren we een tweede equivalentie relatie
tussen twee structuren. Deze keer zijn de twee structuren equivalent als ze vol-
doen aan dezelfde set van eerste-orde zinnen. Vervolgens geven we dat deze twee
equivalentie relaties equivalent zijn. Hiermee geven we dus een link tussen dat
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een query kan worden uitgedrukt in de eerste-orde logica en dat de Duplicator
een winnende strategie heeft voor een Ehrenfeucht-Fräıssé spel. Als een formule
bestaat van kwantor rang r die een query uitdrukt, dan moeten alle structu-
ren waar de Duplicator een r ronden Ehrenfeucht-Fräıssé spel wint hetzelfde
antwoord geven.

Dit laatste resultaat kunnen we dan gebruiken om aan te tonen dat een query
niet kan worden uitgedrukt in eerste-orde logica. We doen dit door te bewijzen
dat voor iedere r we een set van twee structuren kunnen bedenken waarop
de query waar zou moeten zijn in de ene structuur en onwaar in de andere
structuur. We tonen dan aan dat de Duplicator dan altijd kan winnen tussen
deze twee structuren in r stappen. Dit leidt dan tot een contradictie, aangezien
volgens onze equivalentie zouden we hetzelfde resultaat verwachten maar uit
de query weten we dat het een verschillend resultaat is. Dit geeft dus aan dat
we de query niet in een eerste-orde formule met een kwantor rang r kunnen
uitdrukken. Als we dit voor iedere r kunnen bewijzen, dan bewijzen we dat er
geen enkele eerste-orde formule is die de query kan uitdrukken.

Code Patronen Minen

Nu we de benodigde tools hebben besproken kunnen we over gaan tot het be-
kijken van het domein waar we een query taal voor willen schrijven. In code
patronen minen zijn er algoritmes die werken op stringen en substringen. We
beginnen met te argumenteren dat een abstracte syntax boom meer geschikt is
om patronen te minen. Dit is omdat het ook de relaties tussen de onderdelen
van de code bevat en dus meer informatie encodeert dan enkel de karakters van
een string. Hierna definiëren we de gelabelde geordende boom en een subboom
in zo’n boom. Vervolgens definiëren we een patroon boom, wat een boom is die
we kunnen mappen naar een subboom van een echte abstract syntax boom.

Aangezien we altijd patronen minen die gelijkaardig zijn en regelmatig voor-
komen, moeten we definiëren wanneer twee patronen gelijkaardig zijn. Een
eerste definitie is patroon boom gelijkaardigheid, waarbij twee subbomen een-
zelfde patroon boom hebben. Vervolgens definiëren we API set gelijkaardigheid,
waarbij we twee stukken code als gelijkaardig beschouwen indien ze dezelfde set
van functies aanroepen. Gelijkaardig hieraan definiëren we API sequentie gelijk-
heid, waar we twee stukken code als gelijkaardig beschouwen indien ze dezelfde
set van mogelijke sequenties van functie aanroepen hebben. Tot slot beschou-
wen we ook nog gelijkaardigheden die komen na een vertaling naar een andere
tussenliggende taal. Hierbij vertalen we onze abstract syntax boom naar een
abstract syntax boom in een andere taal en kijken dan of de vertaalde patronen
gelijkaardig zijn daar.

Vervolgens bekijken we een aantal verschillende code patroon mining algorit-
mes. We beginnen met het FREQT algoritme dat in het algemeen op bomen
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werkt. Dit algoritme zoekt alle subbomen die een minimale frequentie bereiken.
Het gebruikt patroon boom gelijkaardigheid en werkt door voor iedere frequente
patroon boom, een uitbreiding te maken op diens meest rechtse tak. Daarna
wordt er gecontroleerd of deze uitbreiding nog steeds frequent is. We gaan ook
in op een aantal optimalisaties van het algoritme. Vervolgens beschouwen we
FREQTALS wat een uitbreiding is op het FREQT algoritme dat meer gespecia-
liseerd is om te werken met abstracte syntax bomen. In FREQTALS voegen we
een groot aantal extra beperkingen toe. Deze beperkingen zorgen er voor dat er
meer mogelijkheid is tot optimalisaties en dat een menselijke eindgebruiker de
resultaten nuttiger vind. Een van de problemen met het FREQT algoritme is
namelijk dat het elk paar patronen dat gelijkaardig is terug geeft. Dit is natuur-
lijk overweldigend voor een menselijke eindgebruiken. Een andere interessante
toevoeging van FREQTALS is dat het met de resultaten op de beperkte set
resultaten ook nog probeert deze zo hard mogelijk uit te breiden zonder dat het
minder vaak voor komt in de abstracte syntax boom.

Hierna introduceren we een aantal mogelijke algoritmen gebaseerd op het
gebruik van gelijkaardigheid met een tussenliggende taal. We geven hier twee
verschillende aanpakken. In de eerste aanpak vertalen we eerste de abstracte
syntax boom en passen we daarna een van de voorgaande algoritmen toe. Dit
heeft een aantal problemen, zoals de aanpassing van wat frequente bomen zijn,
aangezien meerdere gelijkaardige bomen mogelijks op eenzelfde subboom worden
gemapt in de vertaling. Een ander probleem is dat het mogelijk moeilijk is om
de gevonden frequente patronen terug te vertalen naar patronen in de originele
taal. Dit kan wel mogelijk verholpen worden door extra data in de vertaalde
boom bij te houden. Een tweede mogelijke aanpak is om patronen te zoeken in
de originele abstracte syntax boom, maar om hun vertaalde boom te gebruiken
om te bepalen of ze frequent zijn en wat hun grootte is. Dit leidt dan weer
tot zijn eigen set van complicaties aangezien we nu moeten een vertaling doen
gedurende het minen. Ook zitten we met het probleem van bomen waarvan er
na de vertaling een aantal nodes zijn die niet vertaald zijn. Dit lossen we op
door slim te bepalen wanneer een boom altijd losse nodes zal blijven hebben in
zijn vertaling en deze bomen niet meer te beschouwen.

Relationele Meta-Algebra

Nu we code patronen mining algoritmes hebben bekeken, zullen we database
query talen bekijken. We doen dit zodat we ons kunnen baseren of laten inspi-
reren door deze talen. Een aantal van de talen die we zullen beschouwen kunnen
zelf hun eigen query’s queryen, maar niet in het algemeen code.

De eerste taal die we bekijken is de Meta-SQL. In deze taal voegt opgeslagen
query’s als waarden in een XML kolom toe en de XML transformatie-taal XSLT.
De query’s worden opgeslagen als een XML encodering van hun abstracte syntax

4



boom. Vervolgens kunnen we met XML variabelen en de XSLT taal deze XML-
documenten aanpassen. Tot slot kunnen we de taal ook evalueren met de ’EVAL’
en ’UEVAL’ functies. Deze taal bewijst zichzelf enorm krachtig, vooral dankzij
de toevoeging van XSLT. Dit heeft tot gevolg dat de taal Turing-compleet is en
dat het dus ook niet langer gegarandeerd is dat we een oplossing zullen krijgen
voor iedere query. Het voordeel langs de andere kant is dat dit zeer weinig
extra werk vergt om te implementeren, aangezien er al onderzocht is hoe XSLT
kan geoptimaliseerd worden. Op het moment dat Meta-SQL werd voorgesteld,
bestond SQL/XML nog niet. We zouden de Meta-SQL dus kunnen vervangen
door SQL/XML met de ’EVAL’ en ’UEVAL’ functies toegevoegd.

De volgende twee talen die we bespreken zijn de bekende relationele algebra
en relationele calculus. We definiëren hiervoor hun operatoren en een database
schema waarover ze worden geëvalueerd. We geven aan dat de relationele al-
gebra de basis vormt voor SQL, aangezien ze alle SQL query’s kan uitdrukken
die enkel de ’SELECT’, ’FROM’ en ’WHERE’ clauses en subquery’s gebruiken.
Voor de relationele calculus definiëren we ook nog een veilige variant, die equiva-
lent is met de relationele algebra. De relationele calculus is syntactisch beperkt
en staat ons dus toe om te bewijzen dat iets niet kan worden uitgedrukt in de
relationele algebra. We doen dit door te bewijzen dat iets niet kan in eerste-
orde logica, waarvan de veilige relationele calculus een subset is. Aangezien de
veilige relationele calculus het dan niet kan uitdrukken en de relationele algebra
hiermee equivalent is, kan deze het ook niet uitdrukken.

Vervolgens gaan we over tot de relationele meta-algebra. Dit is een taal ge-
baseerd op de relationele algebra die operators toevoegt om om te kunnen gaan
met opgeslagen query’s. Het voegt ook een type systeem toe, waarbij iedere
kolom een type heeft dat de ariteit van de opgeslagen query voorstelt. Ook
maakt het een distinctie tussen een meta-niveau schema, waar de relaties relati-
onele algebra expressie kunnen bevatten en een object-niveau schema waar dit
niet kan. Vervolgens bekijken we hoe de operators van de relationele algebra
zijn aangepast, zodat ze logisch en consistent zijn met het nieuwe typesysteem.
Daarna bekijken we de herschrijfregels die gëıntroduceerd worden om ons toe te
staan de relationele algebra expressie aan te passen. Dit gebeurt samen met de
’rewrite’ operatoren die voor de waarden in een bepaalde kolom een herschrijfre-
gel een keer of op alle mogelijke plaatsen in de expressie toepast. Vervolgens is
er ook de ’extract’ operator die uit een bepaalde kolom alle subexpressie van een
bepaalde ariteit haalt. Ook voegt de relationele meta-algebra de ’wrap’ operator
die ons toestaat een constante unaire relatie te maken die enkel een bepaalde
data waarde bevat. Vervolgens bespreken we nog de ’eval’ operator die de relati-
onele algebra expressie in een bepaalde kolom uitvoert en de resultaten bijvoegt.
Tot slot maken we ook de vergelijking met de Meta-SQL, waarin we vaststellen
dat de Meta-SQL veel krachtiger is. Ook stellen we vast dat beide querytalen
een gelijkaardig doel willen bereiken, maar dat de relationele meta-algebra naar
een veel conservatievere route naartoe neemt.
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Als laatste querytaal bespreken we de relationele meta-caclulus. Dit is de
logische tegenhanger van de relationele meta-algebra en is gebaseerd op de re-
lationele calculus. Ook hier introduceren we een type systeem op de variabelen,
analoog aan het systeem in de relationele meta-algebra. Ook voor de herschrijf-
regels definiëren we een equivalent in de relationele meta-calculus waarbij we
toestaan dat er expressie variabelen worden gebruikt in het beschrijven van
bomen. Vervolgens vertalen we de verschillende operatoren van de relationele
meta-algebra in de relationele meta-calculus met behulp van nieuwe predica-
ten. Iedere operator heeft een predicaat met variabelen per input waarde en
een variabele voor de output waarde. Ook hier definiëren we een veilige variant
die equivalent is met de relationele meta-algebra. Deze veilige relationele meta-
calculus heeft weer dezelfde voordelen die we hadden bij de veilige relationele
calculus.

Vergelijking tussen aanpakken

Nu we zowel de code patroon mining algoritmes, als de database query talen
hebben beschouwd, gaan we de twee aanpakken vergelijken en proberen te vere-
nigen. We zullen dit doen door een serie van query’s te beschouwen die typische
vragen voorstellen in een systeem waar aan code patroon minen wordt gedaan.
We gaan in het begin uit dat een lijst met alle gelijkaardige patronen beschikbaar
is.

De eerste query die we zullen beschouwen is een query die alle patronen selec-
teert die meer dan een vast aantal keren voorkomt. Deze query is dezelfde vraag
die FREQT stelt voor een gegeven abstract syntax boom. We kunnen van deze
query gemakkelijk aantonen dat deze uitdrukbaar is in de relationele calculus
en dus ook de relationele algebra. Dit steunt echter wel op onze assumptie dat
er een relatie beschikbaar is die ons alle gelijkaardige paren geeft.

Vervolgens gaan we over naar een query waarbij we over paren van patronen
lopen en alle patronen willen waarbij het eerste patronen meer frequent is dan
het tweede. Hier kunnen we dankzij een Ehrenfeucht-Fräıssé bewijzen dat dit
niet kan worden uitgedrukt in de relationele calculus en dus de relationele alge-
bra. In een poging dit probleem op te lossen introduceren we onze eigen algebra:
de relationele boom-algabra. In deze algebra voegen we een nieuw soort kolom
toe die een boom kan bevatten en voegen we een aantal nieuwe operatoren toe.
Deze operatoren zijn de ’match’ operator, die controleert dat de wortel knop
een bepaald label heeft, en de ’extract’ operator die het n-de kind van de wortel
knoop geeft. We voegen nog een derde operator toe, de ’construct’ operator,
die ons toestaat om een nieuwe boom met een aantal kinderen van de huidige
relatie te maken, met een nieuwe wortel knoop met een gegeven label. We wer-
ken ook varianten uit met een typesysteem, naar analogie met de relationele
meta-algebra. We werken twee zo’n algebra’s uit: een eerste gebaseerd op het
aantal kinderen onder de wortel knoop en een tweede gebaseerd op de regels van
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een context-vrije grammatica. We tonen ook aan dat deze getypeerde varianten
onder bepaalde beperkingen equivalent zijn.

Vervolgens definiëren we ook nog een logische tegenhanger van de relationele
boom-algebra: de relationele boom-calculus. Hier gebruiken we opnieuw een
set van proposities om iedere operator voor te stellen, waarbij de variabelen de
input variabelen van de operator en de output zijn. We staan ook toe dat de
existentiële en universele kwantor variabelen bevatten die bomen voorstellen.
Ook breiden we equivalentie relatie uit zodat deze kan controleren dat bomen
equivalent zijn. Hierna tonen we aan dat de relationele boom calculus nog altijd
niet sterk genoeg is om onze tweede query uit te drukken.

Om te proberen de tweede query uit te drukken, voegen we nog een operator
toe. Deze operator is de ’subtree’ operator, waarbij we rijen filteren zodat de
voor de overgebleven rijen de bomen van een gegeven kolom een subboom zijn
van de bomen van een andere gegeven kolom. Deze uitbreiding noemen we
de relationele subboom-algebra. We definiëren voor deze algebra ook een nieuwe
calculus, waarbij we en predicaat toevoegen dat waar is als de boom in de eerste
variabele een subboom is van de boom in de tweede variabele. We noemen deze
nieuwe calculus de relationele subboom-calculus.

Vervolgens tonen we aan dat de relationele subboom-calculus inderdaad sterk
genoeg is om onze tweede query uit te drukken. We doen dit door een aantal
vertalingen te definiëren die ons toestaan om tweede-orde logica te gebruiken.
Vervolgens definiëren we in tweede-orde logica de formule voor onze tweede
query. De geschreven vertalingen zijn zo krachtig dat we zo ook voor andere
bewijzen kunnen gebruiken.

Tot dit punt hebben we de assumptie gemaakt dat er een relatie beschikbaar
was die alle paren van gelijkaardige patronen bevatte. Uiteraard is dit een
heel grote assumptie, aangezien een enorm groot deel van de tijd van een code
patroon mining algoritme besteed wordt aan het vinden van deze paren. Het
zou dus handig zijn als we deze ook konden uitdrukken in onze query taal. We
bewijzen dat we ook gelijkaardigheid kunnen schrijven als een formule in de
relationele subboom calculus. Hier steunen we, net zoals bij de tweede query,
hard op de kracht van de ’subtree’ operator. We lossen dit bewijs op door paden
te definiëren die van de wortel van de boom vertrekt en naar de twee gelijkaardige
patronen loopt. De reden dat we dit moeten doen is dat we niet rechtstreeks
uit de ’subtree’ operator kunnen bepalen wat de locatie is van de subboom in
de grotere boom. Hiermee bewijzen we dus dat patroon boom gelijkaardigheid
kan worden uitgedrukt in de relationele subboom-algebra. Dit laat ons dan toe
om een intüıtieve beschrijving te geven van hoe FREQT en FREQTALS zouden
kunnen worden uitgedrukt in de relationele subboom-algebra.
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Na de patroon boom gelijkaardigheid te hebben uitgedrukt, kunnen we ons
ook afvragen of we andere soorten gelijkaardigheid kunnen uitdrukken. Voor
de API set en API sequentie gelijkaardigheid geven we twee intüıtieve manieren
om het probleem aan te pakken, waarvan we denken dat het tot een oplossing
zal leiden. Voor de gelijkaardigheden gebaseerd op een tussenliggende taal con-
cluderen we dat we te weinig uitdrukkingskracht hebben. Hiervoor zouden we
een tegenhanger moeten hebben van de ’rewrite’ operatoren van de relationele
meta-calculus. Het is dus zeer waarschijnlijk dat dit niet uit te drukken is in de
relationele subboom algebra.

Tot slot vergelijken we de relationele subboom algebra met de relationele
meta-calculus en algebra en met Meta-SQL. Voor de relationele algebra conclu-
deren we dat, ondanks dat ze op elkaar lijken, ze elkaars operatoren niet kunnen
uitdrukken. De relationele meta-algebra heeft bijvoorbeeld de ’rewrite’ operato-
ren, die waarschijnlijk niet kunnen worden uitgedrukt in de relationele subboom
algebra. Bovendien verliezen we in de relationele meta-algebra het concept van
ariteit van een relationele algebra expressie. Voor Meta-SQL blijft de conclu-
sie gelijkaardig aan de vergelijking tussen de relationele algebra en Meta-SQL.
Ook hier zijn ze sterk gebaseerd op hetzelfde idee, aangezien ze alle twee hun
query’s opslaan in een boomstructuur. Opnieuw is hier XSLT veel krachtiger
dan de relationele subboom-algebra. Ook heeft de relationele subboom-algebra
geen ’eval’ operator, aangezien het ontworpen is om code te queryen en niet
relationele algebra expressies.
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Chapter 1

Introduction

In the IT industry developers write many lines of code. As an example, the single
repository Google used in 2015 contained about two billion lines of code [PL16].
It is not unlikely that other tech giants like Facebook, Amazon, Apple and IBM
have a similar amount of lines of code, if not more. As a point reference for how
large some other open source projects are, consider the Linux kernel. The Linux
kernel is one of the largest open source projects and in March 2021 contained
about 28.8 million lines of code, 21.3 million of which were actual code [Lar21].
Between Linux minor versions there is about two months and for version 5.12
there were about 508 000 lines of code added and 312 000 removed. Writing
such a vast quantity of code leaves is with a massive treasure trove of data to
see how people program.

1.1 Code Pattern Mining

In software engineering many patterns and techniques have been developed
to help programmers structure their code so that it can be reused better. These
typically operate at the level of larger blocks of code like classes and methods
and how these interact with each other. Examples of such patters and the
Observer pattern, where one class is defined an observable and then many other
observers can observe the observable. All these observers then get notified when
the state of the observable changes. Here we define what functions two sets of
classes must implement for this to work. However, there are also patterns at
a more detailed level, such as at the code within the function. As an example
consider an array where we call a series of map and filters one after the other
on it. This might be a common operation that returns often in the code and
thus form a pattern at the level of the lines of code being executed.

However, not all patterns are created equal and are equally liked. Some
recurring patterns in code might be the use of the class patterns. For example,
assume we call a lot of similar functions of some ‘Factory’ class, which is a type of
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class in the ‘Builder’ pattern. This means we are using the pattern as intended.
However, if we find a lot of duplicate code where only the variable names are
different, this might be an indication that this code need to be refactored into its
own function which is passed these variables. On top of this, programmers will
often look at previously written code and copy this code and modify it for their
own use cases. This can then lead to bad code patterns propagating through
the codebase without people being aware of them.

On top of this inequality of patterns, not every codebase has people who
define the patterns to be used beforehand and then implement these. As much
as the provided patterns help structure the code and make it more reusable,
not everyone is aware of the patterns or knows how to apply them. On top of
this, if a codebase becomes rather large, it can be difficult to determine what
patterns have been used after the fact. The reason a programmer might want
to do this, is to refactor their code. Say they recently learned about a lot of the
software engineering patterns and want to apply them to their own codebase.
Before they can start applying these patterns, it would be useful to know what
patterns they have unintentionally already been using. This would allow them
to have an overview of what there already is, so they can consider whether these
patterns are applied correctly and where new patterns need to be introduced.

All of these problems could be solved with code pattern mining. In code pat-
tern mining, we give an algorithm a codebase and ask it to find all the code
patterns that occur frequently within it. However, if we simply returned every
frequent pattern, an end-user would be overwhelmed. Thus, we do some filtering
of the output in an attempt to display only the most interesting patterns. Of
course, what is considered interesting and what patterns should be considered
similar varies. As a result, there are many code pattern mining algorithms avail-
able. However, using these algorithms we can address the problems mentioned
earlier. For example, we could mine for patterns to determine what patterns
already exist in a codebase to allow us to introduce new patterns. We could
also use the mined patterns to determine what should be refactored into its own
class or function.

1.2 Query Languages

So far we have been describing algorithms to search through large amounts of
data. However, in databases we already have languages designed to specifically
to efficiently query large amount of data stored in a database. Queries in these
languages are automatically optimized, so that the developer creating them does
not have to worry about optimizing their code. Since in the previous section,
we have already considered code to be data that we can search through, why
not consider storing it in a database and querying it that way. After all, most
data can be represented in a relational database in some way.
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As a result of this logic, there have been different approaches to storing queries
in a special type of relational database. These approaches then also add func-
tionality to the query languages, so they can handle the new type of data.
Typically, they add functions to search through and modify the stored queries.
On top of this, they typically also add an evaluation function which allows them
to execute the stored and modified queries.

An example of such a query language is Meta-SQL. Here we add the XML
datatype and XSLT to SQL to allow us to store and manipulate the stored
queries. We also add an ‘EVAL’ and an ‘UEVAL’ function to allow us to execute
these modified queries. Another such language is the relational meta-algebra.
This is an extension of the relational algebra, that forms the foundation of SQL.
In the relational meta-algebra we add functionality to the relational algebra in
the form of ‘extract’, and ‘rewrite’ operators. We also add a new column type
to store these relational algebra expressions. Finally, the relational algebra also
adds an ‘eval’ operator, which allows us to execute the stored and modified
queries.

Knowing that these query languages exist, the question arises whether they
can also do code pattern mining. This is in fact the question that this thesis
attempts to answer; can we define a query language to do code pattern mining?
To prove that a language can do something we simply need to give an algorithm
for it. However, to prove that a language cannot express something we need
additional theorems that we can use. Typically, we use these theorems and
assume something can be expressed and then with the theorem arrive at a
contradiction, proving that our assumption was wrong. For logical languages,
such as first-order logic, these theorems can be found in finite model theory.

We shall start by first introducing finite model theory and its basic concepts
in Chapter 2. After this we shall introduce the tool that we cannot express
certain things in first-order logic: Ehrenfeucht-Fräıssé games. In Chapter 3
we shall introduce code pattern mining. We do this by first giving some basic
concepts that are used in the similarities and the algorithms. Then we intro-
duce the similarities and finally the algorithms themselves. After this, in the
Chapter 4 we introduce and discuss the different query languages. We first dis-
cuss Meta-SQL, followed by the relational algebra and its logical counterpart
the relational calculus. After these we discuss the relational meta-algebra and
its logical counterpart the relational meta-calculus. We compare between these
different query languages and also discuss important subsets of them. Finally,
in Chapter 5 we finally bring all the pieces of the previous chapters together
and answer the question we set out to answer. We do this by proposing two
queries and checking what query languages can express them. When we can-
not express one of them, we expand the relational algebra with new operators
checking which operators exactly allow us to express this query. Finally, we
also come back to the similarities and discuss how we could implement some of
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them. We then also use this to discuss how we would implement entire code
pattern mining algorithms in our query language. Finally, we compare the query
language we have defined with the other query languages we discussed earlier.
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Chapter 2

Finite Model Theory

This thesis will discuss quite a disparate set of methods to query code. As such,
a considerable amount of time was spent in understanding finite model theory.
This is because finite model theory is the field devoted to understanding and
comparing the expressiveness of logics. This can then typically be used to check
the expressiveness of a logic that is equivalent to a query language. On top of
that it also provides tools to prove that certain queries cannot be expressed,
showing what the limits are of these languages. Initially we will discuss the
basics of finite model theory, such as structures, collections of structures and
some commonly used properties about them. Next we will dive into more detail
with Ehrenfeucht-Fräıssé games, a useful tool for determining that something
cannot be expressed. We will explain what this game is, how it relates to logics
and how it can be used to prove a query cannot be expressed in a given logic.

2.1 Basics

2.1.1 Building blocks

To be able to define anything that could be considered a model, we must first
define what we are defining our model over. This is called the vocabulary.

Definition 2.1.1. A vocabulary is σ = {R1, . . . , Rm, c1, . . . , cs}, where R1, . . . ,
Rm is a set of relation symbols each with their own arity and c1, . . . , cs a set of
constant symbols.

The vocabulary defines the set of relation symbols, their arities and a set
of constants. A vocabulary is similar to a schema in a database: it simply
defines the structure of the database but does not specify the actual data that
the database instance with the given schema will be storing. For example, if
we wish to describe a directed graph with some special node in it, we would
define some vocabulary with a relation symbol N , which is a unary symbol
and contains all the nodes. We would also define a relation symbol E which
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will stand for a binary relation which contains all the edges between pairs of
nodes. Lastly we would introduce some constant s, which will represent some
special node. Note how we have only defined what these relation symbols will
stand for but not their actual values. This would mean we’d have a vocabulary
σ = {N,E, s}. The reason for adding some special node s is that it allows us to
always have a certain reference node, no matter the instance. Other examples
of constants are 0 and 1 in arithmetic, where they are the neutral element for
the + and ∗ operators respectively.

Now that we have a vocabulary we can actually start defining a structure
over the vocabulary. Thus, when we have a structure over a vocabulary σ, it is
called a σ-structure. A structure is created over a given universe which contains
all the elements that can be used to create the structure. If this universe is a
finite universe, we get a finite structure.

Definition 2.1.2. Given a vocabulary σ, a σ-structure A = (A,RA
1 , . . . , R

A
m,

cA1 , . . . , c
A
s ) is a tuple where A is a set called its universe. Each RA

i with
1 ≤ i ≤ m is a relation on A such that arity(RA

i ) = arity(Ri), mapping each Ri
from σ. Each cAj with 1 ≤ j ≤ s is a distinguished element of A mapping each
cj from σ to an actual value.

Definition 2.1.3. A finite structure is a σ-structure with a finite universe.

Creating a structure over a given universe is similar to creating a database
instance over a known schema and the universe is the set of all values you
could give to any column. This would mean that if a relation has an integer
column and a different column which can store characters the universe would
both contain all integer numbers and all characters. A structure then is an
assignment of actual relations, which is a set of tuples, to the relation symbols.
This would be akin to creating a database instance over a given universe. If this
universe is a finite universe, we get a finite structure. This would be similar to
having a database instance where the values come from a limited universe, such
as all integers that can be represented in a 32-bit number. This is exactly why
the study of finite structures, also known as finite model theory is so closely tied
to databases: we commonly work with only a finite universe in databases.

For our example we will create the relations shown in Table 2.1 and assign
sA the value of 1 to create a structure A = (A,NA, EA, sA) that represents
the graph in Figure 2.1. This shows that the universe A has to at least be
{1, 2, 3, 4, 5, 6, 7}, but it could just as easily be the set of all natural numbers
N, or the set of all natural numbers from 1 to 100. For our example we will
assume A = {1, 2, 3, 4, 5, 6, 7} which means that the example is also an example
of a finite structure. If we had chosen N, then we would have had an infinite
structure.

Now that a single structure has been defined, it makes sense to consider a
group of structures. This is called a class of structures. To define this how-
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NA

node
1
2
3
4
5
6
7

EA

start end
1 2
2 1
2 3
3 4
4 1
5 4
5 6

Table 2.1: The relations of an example structure

1 2 3 4 5 6 7

Figure 2.1: A visual representation of the graph represented in the example
structure, with the node represented by s in red

ever, we require isomorphism, which will be explained in more detail in Def-
inition 2.1.6. However, to intuitively understand it, it suffices to know that
when two structures are isomorphic to each other we have a mapping of the
elements of the universe one structure to the elements of the universe of the
other structure and when applied to one structure it gives the other structure.

Definition 2.1.4. A class of σ-structures is a collection C of σ-structures that
is closed under isomorphisms, which means that if A ∈ C and A is isomorphic
to B then B ∈ C.

For our example this would mean that a class C of every structure isomorphic
to A would be an infinite set of structures where for each structure the universe
is a set of 7 items which can be mapped to the universe A and when this mapping
is applied to the relations of this structure, it results in the structure A.

Considering we have a class of structures we might want to extract certain
features from these classes or check if certain properties hold on certain classes.
This is achieved through what is called a query with a given arity.

Definition 2.1.5. Given a class C and k a positive integer, a k-ary query on
C, is a mapping Q with domain C such that Q(A) is a k-ary relation for each
A ∈ C and such that Q is preserved under isomorphisms, which means that if
h : A→ B is an isomorphism with A,B ∈ C then Q(B) = h(Q(A)).

A query can return a range of data types, from a Boolean indicating whether
a given graph is a fully connected graph, to the set of all pairs of nodes from a
given graph that are connected by a path of less than 5. If our query is Boolean
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we can also use it to identify some subclass of the given class by considering a
class of all structures where the query evaluates to either true or false. This
would of course still remain a class since queries are preserved under isomor-
phisms. In Section 2.1.3 we go into more detail why being preserved under
isomorphism is a useful property.

For our example, a query that could be asked is REACHABLE, which is a
unary query described as

R(G) = {a ∈ N | ∃p a path from s to a}

for some structure G over our vocabulary σ. This query executed over our
example structure A, results in {1, 2, 3, 4}. Note that we could have also written
our query to return a set of unary tuples instead of a set of elements. Typically,
in a unary query a set of elements is returned rather than a set of tuples. On
queries of a higher arity however, the query always returns a set of tuples.

2.1.2 Relationships

Now that the basic building blocks of model theory have been laid out, we can
define relationships between these building blocks. Earlier for Definition 2.1.4
we already intuitively explained the concept of isomorphism.

Definition 2.1.6. Given a vocabulary σ, two σ-structure A = (A,RA
1 , . . . , R

A
m,

cA1 , . . . , c
A
s ) and B = (B,RB

1 , . . . , R
B
m, c

B
1 , . . . , c

B
s ) an isomorphism between A

and B is a mapping h : A→ B that

• h is a bijective function, which means it is an injective (one-to-one) and
surjective (onto) function

• for every constant symbol cj ∈ σ with 1 ≤ j ≤ s, h(cAj ) = cBj holds

• for every relation symbol Ri ∈ σ with an arity t, 1 ≤ i ≤ m and for
every t-tuple (a1, . . . , at) over A we have that RA

i (a1, . . . , at) if and only
if RB

i (h(a1), . . . , h(at))

If there exists an isomorphism between A and B, we can also say that A and
B are isomorphic.

Note that because an isomorphism is bijective, it is also invertible, which
means that finding an isomorphism from a structure to a different one also
means finding an isomorphism the other way around. This is also why we
often refer to an isomorphism between two structures, rather than strictly from
one structure to another. An isomorphism is a formal version of saying that
two structures express the same relationships and constants if we look at them
differently. This concept is very useful, since it allows us to easily and formally
state that something must hold for all structures that are similar in some regard,
like the class of all structures that represent a fully connected graph, or that an
operation applied to similar structures should have similar outcomes, as is the
case for queries.
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NB

node
a
b
c
d
e
f
g

EB

start end
a b
b a
b c
c d
d a
e d
e f

Table 2.2: The relations of a structure isomorphic to the running example

For our example a structure B = (B,NB, EB, sB) isomorphic to the running
example structure A is given in Table 2.2. Assume that B = {a, b, c, d, e, f} and
that sB = a. To show that B is isomorphic to A, we must show that there is
a mapping between their universes A and B for which the three requirements
listed in Definition 2.1.6 hold. This mapping h is very easy to find in this case:
h(a) = 1, h(b) = 2, . . . , h(g) = 7. This function is clearly bijective, h(sB) =
h(a) = 1 = sA and an element-wise application of h on NB and EB clearly
results in NA and EA.respectively.

Now that everything required for a structure has been formally defined, we
will define some common relations on structures, starting with the ’subset rela-
tions’ for both structures and classes of structures. For structures this relation
is called a substructure and for classes of structures this is called a subclass.
Note that a method of construction for a subclass was already given earlier for
Definition 2.1.5.

Definition 2.1.7. Given a vocabulary σ, two σ-structure A = (A,RA
1 , . . . , R

A
m,

cA1 , . . . , c
A
s ) and B = (B,RB

1 , . . . , R
B
m, c

B
1 , . . . , c

B
s ), B is a substructure of A if

B ⊆ A and for every RB
i 1 ≤ i ≤ m, RB

i = RA
i ∩ Bt with t the arity of Ri

holds and for every cBj 1 ≤ j ≤ s, cBj = cAj holds. B is called a substructure of
A generated by D, written as B = A � D, if it is a substructure of A and its
universe is B = D ∪ {cA1 , . . . , cAs }

Definition 2.1.8. Given a vocabulary σ, two classes of σ-structures A and B,
B is a subclass of A if B ⊆ A. That is to say that every structure in B must
also appear in A.

Since a subclass is still a class of structures, this means that its structures
still need to be closed under isomorphism, which means that not every subset
of a class of structures is also a subclass of that same class. As for substruc-
tures, this can simply be seen as taking the universe of the structure, removing
some elements of it that are not assigned to constants and then removing all
tuples that contain elements that were removed from the universe. The result-
ing structure is then a substructure of the original structure. In databases this
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NB

node
1
2
3
5

EB

start end
1 2
2 1
2 3

Table 2.3: The relations of an example structure

1 2 3 5

Figure 2.2: A visual representation of the graph of B = A � {1, 2, 3, 5}, with
the node represented by s in red

would mean limiting the values that are allowed to appear in columns and then
removing those rows that contain now invalid values.

For our running example the only subclass we could take are the class C itself,
since clearly it is a class and every structure in it is also in C, and the empty
class ∅ since every structure in it is also part of the class C and the empty class
is clearly a class, since for every structure in it, its isomorphism is also part of
the class. As for substructures, an example substructure is given by Table 2.3
which is B = A � {1, 2, 3, 5}. The graph for this is also shown in Figure 2.2.

Finally, we will define partial isomorphism which is a weaker form of isomor-
phism, but still allows us to express a certain degree of similarity between two
structures.

Definition 2.1.9. Given a vocabulary σ, two σ-structures A and B, a partial
isomorphism between A and B is an isomorphism between a substructure of A
and a substructure of B.

This means that a structure is always partially isomorphic to its substruc-
tures, since you can trivially find a substructure of it that is isomorphic to the
given substructure: that substructure itself. Partial isomorphism is particu-
larly useful when trying to make a statement about two structures that have a
differently sized universe.

For our running example, there will be two sets of σ-structures that are par-
tially isomorphic to each other: there is a set of graphs where the special node s
has no edge that goes from s to itself, often called a self-loop, and a group where
s does have a self-loop. This is because the smallest substructure that can be
taken, is the one where the only element in the graph is the node given by s.
At this small a structure there are clearly only two possible graphs: with and
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without the self-loop. Clearly these two are not isomorphic to each other, but
this the structures within each set are clearly partially isomorphic to each other:
map the one element in the universe to the one element in the other structures
universe and that is an isomorphism for the substructure. There is technically
also a third set, which would be a substructure generated by all graphs with
some universe and empty relations for relation symbols N and E. However, this
third set does not make much sense to consider, since s is supposed to represent
some node, but since N is empty it is just some element from the universe.
Finally, it is also important to say over what universe two things are partially
isomorphic: if they are partially isomorphic over the substructure generated by
a universe of a single element, this clearly is a lot weaker than if it were partially
isomorphic over the universe of one of the structures.

2.1.3 Properties

Now that both the building blocks and relationships have been discussed, we will
formalize some properties about them that were already used. These are useful
to allow us to express complicated concepts with a single word and allow us to
reason about the behavior of more easily. Consider the property of being closed
under isomorphism and the closely related property of being preserved under
isomorphism, which were mentioned in Definition 2.1.4 and Definition 2.1.5
respectively.

Definition 2.1.10. A set of structures C is called closed under isomorphism if
for every structure A ∈ C, all structures that are isomorphic to A are also part
of C.

Definition 2.1.11. Given k a positive integer, assume f : C → Xk is a function
from some set of structures C to Xk, where X is the union of all universes of
all structures in C. On top of this f has the restriction that when it is applied
to A ∈ C with universe A, it can only produce a result from Ak. f is said to be
preserved under isomorphism if for every isomorphism h : A → B with A and
B structures, f(B) = h(f(A)) and h−1(f(B) = f(A).

Being closed under isomorphism is a useful property for any set of structures,
since it makes functions or queries over it that are preserved under isomorphism
make more sense. Consider for example, if we had a set of structures that was not
closed under isomorphism, and we applied a query to it. This would mean that
there is a structure that is not part of the set and is isomorphic to a structure
that is part of the set. We would therefor be able to easily calculate the result of
a query on the structure that is not part of the set. We can do this by using its
isomorphic counterpart in the set and the isomorphism between the structures.
This means we could calculate the result for the query without having to know
the structure itself, but for some reason we choose to not include this structure
in the set we are querying. This usually does not make much sense. That is
why, when working with functions that are preserved under isomorphism, we
normally also work with classes that are closed under isomorphism.
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2.1.4 Logics

Earlier we defined queries simply as a function that maps a structure from a
class to some k-ary relation. This definition is purely semantic. In practice
however, queries need to be defined in some programming language. To solve
this it is often considered whether a query can be written or defined within a
certain language called a logic. Often logics will have clear syntactic restriction,
making it easy to determine what is and is not an expression in that logic.

Definition 2.1.12. Given a logic L, a class of structures C and a k-ary query Q
on C, Q is L-definable if there is an L-formula ϕ(x1, . . . , xk) with x1, . . . , xk such
that Q(A) = {(x1, . . . , xk) ∈ Ak | A |= ϕ(x1, . . . , xk)}. Here A |= ϕ(x1, . . . , xk)
is true if a given assignment of x1, . . . , xk makes the formula ϕ(x1, . . . , xk) eval-
uate to true in the structure A. If Q is a Boolean query, then it is L-definable if
there is an L-sentence ψ such that Q(A) = true⇔ A |= ψ. A sentence is simply
a formula without free variables. L(C) denotes the collection of all L-definable
queries on C.

What has been described, is also known as uniform definability. Uniform de-
finability means that the same L-formula is used for the query on each structure
in the class the query is defined on. This concept is similar to the requirement
that regardless of the input values, the same algorithm should always produce
the outcome. This also means that is if the query is defined on a class, that
same formula will work on any subclass of that class.

Definability now allows us to express how powerful a language is, by stating
what queries it can and cannot define on specific classes of structures. This is one
of the most common uses of model theory and its tools: allowing the comparison
of very different languages by showing what they can and cannot express. This
also then has implications on the complexity of solving problems written in these
languages, typically allowing to set upper bounds on it. However, this question
of definability is always tied to a specific class and as such there are three special
cases that are often considered and considered their own subdomain within the
larger domain of model theory :

• C is the class S of all structures, both finite and infinite, over a given
vocabulary. The uniform definability of formulas of a particular logic on
this class is mainly studied within classical model theory.

• C consists of a single infinite structure and all structures isomorphic to
it. This then gives rise to local definability, which is called ’local’ because
only a single structure should be considered, since queries are closed under
isomorphisms. Examples of such structures are the structure of arithmetic
over the natural numbers N = (N,+,×), and its counterpart for the real
numbers R = (R,+,×)

• C is the class F of all finite structures over a given vocabulary. In this
case uniform definability of formulas of logics on this class is called finite
model theory.
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Propositional logic Now that it has been explained what definability is and
why it is useful, let us consider a couple of common logics whose definabilities
are studied. Firstly there is proposition logic, where we can write sentences over
a given set of propositions, typically {p, q, r, . . . } or {p1, p2, . . . } which can be
either true or false, and connect them with connectives, typically {¬,∧,∨,→
,↔}. This logic is typically not studied within model theory, however it is
often useful in introducing basic concepts, such as the idea of proofs and logical
consequences. It is also useful in that it provides a simpler environment to
prove and understand the compactness theorem and the completeness theorem.
On top of this, it can also be seen as a restricted version of first-order logic,
if we consider a proposition to be a relation with an arity of zero. This thus
means that a proposition will either represent the empty set ∅ = {}, which
represents false, or the set {()}, which represents true. It is assumed that the
reader understands propositional logic.

First-order logic Next up is the logic that will get most of the focus due
to the complexity required to solve problems within it and its close relation
with database languages, like SQL. It also has some well understood tools that
can be used to prove definability and non-definability on it. First-order logic,
often shortened to FO logic, is very similar to the propositional logic in that it
uses the same connectives which have the same interpretation. However, it is
different in that it uses the relations from the vocabulary of the structures the
formula is being defined over, rather than propositions, which can be considered
relations of arity zero. Because relations now have an arity that is higher than
zero, the universe of the structure over which we are evaluating our formula
comes int to play.

On top of that, these relations can contain variables and constants, for ex-
ample R(x, c) where R is a relation with arity 2, x is a variable which could
take some value from the universe of the structure and c is a constant from
the vocabulary with a value from the universe of the structure assigned by the
structure. Two variables x1 and x2 can also be compared to each other using
x1 = x2 and x1 6= x2 ≡ ¬(x1 = x2).

Finally, first-order logic adds the concept of quantifiers: ∀x1 and ∃x2 respec-
tively called the “for all” or universal quantifier and the “exists” or existential
quantifier. When quantifying over multiple variables rather than write a quan-
tifier for each variable, we can group them all together. As an example, rather
than write ∀x1(∀x2(∃x3(∀x4))) we can write ∀x1, x2(∃x3(∀x4)), this grouping all
variables following each other using the same quantifier. If all these quantifiers
are applied to the same section of the formula, we can also remove the brackets
for them. For example ∀x1, x2(∃x3(R(x1, x2) ∧ R(x1, x3))) could be rewritten
as ∀x1, x2∃x3(R(x1, x2) ∧ R(x1, x3)), but ∀x1, x2((∃x3(R(x1, x3))) ∧ R(x1, x2))
can not be rewritten in this way. Again the assumption is made that the user is
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already familiar with first-order logic and understands what the previous terms
mean and how a first-order logic formula is interpreted.

For our running example let us define the binary query 2-PATH, which we
would have previously defined as:

2P (G) = {(a, b) ∈ N2 | ∃p a path of length 2 from a to b}

In first order logic this would be written as:

ϕ2P (a, b) = N(a) ∧N(b) ∧ (∃c(E(a, c) ∧ E(c, b)))

Note how here we have used ϕ2P instead of directly 2P . This is not strictly
required but sometimes preferred so that when it is used as a subformula in
some other FO formula, it cannot be confused for some relation.

Second-order logic Finally, there is a class of logic that contains the entirety
of first order logic but goes even further: second-order logic. Second-order
logic adds relation variables, typically denoted as S1, S2, . . . , and quantifiers
over these variables. This means that statements can also be made about the
existence of a relation for which a certain property holds, or that a property
holds for all relations. This means that second order logic allows us to say
sentences such as“The universe contains an even amount of element” by saying
“There exists some relationship of arity two in which each number appears
exactly once and only either in the first or second position”:

∃S∀x
(

(∃y (S(x, y) ∨ S(y, x))) ∧ (¬S(x, x))∧(
¬∃y1, y2

((
y1 6= y2 ∧ ((S(x, y1) ∧ S(x, y2)) ∨ (S(y1, x) ∧ S(y2, x)))

)
∨

(S(x, y1) ∧ S(y2, x))
)))

(2.1)

This could not be expressed in first-order logic since it is impossible to make a
statement over the existence of some relation that is not part of the structure.
The reason this is often studied because it is a strict superset of first-order
logic and more powerful than first-order logic, since there are things that can
be proven to not be expressible in first order logic but are expressible in second
order logic.

For our running example we shall express the TRANSITIVITY query, which
calculates the transitive closure of a graph and cannot be expressed in FO logic,
but is easily expressed in SO logic as:

ϕT (a, b) = ∃S
(
S(a, b) ∧ ∀x, y ((E(x, y) ∨ ∃z(E(x, z) ∧ S(z, y)))→ S(x, y))

)
(2.2)

In this second order formula we first create a new relation that will store the
transitive closure, then extract all the values from it (S(a, b)), after which we
build up the transitive closure, by saying that if it is an edge (E(x, y)) or if
there is some edge into the transitive closure ∃z(E(x, z) ∧ S(z, y)) then it must
be part of the transitive closure (→ S(x, y)).
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Because finding solutions to formulas written in second-order logic can be
such a complex problem, often subsets of second-order logic are considered. A
first example of such a subset is existential second-order logic, often shortened
to ESO.

Definition 2.1.13. Given a second-order formula ϕ, it is an existential second-
order formula if it can be rewritten to a formula of the form

ϕ = ∃S1, . . . , Sn(ψ(x1, . . . , xm, S1, . . . , Sn))

where ϕ is a first-order formula over a vocabulary σ ∪ {S1, . . . , Sn} with free
variables x1, . . . , xm, each Si 1 ≤ i ≤ n is a second order variable and ψ becomes
a first order formula with free variables x1, . . . , xm if we consider all those Si to
be actual relations rather than relation variables.

Even though it seems like in the previous definition we pass the relations
S1, . . . , Sn as variables into a first-order formula, which is impossible, what we
actually do it have ψ act as if S1, . . . , Sn are simply relations on the structures,
even though in reality they are not. Examples of ESO formulas are Equations 2.1
and 2.2.

There is also a similar logic using only the universal quantifier for second-
order variables, rather than the existential quantifier. This is called universal
second-order logic, often shortened to USO.

Besides restricting the quantifiers of formulas in second-order logic, it is also
possible to restrict the second-order variables themselves. An example of this is
monadic second-order logic, often shortened to MSO, where quantified second-
order variables are only allowed to be unary, which means they can only rep-
resent unary relations. The fact that these second-order variables can only be
unary also means that they simply range over a subset of the universe, which
makes the problem of finding these relations less complex. This restriction can
also be applied to existential and universal second-order logic, creating monadic
existential second-order logic or MESO and monadic universal second-order logic
or MUSO respectively. Note that MSO logic is still more powerful than first-
order logic. For example, in first-order logic we cannot express that a graph is
disconnected, however this can be expressed in MSO logic.

2.1.5 Non-definability

Now that we have discussed the different logics, we shall give a short overview
of some common tools used to prove whether certain queries are definable in
certain logics. Also, remember that the expressive power of a logic also de-
pends on what class of structures is being considered, not only the logic being
considered. This is the same as saying that the expressive power of a logic is
context-dependent. This makes sense if we consider L in L(C) a function that
produces a set containing all L-definable formulas, as it clearly takes some class
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of structures C as an input, implying that the output of L depends on the input
C. As an example, consider first-order logic, which has a very high expressive
power on the structure N = (N,+,×), since every recursively enumerable rela-
tion is first-order definable on N . However, when considering first-order logic
on the class of all graphs, both finite and infinite, it has a rather limited ex-
pressive power, considering properties such as connectivity, which ensures that
there is a path from every node to every other node in a graph, and acyclicity,
which ensures that there is at most one path from each node to every other
node, are both not definable in first-order logic. To prove any of these claims,
model theory has three very common tools:

• the Compactness Theorem

• the method of ultraproducts

• the method of Ehrenfeucht-Fräıssé games

The first tool that will be discussed is the Compactness Theorem, that states
that there is a model for a given set of first-order sentences if and only if for
every finite subset of those sentences there is a model. One of the ways in which
this is commonly used, is by first assuming there is a first-order sentence which
describes something. For example, assume we have a sentence that expresses
the connectivity property. Next a finite subset is created that can somehow
grow easily and has a model and can easily be described in first order logic.
For example, take a set of sentence that describe there is no path between two
given points that is of length n and that the graph is connected. The key is to
choose a set of sentences that can grow easily and contains the sentence that is
assumed to exist. However, when taking this set to infinity, it will contradict
the sentence assumed to be true. In our example, we have a set of models where
two given nodes are more than n nodes apart, but the graph is still connected.
Clearly each of these finite subsets has a model. However, when taking n to ∞
it is clear that there is no model where there is no path of length 1 to∞ between
to given points, but the graph is still connected. Thus, there is a contradiction
because the Compactness Theorem claims there must be such a model, which
means that the assumption of the existence of a sentence in first order logic that
describes connectivity is wrong.

Note how this only works on the set of all graphs and how nothing has been
claimed about whether connectivity is definable on the set of all finite graphs.
Also note that the Compactness Theorem says that every finite subset of a set
of sentences needs to have a model, but puts on restrictions on this model.
This means that it is very possible that each of these finite subsets has an
infinite model. This thus means again that a query that is not definable in
first-order logic on the class of all structures is not necessarily not definable on
the class of all finite structures. The tool of ultraproducts has a similar issue
with not translating easily to finite structures. For this reason there is the tool
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of Ehrenfeucht-Fräıssé games, which is more easily applied on finite models and
thus a very common tool in finite model theory when discussing the expressive
power of first-order logic. On top of this it can be extended to study logics that
are stronger than first-order logic, like the pebble games, which is a tool used to
study the expressive power of second-order logic.

2.2 Ehrenfeucht-Fräıssé games

In this section, we will discuss the uses of the Ehrenfeucht-Fräıssé games in first-
order logic and prove its correctness. As stated in Section 2.1.5, Ehrenfeucht-
Fräıssé games is a very useful tool to express that something cannot be expressed
in first-order logic. However, to be able to use this tool, we need to first define
it.

Definition 2.2.1. Let r be a positive integer, σ a vocabulary and A and B
two σ-structures, with universes A and B respectively. The r-move Ehrenfeucht-
Fräıssé game on A and B is played between two players, the Duplicator and
the Spoiler, according to the following rules:
Each run of the game has r moves. In each move the Spoiler plays first and
picks an element of A or B. The Duplicator in the same move then responds
with an element of the universe of the other structure. An element that has
been picked in a previous move may be picked again. Assume that on the i-th
move ai ∈ A and bi ∈ B are picked with 1 ≤ i ≤ r. After r moves the winner of
the run is decided as follows:

• If the mapping ai → bi with 1 ≤ i ≤ r and cAj → cBj for 1 ≤ j ≤ s is a
partial isomorphism from A to B, then the Duplicator wins

• If the mapping ai → bi with 1 ≤ i ≤ r and cAj → cBj for 1 ≤ j ≤ s is a
not partial isomorphism from A to B, then the Spoiler wins

The winner of the game is decided as follows

• If the Duplicator can win every run of the game, i.e. it has a winning
strategy, then the Duplicator wins the r-move Ehrenfeucht-Fräıssé game
on A and B.

• If the Spoiler can win every run of the game, i.e. it has a winning strategy
and the Duplicator does not have a winning strategy, then the Spoiler
wins the r-move Ehrenfeucht-Fräıssé game on A and B.

If the Duplicator wins the r-move Ehrenfeucht-Fräıssé game on A and B, this
is written as A ∼r B.

Note that Ehrenfeucht-Fräıssé games is often shortened to EF-games, similar
to FO logic with first-order logic. Also note that either the Duplicator or the
Spoiler has a winning strategy, but not both or neither. Why both cannot have
a winning strategy is obvious, but if the Duplicator does not have a winning
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1 2 3 4 5 6 7

(a) The original graph of A

1 2 3 4 5 7

(b) The graph to compare it to of B

Figure 2.3: Two graphs that will be compared in an example EF-game. s is
colored in red in both these graphs.

strategy, i.e. for some run of the game it cannot win, then the Spoiler has a
winning strategy by simply playing the run for which the Duplicator cannot
win, since the Spoiler always gets to pick first in every move.

For our example we shall use the structures A and B for which the are graphs
shown in Figure 2.3. First we will play a 1-move EF-game where the Duplicator
has a winning strategy and then play a 2-move EF-game where the Spoiler has
a winning strategy. For the one move EF-game, the Duplicator can clearly
win: should the Spoiler chose any of the nodes 1 through 5 or 7 in either of
the structures, the Duplicator simply picks the corresponding element in the
other structures. Should the Spoiler choose 6 from the universe of A, then the
Duplicator can choose either 3, 5 or 7, since 6 in A has no edges connected to
1. This is because, even though 1 has not been chosen in the game, it is always
implicitly include in the partial isomorphism because it is the value represented
by the constant s in both structures. Thus, the 1-move EF-game between A and
B can be seen as the 2-move EF game between A and B where the first move
is to pick the value for the constant s. More generally if there are s constants in
a vocabulary, the r-move EF-game over two structures in that vocabulary is the
same as the (s+r)-move EF game between the same structures where the first s
moves were picking the value of a constant and then picking the corresponding
value of that same constant in the other structure.

If we wish to play a 2-move game on the structures A and B, the Spoiler has
a winning strategy: it starts by picking 5 from the universe of A to which the
Duplicator can respond with either 3,5 or 7 from the universe of B, since those
are the only ones that have no edge directly to or from 1. If any other element
from the universe of B is chosen, it no longer matters what nodes the Spoiler
and the Duplicator choose in the next round, since when 5 in A is mapped to
1, 2 or 4 the mapping is clearly no longer a partial isomorphism. Should the
Duplicator choose 3, the Spoiler will in the next move choose 2 in A, which
will clearly no longer result in a partial isomorphism. If the Duplicator chooses
5, then the Spoiler will choose 6 in A on the next move, which the Duplicator
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clearly cannot replicate. Finally, if the Duplicator chooses 7 then the Spoiler
can choose either 4 or 6 in the next move, which the Duplicator cannot replicate,
since there are no edges leaving 7 in B.

Note how increasing the amount of moves that can be made in our example
EF-games caused the Spoiler to win the EF-game between the same structures,
rather than the Duplicator. This is clearly true when r becomes larger than
the amount of elements in the smallest of the universes of the two structures.
This is because if they are different, the EF-game will end up picking all the
elements of the universe of one of the structures. Then, if the sizes of the
universes are different, the spoiler picks an element out of the larger universe
to which the Duplicator has to respond with an element already picked in some
previous round, causing the resulting mapping to not be bijective and thus not
a partial isomorphism. If the sizes of the universes are the same, the Spoiler
will pick already chosen elements from one of the universe and the Duplicator
will respond with the other element that was previously chosen together with
the chosen element. This means that either the structures are isomorphic, in
which case the EF-game will always be won by the Duplicator, since it always
plays according to the isomorphism. Alternatively they are not isomorphic, in
which case the Spoiler wins. This shows that how many moves it takes until
the Spoiler has a winning strategy, if it is possible at all, depends on the size of
the universe and, more importantly, amount of elements from the universe that
actually appear in the relations. This is a fact that is often used when using
EF-games to prove things, by making the structures so large that the duplicator
always wins even though the two structures are different in some fundamental
way.

Proposition 2.2.1. ∼r is an equivalence relation on the class S of all σ-
structures.

Proposition 2.2.1 follows immediately from Definition 2.2.1. This is because
it is reflexive, symmetrical and transitive: the Duplicator clearly has a winning
strategy if the game is played between the same structures, proving reflexivity.
The Duplicator also clearly has a winning strategy for the EF-game on B and
A if it has a winning strategy on the EF-game A and B, since this is the exact
same winning strategy. Finally, if the Duplicator has a winning strategy on the
EF-game between A and B and a winning strategy on the EF-game between B
and C it also has one on the EF-game between A and C: if the spoiler chooses
an element of the universe of C, simulate the Duplicator choosing an element
of the universe in B, then simulate as if the Spoiler chose that same element in
the universe B and actually choose the corresponding element of the universe
of A. When the spoiler chooses an element of the universe of A do the same
swapping C and A. Note that we do need to keep track of the element chose
in our simulated B.

In the previous examples, we saw that if at some point the Spoiler can force
the Duplicator to choose an element from the universe so that the partial iso-
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morphism in the end is broken because of that, then the Spoiler has a winning
strategy. What causes this is that a partial isomorphism gets built up one move
at a time, by for each move adding the currently chosen pair to the previous
partial isomorphism. If at some point a pair is added that makes the partial
isomorphism no longer a partial isomorphism, it is not possible to recover from
this. This is because fixing it would require adding a different mapping for one
of the two elements in the breaking pair, making the mapping no longer bijective
and thus no longer a partial isomorphism. If we wish to formalize this concept
we can do that with the following definition:

Definition 2.2.2. Assume r a positive integer, a winning strategy for the Du-
plicator in the r-move Ehrenfeucht-Fräıssé game on A and B is a sequence of
non-empty sets of partial isomorphisms I0, I1, . . . , Ir from A to B such that it
has the following properties:

• the forth property : for every i < r, every f ∈ Ii and every a from the
universe of A, there is a g ∈ Ii+1 such that a is an element of the domain
of g and f ⊆ g

• the back property : for every i < r, every f ∈ Ii and every a from the
universe of B, there is a g ∈ Ii+1 such that a is an element of the range
of g and f ⊆ g

Note that in the previous definition we use f ⊆ g between two functions f
and g. Hereby we mean that for every element a in the domain of f , it is also
in the domain of g and that g(a) = f(a). Also note how the fourth property
defines that the Duplicator must have a good move when the Spoiler picks some
element from the universe of A and how the back property says the same if the
Spoiler picks some element from the universe of B.

2.2.1 Quantifier rank

Now that Ehrenfeucht-Fräıssé games have been introduced and claimed to be
related to first order logic, it is time to start to relate them more directly. Before
we can do this however, we need to introduce an important concept of a FO
formula: its quantifier rank.

Definition 2.2.3. Assume that ϕ is a first-order formula over some vocabulary
σ, the quantifier rank of ϕ, denoted by qr(ϕ), is the depth of the quantifier
nesting in ϕ, inductively defined on the construction of ϕ as follows:

• If ϕ is atomic, which means it is either a relation symbol from σ with
constants or variables filled in or a variable and some constant or two
variables compared to each other with =, then qr(ϕ) = 0

• If ϕ is of the form ¬ψ then qr(ϕ) = qr(ψ)

• If ϕ is of the form ψ1 ∧ ψ2 or ψ1 ∨ ψ2 then qr(ϕ) = max{qr(ψ1), qr(ψ2)}
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• If ϕ is of the form ∃x(ψ) or ∀x(ψ) then qr(ϕ) = qr(ψ) + 1

As an example of quantifier rank ∃x1, x2((∀x3(E(x1, x3)))∧E(x1, x2)) has a
quantifier rank of 3, since it increases one per quantified variable. The formula
∃x1(∃x2(E(x1, x2)))∧(∀x3(¬E(x3, x1)))) has a quantifier rank of 2, even though
there are 3 quantified variables, but because of the ∧, the max is taken of those
two subformulas which is 1. Also note that if there is a formula ϕ with qr(ϕ) = r
then for every r′ > r there is an FO formula ψ such that qr(ψ) = r′ and that ϕ
and ψ are logically equivalent. This can clearly be done by adding an existential
quantifier over some new variable.

2.2.2 Equivalence

Now that the quantifier rank has been defined we can use this to define an
important equivalence relation. This relation is important because it will allow
us to define the relation between the first-order logic and the Ehrenfeucht-Fräıssé
games.

Definition 2.2.4. Assume that r is a positive integer and A and B are two σ-
structures. Then A and B are ≡r-equivalent in first-order logic if they satisfy
the same set of first-order sentences of quantifier rank r. This is written as
A ≡r B.

Proposition 2.2.2. ≡r is an equivalence relation on the class S of all σ-
structures.

Proposition 2.2.2 follows directly from the definition of ≡r-equivalence. To
start off, ≡r-equivalence is symmetrical, since if A and B satisfy the same set of
FO sentences of quantifier rank r, then so do B and A. Next is the reflexivity,
which clearly holds, since A and A satisfy the same set of FO sentences of
quantifier rank r. Lastly, transitivity also holds. Assume that A and B satisfy
the same set of FO sentences of quantifier rank r and that we call this set SAB .
Also assume there the same for B and C and call this set SBC . Now since B
can only have one set of all FO sentences of quantifier rank r it satisfies, then
SAB = SBC . This clearly shows that ≡r-equivalence is an equivalence relation.

Notice how when defining ≡r-equivalence, we didn’t simply define equivalence
under all FO sentences but under those of quantifier rank r. The reason for
doing this, is that it allows us to relate it to an r-move EF-game. This relation
is defined in the following theorem, which allows us to use an EF-game to prove
something cannot be expressed in first-order logic.

Theorem 2.2.1. Assume that r is a positive integer and A and B are two
σ-structures. The following statements are equivalent:

• A ≡r B, which means A and B satisfy the same set of FO sentences of
quantifier rank r
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• A ∼r B, which means that the Duplicator has a wining strategy for the
r-move EF-game on A and B

Theorem 2.2.1 clearly shows that we can use an r-move EF-game to prove
that a sentence of quantifier rank r will give the same result on both A and B.
This is because if the same sentences are true on both structures, clearly the
same sentence must say either true for A and B or say false for A and B.

2.2.3 Usage

Now that we have defined the equivalence between ≡r-equivalence and the
spoiler winning the r-move EF-game, we can use this to prove that certain
queries cannot be expressed in FO logic. To do this we will for the given query
define two structures A and B. We choose these structures so that the query
is true in one of them but false in the other. We then show that for an r-move
EF-game we can create these two structures A and B so that the Spoiler has a
winning strategy. If we do this for any r then we have proven that the formula
for this query cannot exist in first order logic. The reasoning is that we have
show that the formula cannot be uniformly defined. This is because no matter
how many quantifiers we allow it, there will always be a pair of structures where
it must return the same result, even though it should be different.

The ≡r-equivalence only considers first-order sentences, and not formulas that
have free variables. A possible way to solve this issue is to create a Boolean
problem that could be solved using the free variables of the formula. We would
then proceed to prove that our new Boolean problem cannot be expressed in the
first-order logic, as described in the previous paragraph. After this, we would
prove by contradiction that our original query cannot be written in first-order
logic. To do this, we describe our new Boolean problem and describe a first order
logic formula, using the original query. This means that if we could write our
original query in FO logic, we could do the same for our new Boolean problem.
However, we know that our new Boolean problem cannot be written in FO logic.
Thus, our original query must not be able to be written in FO logic, because if
it did, it would create a contradiction.

As an example of this last technique, assume that we wish to prove that the
query that returns all pairs of nodes in disconnected components of a graph
cannot be expressed. We will call this query the different components query.
What we would do is we would use the Boolean problem of whether a graph is
a single connected component. We assume that a formula ϕconnected exists that
is true only if the structure it is evaluated in is a graph with a single connected
component. Next we prove that this formula cannot exist using an EF-game and
the following contradiction. We can now prove that the different components
cannot be expressed. We first assume that it can be expressed by the formula
ϕdiff−comp(v1, v2) which is true if v1 and v2 are nodes in different component of
the graph. Now we show that the connectedness query can be solved using the
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different components query by defining ϕconnected ≡ ∃v1, v2(ϕdiff−comp(v1, v2)).
This formula clearly would solve the connectedness query, but we have already
proven that it cannot be expressed in FO-logic. Thus, our assumption that the
different components query could be expressed in FO-logic must be wrong.
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Chapter 3

Code Pattern Mining

In code pattern mining we attempt to extract some often recurring patter out
of some large code base. Typically, this is not done by trying to find patterns
in the text, but it is done on an abstract syntax tree, which stores code in a
tree structure so that it is clearer what is related to each other and in which
way. This gives us a better context and thus makes it easier to extract useful
patterns that on their own make sense in a programming language. However,
the structure from which we attempt to extract our patters is only one part
of the puzzle: we also need to define how we find what are common patterns
and how we attempt to choose the most useful of these patterns. Thus, in this
chapter we shall start with defining what an abstract syntax tree is. Then we
shall define some concepts that will be used when defining the similarities. Next
we shall use these concepts and AST’s to define different types of similarities
within it. After that, we shall use these different kinds of similarities to define
different types of algorithms that can be used to extract these similar patterns
from an abstract syntax tree.

3.1 Trees

3.1.1 Abstract Syntax Tree

When trying to find patterns in code we typically begin by creating an abstract
syntax tree of the code, often shortened to AST. This is an abstract representa-
tion of the source code where the children are part of the parent. As an example,
say we have the while loop of Listing 3.1. This fragment of code could then be
converted to a tree like the one given in Figure 3.1. Notice how this example
defines everything without requiring the order of the children. This is because
for each node, no two children have the same label. If the order of the children
is available, we can compress our tree down to the tree in Figure 3.2. In this
tree we have that the condition of the while loop is always its left child and
the body is the right child of the while loop. We also have the infix expression,
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which simply written in the order in which it appears, rather than explicitly
having children named ‘LeftOperand’, ‘Operator’ and ‘RightOperand’.

whi l e ( a > 1) {
a = a + 1 ;

}

Listing 3.1: A simple example of a piece of code to be parsed

The reason to use an AST rather than just text is mainly that its structure
is useful. For example, a code miner working purely on strings might pick up
on the fact that ‘while (a > 1){’ is a commonly occurring substring, but it will
have trouble understanding that a while-loop always needs a condition and a
body. For the AST we can also define a context-free grammar, which is a set
of rules that define what the children of a certain node with a certain label can
be. This is also very convenient since it allows us to describe in a very compact
way what makes a piece of code valid. This can be very useful when attempting
to do code search by generating an AST. On top of this, when looking for
patterns in an AST, we will always get something that can easily be converted
into syntactically correct code. This however only works if we assume we take a
node and its entire maximal subtree underneath it and convert that AST. This
generated code may not be valid on its own in a file but if given to the compiler
it could be parsed correctly. As an example, assume we found a common pattern
of a getter function in Java. It would need to be placed in a class to be made
valid, but it makes sense on its own and could be successfully parsed, just not
compiled. On the other hand, if we were to look for common patterns in the
code as a string we might find patterns that, while they commonly reoccur, do
not make much sense on their own. As an example, assume we find a pattern
like ‘while (a > 1){’ to be very common. The compiler could however not parse
this into a valid AST, since it is an incomplete piece of code: we are missing at
least a ‘}’. This thus shows how using an AST to describe a pattern will result
in more useful code. This is because it could be converted to code, and it is
guaranteed that the compiler will be able to parse this code. However, this is
not the case when we look for common string patterns, as we have shown.

3.1.2 Labeled Ordered Trees

Now that we have explained what kind of structure we will be pattern mining
over, it is time to define the structure formally. This structure will be a labeled
ordered tree on a set of labels. This means that we take a set of labels, for
example all the labels that can appear in an AST, and make a tree using those.
We simply define that each node must have a label, but do not prescribe any
meaning or enforce any kind of structure. More formally we define it as follows:

Definition 3.1.1. Assume L is a finite set of labels l0, . . . , ln. A labeled ordered
tree on L is a 6-tuple T = (V,E,L, L, v0,�). Here (V,E, v0) defines a tree with
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Figure 3.1: The AST of the code in Listing 3.1
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Figure 3.2: A more compact AST of the code in Listing 3.1

V the set of nodes and (u, v) inE the set of pairs where u is the parent of v
and v is the child of u. L is the set of labels that can be applied to a node.
L : V → L is the labeling function, giving a label from l ∈ L to each node
v ∈ V . � is the elder sibling relation, that gives all pairs (u, v) where u and v
have the same parent but u is left of v or the same node. The size of a tree T is
|T | = |V |. A labeled ordered tree is said to be in normal form if V = {1, . . . , k}
and the nodes are numbered by the preorder traversal of the tree. If there are
multiple trees, we write T = (VT , ET ,LT , LT , v0T ,�T ).

Notice how (V,E, v0) is enough to define a tree. With this we can identify
the root of the tree, the different layers of the tree and distinguish between
different nodes. Notice how the root could also be defined as the node which
has no parent node. If we then want to add labels to it, we need to add both
the set of labels L and the labeling function L. This then assigns a label to
each node, allowing us to find different nodes or groups of nodes that have the
same label. Note how L must contain at least the labels used in the tree, but
can also contain other labels not used in the tree. If we want to make the tree
ordered, we add the elder sibling relation � to allow us to identify the order
between nodes on the same level. This then allows us to define what is the order
of siblings of the same parent.
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Figure 3.3: An example of a labeled tree

As an example of a labeled ordered tree, consider the tree in Figure 3.3.
We will now write a complete 6-tuple that defines this tree. To start, we
will number the nodes layer by layer, from left to right. This means that
node with label ‘a’ will be 1, first child of node 1 will be node 2, the sec-
ond child of node 1 will be 3 and so on. This thus gives us the set of nodes
V = {1, 2, 3, 4, 5, 6, 7}. Next we will define the root node v0 = 1. After this, we
will give our tree structure by defining its edges. This will result in the relation
E = {(1, 2), (1, 3), (1, 4), (2, 5), (2, 6), (3, 7)}. Now that we have defined the basic
tree structure, we will make our tree more recognizable by adding labels to it.
First we shall define the set of labels L = {a, b, c, 1}. Notice how we have a
1 both as a label and as a node. It is important to notice how these describe
completely different things: one represents a unique node and the other a label
that can be applied to a number of nodes. Now that we have given the set of la-
bels we shall define which node gets which label. The labeling function becomes
L : V → L = {(1, a), (2, b), (3, b), (4, c), (5, b), (6, c), (7, 1)}. Note that, because L
if a function, a node can only have a single label. Finally, we need to define the
elder sibling relation to give the order of our nodes. This would result in the rela-
tion �= {(1, 1), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4), (5, 5), (5, 6), (6, 6), (7, 7)}.

The previous tree we defined was not in normal form. To show how multiple
different definitions can give the same tree, we shall define the tree in Figure 3.3
but in normal form. For the set of nodes we get V = {1, 2, 3, 4, 5, 6, 7}, with
the first child of the first child of the root node being 3. The edges of the tree
would be E = {(1, 2), (1, 5), (1, 7), (2, 3), (2, 4), (5, 6)}. The set of labels would
be the same as the previous example. The labeling function would become L :
V → L = {(1, a), (2, b), (3, b), (4, c), (5, b), (6, 1), (7, c)}. Finally, the elder sibling
relation becomes redundant, since if the number of the node is lower than or
equal to a different node and if they share a parent, it is the elder sibling of that
node. However, for completeness we shall include it. The elder sibling relation
is �= {(1, 1), (2, 2), (2, 5), (2, 7), (3, 3), (3, 4), (4, 4), (5, 5), (5, 7), (6, 6), (7, 7)}.
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Figure 3.4: An example of a subtree

3.1.3 Subtrees

Now that we have defined AST’s we can start to look for patterns in them.
These patterns are simply a set of nodes that occur frequently in a particular
shape together in a tree. That is to say that they create a tree of their own
which can be found in the larger tree. This concept is called a subtree. There
are many definitions of a subtree, so we shall give one and use this to define
similarities.

Definition 3.1.2. Assume T and t are labeled ordered trees. t is a subtree
of T if Lt ⊆ LT , every node in Vt can be mapped to a node in VT and this
mapping then also maps the values of Et, Lt and �t to values of ET , LT and
�T respectively.

If we consider Lt ∪ Vt as the universe for t and similarly for T , then the
subtree definition simply requires that there is a partial isomorphism between
t and T . More specifically, this partial isomorphism must be between t and a
substructure of T . Additionally, it must map the values of Lt to the same values
in the universe of the substructure of T .

As an example of a subtree, consider the tree in Figure 3.4. Assume we
call this tree t. Then we would have the relations Vt = {1, 2}, Et = {(1, 2)},
L = {a, b}, L = {(1, a), (2, b)}, �= {(1, 1), (2, 2)}. If we want to figure out
whether this is a subtree of Figure 3.3we attempt to define the mapping. Assume
we call this tree T and that it is in normal form. Then the mapping from t into
T simply maps node 1 of t to node 1 of T and node 2 of t to node 2 of T .
Alternatively, we could also map node 2 of t to node 5 of T . This clearly shows
that a subtree can have multiple locations it can appear in the larger tree. This
will become important when mining, as it our goal is to find trees that are often
a subtree of the AST.

3.1.4 Pattern trees

When attempting to pattern mine, there will be two types of tree: the subtrees
we are attempting to find and the tree in which we are trying to find them.
We call the first kind of trees pattern trees and the other tree the data tree.
Typically, a code pattern mining algorithm will want to find those pattern trees
that are a subtree at many locations in the data tree. If a pattern tree is a
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subtree of a data tree, we say it can be mapped into the data tree. A mapping
ϕ : P → D, also known as a matching function, of a pattern tree P onto a data
tree D is a function that maps every node in the pattern tree to a unique node
in the data tree and thus is injective. It also has some additional requirements.
Firstly it must preserve the parent relation, meaning that if a node a is a parent
of a different node b in the pattern tree, ϕ(a) must also be a parent of ϕ(b) in
the data tree. On top of this the elder sibling relation must be kept. This means
that if a node a is an elder child of a node b, then ϕ(a) must also be an elder
sibling of ϕ(b). Finally, the matching function must also preserve labels, which
means that if a node has a label in the pattern tree, the node it is mapped to
in the data tree must have the same label. This means that for a node a in the
pattern tree, LP (a) = LD(ϕ(a)). A mapping function is thus the formal version
of the partial isomorphism described in Section 3.1.3.

To determine how frequent a pattern tree P is in a data tree D we need
to determine the concept of occurrences. We say a pattern tree P matches a
data tree D or P occurs in D if there is a matching function ϕP → D. The
total occurrence of P in D with regard to ϕ, assuming that P is in normal
form and has k nodes, is Total(ϕ) = (ϕ(1), . . . , ϕ(k)) ∈ (VP )k. This means
that the total occurrence is just another way of writing ϕ if the pattern tree
is in normal form. The root occurrence of P in D with regard to ϕ is the
node Root(ϕ) = ϕ(1) = ϕ(v0P ) ∈ VD, assuming that P is in normal form for
ϕ(1). Finally, we define the set of root occurrences of P in D to be Occ(P ) =
{Root(ϕ) | ϕ is a matching function of P into D}, the size of which we will use
to define the frequency of a pattern in a data tree D. Thus, the frequency of a
pattern tree P in a data tree D is freqD(T ) = |Occ(T )|/|D|. For some positive
number 0 < s ≤ 1, a pattern tree T is said to be s-frequent in a data tree if
freqD(T ) ≥ s.

3.2 Types of similarity

In pattern mining the end goal is to find patterns that frequently occur. However
since we do not expect patterns to reoccur verbatim, we have to define some
metric indicating whether it is the same pattern or not. This is called defining
similarity, since we define when two patterns can be considered similar. Since
the concept of similarity is an intuitive one that could be approached from
multiple angles and is rather subjective, there are also multiple definitions of
similarity. It is also often the case that these different definitions are used
by different algorithms. The choice of which definition to use, and often thus
which algorithm to use, depends on what will be done with the mined patterns,
as some definitions are focussed on a particular use-case, improving the quality
and usefulness of the mined patterns for that use-case.

In the following sections we shall introduce pattern tree similarity, the most
commonly used similarity among the algorithms we will describe. It uses the
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previously described pattern trees to define similarity between two subtrees of
the AST. After that we will also discuss the API set and the API sequence
similarities. These similarities mainly consider the function calls a particular
piece of code makes, rather than the structure of subtree of the AST. Lastly
we shall also consider defining similarity by using an intermediate language and
translating our AST or subtrees of our AST.

3.2.1 Pattern tree similarity

The first kind of similarity comes from the matching defined by the frequent
tree mining algorithm. In this algorithm we use the concept of pattern trees to
define when a particular subtree is similar to another. We say that two subtrees
of the data tree are similar if they have a pattern tree that has a mapping to
each of the two subtrees. We call this kind of similarity pattern tree similarity.
Consider now only the subtree of the data tree, whose nodes are exactly the
nodes of the pattern tree after being mapped. The matching function is now
also a surjective function, since it maps at least one node to every node in
the subtree. Since it is both injective and surjective the mapping is bijective.
This is the case for both matching functions if we restrict the data trees only
the subtrees to which they are being mapped. This means that there is also a
bijective function between the two restrictions of the data tree. The bijection
also implies that these two structures are isomorphic to each other. However, if
we define the universe as the union of the nodes and the labels, this isomorphism
defined by the bijection must map the labels to themselves. This is very similar
to the partial isomorphism discussed in Section 3.1.3.

Assume we have only pieces of code and want to consider whether they are
similar or not. We would start by converting each of these codes to their AST’s.
Then we would consider whether we could define a bijective function, as de-
scribed above, between these two trees. If there is such a bijective function,
we could then always find a pattern tree by simply copying one of the AST’s
and defining it the pattern tree. The matches between the two AST’s and new
pattern tree are the found bijective function and the identity function of the
other.

As an example, consider the tree in Figure 3.5a to be the data tree. The two
highlighted subtrees in it are clearly pattern tree similar, since they can clearly
both be mapped into by the pattern tree in Figure 3.5b. Assume both the data
tree and the pattern tree are in normal form. The matching function from the
pattern tree to the left subtree is then ϕ = {(1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 9)
}. The matching function of the pattern tree to the right subtree is ϕ =
{(1, 19), (2, 20), (3, 21), (4, 22), (5, 23), (6, 25)}. From Figure 3.5a it is also very
clear to see how there will be an isomorphism between the two subtrees.
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3.2.2 Maximal subtree similarities

The next few types of similarity can only be used on code that is an entire
function or a subset of it and thus is not as broadly applicable as the previous
type of similarity. However, this is still an interesting approach to take and can
still be extracted from AST’s and thus is useful for our case. For all of these
approaches we will take pieces of code that can be parsed by a compiler to an
AST. If we receive only the AST, this is the same as for a given node taking
the largest subtree that can be found with that node as its root. For a given
node v0, we call such a tree the maximal subtree with root node v0. Thus, when
talking about a code fragment of our AST, we will be talking about a piece of
code whose AST forms a maximal subtree with some root node in our AST. We
will often represent our examples as lines of code as this is compacter and more
intuitively understandable.

API set similarity

A first of these similarities is API set similarity. In API set similarity we enforce
that the set of function calls is the same for a given code fragment. This thus
means that as long as the same sets of functions are called they are considered
similar. Thus, they can be similar regardless of their order or whether they are
in conditional blocks or not. If the AST of the entire program were available,
it would also be possible to recursively calculate the set of function calls that
go outside the program to some other libraries. However, this requires more
preprocessing and cannot be derived purely from two code fragments. This
and other function call-based similarities are thus most useful on programming
languages that have an extensive standard library or smaller projects that all use
a particular library. The reason being that it is more likely that a pattern will
use the functions form these libraries, rather than functions they have written
on the spot for essentially the same functionality. This will then mean that the
functions called will match more often.

i n t a = countA ( ) ;
i f ( a > 0) {

printA ( ) ;
}

Listing 3.2: A code fragment to compare for similarity

i n t a = countA ( ) ;
i f ( a == 0) {

printA ( ) ;
}

Listing 3.3: A second code fragment to compare for similarity

i n t a = countA ( ) ;
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printA ( ) ;
i n t b = countA ( ) ;

Listing 3.4: A third code fragment to compare for similarity

i n t a = countA ( ) ;
i n t b = countB ( ) ;
i f ( a > 0 && b> 0) {

printA ( ) ;
}

Listing 3.5: The final code fragment to compare for similarity

As an example, consider the Listings 3.2 to 3.5. For Listing 3.2 the set of
API calls is {countA, printA} and for Listing 3.3 this is {countA, printA}. For
Listing 3.4 the set of API calls it makes is {countA, printA} and Listing 3.5
calls the set of {countA, printA, countB}. In API set similarity, Listing 3.2, 3.3
and 3.4 are all similar. This can be clearly seen when looking at the set of API
calls made by the fragments. Notice how the API set similarity does not care
about conditional blocks or whether certain API calls are repeated or not. It
only considers that the API call can happen.

API sequence similarity

The next type of similarity we will consider is the API sequence similarity.
The API sequence similarity is similar to the API set similarity, because both
only consider API calls. However, in this case we say that two AST’s are
similar if their possible sequences of API calls match. This is thus a stricter
version of the previous similarity type. The considerations made for the previous
type, regarding its usefulness and ways of extending it beyond what is strictly
contained in the AST, can also be made here.

As an example, take the listings of Listings 3.2 to 3.5. For Listing 3.2 the set
of all possible API sequences is {(countA, printA), (countA)} and for Listing 3.3
this set is {(countA), (countA, printA)}. The set of possible sequences of API
calls for Listing 3.4 is {(countA, printA, countA)} and for Listing 3.5 it is
{(countA, countB, printA), (countA, countB)}. In this case only Listing 3.2 and
3.3 are considered similar. Notice how they were considered similar, even though
their conditional block does the opposite, but their set of possible sequences of
API calls is the same. Also notice how repetitions are also considered in this
similarity, for example in Listing 3.4.

Intermediate language similarity

A final type of similarity that will be discussed here is intermediate language
similarity. In intermediate language similarity we consider two AST’s equivalent
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if their projection into an AST of some intermediate language is similar under
pattern tree similarity. This has the benefit that certain aspects that if there are
parts we do not consider important that they can be projected away by not being
present in the intermediate language. Depending on what parts of the language
are projected away and in which manner, this can also make finding similar
patterns significantly less computationally complex since the input can become
simpler. This is also clearly the most flexible kind of similarity since it depends
on the intermediate language used and how the projection into this language
happens. It also has the added benefit of making it possible to compare AST’s of
different languages. If we compare AST’s that use different labels, we can simply
define translations for both of them, and now it is possible to consider similarities
between the different languages. However, it should also be noted that this same
approach would also be possible if we apply the translation as a pre-processing
step, where we do the translation before checking any similarities. This can
have the side effect of increasing the amount of similarities we find. This change
in frequency depends on how the translations are done to the intermediate
language.

As an example, take the AST of Figure 3.5a. Let us define the translation so
that every ‘Operator’ node and its child are translated into simply the ‘Operator’
node. Let this translation also translate any ‘IdentifierExpression’ and its child
to simply ‘IdentifierExpression’ and the same for ‘ConstantExpression’. This
then translate our tree to the one in Figure 3.6. Notice how the patterns that
were similar under pattern tree matching in the old tree, are still similar in the
newly translated tree. Also notice how this translation essentially claims that it
does not care what variables are used in operations, simply that they reference
variables.

3.3 Approaches

As shown by the different types of similarity there are multiple ways to approach
and interpret mining code patterns. This also leads to different algorithms using
different kinds of similarity and different additional restrictions in the hopes of
having it return less results but having those results be more useful. There are
two main groups of approaches that will be discussed here: those that mine
directly on the AST of the code, the so-called tree miners, and those that mine
using an intermediate language.

3.3.1 Tree miners

A first category of miners for code patterns are the tree miners. These miners
typically work on any kind of tree, but some have been optimized to give the
best results when mining on trees that are AST’s. Firstly we will discuss the
more general FREQT miner algorithm that mines patterns from trees in general.
After that we will discuss the FREQTALS miner algorithm which is an extension
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of the FREQT algorithm that is optimized to give fewer but more useful results
for end user and is designed specifically around detecting patterns in AST’s of
code.

FREQT

The first algorithm we shall define is the FREQT algorithm. It attempts to find
all pattern trees that are s-frequent for a given s in a given tree. The reason for
discussing this algorithm is that it is both an influential and a broad algorithm.
This allows us to first define a rather broadly applicable but relatively efficient
algorithm and then later on specialize it for our application. However, even
without this specialization, FREQT returns all frequent pattern trees and thus
solves the question of code pattern mining. Thus, most of the section on FREQT
will be based on the original paper by T. Asai et al. [AAK+02].

The approach that FREQT takes to tree pattern mining is similar to the
approach that is often used in association rule mining, where first all the frequent
single element sets are checked and then those are recombined to two element
sets, which are then recombined to three element sets etc. FREQT starts off
by creating a set F1 of all pattern trees of size 1 that are s-frequent. It does
this by traversing the data tree D and storing all their occurrences in RMO1,
thus having a list of occurrences per pattern. In subsequent passes of FREQT,
if it is the k-th pass with k ≥ 2, FREQT will incrementally compute a set Ck
of all candidate patterns of size k. After that it will compute the set RMOk
of rightmost occurrences for all candidate patterns. A rightmost occurrence of
a pattern tree P in a data tree D with regard to a matching function ϕ is the
node Rmo(ϕ) = ϕ(k) of D where the rightmost leaf k of P maps to. If P is
in normal form, then k = |VP |. The set of rightmost occurrences can thus be
defined as RMO(P ) = {Rmo(ϕ) | ϕ is a matching function of P into D}.

The set of rightmost occurrences is similar to the set of root occurrences in the
sense that it has a clear limit on how many of them there can be. However, due
to FREQT making extensive use of the rightmost expansion, it is easy to deduce
the set of rightmost occurrences from the previous one. On top of this it is easy
to calculate how many root occurrences a pattern tree has from its rightmost
occurrences. If we look at the pattern tree, we know what the length is of the
path from the root node to its rightmost child. If we then take all the rightmost
occurrences and go up the same amount of nodes for each rightmost occurrence
we get the set of root occurrences. Alternatively, we could also keep track of the
root occurrences, but this would be redundant since we have to keep track of the
rightmost occurrences anyways. The reason is that the rightmost occurrences
are used to check for the amount of patterns possible for the expansion of the
pattern tree. If we did not have these, we would have to recalculate them from
the root occurrences every step, leading to a lot of double work.
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FREQT works by looking at the pattern trees and then adding a rightmost
expansion. A rightmost expansion of a tree P is the addition of a node with some
label as the rightmost child of a node somewhere along the rightmost branch.
The rightmost branch is the path between the root node and the rightmost child,
which is the last child when traversing the tree in preorder. Using a rightmost
expansion has the benefit that there is always exactly one tree of which the
current tree is the rightmost expansion. This is in contrast to when adding
labels in arbitrary locations, where one tree could be created from multiple
different trees. On top of this, with rightmost expansion all trees that could
be created by adding nodes in arbitrary places can still be created. This thus
means that we can consider all trees to be organized in a tree where if the tree
S is a rightmost expansion of a tree T , that T is the parent of S. FREQT could
then be described as simply doing a breadth-first search through this tree. For
a given rightmost expansion we can also efficiently calculate all their rightmost
occurrences from their previous ones. We do this checking for each rightmost
occurrence, all the right siblings of the node which would be a left sibling of the
new node. We then check if any of these nodes in the data tree have the correct
label. If such nodes exist with this correct label, we can save those nodes in our
list of rightmost occurrences of the expanded pattern tree.

The algorithm also does duplicate detection to make sure it does not check the
same node in the same data tree multiple times. This duplicate detection works
efficiently since all right most occurrences with the same parent are listed after
each other in RMOk−1 thanks to the way the update of RMO scans all children
of the same parent to see if they could generate a new rightmost occurrence.

As an example, consider the AST in Figure 3.7a. In this tree we have high-
lighted both occurrences of the pattern tree from Figure 3.7b. Assume that the
pattern tree is also in normal form. The rightmost occurrences of this pattern
are {6, 22}. Assume that we are adding a node with label ‘Operator’ to our
pattern tree. We would then attempt to add it as a child underneath node 4
of the pattern tree and add it as a new rightmost child underneath nodes 1,
2 and 3. However, the only expansion that actually occurs in this AST is the
one where the node becomes the new rightmost child of node 1 of the pattern
tree. This expansion is shown in Figure 3.7c. We can then check for the new
rightmost occurrences of it by going two nodes up from the previous rightmost
occurrences. In this case that means we go up to the nodes 4 and 20 in the data
tree. Then we check those nodes’ right siblings. We then find nodes 7 and 23
which match the label. These are then added to the rightmost occurrences of
the expanded tree. We can do the same procedure for the expansion shown in
Figure 3.7d. This results in the new set of rightmost occurrences of 9 and 25.

Now that we have defined how FREQT works, there are some small optimiza-
tions that can be made to generate fewer candidates without missing any of the
frequent ones. These techniques are somewhat reminiscent of the techniques
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used to speed up associate rule mining. When doing a rightmost expansion of
a tree, we only need to consider those labels that have a node with that label
in F1, thus skipping some labels every time we expand a pattern tree. This is
similar to how association rule mining can be sped up by looking at the previ-
ous set of frequent associations and only generating those sets of associations
of a size one larger for which each subset of one size smaller was also frequent.
Similarly, FREQT can also be sped up by keeping F2 and only generating ex-
pansions which result in the new rightmost child r to have a parent node p such
that the tree with p the parent of r also appears in F2. This means that in any
candidate there are no pairs of parent and child nodes p and t that is not also a
tree with p the parent and t the child node in F2. If there were such a pair the
tree could not be frequent since if the subtree is not frequent, the entire tree
will not be frequent. A similar logic could be applied with more complex tree
with n ≥ 3 nodes, but this tends to become so computationally complex that
it’s benefits are severely diminished.

Finally, it should be noted that FREQT returns every s-frequent tree. That
means that if a pattern tree is s-frequent it and all its subtrees are returned by
FREQT. Whilst this is entirely correct, the smaller patterns are less useful to a
human who has to interpret these pattern trees representing code patterns. As
a result, the FREQT algorithm was expanded upon to create the FREQTALS
algorithm.

3.3.2 FREQTALS

Now that FREQT has been discussed, it is clear that it is good at efficiently
calculating all pattern trees that are frequent in some data tree. However, it is
not good at selecting what patterns will be useful to a human that is attempting
to understand these patterns. If we decide to thus add additional restrictions to
what trees we would like to see returned, it would also be likely that we could
make the algorithm itself more efficient by taking these restrictions into account
to prune more pattern trees that would never be returned. This is the approach
taken by FREQTALS that we described earlier: we specialize the FREQT to
work with code pattern mining. We thus specialize FREQT by adding additional
constraints to it. This is exactly what K. Mens et al. [PNM+19] did in the paper
defining FREQTALS. As a result, most of the section explaining FREQTALS
is based on their paper.

FREQTALS adds the idea of constraint-based data mining to the FREQT
mining algorithm by enforcing 8 constraints numbered C0 through C7. The first
constraint is C0 which is a constraint already enforced by FREQT and simply
made explicit in FREQTALS, namely the minimum support constraint which
enforces that all patterns must have a minimum support of some fixed value.
This is the same as enforcing that all trees must be s-frequent for a particular
0 < s ≤ 1. The value of this s can be determined from the size of the data tree
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and the required support. Next is the maximum size constraint C1 where we
limit the amount of leaf nodes our tree can have. This constraint goes together
well with the minimum size constraint C2 that requires that every tree needs to
have at least a certain amount of leafs. Note how both of these are simply, so the
mined pattern is useful but not so large a human has difficulty understanding
it or so large it would take the computer too long to compute it. Also note
that while C1 can be used to limit the amount of pattern trees that are being
searched, C2 can only be used to limit the trees being output, but not the ones
being searched.

Next are the constraints on the labels. Firstly, there is C3 which limits the
set of labels that are allowed to occur in the root of the mined patterns. This
allows the mining algorithm to limit the set of pattern trees it needs to explore
based on their root labels. However, if we still wish to use the optimizations
we defined for FREQT by using F1 and F2, then we will need to ignore this
rule when mining for patterns of size one and two. We will need to still filter
out the patterns that do not adhere to C3 when outputting all found patterns.
This constraint also makes a lot of sense for a human. It makes sense to return
a pattern that is rooted at a ‘ForLoopStatement’, but not one that is rooted in
a ‘Condition’, should we have a more explicit AST like in Figure 3.1. The next
constraint on labels is C4 which restricts pattern trees to not contain a specific
set of labels. This again makes the search tree for the algorithm smaller since it
no longer needs to check any pattern tree in which any node uses any of these
labels. Note that this restriction can be applied when calculating F1 and F2 to
be used with the optimizations, since any tree with those labels could not be
used to expand any pattern tree anyways. From a user perspective this clearly
also makes sense if there are certain kinds of patterns we do not wish to find.
For example, we may not be interested in patterns about the class definition.
Next there is constraint C5, which limits the number of siblings that can have
the same label. This again can limit the amount of pattern trees that need to be
searched. From an end user this also makes sense as for example a high amount
of repetitions of the same node would likely express a long list of something
being defined, like for example a static array with pre-defined values.

As a final label constraint, there is also a restriction on the labels of leaf
nodes: C6. This restriction dictates that all leafs in the pattern tree must
have labels that also occur as leafs in the data tree. This also allows pruning
of the search space. We can prune by realizing that at any point all the leafs
of the pattern tree except for the rightmost child will always be leafs. Thus,
if a rightmost expansion makes a node a leaf that is not allowed to be a leaf,
this expansion does not need to be checked. This restriction also makes sense
from an end-users perspective, since if they would want to understand the code
pattern mined, they could attempt to convert it to code again. This can only
be guaranteed to be possible if the pattern has leaf nodes with labels that are
also the labels of leaf nodes in the actual data tree.

49



The last constraint added by FREQTALS is C7, which enforces that all nodes
with a specific label must also have a certain set of obligatory children with spe-
cific labels. This requirement however is only enforced on nodes with structural
labels. A label is considered structural if in the data tree for in each occurrence
there are never two children with the same label and if for all pairs of occurrences
the labels that their children share are in the same order. The set of obligatory
children for a node with a specific label are then the set of child labels that all
the occurrences of the label in the data tree have in common. Similar to C6 we
can use this constraint to prune certain pattern trees from our search space as
soon as we know that a sibling can no longer be added to a node, and they do
not have all required children. This definition also means that this restriction
requires the use of the more elaborate way of writing an AST like in Figure 3.1,
rather than the more compact notation of Figure 3.2. However, for an end user
again this makes a lot of sense since this for example would be able to enforce
that for a while loop, both the body and the condition need to be contained in
the pattern tree.

Finally, the last addition made by FREQTALS to FREQT is the maximal
subtree mining where it takes the results produced by FREQT with the added
constraints of C0 through C7 and then expands these trees as much as possible
while keeping the same set of occurrences. This essentially allows FREQTALS
to search through the set of possible pattern trees fairly quickly due to C1 using
FREQT and then expand these best results as much as it can before it becomes
less frequent. This in combination with C1 allows for a trade-off between the
computational efficiency and the size and complexity of the pattern trees.

This thus shows that FREQTALS is an extension of FREQT that attempts
to provide additional constrains that are useful in the context of an AST but
may not be so useful for tree mining in general.

3.3.3 Intermediate languages

The previous approaches both rely on finding frequent patterns directly in the
AST. Alternatively, we could use some intermediate language to translate our
AST to and then pattern mine on that AST. This has the added benefit of
being relatively flexible, since the language can be chosen to accommodate only
the parts that are of interest, but this also means that for each language a full
translation must be devised. It also has the benefit that if the intermediate
language is simpler than the original that, if we simply executed a normal tree
mining algorithm on it, it would just take less time to execute than on the
normal AST.

This approach is not as common in the standard code pattern mining setting,
however it can be found in adjacent problems, such as contextual code search.
Contextual code search is the problem of attempting to suggest a piece of code,
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typically a function, based on the surrounding context, for example the doc-
umentation around it or the name of the function or its parameter types. A
relatively efficient solution to this problem was proposed by Mukherjee et al. in
the form of their CODEC system [MCJ20]. In this system they focus on search-
ing for entire functions from context clues of the function and its surroundings,
which they accomplish by training a neural network to generate an AST of an
intermediate language from a given context. It then also stores all AST’s of
functions in the intermediate language with their context and the original code
in a database. Finally, when a context is given and a function for that context is
requested, CODEC takes that context to generate an AST in the intermediate
language and then looks up similar pairs of AST’s in the intermediate language
and context in the database and then returns the associated program code.

It is thus clear that the CODEC system also attempts to find pairs of similar
code patterns. However, unlike in frequent tree mining, it does not restrict the
searched patterns to only the frequent ones, but also considers the less frequent
ones. On top of this rather than only focus on the tree patterns that have to be
similar, it also considers the surrounding context in an attempt to better guide
the search of similar pairs of code and because in their application the code
to which we are attempting to find the most similar pattern to is not known.
Since this problem is only adjacent to our discussion here, we shall extract the
interesting concepts from it, namely using an intermediate language, and apply
those to code pattern mining.

With regard to the intermediate language there are two ways in which this
can be used in the mining algorithm: either as a pre-processing step followed
by a normal frequent tree mining algorithm, which will potentially run more
efficiently if the intermediate language is simpler than the original language.
The other way in which this can be used is by integrating it directly into the
algorithm and adding the frequency of all patterns that have the same AST in
the intermediate language together as if they are the same pattern.

Preprocessing AST’s

The first way to use the intermediate language is to translate to it before mining
patterns. Thus, we start with to defining the intermediate language. Then
define a translation from an AST in the current language to the intermediate.
Next, as a pre-processing step, we translate the entire data tree to an AST
of this intermediate language. Finally, we run FREQT or FREQTALS or any
other tree miner on this AST and these give the frequent patterns of the AST
in this intermediate language. However, this means that the found frequent
patterns are AST’s in the intermediate language and not in the in original
language. Depending on the intermediate language this might be good enough.
For example if an AST in the intermediate language translates easily to some
pseudocode that can be understood by a programmer, then the algorithm could
simply output this pseudocode and that might be sufficient.
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As an example, consider the translated AST of Figure 3.6. Assume that
‘ConstantExpression’ was also part of our found pattern. In this case we could
attempt to translate our subtree into pseudocode, but this would result in a very
vague translation. We would get something along the lines of ‘var op const’. If
this were the original AST, we could have returned something along the lines
of ‘a op 1’.

It is also possible that pseudocode is not good enough for the application or
that, as we showed in our example, that the intermediate language does not
translate well into pseudocode. If this is the case, a possible solution would be
to generate a possible or set of possible AST’s of the original language from the
pattern. Again these could also be translated into an actual piece of code if this
is what is needed. The reason for giving a set of possible patterns is because
it is likely that multiple slightly different AST’s in the original language get
represented by the same tree in the intermediate language. This means that
when we are given a single pattern in the intermediate language that there are
likely many possible trees that it could be in the original language. Thus, to
give a better idea of what the pattern was that was found, it might make sense
to return multiple patterns in the original language so the end-user can see
what the commonalities are between these or choose which is most appropriate.
However, generating these AST’s is not a trivial task, since it is most useful if
these patterns are translated back to pattern trees that actually occur in the
data tree. This could be done relatively efficiently if we know the occurrences
of the tree in the data tree in the intermediate language and if we can map
the nodes from the intermediate language AST back to the original AST. This
would allow us to generate total occurrences in the intermediate language AST
which we could then map back to the original data tree.

As an example, consider our pattern from the previous example again. If we
actually kept track of its origins, we could find out that it came from two AST’s
which represent the expression ‘a < 1’ and ‘a + 1’. Instead of thus generating
all possible combinations like ‘c = 5’ and ‘b − 15’, we could then simply return
these patterns. This would then also indicate that this pattern always seems to
be applied to the variable ‘a’ and always has the constant ‘1’ in its right-hand
side. If we simply returned a possible set of information we would understand
that it is a variable, some operator and a constant, but we would not notice this
extra information.

Translating during mining

Instead of trying to find the occurrences of a pattern in the intermediate lan-
guages afterwards, we can simply use the intermediate language to relate mul-
tiple patterns as being the same. This also prevents us on potentially missing
out on some frequent patterns because multiple occurrences in the original data
tree get converted into a single one in the data tree of the intermediate lan-
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Figure 3.8: An example of an AST and its translated counterpart

guage. However, this comes at the cost of adding complexity and thus losing
the efficiency gain of the previous approach.

As for how this would be implemented, it would mostly function similarly
to FREQT or FREQTALS but with the size of the pattern being determined
by the size of its tree in the intermediate language. This gives us the question
of how to generate a new pattern that is one size larger. The straightforward
solution of generating new patterns in the intermediate language and then trans-
lating these into the original language, will not work. This is because it is very
possible that the translation will provide an infinite amount of patterns. Even
if the translation does not provide an infinite amount of patterns, the amount of
patterns it will generate will be very large, which would be rather inefficient. A
better alternative would be to generate patterns on the original tree, similarly
to how this happens normally in FREQT. We would then translate these into
an AST in the intermediate language to compare which patterns are considered
similar. For all the patterns considered similar this way, they would all con-
tribute their root occurrences to a count of the root occurrences shared between
these patterns, but keep their own rightmost occurrences to allow for easy ex-
pansion in the same way as FREQT normally does. However, if they have no
occurrences they are immediately removed from the set of candidates to check
for the current size.

As an example consider the AST in Figure 3.8a. Assume that within this
AST we were considering the pattern trees consisting of an ‘IdentifierExpres-
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sion’ and its child ‘a’ and another one but with its child ‘b’. Under normal
pattern tree similarity these are not considered similar. However, when we look
at the translated AST in Figure 3.8b, we can see they are both mapped to a
single ‘IdentifierExpression’ node. Thus, in the translated AST they are consid-
ered similar under pattern tree similarity. This means that when the algorithm
will consider whether these patterns are frequent, both will be considered to
have 2 root occurrences. This is because all similar patterns essentially pool
their occurrences when the algorithm tries to determine their frequency. How-
ever, each of these pattern trees only has one rightmost occurrence, namely the
occurrence of their ‘a’ and ‘b’ nodes. These will then be used when attempting
to expand these patterns.

Even through we expand the trees similar to FREQT, how the expansion
works regarding moving to trees of a larger size is still different. This is because
what we consider the size of the pattern trees to be, is the size of the pattern
tree translated to the intermediate language. The algorithm would attempt
to expand the pattern tree in the original language with a rightmost expan-
sion, just like in FREQT. If this expansion results in a tree in the intermediate
language that is one node larger than the size of all current pattern trees in
the intermediate language, it gets added to the list of candidate pattern trees.
However, it is possible this results in a translation to the intermediate language
where a set of nodes could not be translated. This would likely be because a
translation requires may require multiple nodes to generate a single node in the
intermediate language. If it has some node that could not be translated, then
we add it to the list of candidates to check for the current size of pattern trees.
A third possibility is that the candidate results in a translation with an extra
node, but also with some untranslated subtree. If this is the case, we would
remove it from the candidates of the current size.

At the end of all expansions, if there is nothing new in the list of candidates
to check for the current size, then it moves on and checks the candidates of
ones size larger. If there are still new candidates in the list of candidates to
check for the current size, the algorithm checks that these all have at least
one occurrence. This is easy to do since it can simply check the occurrences
from the preceding pattern tree that this pattern tree is an expansion of. This
checking is very similar to how we do it with normal rightmost expansion. Note
how these incomplete translations do not contribute their occurrences to any
pattern, since they do not translate properly to some AST in the intermediate
language. However, we do need to still keep track of them to make occurrence
checks of expansions still efficient. After this check, the algorithm attempts to
expand these new trees again as previously described. Also note how we remove
candidates where they result in an extra node in the translation but also still
have some untranslated subtree. This is because this indicates that a subtree
was being explored to generate a node, but then the rightmost node moved
further up in the tree, which left this subtree only partially explored. Because
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the rightmost child has moved to a location that no longer allows exploration of
this subtree, we ignore this pattern tree in favor of the one where this subtree
was never explored to begin with.

As an example, consider again the AST of Figure 3.8a. Assume that here
we have found the pattern of size two containing ‘InfixExpression’ and ‘Left-
Operand’. On possible expansion of this is by adding the ‘IdentifierExpression’
underneath the ‘LeftOperand’ node. This would result in a tree that does
not translate to our intermediate language. This is because we only trans-
late an ‘IdentifierExpression’ and its child node to and ‘IdentifierExpression’
node. Thus, when checking if this pattern is frequent enough, this pattern will
get expanded upon again. If we expand this pattern with ‘RightOperand’, it
will get removed the next time we check frequencies. This is because while
adding ‘RightOperand’ causes the size to go to 3, it still leaves ‘IdentifierEx-
pression’ untranslated. Because the rightmost occurrence is now on the ‘Right-
Operand’ branch, the ‘IdentifierExpression’ could never be expanded to become
fully translated. Alternatively, if we expand the pattern we currently have with
‘a’ this will result in an AST that has no untranslated nodes and has 3 nodes
in its translation. This is then added to the candidate set of the next size.

The previous paragraph describes how FREQT could be adjusted to use an
intermediate language, but there are optimizations that can be made. Firstly
the tricks used in FREQT to make it easier to skip certain expansions can be
used here as well, but it then checks that the expansion results in a translation
so that the intermediate language pattern trees that can generate a frequent tree
according to the optimizations. If the expansion results in a new node in the
translation that isn’t in a translation of the patterns in F1 then it is skipped.
Also, if the expansion results in a new edge being created in the translated
tree that does not appear as an edge in the translations of the patterns in F2,
it is also skipped. A new optimization that could be made is one caused by
the expansion when trying to find a new tree that will translate into a pattern
tree with one additional node. In this process it is possible that one subtree
gets partially explored and then the expansion happens in a position that this
subtree can no longer be explored. This can be prevented by keeping the last
tree that was used as a basis for this tree that translated to tree without any
untranslated subtree. If the expansion on the pattern tree ever happens so
that, when the base tree is removed there are two disconnected subtrees, this
expansion can be ignored. Finally, the largest problem that needs optimization
is that the algorithm often keeps expanding a subtree that does not contribute
to adding a new node in the translation since it is removed entirely. To solve this
we could when defining the translation also define a function that is given the
entire subtree that is being expanded and cannot be translated currently and
that returns whether the subtree rooted at the rightmost child will contribute
to any translation or not. This allows our translation to be arbitrary and to
use the knowledge of the human defining the translation to still increase our
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efficiency.

This second approach could also be used to implement the API set similarity
by simply only keeping the function calls from the AST and some other struc-
tures such a function declarations such that it is clear where the boundaries of
a function are. The API sequence similarity could be implemented similarly,
where only the function calls are kept in the translation, together with certain
nodes that indicate a change in control flow, such as if blocks or for loops.
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Chapter 4

Relational Meta-Algebra

In the previous chapter we discussed multiple algorithms to mine patterns from
an AST. Mining a pattern is essentially querying the code for similar patterns
to a given pattern. There are many algorithms and languages to ask queries in
general, but the most common one is SQL. SQL is a well studied language and
finds its foundations in the relational algebra. Of course a query in relational
algebra could also be considered a piece of code and could be turned into an
AST. This AST could then also be mined. However, there are also algebras
designed to allow us to query relational algebra queries themselves. In this
chapter we shall start by looking at an extension of SQL that allows us to query
trees that represent AST’s of SQL queries. Next we shall discuss the foundation
of SQL: the relational algebra. This allows us to form a more mathematical
representation of a query. After that, we introduce its logical counterpart: the
relational calculus. With the relational calculus we will be able to prove what
queries and cannot be expressed in it and the relational algebra. Once both the
relational algebra and the relational calculus have been introduced, we consider
how to expand both, so they can query and execute relational algebra queries.
This then results in the relational meta-algebra and the relational meta-calculus.

4.1 Meta-SQL

The first type of query language we shall discuss is Meta-SQL. This is an
extension of the SQL languages that allows us to look into queries stored in
the database as if they were a data structure, defined by Van den Bussche et
al. [dBVV05]. It thus allows us to inspect queries. It does this by storing all
queries in an XML format. However, to inspect this XML data we require some
other query language, as SQL can only query the data in its own table. For this
we use the XSLT language. XSLT is a language designed to transform XML
document and is a W3C standard [Kay17]. Finally, they also add an evalua-
tion function, which takes an AST of an SQL query and executes the query
it represents. The reason we choose to consider this language is that it is a
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very practical language, considering it is an extension of SQL. On top of this it
will allow us to introduce a recurring concept and demonstrate its usefulness.
Finally, it allows us to highlight the strengths and weaknesses with an approach
where existing technologies are combined versus extending a piece of existing
technology with a new technology.

4.1.1 Adding XSLT to SQL

The first thing that is changed in Meta-SQL compared to standard SQL that
we will discuss, is the addition of the XML datatype. After this, we will discuss
the power of adding the querying of this XML datatype to SQL with Meta-SQL.
This allows Meta-SQL to inspect and transform the documents that are of an
XML datatype. Next we will discuss how Meta-SQL adds to SQL the part that
ties the XML querying and transformation together with SQL: XML variables.
Finally, we will also discuss one final addition that makes it easier to work with
XML variables: XML aggregation. This allows a set of XML values in an XML
variable to be combined into a single value. In the following paragraphs we shall
discuss all these additions, the reasoning behind their addition and the pros and
cons of them.

XML Datatype The first addition to SQL is the introduction of the XML
datatype. This on its own is not anything special. This is because without any-
thing that interacts with this datatype, it would not make a difference if it were
stored as a string in the database. However, once other tools are introduced that
can interact with the datatype in a meaningful way, having an XML datatype
becomes essential. If we did not have such a datatype, we would be forced to
use a string column and then check that a given string is a correctly formatted
XML document before interacting with it.

XSLT The next addition of Meta-SQL to SQL is the use of XSLT. In the pre-
vious paragraph we discussed an XML datatype but had no way to interact with
it. With the introduction of XSLT we can actually manipulate the data within
the columns with an XML datatype. XSLT is a very powerful XML transfor-
mation language, which takes as an input an XML document to operate on and
optionally some parameters. These parameters can be supplied from the SQL
query, thus allowing us to interact with the XML document by manipulating it
based on the values in some tables.

XSLT operates by recursively applying templates starting at the root of the
input document. Each template has an associated XPath expression that speci-
fies on which nodes of the input template it should be applied. XPath is another
language specifically designed for XML and allows us to select certain sets of
nodes. The result of an XPath expression is always a set of nodes in the XML
document tree. The XSLT template to be applied at any particular time will be
the first one in the document to return a non-empty set of nodes from its XPath
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expression. When applying a template, it is also possible to give an XPath ex-
pression. If one is given, a template will be applied to each node that the XPath
query returned. On top of this it is also possible to give each template a mode
and when applying a template to only consider templates of a given mode. There
is also other functionality, such as a ‘for each’ loop, conditional statements and
tree variables. All of this complexity also shows the potential problem with us-
ing XSLT in a query language: XSLT is Turing-complete [Kep04]. This means
that it is entirely possible to define queries for which we shall never get the an-
swer. It also means that it is difficult to optimize a query containing an XSLT
query, as we cannot know the size of its output beforehand. However, it also
grants us a great flexibility in how we wish to inspect and transform the stored
XML documents. To make use of an XSLT transformation, we define a func-
tion in the database that contains an XSLT document. This consists of XSLT
templates and an optional a set of parameters to be referenced within any of
the templates. Note that an XSLT document does not need to return an XML
document. For example, it can also return a document that contains only the
text node of a string. This can then be converted by the database to a string
rather than an XML type.

XML variable Now that XSLT has been introduced, we can transform docu-
ments. However, we cannot do anything yet with these transformed documents.
For this Meta-SQL introduces XML variables to SQL. Where normal SQL vari-
ables range over the rows of tables, XML variables range over subelements of
an XML document. An XML variable can be introduced in a FROM-clause
similar to a how the rows of a subquery is introduced. For an XML variable s
definition would be xiny[e], where y is either an XSLT function call or a pre-
viously bound XML variable and e is an XPath expression. x is then filled in
with each node the XPath expression returned. This then behaves similar to if
y[e] was a subquery that returned a row for each node returned by the XPath
expression e.

XML aggregation The final addition of Meta-SQL to SQL is XML aggre-
gation. This is very useful as it provides the inverse operation of the XML
variable. XML aggregation allows us to combine multiple XML documents into
a single one. This is done with the natural aggregation function CMB. In CMB
all the functions given to it will be inserted into a new tree as a child of a new
root node labeled ‘cmb’. This is essentially the XML counterpart of the SUM
aggregation for number types. Of course if we want a different label than ‘cmb’
we can simply use the query doing this aggregation as a subquery and then
apply an XSLT function to its value.

4.1.2 Evaluating AST’s

So far we have talked about the features added by the Meta-SQL to help it
process XML. However, we have yet to describe what the entire reason is we wish
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to work with XML: we want to work with AST’s as XML documents. Now that
we have defined a powerful method to interact and transform XML documents,
we can use this to also interact with AST’s of other SQL queries. Assume we
have some table Views which contains a pair of view names and the queries
associated with them. One possible way to use what we have already defined,
is to update all views that refer to a specific relation to use a new relation. Of
course this is only a very basic query, but it shows what the potential power
could be of what we have defined so far. However, the strongest and arguably
the most powerful aspect that the Meta-SQL has not yet been discussed: the
evaluation function.

The evaluation function allows us to go from syntactical meta-querying to
semantical meta-querying. In syntactical meta-querying we only consider the
syntax of the inspected queries. In semantical meta-querying on the other hand,
we consider what the results of a query actually are. To do this we introduce the
EVAL function. This function takes as its input an XML document representing
the AST of the SQL query to execute. Then as its output it returns the rows of
the executed query. Because of this, EVAL can only appear wherever a reference
to a table would be able to appear. This concept can become even more powerful
by the introduction of EVAL’s untyped counterpart: UEVAL. UEVAL returns
a table of XML documents rather than an actual table. Each row in this table
is a root node with for each column the query would have returned a child with
the name of that column. These children only have a single child, which is the
value of that column in that row. UEVAL can appear in the same locations
in our queries that EVAL could. However, the power of UEVAL lies in that it
allows us to execute queries with different output schemas without having to
have a different set of columns for each query executed. The values of UEVAL
can only be extracted by an XML variable, compared to a standard variable for
EVAL.

4.1.3 Considerations

Now that we have explained what Meta-SQL is and what it can do, we need
to consider the pros and cons to it. The single most useful addition made to
SQL by Meta-SQL is the introduction of EVAL and UEVAL. These functions
allow us, in combination with the power of XSLT, to evaluate any arbitrary
query at runtime. It would be possible to argue that the fact that XSLT is
Turing-complete negates this need, but XSLT does not have an easy way to
access the tables of the database. So while XSLT could be used to program
EVAL, it would not be able to return any values from tables of which the values
are not known beforehand.

One of the biggest issues with Meta-SQL is also one of its biggest strengths:
it uses XSLT. At the time Meta-SQL was proposed there were already many
optimizers and executors of XSLT. This means that it would be relatively easy
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to integrate into an existing database system. On top of that it also means that
a lot of the work for how to optimize these queries has already been done and
does not need to be researched. However, because XSLT is Turing-complete it
is also very difficult to optimize and it cannot be guaranteed that it will give
an answer. This is very problematic as it means that a single query could lock
up an entire database until some timer kills it or a user manually stops the
query. Of course this is always a concern for any large query but in this case it
is possible the query never ends. A normal large query on the other hand is at
least guaranteed to find a solution at some point.

A final consideration to make is that almost all the XML additions were also
done by SQL/XML. SQL/XML uses XQuery rather than XSLT however. In the
paper defining Meta-SQL, the authors also noted that should XQuery be more
desirable than XSLT this would be relatively easy to swap out. However, the
original paper for Meta-SQL was submitted two years before the introduction
of XQuery to SQL/XML. On top of this, while there is a significant overlap
between the two, switching to XQuery instead of XSLT does not alleviate the
problem of it being Turing-complete [Kep04].

4.2 Relational algebra

Now that we have discussed a system that uses SQL as a basis and then extends
it to allow for manipulation of stored queries, we shall look at the foundation of
SQL. In following sections we will then expand upon this foundation to again
allow for manipulation and execution of stored queries. However, to be able
to understand and expand upon this foundation we first need to understand
it. This foundation is called the Relational Algebra and is often shortened
to RA. The relational algebra is a language that allows us to define queries
over a database procedurally. That is to say that, when defining a query in
the relational algebra, we state how we transform the input relations to get
an output relation. This is in contrast to the relational calculus, which we
will discuss in Section 4.3, which is declarative. This means that is simply
describes what the result should be like and not how to get it. However, such a
declarative query must, and in this case can, always be translated to a procedural
language to be actually executed and get the result. We shall go more into this
in Section 4.3.

The relational algebra thus defines a set of operators that allow us to define
queries over a database. However, before we can define these operators and how
they behave, we must define what they operate on. In the following section
we will define the structures over which the relational algebra is evaluated. We
will also compare it to the definitions given in Section 2.1.1 to make it easier to
understand.
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4.2.1 Databases

To be able to define the database over which a relational algebra expression
will be evaluated, we first need to define the structure of the database. This is
done by defining a database schema which contains all the relation names and
the arities of these relations. On top of this it could also contain the names of
the columns of the relations. However, in our case we shall simply access these
different columns by referring to the column number.

Definition 4.2.1. A database schema D = 〈R1, . . . , Rn〉 is a fixed set or n re-
lation symbols R1, . . . , Rn. Each relation symbol also has some arity associated
with it. Assume that for every relation symbol Ri its arity is ai. This would
be written as Ri : ai. The arity defines the amount of columns each row in an
instance of a relation symbol will have.

Notice how the database schema is similar to the vocabulary defined in Defi-
nition 2.1.1 but without constants. This immediately also gives an insight into
how we will later on combine finite model theory and relational algebra. In
both cases, we simply define what the structure will be of the things we will be
querying, not the contents.

As an example, say that we wished to define a database that defines some
type simple book catalog for a book store. We would then define a database
schema with two relations. The first relation symbol Books : 4 with an arity
of four, will contain data related the books. In its four columns it will have
the book title, the name of the author, the type of the book and the name of
the publisher, in that order. The other relation symbol is Publishers : 3 with
an arity of three and will contain data related to the publisher. It will have
columns for the name of the publisher, its website and the day of the week that
shipments from this publisher arrive, in that order. Notice how we only defined
the amount of columns and the meaning of each column but not the actual
value. Also notice how we had to state that the columns were in a specific
order. This is because we will refer to the columns by their order and not by
their name. This approach is equivalent to referring to the columns by their
name, but will become useful when we expand the RA, as stated earlier.

The next concept to introduce is the concept of a universe. This will be the
same as in Definition 2.1.2 if we assume our database schema to be a vocabulary
without any constants. Of course a universe does not make any sense without
a structure or, in the case of the relational algebra, a database instance. The
database instance assigns the actual values to the relation symbols from the
universe.

Definition 4.2.2. Assume that D is a database schema and U is a set of values
called the universe. A database instance I over D is a function that maps every
relation symbol R1 : a1 of D to a subset Ua1 .
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In this definition we refer to a relation Ua1 where a1 is some natural number
and U a set of values. In this situation Ua1 means the set of all tuples that
are all combinations of length ai of the values of U . As an example if we
have U = {1, 2}, then we have U2 = {(1, 1), (1, 2), (2, 1), (2, 2)}. Thus, we can
conclude that a database instance is simply maps each relation symbol to a set
of tuples of the length of the arity of that symbol that only contain values from
the universe.

As an example of a database instance we will show the result of the mapping
on each relation symbol and the universe. This is given by the tables in Table 4.1.
Again notice how we do not give any names to the columns and simply present
them in their order. In this table representation each row represents a single
tuple in the set of tuples that the instance I maps to a particular relation
symbol. Note that U is not a relationship that can be accessed, but it has
been added here to show what the universe looks like in this example. In this
example the universe U also perfectly matches with all the values found in the
relations. This collection of all values found in the relations is called the active
domain. However, it is not required that the universe and the active domain are
the same. The active domain must be a subset of the universe, but the universe
could contain more. For example our universe U here could have also contained
the values ‘THU’, ‘FRI’, ‘SAT’ and ‘SUN’, even though we do not use them,
and still be a valid universe.

4.2.2 Operators

Now that we have defined what the relational algebra will be operating on, it is
time to define how it will operate. In the relational algebra there are two types
of symbols used: relation symbols and operators. A relation symbol will return
the table of the relation it refers to. This means that it will return a list of the
tuples given by the list returned by the instance for that relation symbol. All
the different operators allow us to then manipulate this table.

As an example take our instance of Table 4.1. If we would then write the
formula Publishers we would get the list of rows {(SERN Publishing, sern-
pub.org, MON), (Shōnen Ace, web-ace.jp, TUE), (Instant Publisher, instant-
publisher.com, MON), (Alfred A. Knopf, knopfdoubleday.com, WED)}. This
collection of rows is then also called a table.

There is also a third kind of symbol that can be used. That symbol is constant
relation. This is not so much a symbol type on its own, but a special kind of
relation symbol where we create a relation from a single value of the universe.
This is called a constant expression. We can write a constant expression as
follows {(x)} with x some value from the universe. This means at it will create
a relation of arity one with one row. As an example, take the universe from
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Books
Theory of time travel Dr. Nakabachi Research SERN Publishing
Helvetica Standard Keiichi Arawi Comic Shōnen Ace

A Time Traveler’s Tale John Titor Biography Instant Publisher
Eragon Christopher P. Fantasy Alfred A. Knopf
Brisingr Christopher P. Fantasy Alfred A. Knopf

Dead Man Wonderland Jinsei Kataoka Manga Shōnen Ace

Publishers
SERN Publishing sernpub.org MON

Shōnen Ace web-ace.jp TUE
Instant Publisher instantpublisher.com MON
Alfred A. Knopf knopfdoubleday.com WED

U
Theory of time travel
Helvetica Standard

A Time Traveler’s Tale
Eragon
Brisingr

Dead Man Wonderland
Dr. Nakabachi
Keiichi Arawi

John Titor
Christopher P.
Jinsei Kataoka

Research
Comic

Biography
Fantasy
Manga

SERN Publishing
Shōnen Ace

Instant Publisher
Alfred A. Knopf

sernpub.org
web-ace.jp

instantpublisher.com
knopfdoubleday.com

TUE
MON
WED

Table 4.1: An example of a database instance
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SERN Publishing sernpub.org MON MON
Shōnen Ace web-ace.jp TUE MON

Instant Publisher instantpublisher.com MON MON
Alfred A. Knopf knopfdoubleday.com WED MON

Table 4.2: The result of Publisher × {(MON)}

Table 4.1. We could create a constant relation of the value ‘Eragon’ by writing
{(Eragon)}. This will then return a table that is exactly {(Eragon)}.

Cartesian product

The first operator we will describe from the relational algebra is the ‘Cartesian
product’. This operator combines the outputs of two relational algebra expres-
sion by making all possible combinations of their rows. The Cartesian product
is written as F × G for some relational algebra expression F and G. How it
works is it creates a new table to store the output in. Then for each row of F
it goes through every row of G and puts in the output table that row that has
the columns of that row of F followed by the columns of the current row of G.
Assume that the output of F is a relation of arity n and the output of G is a
relation of arity m. The output of F ×G is then a relation of arity n+m.

As an example of the Cartesian product consider the database described in
Table 4.1. On this instance we shall execute the query Publisher× {(MON)}.
This relation will for each row of the relation Publisher create a new row for each
row in {(MON)} and add all its columns to the row from Publisher. However,
since {(MON)} only has a single row and a single column, a single column
gets added to each row of Publisher. The arity of the resulting expression is
3 + 1 = 4.

Selection

The next operator we will discuss is the ‘selection’ operator. This operator takes
a single table as its input and produces as its output all rows of the input table
for which some condition holds. In these conditions we can use equality and
references to columns. If we wish to enforce multiple filters, we simply apply
another selection filter the output of the selection. This operator can be written
as σi=j(F ), where i, j ∈ {1, . . . , n} if the input relation F is of arity n. The
input relation F can be any kind of relational algebra expression, including of
course any of the previously discussed relation symbols. Also notice how, since
it only filters rows, the selection operator does not change the arity of the input
relation compared to the output relation.

As an example, Assume we want to retrieve all books that are Fantasy books
from our relations from Table 4.1. We would write this as σ3=5(Books ×
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Eragon Christopher P. Fantasy Alfred A. Knopf Fantasy
Brisingr Christopher P. Fantasy Alfred A. Knopf Fantasy

Table 4.3: The result of σ3=5(Books× {(Fantasy)})

Theory of time travel MON
Helvetica Standard TUE

A Time Traveler’s Tale MON
Eragon WED
Brisingr WED

Dead Man Wonderland TUE

Table 4.4: The result of π1,7(σ4=5(Books× Publisher))

{(Fantasy)}). What is happening here is we first add a new column to the
relation of Books with the value ‘Fantasy’ for each row. Then we check if the
book type column and the new column are the same value. Since this value
is always ‘Fantasy’, it will keep only those rows whose book type is ‘Fantasy’.
The resulting table can be found in Table 4.3. This technique of adding a new
column with a constant value and then selecting based on that constant value,
is how it is possible to filter on some constant value.

Projection

Another operator from the relational algebra is the ‘projection’ operator.
This operator can remove certain columns from the input relation. It does this
by stating which columns it should keep. This written as πi1,...,ik(F ) where
i1, . . . , ik ∈ {1, . . . , n} for a given relational algebra expression F with an arity
of n. What this operator then does is for each row of F , it adds to the output
table the row with only the columns listed in i1, . . . , ik. Thus, when we project
a relation to only the columns of i1, . . . , ik we reduce it to an arity of k.

As an example take the database instance of Table 4.1. If we asked for
the days on which a certain book could be delivered we would do this with
σ4=5(Books× Publisher). However, we would still have two columns with the
names of the publishers and a lot of other info that we do not need. To solve
this we could project only those columns that are of interest to us. If we only
want to keep the column with the book title and the weekly delivery date we
would write π1,7(σ4=5(Books × Publisher)). This then reduces the arity to 2,
since only two columns are kept. The resulting relation is the one in Table 4.4.
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Shōnen Ace
Alfred A. Knopf

Table 4.5: The result of (π4(σ3=5(Books × {(Fantasy)})) ∪ π4(σ3=5(Books ×
{(Comic)})))− π1(σ3=4(Publishers× {(MON)}))

Union and difference

The final operators left to describe for the relational algebra are the ‘union’ and
the ‘difference’ operators. These operators take two relational algebra expres-
sions of the same arity and produce the union or the difference between their
rows. These are written as F ∪ G and F − G respectively, with F and G two
relational algebra expressions of the same arity. The reason they must be of the
same arity is because if this were not the case we would get a table where the
rows are sometimes of one arity and other times of a different arity. We can also
write the intersection of F and G with only the union and difference by writing
F − (F −G) instead. What we do here is we remove from F all the rows that
occur in F but not in G.

As an example assume again the database instance described in Table 4.1.
Now assume that the query we want to ask is to get all publishers that have
published a Comic or Fantasy book but not those that do their deliveries on
Mondays. We would do this with the following relational algebra query:(

π4(σ3=5(Books× {(Fantasy)})) ∪ π4(σ3=5(Books× {(Comic)}))
)

− π1(σ3=4(Publishers× {(MON)}))

This query first takes all books that are fantasy books and keeps only their
publishers. Then it does the same for comic books and takes the union of those
two. Finally, it calculates the set of all publishers that deliver on a Monday,
keeps only their names and then removes them from the previous union. The
result of this query can be found in Table 4.5. Note that we do not have to
worry about duplicate values of publishers since we take the union of the sets of
rows. Set cannot hold the same value twice, thus we do not need to worry about
duplicate values. This way of thinking about relational algebra expressions is
called set semantics.

4.2.3 Comparison to SQL

Now that we have described the relational algebra, we need to consider how it
relates to SQL. In the beginning of the section on relational algebra we claimed
it to be the foundation of SQL. Yet so far, the relational algebra does not seem
to bear much resemblance to SQL. However, the relational algebra expresses
exactly the same queries as SQL using only queries using only the SELECT,
FROM and WHERE clauses [CG85]. This includes using subqueries. Of course
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if we use arithmetic in the WHERE clause we would also need to introduce
arithmetic to our selection operators. In fact, one of the most powerful and
useful aspects of SQL is that it can be translated to the relational algebra
operators. These can then optimized and executed on an actual database. Of
course, since we know that not the entirety of SQL can be expressed in the
relational algebra, we will need to extend it to allow for certain operations.
These operators are mostly grouping operators and aggregate functions. There
are some aggregate functions however that can be expressed However, the core
of querying in SQL is already present in the relational algebra. That is the
reason it is called the foundation of SQL.

4.3 Relational calculus

Now that we have defined the relational algebra and shown that it is equal to
a subset of SQL, we might ask what it can and cannot express. We could at-
tempt to do this by creating theorems for the relational algebra that guarantee
a formula must exist or that allow us to arrive at some contradiction. However,
these theorems already exist in an adjacent field, namely finite model theory.
In Section 2.2 we discussed one type of game that easily allows us to arrive at a
contradiction to prove that something cannot be expressed in first-order logic.
However, this of course only works for FO logic. This is what the relational
calculus, sometimes shortened to RC, is used for: to provide a translation be-
tween relational algebra and first-order logic. The relational calculus is in fact
nothing more than first-order logic applied over a vocabulary that only contains
relation symbols. However, there is one difference: in the relational calculus we
are allowed to introduce any data value as a constant in the formula.

We have already previously defined the first order logic in Section 2.1.4. The
relational algebra is the same but in all locations where a constant symbol is
permitted, a constant data value is also permitted. This difference can be over-
come if we consider a structure with the same relation symbols as our database
schema and an additional constant symbol for each constant data value in the
formula. These constant symbols will then get the values of the data values they
are replacing. This also does not prove a problem when playing an EF-game,
since we get to choose the structure after the formula has been chosen. This
means that the formula will fix the vocabulary, but the structure itself can still
be chosen. We can then win the n-round EF-game over a structure with k con-
stants in it by making the structure that would win an n + k-round EF-game
if there were no constants. Essentially we assume that the k constants are the
first k moves in the n+ k-round EF-game.

As an example of a relational calculus query take the relational algebra query
from Table 4.5 (π4(σ3=5(Books×{(Fantasy)}))∪π4(σ3=5(Books×{(Comic)})))
−π1(σ3=4(Publishers×{(MON)})). If we wish to translate this query we would
start by first defining the free variables for the query and its name. Assume we
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call the query ϕCFNotMon and we gave it one free variable pub. We would then
write this formula as ϕCFNotMon(pub). The formula itself would be broken into
three parts: one for each type of book and then one to remove the publishers that
deliver on Mondays. The first part to select only publishers that have produced
‘Fantasy’ books can be written as ∃a1, a2(Books(a1, a2, ‘Fantasy′, pub)). Simi-
larly, we can get all ‘Comic’ books with the formula ∃b1, b2(Books(b1, b2, ‘Comic′

, pub)). With the final part we would enforce that the publisher does not de-
liver its books on a Monday with the following formula: ¬∃d(Publishers(pub, d,
‘MON′)). Finally, if we combine all these parts we get the following relational
calculus formula:

ϕCFNotMon(pub) ≡
(
∃a1, a2(Books(a1, a2, ‘Fantasy′, pub)∨
∃b1, b2(Books(b1, b2, ‘Comic′, pub))

)
∧

¬∃d(Publishers(pub, d, ‘MON′))

In this formula we combined the first two parts with a disjunction, since either
may hold and then combined that with the last part with a conjunction, en-
forcing both must hold. In our translation of the query there are two things to
notice. Firstly notice how in the relational calculus we do not need to intro-
duce a constant relation and then equate two columns. We can simply use the
constant value directly when referencing the relation. A second thing of note
is how we project columns of a relation. Notice how for each column that we
do not care about, we put a variable that we have existentially quantified or a
constant. On the other hand if we would want to keep the column that has a
constant value, we can put a variable, say a3, there and then add ∧ = const for
some constant value const.

4.3.1 Safe relational calculus

In the previous section we showed an example of the relational algebra being
translated into the relational calculus. This goes further than this one example:
we can translate any relational algebra expression. This means that everything
that can be expressed in the relational algebra can be expressed in the relational
calculus. However, the reverse is not true. There are relational calculus formulas
that cannot be expressed in the relational algebra. As an example, take the
query ϕ(x) ≡ ∃y(x = y). This query in the relational calculus will return the
entire universe, since that is the set of all the values it will check for x. If this
universe exactly matches the active domain, we could write this query in the
relational algebra. We would do this by for each column of each relation symbol
creating a projection that keeps only that column. Then we would take the
disjunction of all these projections and that would be our active domain. Note
that we do not have to worry about duplicate values in our active domain since
we use set semantics. If however our universe is larger than the active domain,
then we could never get the same set of values returned. This is because the
relational algebra can only access the values from the relations and constants.
This can be solved if we simply assume that we only evaluate a relational calculus
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expression over the active domain. We call this way of evaluating the relational
calculus using active domain semantics.

When using active domain semantics, we simply change the way we interpret
the relational calculus. However, this no longer allows us to use the relational
calculus and proofs about first-order logic to prove that things cannot be ex-
pressed. This is because in first-order logic we are still allowed to use any value
from the universe when quantifying a variable. Thus, the mapping between the
two that we introduced earlier is broken. A more convenient approach would
be to change these queries so that they are guaranteed to only use the active
domain when giving a result. The idea is to change them in such a way that
they also still quantify variables over the entire universe. This would turn the
relational calculus into a subset of first-order logic. However, this does mean
that we can use the proof that something cannot be expressed in first-order
logic, to mean that it cannot be expressed in this relational calculus. The issue
is that we have not yet defined a way to identify clearly when a formula is and is
not of this kind. For that we introduce the safe relational calculus, which allows
us to syntactically determine these kinds of relational calculus expressions. The
real power of the safe relational calculus is that it is exactly as powerful as the
relational algebra [C+72] [Ull88]. That means that the safe relational calculus
and the relational algebra can express the exact same set of queries. This means
that they also have the exact same limitations. Our definition here of the safe
relational calculus is based on the definition given by Ullman [Ull88].

Definition 4.3.1. Assume that the universe of the constant data values is V .
A relational calculus formula is safe if:

• It does not contain ∀

• Any subformula of the form ϕ∨ψ is such that ϕ and ψ have the same set
of free variables.

• For every maximal subformula of the form δ1 ∧ · · · ∧ δn every free variable
is limited. A variable x is limited if:

– x occurs free in one of the δ’s that is not negated and that is not of
the form x = y or y = x

– one of the δ’s is of the form x = v or v = x where v ∈ V
– one of the δ’s is of the form x = y or y = x and y is already limited

Notice how this definition uses the concept of a maximal subformula of a
given form. That means we take all subformulas of a certain form and try to
expand them until we can no longer expand then without them losing their
form. As an example, say we try to find the maximal subformula of the form
δ1 ∧ · · · ∧ δn. Assume the formula we are looking for the maximal subformulas
is (a ∧ b) ∨ c ∨ (b ∧ (c ∨ d ∨ (b ∧ e))). The maximal subformulas we would find
would then be a∧ b, c twice, (b∧ (c∨ d∨ (b∧ e))), d, b∧ e. Notice how we have
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multiple maximal subformulas of that are a subformula of a different maximal
subformula. This is because by not being able to expand a formula δ we mean
that there is no other subformula of the form δ ∧ σ or σ ∧ δ.

4.4 Relational meta-algebra

Now that the relational algebra and the relational calculus have been defined,
we can start to add features on top of these. First we shall start by expanding
the relational algebra with additional operators and additional concepts. The
objective of these operators is, similar to the additions in Meta-SQL, to allow
us to query, modify and execute stored queries. In Section 4.5 we shall then
translate these additional operators into an extension of the relational calcu-
lus. However, before introducing these new operators, it is important that we
introduce some new concepts that allow us to define the behavior of these op-
erators. Both this section and Section 4.5 are based upon the work of Van den
Bussche et al. who defined both the relational meta-algebra and the relational
meta-calculus [NVVV99].

4.4.1 Types

The first new concept we will introduce is the concept of types. A type is a
tuple τ = [τ1, . . . , τn] describing the columns of a relation where each element
is either 0 or 〈m〉 where m is a natural number. If the value is 0, we say that
column is a data column. If the value is of the form 〈m〉, we say that the column
is an expression column.

Definition 4.4.1. Let S a database schema, τ = [τ1, . . . , τn] be a type and U
to be the universe over which the tuple will be defined. A tuple of type τ over
S is a tuple (x1, . . . , xn), such that for each 1 ≤ i ≤ n:

• if τi is 0, then xi is a data value, which means xi ∈ U

• if τi is 〈m〉, then xi is a relational algebra expression over S of arity m

A relation of type τ over S is a set of tuples of τ over S.

As an example, assume a database schema S = 〈R,S〉 with R : 2 and S : 3.
The tuple (1, 5, R,R× S, ‘hello′) would have the type τ = [0, 0, 〈2〉, 〈5〉, 0]. Also
notice how a type of purely 0’s is a normal relation in a database schema. In the
previous example the types of R and S would be [0, 0] and [0, 0, 0] respectively.

4.4.2 Meta-level schema

Now that we have defined a type, we clearly need to define a new type of relations
and schema. The database schema from the relational algebra, contains relations
that only contain data vales and whose types are of the form [0, . . . , 0]. We call
such a schema the object-level schema. However, as we have seen with types, we
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Books
Theory of time travel Dr. Nakabachi Research SERN Publishing
Helvetica Standard Keiichi Arawi Comic Shōnen Ace

A Time Traveler’s Tale John Titor Biography Instant Publisher
Eragon Christopher P. Fantasy Alfred A. Knopf
Brisingr Christopher P. Fantasy Alfred A. Knopf

Dead Man Wonderland Jinsei Kataoka Manga Shōnen Ace

Publishers
SERN Publishing sernpub.org MON

Shōnen Ace web-ace.jp TUE
Instant Publisher instantpublisher.com MON
Alfred A. Knopf knopfdoubleday.com WED

Triples
FantasyBooks π1,2,4(σ3=5(Books× {(Fantasy)}))

BookDates π1,2,7(σ4=5(Books× Publishers))
AuthorBookPairs π1,5,6(σ2=6(Books×Books))

Publishers Publishers

Table 4.6: An example of a combined instance

can also have relations that contain relational algebra expressions together with
data values. We call a schema with relations of this type a meta-level schema.

Definition 4.4.2. A meta-level schema M is a finite set of relation names,
where each relation name has an associated type. If a relation R has type τ
we write this as R : τ . Take an object-level schema S disjoint from M . An
instance of M over S is a mapping J on M which assigns to each relation name
R : τ ∈ M a relation of type τ over S. The pair (S,M) is called a combined
schema. An instance over a combined schema (S,M) is the union of an instance
of S and an instance of M over S and is called a combined instance.

As an example of a combined instance, assume we have an object-level schema
S = 〈Books, Publishers〉 and a meta-level schema M = 〈Triples〉. Assume as
well that Triples : [0, 〈3〉]. Then the relations shown in Table 4.6 is a combined
instance of (S,M).

4.4.3 Operators

We will now discuss the new operators and give examples of each of them.
However, before doing so we need to introduce the concept or rewrite rules used
by the rewrite operators. On top of this we also need to show how the operators
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of the relational algebra have changed with the introduction of a combined
schema and types.

Changed RA Operators

To start our description of operators, we will first discuss how the operators of
the relational algebra have changed. They have not changed in the way that
they calculate their results. However, the operators have changed with regard
to on what relations they can operate and what types they produce. Assume
a universe U , an object-level schema S, a meta-level schema M . The following
list will shall give all the changes to the relational algebra operators when they
defined over a combined schema (S,M).

• The constant expression becomes {(v)} : [0] with v ∈ U

• The relation symbol R : n ∈ S becomes an expression R : [0, . . . , 0] with
n zeros.

• The relation symbol R : τ ∈M becomes an expression R : τ

• The union and difference of the expressions e1 : τ and e2 : τ become
(e1 ∪ e2) : τ and (e1 − e2) : τ respectively

• The Cartesian product of the expression e1 : τ and e2 : ω with τ =
[τ1, . . . , τn] and ω = [ω1, . . . , ωm] becomes (e1×e2) : [τ1, . . . , τn, ω1, . . . , ωm]

• The selection of columns i and j being the same for an expression e : τ with
τ = [τ1, . . . , τn] becomes σi=j(e) : τ where i, j ∈ {1, . . . , n} and τi = τj

• The projection of a set of columns {i1, . . . , ip} of an expression e : τ with
τ = [τ1, . . . , τn] becomes πi1,...,ip(e) : [τi1 . . . , τip ]

A first thing to note is, how the first two changes merely replace the arity
of a relation symbol with its type. The next change is the reason this has to
happen: for a meta-level relation, arity is no longer a sufficient description. This
change thus allows us to refer to a relation from the meta-level schema using
the relational algebra operators. The next set of changes are to the union and
difference operators. Again for the same reason we enforced that the operands
need to have the same arity, it makes sense to enforce that they have the same
type. If this were not that case, we would have certain rows of one type and
other rows of a different type. But this would not allow us to give a single type
for the result of the expression.

The next change is to the Cartesian product, where we simply follow the same
logic as when defining it for the relational algebra. In the relational algebra
we said we simply added new columns to the end of the columns of the first
operand. With this change we do the exact same, but now we allow these
columns to contain relational algebra expressions thanks to using types rather
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than arity. The changes made to the selection are because comparing columns
of a different type makes little sense as they will never be equal. Finally, the
changes to the projection are just so that the output type matches what would
happen if we applied it to an expression with a given type. Since we only keep
a specific set of columns, we also only keep the types of those columns in the
type of the output relation.

Rewrite rules

Now that the changes to the relational algebra operators have been shown, we
shall introduce a concept used in one of the new operators: rewrite rules. A
rewrite rule is a pair of expressions where an occurrence of the first expression
will be replaced by the second expression. However, rather than simply be
relational algebra expression, these can contain extra symbols in them that will
be replaced with the RA expression in a column when executed.

Definition 4.4.3. Let S be an object-level schema, τ = [τ1, . . . , τn] be a type.
Let C ⊆ {1, . . . , n} be the set of expression columns in τ and let for each j ∈ C
τj = 〈lj〉. A rewrite rule over S with respect to τ is a rule of the form α → β
where α and β are RA expressions of the same arity over S ∪ {�j | j ∈ C}.
Each �j is an expression variable of arity lj . α and β are called patterns with
respect to τ .

Notice how we called �j ’s expression variables. This is because these are not
expressions in their own regard, but are expressions that are a stand in for a
value that will be given by a row. This is very much like a variable, which is
a stand in for a value until it at some point is assigned one. Here �j will be
assigned the value of column j for each row. j is always an expression column
because it is an element of C, which is the set of all expression columns in τ .

As an example say we have a schema S = 〈R : 4, S : 2, T : 2〉 and a type
τ = [0, 〈2〉]. A rewrite rules over τ would for example be (S ×�2)→ R. Notice
how S × �2 and R are both of arity 4 since �2 is of arity 2. Assume the rows
to which this is being applied are {(1, S), (5, T − S)}. The rewrite rule for the
first row then becomes (S×S)→ R. For the second row the rewrite rule would
become (S × (T − S))→ R.

Rewrite operators

The first new operators we will introduce are the rewrite operators. These
operators take as input a column number i which is an expression column, a
rewrite rule α → β and apply this rewrite rule to column of the given RMA
expression e. There are two rewrite operators. The first is the ‘rewrite-all’
operator which replaces every occurrence of the pattern α with the pattern
β. The operator then adds a new column to the end and places the rewritten
formula in this column for the row. For the given RMA expression, column and
rewrite rule this can be written as rewrite-alli:α→β(e).
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FantasyBooks π1,2,4(σ3=5(B × {(F )})) π1,2,4(σ3=5(B2× {(F )}))
BookDates π1,2,7(σ4=5(B × P )) π1,2,7(σ4=5(B2× P ))

AuthorBookPairs π1,5,6(σ2=6(B ×B)) π1,5,6(σ2=6(B2×B2))
Publishers P P

Table 4.7: Results of the query rewrite-all2:(B)→(B2)(Triples)

FantasyBooks π1,2,4(σ3=5(B × {(F )})) π1,2,4(σ3=5(B2× {(F )}))
BookDates π1,2,7(σ4=5(B × P )) π1,2,7(σ4=5(B2× P ))

AuthorBookPairs π1,5,6(σ2=6(B ×B)) π1,5,6(σ2=6(B ×B2))
AuthorBookPairs π1,5,6(σ2=6(B ×B)) π1,5,6(σ2=6(B2×B))

Table 4.8: Results of the query rewrite-one2:(B)→(B2)(Triples)

The second rewrite operators is the ‘rewrite-one’ operator. This operator
checks all the locations of the pattern α. For each of these locations it generates
a new expression which has that one occurrence of α replaced and the rest of the
expression left unchanged. A new column is then added and a row is created
for each of the generated formulas. Another way to think of this is that we
take a big union of a collection of Cartesian products. Each of the Cartesian
products is then the product of a single row and the formulas it generated. If
we apply this operator with the given expression, column number and rewrite
rule we would write rewrite-onei:α→β(e).

For both of these operators, assume the input is of a type τ = [τ1, . . . , τn] and
the column is i. Then regardless of the arity of the two patterns in the rewrite
rule the type of the output will be τ = [τ1, . . . , τn, τi].

As an example of this operator, take the instance described in Table 4.6. As-
sume that B2 is a new relation symbol of the object-level schema and that B
stands for Books, P for Publishers and F for Fantasy. If we then executed
the query rewrite-all2:(B)→(B2)(Triples) we get the results in Table 4.7. If we
execute the query rewrite-one2:(B)→(B2)(Triples), we would get the results in
Table 4.8. Notice how the rewrite-one query created multiple rows for the row
with ‘AuthorBookPairs’ but had no row for ‘Publishers’. This is because there
were multiple locations of ‘Books’ to replace in the row with ‘AuthorBookPairs’
and none to replace in the row with ‘Publishers’. However, the rewrite-all query
kept the row with ‘Publishers’ because if a pattern does not occur in an expres-
sion, the expression with all those patterns replaced is the same expression.

Extract

The next operator we will discuss is the extract operator. This operator lets
us extract all subformulas of a given arity m from a given column i, which
is an expression column. Then for each extracted sub expression of the given
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FantasyBooks π1,2,4(σ3=5(B × {(F )})) π1,2,4(σ3=5(B × {(F )}))
BookDates π1,2,7(σ4=5(B × P )) π1,2,7(σ4=5(B × P ))
BookDates π1,2,7(σ4=5(B × P )) P

AuthorBookPairs π1,5,6(σ2=6(B ×B)) π1,5,6(σ2=6(B ×B))
Publishers P P

Table 4.9: Results of the query extract2:3(Triples)

FantasyBooks π1,2,4(σ3=5(B × {(F )})) {(FantasyBooks)}
BookDates π1,2,7(σ4=5(B × P )) {(BookDates)}

AuthorBookPairs π1,5,6(σ2=6(B ×B)) {(AuthorBookPairs)}
Publishers P {(Publishers)}

Table 4.10: Results of the query wrap1(Triples)

arity for this row, it creates a new row which adds a column with the extracted
subformula onto the row. This is very similar to how the rewrite-one works
for each occurrence of the pattern to be replaced, instead of subformula to be
extracted. If the RMA expression this is executed on is e, then this is written
as extracti:m(e).

To explain this operator better consider let us consider an example. Take
the instance described in Table 4.6. Assume that B stands for Books, P for
Publishers and F for Fantasy. If we then execute the query extract2:3(Triples)
we get the results in Table 4.9. Notice how there are two rows for ‘BookDates’
since it contains two different subformulas that have an arity of 3

Wrap

The next operator that the relational meta algebra introduces is the wrap op-
erator. This operator allows us to introduce data values as a constant unary
relation into a new expression column. Assume that column i is a data column
of some relational meta-algebra expression e. The operator would then for each
row take the data value stored in column i, let us say value x, and add a new
column with the expression {(x)}.

As an example take the instance of Table 4.6 again. Assume that B stands
for Books, P for Publishers and F for Fantasy. If we execute the query
wrap1(Triples), we get the result shown in Table 4.10. Notice how the last
column still only contains a relational algebra expression and not a relational
meta-algebra expression. This is because the values within the constant relations
are data value, in this case strings, and not references to a relation. However,
to prevent confusion in the case of strings, it is typically better to quote these
data values.
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Fantasy
Books

π1,2,4(σ3=5

(B × {(F )})) Eragon
Christopher

P.
Alfred

A. Knopf
Fantasy
Books

π1,2,4(σ3=5

(B × {(F )})) Brisingr
Christopher

P.
Alfred

A. Knopf

BookDates
π1,2,7(σ4=5

(B × P ))
Theory of
time travel

Dr.
Nakabachi

MON

BookDates
π1,2,7(σ4=5

(B × P ))
Helvetica
Standard

Keiichi Arawi TUE

BookDates
π1,2,7(σ4=5

(B × P ))
A Time

Traveler’s Tale
John Titor MON

BookDates
π1,2,7(σ4=5

(B × P ))
Eragon

Christopher
P.

WED

BookDates
π1,2,7(σ4=5

(B × P ))
Brisingr

Christopher
P.

WED

BookDates
π1,2,7(σ4=5

(B × P ))
Dead Man

Wonderland
Jinsei

Kataoka
TUE

Author
BookPairs

π1,5,6(σ2=6

(B ×B))
Eragon Brisingr

Christopher
P.

Author
BookPairs

π1,5,6(σ2=6

(B ×B))
Brisingr Eragon

Christopher
P.

Publishers P
SERN

Publishing
sernpub.org MON

Publishers P Shōnen Ace web-ace.jp TUE

Publishers P
Instant

Publisher
instant

publisher.com
MON

Publishers P
Alfred

A. Knopf
knopfdouble

day.com
WED

Table 4.11: Results of the query eval2(Triples)

Eval

The final operator we will add is the evaluation operator, often shortened to the
eval operator. This operator takes a column i which is an expression column and
adds the results of evaluating that expression to the row. For a given relational
meta-algebra expression e this is written as evali(e). This again works similar
to the rewrite-one and the extract operator, where if there are multiple rows
returned, a new row will be created for each of these returned rows, appending
it to the original row. If e is of type τ = [τ1, . . . , τn] and τi = 〈m〉 then the type
after the eval is [τ1, . . . , τn, 0, . . . , 0] with m zeros being added. This is rather
logical since a column with an expression of arity m will cause m columns to
be added. All these columns will also be of type 0, since our relations can only
contain RA expressions over the object-level schema.
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As an example take the instance described by Table 4.6. If we execute the
query eval2(Triples), we get the result given in Table 4.11. From this result
it is clear how rows which have multiple rows of results for their query also
have multiple rows in the output of the ‘eval’ operator. The ‘eval’ operator
also clearly shows what the benefits are of using a typing system, compared
to simply distinguishing between expression and data columns. Thanks to the
typing system the result of the ‘eval’ operator is again a table. If we did not
enforce the typing, we would not know when executing expressions from a given
column, how many columns would be added. This in turn could then result in
some rows having more columns than others, which would make the output no
longer a table.

4.4.4 Comparison to Meta-SQL

Now that we have described the relational meta-algebra and its operators, we
will discuss its relation to Meta-SQL. To start, it is very clear that the evalua-
tion function and the ‘eval’ operator are essentially the same. Both operators
take a query and execute it. On top of this both operators can produce multiple
rows from a single input row and return them together with their original row.
However, the Meta-SQL also has the UEVAL function, which allows it to evalu-
ate queries of which we do not know the arity that they will return. The results
are then stored in an XML document. However, this is not possible in the rela-
tional meta-algebra. We could abandon the typing system and only distinguish
between data and expression columns. However, this would lead to issues when
trying to execute the ‘eval’ since we do not know the amount of tables and thus
cannot output a table. To solve this we could add a new operator ‘ueval’ which
simply stores every result as a series of rows that produce the result of a single
row. This could be done by producing a large Cartesian product of constant
relations. However, we could never access all the columns of the rows together.
We could not evaluate it and add its columns to the end of the current row for
obvious reasons. We could extract all subformulas of arity one, but that would
split the different columns over multiple rows. Using a ‘rewrite-one’ operator
has similar issues. And finally the ‘rewrite-all’ operator could not really access
all these values at the same time.

Another comparison that could be drawn, is that all newly introduced oper-
ators without ‘eval’ essentially fulfill the same role as XSLT did in Meta-SQL.
That is to say that both are added so they can manipulate stored queries. How-
ever, the operators of the relational meta-algebra are clearly far less powerful.
As an example, they could not create a column that contains a query of the
relational meta algebra. XSLT on the other hand could create query in the
Meta-SQL. However, the issue is that XSLT is Turing-complete, which means
we can make no guarantees of it ending. The operators from the relational
algebra on the other hand are guaranteed to always return an answer. This
means that it is potentially easier to optimize for the relational meta algebra
than it is for XSLT. However, this would require entirely novel research into
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how to optimize queries from the relational algebra, where XSLT already has
optimizers.

4.5 Relational meta-calculus

Now that the relational meta-algebra has been described, we can again attempt
to translate it into an equivalent calculus. This equivalent calculus will be
called the relational meta-calculus, which we will sometimes shorten to RMC.
This calculus will be similar to the relational calculus, since it is the calculus
counterpart of an expansion of the relational algebra. Because of this we will
also start from the relational calculus and then add the different new operators.
After that we will introduce a safe variant of the calculus that will allow us to
prove what is and is not possible in the relational meta-algebra using techniques
from finite model theory. However before we can do any of those, we need to first
translate the concepts of types and rewrite rules into their RMC counterparts.
Again, this entire section is based on the paper by Van den Bussche et al. that
defined the relational meta-calculus [NVVV99].

4.5.1 Types and rewrite rules

Before we can add new operators, we need to translate the concepts introduced
in the relational meta-algebra. The first of these is the type system of the
relational meta-algebra. This system on its own cannot work, since in the
relational calculus we simply work with a single value from a column rather
than an entire row. However, we can take over the types that a certain column
has and use those. As an example take, a data variable x. A data variable is
a variable that contains a normal data value. This means that its value likely
comes from a data column. However, the correct definition of a data variable,
is a variable of sort 0. This means that if it were a value from a column in the
relational meta-algebra, this column would have type 0. This also means that all
data variables and data values are of the sort 0. Likewise, an expression variable
y which contains an expression of arity m is of the sort 〈m〉. Data variables are
thus achieved by equating them to others data variables or binding them to a
column of a relation that is a data column. Similarly, an expression variable
is achieved by equating it to a different expression variable or by binding it
to a column that is an expression column. This thus means that the relation
symbols in our algebra can be both symbols from the object-level schema and
form the meta-level schema. It also means that we extend the equality relation
to support equating expression values and variables and not only data variables
and data values. We also enforce that the values and variables must be of the
same sort.

The next concept we need to translate into the relational calculus, is the
concept of rewrite rules. In the relational meta-algebra we described these in
terms of the object-level schema S augmented with some extra symbols �j for
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each column j that was an expression column. In the relational calculus we
do not pass around tables with columns but variables containing the data of
these columns. Thus, to create rewrite rules we will define how to create the
patterns. A pattern in the relational meta-calculus is an RA expression over
the object-level schema S augmented with a finite set of expression variables.
Such an expression of arity n is then a term of sort 〈n〉. A term is an additional
new concept that we introduce that encapsulates a set of expressions that can
occur anywhere a data value or data variable could in the RC. A pattern created
this way will also be evaluated similar to a rewrite rule, where the expression
variables within it will be filled in with the value assigned to them. This then
generates the actual value of the pattern that will be looked for. On top of this,
thanks to every expression variables being of a known sort, we know what the
arity of the pattern will be.

4.5.2 New operator translations

Now that the preliminaries have been defined, we shall add translations of the
new operators of the relational meta-algebra to the relational calculus. These
translations will take the shape of predicates. A predicate can be seen as a
relation whose set of tuples is always known. This also means that when creat-
ing proofs about not being to express certain queries we need to also consider
these relations on top of the other relations. For example, in an EF-game we
could consider these to be relations in the structure, but we cannot choose their
contents. This allows us to still use proofs, like creating structures where the
Duplicator can always win an n-round EF-game. This then also intuitively
shows how this gives us additional power. Because there are now more relations
the Duplicator must take into account, its winning strategy has to become more
complex, if it can still win at all.

The first operator we will translate is the ‘wrap’ operator. This will be trans-
lated into a term of the form {(x)} where x is a data variable, which means x is
of sort 0. However, the sort of the term itself is 〈1〉. Creating a term this way
makes sense, since we extract data values from the relations by using a data
variable and the ‘wrap’ operator wraps values from a data column. Notice how
this is a term, meaning it can appear in any place a variable could.

The next operator we will translate is the ‘extract’ operator. For this we will
introduce a ‘subexpression’ relation, similar to how we always have the equality
relation. It will be written as s1 ≤m s2 for two expression variables s1 of sort
〈m〉 and s2 any expression variable. In this case s1 is a subexpression of s2 with
arity as m. This also means that s1 can have multiple values associated with it
per s2. Again it is clear how this naturally maps to the extractm:i operator if
s2 contains the value from column i.
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Next we will introduce two predicates that translate the two ‘rewrite’ opera-
tor. These are the rewrite-one(t1, t2, t3, t4) and rewrite-all(t1, t2, t3, t4). If we
compare these to the relational algebra expression rewrite-alli:α→βe, then t1
contains the value contained in the i-th column of e, t2 represents α, t3 repre-
sents β and t4 represents the value in the newly added column in the output.
This also means that t1 and t4 must be of the same sort and t2 and t3 must be
of the same sort. This typing is also enforced for the relational meta-algebra
expression. For the ‘rewrite-one’ predicate this is similar. Note however that
this predicate, similar to s1 in s1 ≤ s2, may have multiple values it can be
assigned.

The final operator for which we shall introduce a predicate is the ‘eval’ op-
erator. Although, rather than introduce a single predicate, we introduce a set
of predicates. For a given expression variable t of sort 〈n〉 we will have the
predicate eval(t, x1, . . . , xn). The values of x1, . . . , xn are assigned so that they
form a row of the results of evaluating the expression in t.

Finally as an example we will translate the relational algebra expression
π4,5,6(eval3(rewrite-one2:(B)→(B2)(Triples))) to the relational meta-calculus.
This becomes the formula

ϕ(x1, x2, x3) ≡ ∃t1, t2, t3(Triples(t1, t2) ∧ rewrite-one(t2, B,B2, t3)∧
eval(t3, x1, x2, x3))

Notice how in this formula B and B2 are simply used as terms. This is because
of course a relation name form the object-level schema on its own is of course
also an RA expression over the object-level schema.

4.5.3 Safe Relational Meta-Calculus

Similarly to the relational calculus, if we do not put restrictions on the formulas
of the relational meta-calculus it becomes more powerful than the relational
meta-algebra. This then no longer allows us to prove that something can be
expressed using the relational meta-calculus. Thus, in this case we also de-
fine a safe relational meta-calculus which is exactly equivalent to the relational
meta-algebra[NVVV99]. This continues on the safe relational calculus. We will
however still give the entire definition here, since it makes changes in a lot of
the different parts of the safe relational calculus definition.

Definition 4.5.1. Assume that the universe of the constant data values is V .
A relational meta-calculus formula is safe if:

• It does not contain ∀

• Any subformula of the form ϕ∨ψ is such that ϕ and ψ have the same set
of free variables.
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• For every maximal subformula of the form δ1 ∧ · · · ∧ δn every free variable
is limited. A data variable x is limited if:

– x occurs free in one of the δ’s that is not negated and that is not of
the form x = y, y = x or eval

– one of the δ’s is of the form x = v or v = x where v ∈ V
– one of the δ’s is of the form x = y or y = x and y is already limited

– one of the δ’s is of the form {(x)} = y or y = {(x)} and y is already
limited

– one of the δ’s is of the form eval(t, y1, . . . , ym) and x is one of the y’s
and all variables that occur in t are limited

• An expression variable x is limited if:

– x occurs free in one of the δ’s that is not negated and that is not of
the form t1 = t2, t1 ≤ t2, rewrite-one, rewrite-all or eval

– one of the δ’s is of the form t1 = t2 or t2 = t1 where x occurs in t1
or is t1 and t2 or all the variables in t2 are already limited

– one of the δ’s is of the form t1 ≤m t2 where x occurs in t1 or is t1
and t2 or all the variables in t2 are already limited

– one of the δ’s is of the form {(y)} = x or x = {(y)} and y is already
limited

– one of the δ’s is of the form rewrite-all(t1, t2, t3, t4) or rewrite-one(t1,
t2, t3, t4) and x occurs in t4 or is t4 and all variables occurring in or
exactly t1, t2, t3 are limited

Notice how for ‘eval’ and the ‘rewrite’ operators only variables that are the
equivalent to the newly added output can be limited by them. This makes
sense, because for the ‘eval’ operator, for any set of data variables an infinite
amount of expressions can be created that give them as output. Similarly, for
the ‘rewrite’ operators if any of t1, t2, t3 are not limited, yet there are situations
where an infinite set of expressions are possible for that variable. As an example
say that t2 is missing in a rewrite-all and t1 and t2 are the same and t3 does not
occur in either. Then t2 could be any expression that is not a subexpression
of t1. A similar case can be made if t3 is the only one not yet limited. For t1
if it is not limited, it is not possible to know what occurrences of t3 in t4 were
replacements and which ones were already there in t1. Finally also note how
if x is in or is t2 in t1 ≤m t2 and t1 is limited, then x is not limited either.
Obviously there is an infinite amount of expressions that a given expression can
be a subexpression of arity m of.
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Chapter 5

Code Querying Approach
Comparison

Previously we have seen two different approaches for how to query code: an
algorithmic approach of where we write an algorithm to extract the fragments
from the source code and a logical and algebraic approach where we create a
language meant to manipulate and query a structure that represents code. In
this chapter we will attempt to compare these different approaches by trying
to represent some of the common results that wish to be obtained from the
algorithmic approach, as queries in the logical and algebraic approach. We will
start off by assuming the similar pairs are already given. The first type of query
we will discuss is one where we attempt to simply find all patterns that occur
a certain amount of times. The next query we will discuss is one where we
attempt to find pairs of patterns where one pattern occurs fewer times than the
other. We will prove that our current tools are not strong enough to express this
query. Next we create a new language, adding additional operators specific to
general code querying. While adding new operators, we will prove which subsets
of this new language are strong enough to express the second query. Once we
have found this set of operators we will investigate if our new language can also
express the query of trying to find all similar pairs of code patterns. We will also
consider how difficult it would be to translate the previously defined tree-mining
algorithms and other types of similarity. Finally, we will discuss how this new
language compares to other languages, such as the relational meta-algebra and
the Meta-SQL.

The reason we take the approach of defining our own new language, is twofold.
Firstly, none of the previously defined logical and algebraic languages can work
with arbitrary AST’s. Thus, we need to define a new logical language to do
these operations. Secondly, defining a new language to which we add operators
one by one, allows us to find out exactly which operators add the most power
to a language.
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5.1 Frequent pattern mining

When extracting code with some algorithm, one of the most common types
of results that these algorithms wish to achieve, either as an end-goal or an
intermediate one, is to find all patterns that are above a certain frequency. This
concept is called frequent pattern mining. For this approach we will assume
that there is already some relation R(C1, C2) that contains all pairs of patterns
that are considered similar and that there is a relation T (C) that contains all
the patterns. If we wanted to find all patterns that have at least n other similar
patterns and thus are considered frequent, this could be written in SQL as
follows:

SELECT T.C AS c
FROM T, R
WHERE T.C = R. C1
GROUP BY T.C
HAVING COUNT(R. C2) >= n

Of course in this example we would have to replace n with the actual value we
want to use as the cut-off of what is frequent, if we wish to be able to execute
this query. Note that this query uses a GROUP BY-clause and a COUNT
aggregator. These types of clauses and operators are typically elements that
provide problems when translating to the relational algebra or the relational
calculus. Next we shall show that it is possible to express this query in the
relational calculus and thus in first order logic. The relational calculus query,
that we shall call freq, is as follows:

freq(n) := {c | T (c) ∧ ∃c1, . . . , cn
( ∧

1≤i<j≤n

ci 6= cj

 ∧( n∧
i=1

R(c, ci)

))
} (5.1)

This query is built up from two parts joined together through a ∧. On the
left side there is

∧
1≤i<j≤n ci 6= cj stating that all the variables created by the

existential quantifier must be different. On the right side there is
∧n
i=1R(c, ci)

stating that each of these variables generated must be a code fragment that
is similar to c. This clearly shows that for any given n we can create a rela-
tional calculus query, and thus also a first-order logic formula, that expresses
the concept of frequency pattern mining. Note that since this is written in re-
lational calculus it can also be expressed in relational algebra and thus also in
the relational meta-algebra. However, the more important result is that it can
be expressed in first order logic, meaning we have no need of the more complex
tools offered by the relational meta-algebra or second order logic or some subset
of it.
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5.2 Pattern frequency comparison

Another potential query that could be asked, is if a refactoring of some piece of
code has resulted in a more common pattern being used or if it has resulted in
a less common pattern being used. The way this would most likely be queried,
is to check for all the changes to code that made that code use a less common
pattern. For this again the assumption is made that there is some relation
R(C1, C2) that contains all pairs of patterns that are considered similar and
that there is a relation T (C1, C2) where C1 contains the old fragment and C2
is the updated fragment. Written as an SQL query it would look as follows:

SELECT T. C1 AS old , T. C2 AS new
FROM T
WHERE ( SELECT COUNT(R. C2) AS count

FROM R
WHERE R. C1 = T. C1

) > ( SELECT COUNT(R. C2) AS count
FROM R
WHERE R. C1 = T. C2

)

Note how again there is use of the aggregator COUNT here. Again, use
of aggregators raises the question of whether it can be expressed in first-order
logic. We will prove that this is not possible to be expressed in FO logic and
then try to find an extension of the relational algebra where it can be expressed.

5.2.1 First-order logic

When trying to express this query in relational calculus, and thus in first-order
logic, we could try to use the same trick used in Equation 5.1. However, this
trick generates a formula that can count up to n and although it would be
possible to state that one has n or higher and the other has strictly less than n,
we cannot do this for every possible n. We cannot know what the value of n will
be or even give an upper bound for it, since the universe of the structure over
which it will be evaluated is not yet know and cannot be limited. This means
that the same trick cannot be used. In fact, we shall prove that it cannot be
expressed in FO logic, and thus in relational calculus and the relational algebra,
at all with an Ehrenfeucht-Fräıssé game.

To prove this, we will first need to look at how the query is fundamentally
structured. The query contains three parts: the two subqueries and the higher
query that combines these two. What each of those subqueries are doing is
selecting some node in the graph of which R gives the edges. It then counts how
many outgoing edges each of these nodes have. It then compares these counts
in the higher query. We can consider this to be the following query:

COUNT-COMPARISON = {(C1, C2) | (C1, C2) ∈ T and ϕCC(C1, C2)} (5.2)
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...
...

...
...

(a) RA describes two completely con-
nected components of the same size n

...
...

...
...

(b) RB describes two completely con-
nected components: one of size n and
one of size n + 1

Figure 5.1: Two graphs represented by R that will be compared in an EF-game

where we assume that ϕCC(C1, C2) is a formula that is true if C1 has fewer
outgoing edges in R than C2. Since this can easily be converted to a first-order
formula, we shall prove with an EF-game that ϕCC(C1, C2) cannot be expresses
in first-order logic.

The situation can be simplified if we assume that the connected components
of both C1 and C2, are both completely connected, at which point it becomes
the same as counting the amount of nodes in the connected component and
comparing those. In Figure 5.1 two possible cases of R are shown. The first
structure is A, shown in Figure 5.1a, where R represents two fully connected
components of the same size n. The second structure, called B, is shown in
Figure 5.1b. Here R represents two fully connected components but one is of
size n and the other of size n+1. ϕCC(C1, C2) should not be true for any single
pair of nodes in A. In B it should be true for all pairs of nodes where C1 is a
node from the component of size n and C2 a node from the component of size
n + 1. The proof will now proceed to prove that with an n-move EF-game it
is impossible to differentiate these two structures and that the Duplicator thus
has a winning strategy. To make this proof easier to read, we shall call the
connected components of A a1 and a2. The smaller component of B will be
called b1 and the larger component b2.

This proof shall proceed by describing the winning strategy of the Duplica-
tor. When the Spoiler picks its first element from one of the two connected
components of one of the two structures, pick a connected component in the
other structure. Assume that nodes picked were from a1 and b1, then if in any
proceeding move the Spoiler picks an element from a1 or b1 the Duplicator re-
sponds with an element of b1 or a1 respectively. After n moves the Duplicator
can at most have picked out all the nodes from one connected component with-
out knowing if there are more nodes in the other connected component. Thus,
the outputs of some FO formula of quantifier rank n must output the same
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value in both structures. This means that either for both A and B it must
output all pairs of nodes with C1 from a1 or b1 component and C2 from the a2
or b2 component or nothing at all. Either choice will be wrong in one of the
two structures. Since for any quantifier rank such a pair of structures can be
devised, it is impossible that such a formula actually exists. The exact same
reasoning works for the initial pairing of a1 and b2, a2 and b1 and for a2 and b2.

The structures used in the preceding proof also show that this is clearly related
to a majority query, which returns which of two relations is larger. This can
be seen if we were to consider each of the connected components to be pairs of
nodes stored in separate relations. The majority query is also known to not be
FO-definable, thus it makes sense that our query comparing sizes can also not
be expressed in FO logic.

5.2.2 Relational Tree-Algebra

We have now demonstrated that FO logic, and thus relational algebra, is not
sufficient to express the count comparison query. A reasonable question then
would be to ask how the relational algebra could potentially be expanded to
make this query definable in that logic. A first logical expansion would be
to look at what the relational meta-algebra did on the relational algebra, and
repeat this with trees. We choose to introduce tree operators since that is
the complex data structure we are using in the count comparison query. This
algebra could also potentially allow us to later express the similarity relation in
it, giving us another good reason to investigate it. Many of the operators are
also similar to operators from the meta-algebra, be they primitive or derived
operators.

Different possible extensions

The first new operator we will define, is the ‘matcha,i’ operator, which will
filter all rows for which the trees in column i have the root label a. This is similar
to the match operator in relational meta-algebra, which is a derived operator
that can be defined using the extract a select on that result and then projecting
the extracted column away [NVVV99]. The next operator is the ‘extracti,j ’
operator, which will extract the j-th child and its entire subtree from the tree in
the i-th column and add it as a new column after all currently existing columns.
Again this is similar to the ‘extracti:j ’ operator from the relational meta-algebra,
which extracts the all subformulas of arity j from the formulas in column i. The
final primitive operator we will define is the ‘constructa,i1,...,ik ’ operator which
will create a tree with a new root node labeled ‘a’ with k children with for the
j-th child, the tree found in column ij and then add it as a new column. This
is again similar to the derived ‘contructα’ operator which creates a formula α,
replacing the references to columns in it with the actual formula in that column
and adding that as a new column at the end. In the relational meta-algebra this
operator is derived since it can be expressed using an extract operator, a wrap
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Figure 5.2: Three trees to be used as an example of the operators of the relational
tree-algebra

operator and rewrite operators [NVVV99]. Finally, we also have to extend the
classical equality operator, allowed in formulas of the selection operator, so that
it will also check whether two trees are identical. We shall call this extension
to the relational algebra with these operators and the extension of the equality
operator the relational tree-algebra. When comparing this to the other types
of relational tree-algebras, we sometimes refer to is at general relational tree-
algebra. Sometimes we shall shorten it as RTA in the general case or GRTA
when comparing it to other types of RTA’s.

To make it easier to understand these operators, consider the following ex-
amples. Firstly for the ‘match’ operator consider that all the trees in Figure 5.2
and assume that they are in the second column of a relation S. If we then do
matchb,2(S) we would only keep the row containing the tree in Figure 5.2b, since
this is the only one with a b label in the root node. If we used extract1,2(S) for
the row with the tree in Figure 5.2a it would add the tree in Figure 5.2b as the
value for the new column. Finally, assume that the trees in Figure 5.2b and 5.2c
are in columns 2 and 3 of the relation V . The application of constructa,2,3(V )
results in the tree in Figure 5.2a.

A valid question that could now be asked is whether we aren’t making this
algebra too strong by not enforcing any kind of typing. The issue is that there
isn’t a logical general typing that could be enforced, unlike in the relational
meta-algebra where the arity of inputs of the operators determine the arity
of the outputs. When working with trees however, there is not such a concept
immediately available. It would be possible to argue that the amount of children
would define a similar concept to arity, since it would determine how high j in
extracti,j would be allowed to go. Like arity in the relational algebra, in the
RTA there are only a few operations that can create a new tree that has a
different amount of children: extract and construct. For construct the amount
of children in the new tree is dependent on the amount of columns passed to it
as parameters. For extract the amount of children is dependent on the structure
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itself, since it depends on what child you extract and how many children it has.
This also shows the difference between arity and the amount of children: with
arity we can deduce the outcome of every operator simply by knowing its arity
of its inputs, with the amount of children this is not the case. However, this
could be solved by defining a new, more strict algebra to more closely match
the relational meta-algebra.

Our new and more restrictive algebra would have the same operators as the
previous algebra but with slight modifications to each one to make sure they
always output the same type. The ‘matcha,i’ operator remains unchanged since
it does not modify the amount of children. The ‘extracti,j ’ operator is changed
to the ‘extractk,i,j ’ where k is a positive integer number that represents the
amount of children the child being extracted must have to be returned. Finally,
‘constructa,i1,...,ik ’ also remains unchanged since the amount of children a tree
will have directly depends on the amount of parameters given to it, which in
this case is k. On top of these changed operators we would now have to assume
that each column in a relation has a type. This would be written similarly to
the types in the relational meta-algebra. However, in this case the numbers
between the 〈〉 represent the amount of children the root node of a tree in that
column has. We call this restriction child count relational tree-algebra or count
relational tree-algebra. We shall sometimes shorten this to CCRTA.

Now that this first restriction has been defined, it could be considered whether
this restriction is strong enough; typically the stronger the restriction the less
complex a problem within it becomes. An alternative that could be proposed, is
an algebra that is based on some context-free grammar, often shortened as CFG.
In this case it would be assumed that the leaves of the tree are the terminals
symbols and the non-terminal symbols are the internal nodes. The type we
would then use for tree values is either a production rule or a terminal symbol.
Of course to make this more flexible, a non-terminal could be allowed to be
some commonly known type, like a string or an integer. This would allow us to
store actual data in these trees without having an extreme amount of terminal
symbols. If the type of a column is a production rule, then the trees in that
column can only have root nodes that are created with that production rule. If
the type of a column is a non-terminal, then it is a column in which each value
represents a single node of that type. For the operators, firstly ‘matcha,i’ has
become obsolete since the name of the root node is always known, since it is
defined by the rule used to produce it and that is the type of the column in which
a tree is stored. The operator ‘extracti,j ’ becomes the operator ‘extractp,i,j ’
where the j-th child is only extracted if it is produced by the rule p. Finally,
the operator ‘constructa,i1,...,ik ’ is modified to the operator ‘constructp,i1,...,ik ’
where p is the rule that produces the new root and for each ij with 1 ≤ j ≤ k
the ij-th column has a type of which either the right-hand side of the rule is
the same non-terminal symbol as the symbol in the j-th spot in rule p, or it is
the same terminal symbol as the symbol in the j-th spot in rule p. We call this
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kind of restriction to the relational tree-algebra the CFG relational tree-algebra,
which we sometimes shorten to CFGRTA.

Note that the CFGRTA only works if a CFG is given to which all trees adhere.
This will not always be the case. However, it does not sound unreasonable to
assume that the trees all have some sort of known structure and thus that
there would be some semantics for these trees. The trees could be defined to
be reasonable and interpretable if they adhere to some syntax, which could be
given by a CFG. Thus assuming that the contained trees have some predefined
semantics that will always hold true, it is not unreasonable to assume that some
context-free grammar exists for these trees and is defined.

Equivalence of extensions

Now that we have defined these algebras, it is an interesting exercise to relate
them to each other to compare which is more expressive and which are equally
expressive. The main difference between the CFG relational tree-algebra and the
other extensions, is that it assumes there is some CFG to which all trees adhere.
This assumption is not made by the other two extensions. This of course makes
it less expressive, since it cannot express queries over trees of an arbitrary shape.
However, should we assume that all trees adhere to some context-free grammar,
then all these extensions offer the same expressive power, as long as we assume
that each relation in each of the algebras behaves according to the type system
of that algebra. Of course if for example we would apply the algebra based on
CFG’s with the relations whose types are the amount of children, then clearly a
match operator could not be created, since it was removed in the algebra based
on CFG’s due to its redundancy with types. Also note that each more restrictive
type is also a valid type of the less restrictive type before it. As an example a
column that is restricted to only allow root nodes produced by a specific rule
of a CFG, will always have the same amount of children, which would thus be
its type in the count relational tree-algebra. For the CCRTA this is trivial,
since the only type of column that the general relational tree-algebra knows is
a column that is or is not a tree. This thus means that if we have a relation
which is valid in the case of the extended algebra based on CFG’s, it is also a
relation valid in the other extensions of the algebra. Thus, we shall prove their
equivalence over relations that would be correctly typed for the CFG relational
tree-algebra.

To prove the equivalence of the different algebras, we will describe their oper-
ators in each other. First we will describe how the CFG and the children count
relational tree-algebra are equivalent. After this we will prove the same for the
general and the children count relational tree-algebra. These two equivalences
combined then also prove that the general and CFG relational tree-algebra are
also equivalent.
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CFGRTA and CCRTA The first operator we shall discuss is the ‘match’
operator. In the CFG relational tree-algebra this operator is redundant due
to the typing of relations. As a result it would not be necessary to define
this operator in the other languages, since this could simply be determined by
checking the column that is being used. However, to make it easier to define
future operators, we shall define a match operator that filters all rows that
are produced by a certain rule of a CFG. In the children count relational tree-
algebra, we would define this kind of filter by doing an extraction for each child
in the rule followed by a match on the label of child in this rule that is being
extracted. Finally, we would project the added columns away again. However,
the issue here is that a non-terminal symbol in a CFG may have multiple rules
that can produce it, which can have a varying amount of children. To solve this
we would take a union of all the different combinations of the sets of possible
children counts that a particular symbol in the given CFG has.

To understand this better, assume that the rule we are attempting to match
is ‘A→ B C’ where B can either have 2 or 4 symbols on the right-hand side and
C can have 2 or 3 symbols on its right-hand side. This would mean that each
row of {2, 4} × {2, 3} would represent a possible combination of the amount of
children for each of the child nodes with labels B and C. This means that if the
root node has the label A, the first child has the label B and has 2 children and
the second child has the label C with 2 children it could be produced by A →
B C. This also holds if we fill the child counts in with any of the combinations
found in the rows of {2, 4} × {2, 3}.

More generally, assume a rule with k symbols on its right-hand side, where
the j-th symbol has the set Cj of possible amount of children. The possible
combinations of amount of children are then the rows of C1 × · · · × Ck. After
checking all these potentials we must filter out those trees which have the correct
amount of children and not at least the required amount of children for the root
node. To do this we construct a tree with a temporary root node and extract
only its only children with k children themselves. Finally, the match operator
would be written as

matchp,i(R) ≡π1,...,n(extractk,n+k+1,1(contructtemp,i( ⋃
j1,...,jk∈C1×···×Ck

(matchsk,n+k(extractjk,i,k(. . .

(matchs1,n+1(extractj1,i,1(matchs0,i(R)))))))
)
)) (5.3)

with R either a relation or some formula in the child-count relational tree-algebra
with arity n, p a CFG rule with symbols s1, . . . , sk as its right-hand side, s0 as
the symbol on its left-hand side and i the column being matched. To describe
the match operator of the CCRTA in the CFGRTA all we do is simply check the
column in which the query is returned. If this is a column with the same symbol
in the left-hand side of its rule as the label in the match clause, then nothing is
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changed. If the symbol is not the same as the one in the ‘match’ operator, then
×∅ is added to remove all rows since not a single row would match.

Next we will describe the ‘extract’ operator. To describe the ‘extractk,i,j ’
operator of the CCRTA in the CFGRTA, we start by looking at the type of the
column of i. Next we take the j-th symbol on the right-hand side of that rule. If
the rule does not have at least j symbols in its right-hand side, then we simply
add ×∅ since nothing could be returned. If there is a j-th symbol, then we take
all rules which have this symbol as their left-hand side and that have k symbols
in their right-hand side and call this set of rules P . Thus, we can write

extractk,i,j(R) ≡
⋃
p∈P

extractp,i,j(R) (5.4)

for some relation of formula R and P as described above. Note that this is only
a formula in CFGRTA if the set P is actually finite. This is guaranteed if the
CFG is finite but not if the CFG is infinite.

To define the ‘extractp,i,j ’ operator of the CFGRTA in the CCRTA we will
extract all j-th children with k children themselves, where k is the amount of
symbols in the right-hand side of p. Then we will use the match, defined in the
previous paragraph, to match on rule p This thus results in the formula

extractp,i,j(R) ≡ (matchp,n+1(extractk,i,j(R))) (5.5)

where R is some formula or relation or arity n, p is the rule and k the amount
of symbols on the right-hand side of p.

The final operator left to prove is the ‘construct’ operator. This operator
becomes rather trivial to prove, since we assume that the relations use a CFG
as their type. This means that the operation is heavily restricted in the count
relational tree-algebra, since it may only construct trees that adhere to the
CFG. Thus, in the CCRTA, assuming the CFG rule p has s0 as the symbol on
its left-hand side and the symbols s1, . . . sk as its right-hand side, the formula
would be

constructp,i1,...,ik(R) ≡ constructs0,i1,...,ik(matchs1,i1(. . . (matchsk,ik(R))))
(5.6)

for R some formula or a relation.

In the other direction, writing the ‘construct’ operator of the CCRTA in the
CFGRTA, we simply use the rule that is used to produce the new tree. This
is possible because all trees must still adhere to the CFG. This could easily be
determined by looking at which columns are being used, looking at the left-hand
symbols of their types and then choosing the single rule that could produce a
tree with the new given root node. Should such a rule not exists, then the tree
would no longer adhere to the CFG and thus could not have been created in
the first place.
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CCRTA and GRTA Now the same exercise as in the preceding paragraphs
shall be done between the general relational tree-algebra and the count rela-
tional tree-algebra. Firstly the ‘matcha,i’ operator which is trivial since it is
not changed between the two extensions. Next we shall do the same for the
‘constructa,i1,...,ik ’ operator which is equally trivial as it is also the same be-
tween the two extensions.

Finally we shall show the equivalence of the two extensions regarding the
‘extract’ operator. To express the extract of the GRTA in terms of the CCRTA,
we look at the CFG and determine all the different lengths of the right-hand
sides of all rules, call this set of lengths C. The set extract operator can thus
be written as follows:

extracti(r) ≡
⋃
c∈C

(
extractc,i(R)

)
(5.7)

for some formula or relation R and with C as described above. Note, similar
to the ‘extract’ operator of the CFGRTA in the CCRTA, this is not a GRTA
formula if C is infinite. C is again guaranteed to be finite if the CFG is finite
but can be infinite if the CFG is infinite.

Equivalences The previous two paragraphs prove that the general relational
tree-algebra and the count relational tree-algebra are equivalent if there is a
given CFG to which all trees adhere. The paragraphs before that showed that
the count relational tree-algebra and the CFG relational tree-algebra are equiv-
alent if all trees adhere to a CFG and each column only contains trees that can
be produced by a single CFG rule. On top of this, both proofs made assump-
tions that the CFG to which all trees adhere. The first of these assumptions was
that there is not an infinite amount of rules with a certain amount of symbols
on the right-hand side. The second of these assumptions was that the amount
of symbols in each of the right-hand sides the rules is finite. If we now apply
the restriction that each column only contains trees that can be produced by a
single CFG rule, to the equivalence between the general and the count relational
tree-algebra, the equivalence still holds. Thus, it is also possible to show the
equivalence between the general relational tree-algebra and the CFG relational
tree-algebra in this situation, by translating it to the CCRTA as an intermediate
language first and then translating it to the other extension.

Finally, now that the equivalence has been proven, it is also clear to see that if
there was no CFG present many of these equivalences could no longer be done.
For example the CFG relational tree-algebra would no longer be equivalent to
the count relational tree-algebra. This is because the latter could simply create
something that does not adhere to the CFG, which is impossible to express in
the CFG relational tree-algebra. Similarly, the extract of the general relational
tree-algebra would no longer be expressible in the count relational tree-algebra.
This is because there is no limit to how many children that extracted child may
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have. Note however that the operators of the more restrictive extensions can
all be expressed in the general relational tree-algebra. Without the restrictions
however, the more restrictive extensions cannot express the GRTA operators.
This means that the more restrictive operator can be used in the general rela-
tional tree-algebra, but they are simply not primitive operators.

Now that we have described the various algebras we should also consider how
difficult it would be to adapt our query to them. While it would not be a
stretch to assume that there would be some CFG to which all our trees of code
would adhere, the issue with both the CCRTA and the CFGRTA is their typing.
Assume we used the amount of children underneath the root of the tree as the
type for our columns. Then for each pair i, j of the possible amount of children
we need to create a new relation that represents that a tree with i children is
similar to a tree with j children. This would still be limited by the CFG, but
it would be cumbersome nonetheless. For the typing that uses the rules of a
CFG this problem is even worse. This thus means that due to its loose typing
restrictions the GRTA would be the most natural to choose.

An equivalent calculus

So far we have described three different possible extensions, that under cer-
tain circumstances are equivalent, but each with their normal restrictions they
are not equivalent. Now we will define an equivalent calculus for the general
relational tree-algebra. This is because it seems the most appropriate for our
use-case and a calculus make it easier to prove that something cannot be ex-
pressed. However, note that the operators of the more restrictive extensions
are also expressible in the GRTA as derived operators. These operators can
be achieved by following a similar translation to the one done for the algebra
extension. This means that if something cannot be expressed in this calculus, it
will also not be possible to express it in the more restrictive calculus and thus
also not in their algebra. Thus, we shall create an equivalent calculus defining
only the primitive operators of the general relational tree-algebra.

We shall start from the relational calculus, since that already covers the trans-
lation of the entire relational algebra on which this extension was based. The
first thing to add is to add the concept of tree variables and tree types, where
tree variables are variable that can only contain values that are of a tree type
and a tree type simply means that the value is a tree. As a result of this new
type we shall also expand the use of the existential and the universal quanti-
fiers to allow for quantification of trees. This addition makes sense because an
existential quantifier is how a projection is emulated in relational calculus. On
top of this because we can project tree columns away, we need to be able to
quantify tree variables. We also need to extend the equality relation ‘=’ so that
it can also compare tree variables and constants that represent trees. Two trees
will be equivalent if their structure is the same and the labels on the pairs of
nodes in the same location in the structure are the same. Next we define the
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operators starting with ‘match’. This operator we shall define by introducing a
set of new predicates ‘match-a(x)’ where a is the label that the root node must
have and x is some tree variable or a constant that represents a tree. The next
operator is the ‘extract’ operator, which will be translated to the predicates
‘extract-j(y, x)’ with j a natural number indicating which child to extract, x
some tree variable or a constant that represents the tree to extract from and y
some tree variable or a constant that represents the extracted tree. Finally, we
need to convert the ‘constrict’ operator, which we shall do by introducing the
predicates ‘construct-a-k(y, x1, . . . , xk)’ where a is the label to assign to the new
root, k is the amount of children this node will have and for each 1 ≤ i ≤ k xi is
either a tree variable or a constant that represents a tree and y is the tree with
root node a and with as i-th child xi. We shall call this newly defined calculus,
the relational tree-calculus. We shall sometimes shorten it to RTC.

In the previous paragraph we described a calculus for the general relational
tree-algebra. We can also define a relational tree calculus for the CFGRTA and
the CCRTA. If we are comparing these new calculi, then the previously defined
RTC becomes the general relational tree-calculus. This shall then be shortened
to GRTC. For the CCRTA we will define a set of predicates for each of the
previously defined predicates. As an example, for the match operator we will
define ‘match-a-m(x)’ which is only true if the root node of the tree of x has m
children and the label a. We will define a similar set of predicates for the ‘extract’
predicates. The ‘construct’ predicates do not need to be updated. This new
calculus will be called the child count relational tree-calculus or count relational
tree-calculus. This will be shortened to CCRTC. A similar set of predicates can
also be defined for the operators of the CFGRTA. Instead of using the child
count m, these then use predicate p which must produce the root of the tree
of x. Additionally, since the CFGRTA does not allow any values that cannot
be produced by the CFG, we will not allow trees that cannot be produced by
the CFG to be quantified. This then results in the CFG relational calculus,
sometimes shortened to CFGRTC.

Definability of query

Now that a calculus has been established it is possible to prove that the relational
tree-algebra is not powerful enough to express the count comparison query.
This proof is similar to the one done in Section 5.2.1, but the definability must
be checked again since new operators have been added. These new operators
could have potentially added enough expressiveness to make our query suddenly
expressible. We can use an EF-game to prove that this calculus is still not strong
enough to decide ϕCC(C1, C2). For this proof we shall reduce a query comparing
the size of two structures to ϕCC . We shall then show that given n moves for the
EF-game that there will always be two structures that cannot be differentiated
by any formula for that query. This thus shows that it is impossible to create
a formula for this query in our calculus and thus by extension in our relational
tree-algebra. Since we could solve this with ϕCC , this also means that ϕCC can
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also not be expressed in the relational tree-algebra. To set this up, we will use
a simple trick to allow us to work with trees as if they were natural numbers:
all trees in our instances will be chains with a single label. The length of these
chains denotes the natural number they represent.

The vocabulary over which we will define our game will be σ = (U1, U2) with
both U1 and U2 a relation of arity one and its only column a tree type. The
query over this vocabulary we shall consider is ϕU1-smaller(u1, u2). This query
will contain all pairs of elements from U1 in u1 and U2 in u2 if the chain of U1

is smaller than that of U2. We shall define two σ-structures for our proof and
call them A and B. These structures will be defined to be used in the n-move
EF-game. UA

1 will contain 2n + 1 trees and UA
2 will contain 2n trees. Both

UB
1 and UB

2 will contain 2n trees. Each of these trees in U1 builds upon the
previous one by simply constructing a tree with a root node with the label a
and giving it the previous tree as its only child. Thus, all trees are simply chains
with only a single label a. For the trees in U2 the same is done but with the
label b. This also means that two consecutive trees can be linked to each other
by a ‘contruct-a-1(x, y)’ predicate if they are in the U1 relation. The same also
goes for the trees of U2 but with the ‘contruct-b-1(x, y)’ predicate. Any two
consecutive trees can also be linked together with an ‘extrac-1(x, y)’ operator
with the x containing the chain of one length shorter of the same relation. An
important thing to note is that due to the different labels in the trees of U1 and
U2 it is not possible to relate trees between the two relations with our current
operators.

Next we shall give the winning strategy for the Duplicator. The Spoiler starts
by picking the i-th tree from U1 from one of the two structures. If i is in the
first half of the structure, the Duplicator chooses the i-th node in the other
structure. If i is in the second half of the structure, choose the tree in the
other structure that is the same amount of trees away from the last tree. The
reason the Spoiler only picks from U1 is that if it picked from U2 the duplicator
could always answer with the element in the same position in the other U2. On
top of this, the Duplicator cannot choose an element from U2 after the spoiler
picked one from U1, as this would break the partial isomorphism, making the
Duplicator lose the EF-game.

Next the Spoiler will pick another node from U1. Assume this node is more
than 2n−2 − 1 trees away. Then we can simply take the node in the other
structure that is the same amount of trees away from the end tree in the same
direction. If the node is less than or equal to 2n−2 − 1 trees away, then pick
the tree at the same distance in the same direction in the other structure. This
logic holds for any pick by the Spoiler from U1 in round i of the game. Assume
the closest previously chosen, the first and the last node in U1 are all more than
2n−i − 1 trees away. Then simply pick a tree that is 2n−i trees away from the
closest tree and the start and end node in the other structure. The reason for
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b1 b3 b′3 b2 . . .

Figure 5.3

this skipping over 2n−i−1 nodes is that 2n−i−1 is the size at which an n−i−1-
move EF game could differentiate between the relations U1 if the nodes at either
end are already chosen. It would do this by constantly skipping over 2n−i − 1
nodes for the remaining moves inside this section with already chosen start and
end nodes. If the Duplicator follows this move with a same size gap, the Spoiler
continues skipping from the start towards the end. If the Duplicator does not
leave the same size gap, the Spoiler will continue this strategy. However, now
it plays between the start and end nodes defined by the smaller of the two gaps
created the previous turn.

Notice that the spoiler can step 2n−i−1 nodes on the i-th turn of the n move
EF-game. However, now it only has n− i moves remaining, which means it can
only leave gaps that it could win in n−i−1 moves. The distance crossed by all of
these remaining n−i−1 moves combined, is of course exactly the size of the gap
left at the i-th move. Thus, in an n-move EF game, the Spoiler can move a total
of 2n−2 +2n−2−1 = 2n−1−1 from its starting node and force the Duplicator to
move in the exact same size and direction with it. This means that the Spoiler
can win as long as both U1s are smaller than (2n−1 − 1) ∗ 2 + 1 = 2n − 1. This
is because the Duplicator can choose its first node in the exact middle and then
move either direction.

To make it more clear how exactly this proof works, consider the graph in
Figure 5.3. This graph represents a section of UA

1 and of UB
1 , where the start

and end nodes have already been chosen by the spoiler and Duplicator. Again
the edges in this graph show that the tree at the source of an edge is used to
construct the tree at the destination of the edge. The first pair of nodes chosen
are a1 and b1 from UA

1 and UB
1 respectively. In the next move a2 is chosen by

the Spoiler and b2 is chosen by the Duplicator as a result. We will now show
that the Duplicator should not have chosen b2, since the spoiler can now win in
a 1-move EF game on the section between the pairs of red nodes. The Spoiler
can obviously win by simply choosing a3 and then the Duplicator cannot reply
since both b3 and b′3 would only connect it to one of the previously chosen nodes
but not both.

Another example to show how this recursion works is Figure 5.4. Here a1,
b1, a2 and b2 have all been chosen like how they were in the last time. Now we

97



a1 a3 a2 . . .

b1 b3 b′3 b2 . . .

Figure 5.4

a1 a2 a3

b1 b2 b3

Figure 5.5

will demonstrate that again choosing b2 was a mistake by the Duplicator, since
the Spoiler can now win the 2-move EF-game. To do this the Spoiler chooses
a3 and the Duplicator has to respond with either b3 or b′3. Consider the state of
our game after this round, assuming b3 was picked. If we now consider b3 and
a3 to be our start nodes we see that the situation is the same as in Figure 5.3.
This shows how the recursion of our approach in the proof works. If b′3 was
chosen we make it and a3 our end nodes and then make the same argument.

As a final example, first take the graph in Figure 5.5. This shows how the
Spoiler would win in a 4-move EF game. First the Spoiler takes picks a node
a1, which the Duplicator matches with b1. Next the Spoiler picks a2 which
the Duplicator has to match with b2 or lose, as we have shown in the previous
paragraph. Then for its third move, all that remains is essentially the same as
after picking only a1 and b1 in Figure 5.3. Thus, again here we have already
proven that the Spoiler has a winning strategy. This means that the Spoiler for
the 4-move EF-game can move 7 nodes from its first node picked and still win.
Note that this move of 7 nodes only works if b3 is in fact the last node. If it is
not then the Spoiler can only move 6 nodes and the Duplicator would win.

Finally, take the graph in Figure 5.6. This is another example of a graph
where the Spoiler can win the 3-move EF-game with a1, b1, a2 and b2 already
chosen. Again here we’d play essentially the game of Figure 5.5 between the
new start and end nodes. The Spoiler starts by choosing a3 which we proved
earlier means the Duplicator needs to play b3. These are the same as a2 and b2
in Figure 5.5 between the new start and end nodes. Next the Spoiler plays a4
which the Duplicator must follow up with b4. This is similar to a3 and taking
the node left of b3 in Figure 5.5. As the final move the Spoiler chooses a5, to
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which the Duplicator cannot reply. This is because b5 and b′5 both lack one edge
to previously chosen nodes compared to a5. This shows that the Duplicator can
pick a node 8 nodes further, skipping 7 nodes. Thus, when there are i moves
remaining and the Spoiler in the i-move EF-game can move a distance of d from
its start node, it can choose the next node d+1 nodes further, skipping d nodes.

Finally, after the first two moves have been played, the Spoiler can move an
additional distance, which is the same it could in the 4-move EF-game. This
is because we now have 3 rounds left, which would be the same as having the
first node already be chosen in the 4-move EF-game. In general if in the n-move
EF-game two rounds have been played, the Spoiler can still travel the same
distance as the Spoiler could travel from its start node in the n − 1-move EF-
game. Assume this distance is d. This means that in an n-move EF-game the
Spoiler can move (d+ 1) +d = 2d+ 1 nodes from its start node. In our example
that means that in the 4-move EF-game, the Spoiler can move a distance of
2 ∗ 7 + 1 = 15 nodes.

This proof thus shows that for any formula using n quantifiers, a pair of
structures can be devised for which the Duplicator wins the n-move EF-game.
This means that the formula ϕU1-smaller(u1, u2) should either in both A and B
return all pairs of nodes from U1 and U2 or nothing at all. However, this causes a
contradiction, since we know that each of these outcomes is wrong in either A or
B. Thus, such a formula with at most n quantifiers does not exist. Since we have
given a construction for every n, we have also proven that such a formula does
not exist. Now assume that ϕCC(C1, C2) could be expressed. This would mean
that ϕU1-smaller(u1, u2) could also be expressed. This is because we could replace
each reference in ϕCC(C1, C2) to R with (U1(C1)∧U1(C2))∨(U2(C1)∧U2(C2)).
Then if ϕCC(C1, C2) returns a node with the label a on the root node of C1 and
b in the root node of label C2 we return this pair as a result of ϕU1-smaller(u1, u2)
with C1 being the value of u1 and C2 the value of u2. This is a correct because, as
we showed in Section 5.2.1, counting the outing edges of a completely connected
component is the same as counting the amount of nodes in it. This means that

99



ϕCC(C1, C2) cannot be expressed because it would allow ϕU1-smaller(u1, u2) to
be expressed, which we know is impossible.

Note that this proof also still holds for the other more restrictive extensions,
since the CFG would only contain two rules and all trees root nodes are produced
with only one of those rules, the other one is for termination. For the CCRTC
it is also straightforward: there is only ever one child count in all the trees, thus
there is only one set of operators useful, which are those operators dealing with
trees with a single child. Thus, in both cases the operators can be mapped to
the more board ones of the general relational tree-calculus and the proof would
go the same.

Another note to make is that the proof so far has assumed that the trees
created by the existential quantifier, are all trees in our relations. However, this
need not be the case. It is possible that an existential quantifier quantifies an
entirely new tree that is not part of any relations in the structure. This also
means it would be possible to in one move pick every tree in one move by picking
a tree with some new root node and then the i-th child is the i-th element of U1.
Then in one move the Duplicator would have to also create a tree that responds
with a tree that does the same but for the trees from U1 of the other structure.
This would allow for the Spoiler to immediately pick all elements of UA

1 to
which the Duplicator would have to respond with the same tree for UB

1 with
an extra tree to make sure to preserve the relation created by the ‘construct’
operator. This extra tree could then be exploited by the Spoiler by extracting
the last child in the large tree in A. The Duplicator would also have to respond
with the last child in the other tree, thus breaking the partial isomorphism and
losing the EF-game. If the Duplicator did not, then the Spoiler would simply
choose the child after the one the Duplicator chose in the tree. The Duplicator
would have to follow with a child that follows the last child that the Spoiler
chose, which is impossible.

However, this problem with the quantifier is not an issue. The amount of
moves of an EF-game depends on the quantifier depth, but the size of the
structure can be determined by the formula. Normally this is simply done by
looking at the quantifier depth of the formula using that to determine the size
of the structure. However here we will look at the formula and determine the
largest child extracted. Call this c. We would then simply consider each move
of an n-move EF-game to be c moves in our current structure. This is because
the Spoiler could only extract the first c children of any tree at any depth.
This means that the Duplicator is at max only forced to duplicate c trees in
one move. Thus, to have a structure where the Duplicator still wins, we would
create a structure that would win on c ∗ n moves. This could easily be done by
creating structures where both U1s and U2s are larger than 2n∗c − 1. We could
even lower this size requirement. Rather than considering the highest of children
being extracted, we consider all unique indexes of children being extracted. Call
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this value cu. It is obvious that cu ≤ c and thus a lower upper bound would be
if all relations are at least 2n∗cu − 1 in size.

Finally, note that this is not a problem with the CFGRTC, since every tree
must adhere to our CFG, even the ones created by the existential quantifiers.
Thus, the above could never arise in the CFG relational tree-calculus. The child
count relational tree-calculus would use the exact same solution as the general
relational tree-algebra uses. This is because at any point it knows how many
children any root node has and inspection into the formula will result in the
same as in the previous paragraph.

Adding more operators

Now that we have shown that our initial extension to the relational algebra did
not suffice to add the ability to count and see which of the relations is larger,
it makes sense to try and look for extensions that would make this possible. A
logical first extension to look at is subtree containment. Subtree containment
is the ability to check if something is a subtree of something else, as defined in
Section 3.1.3. For our extension a subtree containment operator would filter out
the rows for which a tree is a subtree of some other tree. A subtree operator
would make sense in our situation, given that it could be used to define similarity
between two trees. This operator would then be added in the shape of ‘subtreei,j ’
where all rows are returned in which column i contains a tree that is a subtree
of the tree in column j. This essentially provides us the transitive closure of the
same relation we could get with the ‘construct’ operator in our previous proof
that a count comparison cannot be expressed in our extension. We call this new
extension on the relational tree-algebra the relational subtree-algebra. We shall
sometimes shorten this to RSA.

Note that the way this operator is defined, it will work as an additional
operator in any of our previously defined extensions. However, similar to the
‘match’ operator, it may be redundant for some cases in the CFG relational
subtree-algebra. This is because at any time we know the rule of the CFG that
produces all trees in a particular column. Thus, if we are checking that trees
produced by a rule pi are subtrees of trees produced by rule pj , we may already
know this from the CFG. It is indeed sometimes possible to determine that a
tree produced by pi could never appear under a tree produced by pj . As an
example say we have a CFG consisting of four rules: a → b, b → b, b → c
and b → c with c and d terminal symbols. In this CFG it is clear that a tree
produced by a → b could never be a subtree of a tree produced by b → b.
However, unlike the ‘match’ operator, the ‘subtree’ operator cannot be entirely
eliminated. Take our previous example and consider the rules b→ c and b→ b.
It is entirely possible that a tree produced by the rule b → c is a subtree of a
tree produced by b → b. On the other hand it is also possible that it is not
a subtree of a tree produced by b → b as it may end with a tree produced by
b→ c instead.
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This ‘subtree’ operator presents a problem with our previous proof. At the
end of the previous section, we showed the problem with quantifying trees not
part of the relations. We solved this problem by looking at ‘extract’ operators
in the formula and used that to create a pair of structures it could not see the
difference between. However, that trick of looking at the extract will no longer
work, since the ‘subtree’ operator could work as an extract that could extract
at an arbitrary depth an arbitrary child. The Spoiler could thus create a tree
with some root node and all of its nodes represent pairs of trees from UB

1 and
UB
2 . These pairs represent a bijective function. The Duplicator is then forced

to respond with a similar pairing but cannot since this is impossible to create
in A. It will either create a tree where at least one node is paired with multiple
nodes or where at least one tree is not paired at all. If the Duplicator leaves
out a single tree, the Spoiler will choose this tree from A. Next the Duplicator
will pick some tree from B. Then the Spoiler will choose the tree in B that
was paired with the tree just chosen by the Duplicator. The Duplicator will
then choose some tree in A. Finally, the Spoiler will win by constructing a pair
from the two trees chosen in B and claiming it a subtree of the tree it chose
at the very beginning of all pairs. The Duplicator cannot create such a tree
because its counterparts in A were not a pair in tree it duplicated at the very
beginning. Alternatively, assume the Duplicator created a tree where one tree
is part of multiple pairs. The Spoiler will then first pick the node from A that
has multiple pairs and then in subsequent turns will pick two other nodes it
is paired with. Finally, it will construct these two pairs and claim that they
are subtrees of the originally created tree. These constructed trees will not be
possible to be created by the Duplicator in B.

Note that this approach would not work without the ‘subtree’ operator be-
cause we can extract only up to a particular child. This means that we could
not create a relation that contains one pair for each tree in a relation. This is
because we could only ever access such a node by explicitly extracting it. Thus,
if we know the largest child accessed, say the c-th child, we could simply make
the structure larger so that it can no longer access all pairs. We would do this
by having more than c trees in each relation, which means the formula could
only access the first c pairs, but not all pairs.

5.2.3 Relational Subtree-Algebra

At the end of the previous section, we discussed how the proof that the count
comparison query could not be expressed in the relational tree-algebra no longer
holds when we add a subtree. In this informal proof, we constructed a tree
which represented a bijection between two relations. This will also exactly be
the approach we will take to show that the count comparison query, can indeed
be expressed in the relational subtree-algebra. We will first define the new
subtree operator, so that it can be used in a calculus. Then we shall give some
translations that make it easier to define our formula. These translations will
allow us to define our formula in second order logic where our second order
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S
1 2 3
r11 r12 r13
r21 r22 r23
...

...
...

r91 r92 r93

Table 5.1: An example of a relation with only tree values to be translated

Relations

S

r11

...

r12

...

r13

...

S

r21

...

r22

...

r23

...

. . . S

r91

...

r92

...

r93

...

Figure 5.7: An example of how Table 5.1 could be translated to a tree

variables are relations over trees. Finally, we will give a formula that can be
translated into a formula in our calculus, which returns the answer for the count
comparison query.

Subtree Predicate for Calculus

Before we can begin to use the power of the ‘subtree’ operator, we must define
how it will be accessed in our calculus. This would be through a predicate
‘subtree(ti, tj)’ where ti and tj are tree variables. The ‘subtree(ti, tj)’ evaluates
to true if ‘subtreei,j ’ would keep the row and ti was the tree in column i and
tj the tree in column j of that row. This means that it evaluates to true if ti
appears as a subtree in tj . This predicate is then added to the previously defined
calculus over trees. If we add this operator to the relational tree-calculus, we
get the relational subtree-calculus. We shall sometimes shorten this to RSC.

Second-Order Logic Translations

Second-order relations The first translation we shall introduce is the most
fundamental one. This translation will allow us to simulate quantifying a second-
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order variable, where the relation only contains trees. As an example, we have
translated Table 5.1 into the tree in Figure 5.7. In Table 5.1 each value is a
tree value, which is here represented by the label of its root. This is techni-
cally incorrect, but we shall use this for the sake of keeping this table and the
translation somewhat compact. The translation of the relation would be done,
as already described earlier, by defining a tree with some root label, with its
children representing rows in a relationship. In our case we chose this root label
is ‘Relations’. It does not matter what the name is of this root label, but is
best advised that this a label that does not show up elsewhere in any other
tree. Next the children of this root node all have the label or the name of the
variable. In our example this is ‘S’ since we are representing a variable with
the name S. Here again it is advised to choose a variable name that is not used
as a label in a tree elsewhere. For each row we wish to have in our relation,
we create a child with the label of the variable. Finally, each of these children
get an amount of children equal to the arity of the variable. The i-th child will
have as its entire subtree, the value of the tree in the i-th column. This is clear
to see in our example where the first child of the first S node is the root node
of value of the first column in the first row of the S we are trying to represent.
We then assume that the rest of subtree underneath this node is then exactly
tree in the first column of the first row of S.

Containment in second-order relations With the previous paragraph we
have now created a way for us to essentially write ∃S(ϕ) with S a second-order
variable and ϕ a formula in RSC. However, we have not yet defined how to access
whatever is contained within S. This will be done using the ‘subtree’ predicate
together with a ‘construct’ predicate. Take example from Figure 5.7 and assume
this tree was created by an existential quantifier like ∃S. Assume that t1, t2 and
t3 are all tree variables, we will then show how to define S(t1, t2, t3). This can
be done by defining the following sentence:

∃t4(construct-S-3(t4, t1, t2, t3) ∧ subtree(t4, S)) (5.8)

In this formula we first quantify a new variable t4 to put our new tree into.
Then we construct a tree that should be a child of our tree variable S and
put it in t4. Finally, we check that t4 is indeed a subtree in S somewhere.
This also shows why it is important that S as a label is not used elsewhere
in any of the trees. If the label S were used in other trees, it is possible that
we could match with a subtree that is not a child of Relations. Assume we
used the label S in the trees elsewhere, but still wanted to guarantee that
we only matched children of relations as our S. We could do this by adding
∃t5(construct-Relations-1(t5, t4)) and then check that t5 is a subtree of the tree
S. This would then force the root node of t5 to match with the root node of
the tree variable S, since we assume this is a unique label not used in any other
tree.

104



Count Comparison Query Proof

Finally, we shall now prove that we can express the count comparison query by
using the second-order variables to express them. We could of course express
them entirely in relational subtree-calculus, but this formula can be translated
to that. On top of that, using second-order variables allows it to be somewhat
easier to be understood. We shall start by giving the formula ϕCC(C1, C2)
and then slowly analyzing what each piece does. In this formula R(t1, t2) still
represents the pairs of subtrees of AST’s that are similar.

ϕCC(C1, C2) ≡ ∃S
(
∀x
(
R(C1, x)→

∃y (S(x, y) ∧R(C2, y) ∧ ¬∃z(S(x, z) ∧ z 6= y))
)
∧

∃w (∀q(¬S(q, w) ∧R(C2, w)))
)

(5.9)

Note that this does not directly solve the structure used to prove that the
count comparison query could not be expressed using the RTC. However, on that
structure we proved that a query ϕU1-smaller(u1, u2) could not be expressed and
that the count comparison query could be used to solve it. This then proved
that the count comparison query could not be expressed in the relational tree-
calculus. Here we will propose a formula that can be translated so that it does
solve the count comparison query. Take this formula and replace every reference
to T (C1, x) with x some value or some variable with U1(x) and replace every
reference to T (C2, y) with y some value or some variable with U2(y). The
resulting formula is a query that for ϕU1-smaller(u1, u2). Alternatively we can
use the same approach as in the previous proof to express ϕU1-smaller(u1, u2)
using ϕCC(C1, C2).

Equation 5.9 is clearly divide in two parts, each representing different concepts
that the query is enforcing. The first part is enforcing that S is injective. The
second part is enforcing that S is not surjective. The first part is everything
quantified by ∀x. This part forces that S must be injective by forcing that
for every value of some domain, in this case all x’s in R(c1, x), it has some
counterpart in S, namely y. On top of this it forces that it does not map one x
to two different values. It does this by stating that there is no such a z where
z and y are different and S maps x to z on top of already mapping x to y.

The second part is ∃w
(
∀q(¬S(q, w) ∧ R(c2, w))

)
which expresses that the

function is not surjective. A function is surjective if for every value in the image
there is at least one value in the domain. Thus, to check that a function is not
surjective, we simply check that there exists some value W in the image such
that there is no value q in the domain that S(q, w) is true. To enforce that w
must come from the image and is not some random tree, we used R(c2, w).
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We have now proven that there is indeed a formula that in second-order logic
describes our count comparison query. We have also proven that all the aspects
of second order logic here can be translated into relational subtree-calculus.
This means that we have thus proven that we can express the count comparison
query in the relational subtree-calculus. Note how this is only possible thanks
to the addition of the ‘subtree’ operator. It also shows the power of the ‘subtree’
operator and its complexity. Thanks to the ‘subtree’ operator it is now possible
to express queries in second-order logic, since ∀R(ϕ) with R a second-order
variable and ϕ some second order formula can be written as ¬∃R(¬ϕ). Second-
order logic is however much more computationally complex than first-order logic,
which is the trade-off made for this expressive power.

5.3 Similarity

So far in all preceding sections, we have assumed the existence of some relation
R(C1, C2) that contains all pairs of similar patterns. However, this is one of the
central parts of code pattern mining algorithm: finding these pairs of similar
fragments. It would obviously be very convenient if we could simply define an
entire algorithm with a single query. In the rest of this section we will show
that this is indeed possible, depending on the definition of similarity, with the
relational subtree-algebra. We shall show the relational subtree-algebra can
be used to define FREQT and FREQTALS by defining pattern tree similarity.
We shall also show that for similarities based on an intermediate language we
cannot express their similarity in the relational subtree-calculus. On top of this,
we shall show that for the API set and API sequence match we can express these
in the RSC but that it can become a very complex formula quickly.

5.3.1 Pattern Tree Similarity

As discussed in Section 3.2, there are multiple types of similarity. The first type
of similarity we can define using the relational subtree-calculus, is pattern tree
similarity. This is particularly useful as it will allow us to define algorithms like
FREQT and FREQTALS that use this similarity.

This type of similarity can be rather easily and naturally expressed with the
‘subtree’ operator. However, the issue is that the equality relation only checks
that the labels and structure of the trees are the same. Thus, we could have two
subtrees with the exact same labels and structure but in different locations in
and the equality relation would consider them the same. The R relation we are
attempting to simulate however, would consider them two different fragments
that are similar. This means that we somehow need to find something that
can differentiate the two. One possible solution could be to check the path
from the root nodes of those two trees and check if they are the same. If they
are the same we would consider these trees to be the same and if they are
different we would consider these trees to be different subtrees. This however
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only works if we enforce the restriction that for each node, each of its children
must have different labels. This was also mentioned when comparing examples
in Section 3.1.1. However, if this restriction is not in place it is not guaranteed
that method works. An alternative approach we could take is to generate a path
from the root node, allow only one node to have two children and then check
that each of these children are the root of a path that leads to the trees of the
fragments.

As an example of this first approach, consider the AST in Figure 5.8a where
we have highlighted a path from the root to the tree in Figure 5.8b. We can see
here how we match exactly the given subtree at the base of our path and then
have a chain of single child nodes above it.

For the second approach we will essentially use the first approach, thus we
shall start by defining the first approach in RSC. This means that we need to
define a way to find a subtree that is a given tree and then a path all the way to
a particular node. In the first approach this node would be the root node. We
shall first give the formula and then dissect it to make it more understandable.
Assume we call this formula ϕexact-path-a(t1, t2) where a is the label of the root
node, t2 the tree we are trying to find the path to this root for and t1 a path
from the tree to the root node. Also assume that there is a tree variable ast
which contains the entire AST of the program we are mining for similarities.

ϕexact-path-a(t1, t2) ≡match-a(t1) ∧ subtree(t1, ast) ∧ subtree(t2, t1)

ϕexact−base(t1, t2) ∧ ϕpath(t1, t2) (5.10)

ϕexact-base(t1, t2) ≡¬∃x1
(
subtree(x1, t1) ∧ subtree(t2, x1) ∧ x1 6= t2∧

¬∃y1(subtree(y1, x1) ∧ extract-1(t2, y1))
)

(5.11)

ϕpath(t1, t2) ≡∀x2
(
(subtree(x2, t1) ∧ subtree(t2, x2) ∧ x 6= t2)→

(∃y2(extract-1(y, x)) ∧ ¬∃z2(extract-2(z2, x2)))
)

(5.12)

It is clear that Equation 5.10 can be split into three pieces. The first piece is
the simplest piece. match-a(t1)∧ subtree(t1, ast)∧ subtree(t2, t1) simply states
that t1, the path we are looking for, must be a subtree of the AST we are trying
to find it in. This AST is given by the constant ast. This piece also enforces
that the root of the path and the AST must be the same, assuming the AST
has the root label a. However, this rests on the assumption that the root label
of the AST is unique. Should this not be the case, this could easily be solved
by adding a new root label that is not present in ast as a new root to the
AST. Assume the label b is not used in ast. We would then change the formula
to be ∃astnew(construct-b-1(astnew, ast) ∧ ϕexact-path-b(t1, t2)) and replace the
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reference to ast in ϕexact-path-b(t1, t2) with astnew. Finally, it also states that
t1 must have the tree t2 as a subtree in it, since we are looking for a path from
the root to t2.

The next piece of Equation 5.10 is Equation 5.11. In this piece we enforce
that the path t1 at its base can only have exactly t2 and nothing more. If
we did not enforce this, we would get many duplicate matches: one for each
subtree underneath the root node of t2 that contains at least t2. To prevent this
duplication we enforce that there is no subtree from the root of t2 down that
contains more than t2. We do this by saying there is no tree that is a subtree of
the path and contains t2 as a subtree that is not exactly t2. On top of this, we
enforce that this subtree that cannot exist, cannot have another subtree within
it that when extracting its first child gives t2. This last part expresses that it
must have the root of t2 at its root. If this is not the case, then that means that
there is something above t2. If there is something above t2, then it is possible
to find a subtree within that x1 with exactly t2 and the node above it.

To make it more understandable what Equation 5.11 does, consider the sub-
tree highlighted in Figure 5.8a. Here we see that if we added the ‘ConstantEx-
pression’ node underneath the highlighted ‘RightOperand’ we would get another
subtree. This subtree would also contain the tree of Figure 5.8b as a subtree.
Thus, we would have multiple subtrees that have paths to the root that contain
the requested subtree. To prevent this Equation 5.11, enforces that in the found
path there is no subtree that contains the requested tree as a subtree, has no
nodes of the path above it and is not exactly the requested subtree. It thus
disallows that there is a subtree that is an expansion like the subtree where we
added the ‘ConstantExpression’ node.

The last piece of Equation 5.10 is Equation 5.12. This piece enforces that
every node above the root node of t2 may only contain a single child, thus
making it a path form the root to t2. We do this by checking every subtree x2
of the found tree t1 that has t2 as a subtree but is not t2 itself. This means, in
combination with the previous piece, that x2 must have at least one node above
the root node of t2. Next we simply check that it then has a first child but not
a second child with the ‘extract’ operator. Clearly if it has no second child it
does not have a third child or higher, since it would then have a second child.
This means that the root node of that x2 only has a single child, making it a
path to t2.

This shows how Equation 5.10 gives a formula for how to determine a single
path from the root node from a tree to some fragment t2. Note that since the
AST is a tree, this path is unique in the AST. Thus, if for every node in the AST
each of its children have names different from each other, this path will suffice to
uniquely determine one occurrence of t2. A relation Sim(C1, C2, P1, P2) could
be defined where C1 and C2 are equal, but their paths are different. This could

109



then be used to create the similarity relation R. An issue however with this
kind of similarity is that we cannot simply use π1,2(Sim), keeping only the C1
and C2 columns. This is because we are assuming set semantics, which would
cause all the different occurrences of C1 and C2 to collapse into one. Because of
this we would work with the P1 and P2 columns to keep different occurrences
separate. Using Sim instead of R is rather simple. If you want to refer to all
code fragments of a particular form, use the C columns. If you need to refer
to one particular code fragment in a specific location and the location of all its
similar fragments, use the P columns.

However, if not all children of the same node have different names, we cannot
rely on the paths not being equal to paths leading to a different location in the
tree. To solve this we proposed using a path that at one point splits in two and
then continues on to the two similar fragments. Assume the label of the AST is
a and that it is unique. Also assume that the AST is contained in a constant ast.
The formulas ϕfork-a(t1, t2) then gives such a path t1 for a particular fragment
t2. Again we shall first give the formula and then explain its pieces.

ϕfork-a(t1, t2) ≡match-a(t1) ∧ subtree(t1, ast)∧
∃x3
(
subtree(x3, t1) ∧ ϕchild-1-exact-path(x3, t2)∧

ϕchild-2-exact-path(x3, t2) ∧ ¬∃y3 (extract-3(y3, x3))∧
ϕpath(t1, x3) ∧ ϕexact-base(t1, x3)

)
(5.13)

ϕchild-i-exact-path(x, t2) ≡ ∃y4
(
extract-i(y4, x) ∧ subtree(t2, t1)∧
ϕexact-base(y4, t2) ∧ ϕpath(y4, t2)

)
(5.14)

The first piece of Equation 5.13 is match-a(t1) ∧ subtree(t1, ast), which is
similar to the first piece in Equation 5.10. It again enforces that the found path
t1 starts at the root node of the AST and that the path is part of the AST.

The second part of Equation 5.13 is the remaining part of the formula within
∃x3. This section enforces that the root node of x3 is the node where the path
splits and then goes to the two fragments that are both t2. It also enforces that
the parts that are not part of the t2 fragments or the node where the path forks,
only have a single child. First the formula enforces that x3 must be a subtree of
the forked path t1. Next it enforces that the first child must be a path like the
ones we described in the previous equation. In a following paragraph we will
explain how this formula works in more detail. Then it enforces the same for
the second child, which also enforces that the root of x3 is the point at which t1
forks. Next, this part of the formula enforces that this node has no third child
and thus that it only forks in two here. After that, the formula enforces that
starting from this fork in the path, all nodes above it only contain a single child.
Finally, the formula makes sure that t1 contains the fork in the road subtree x3
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exactly and that no more nodes are added in t1 to underneath x3. This means
that we have enforced that we have a single path to a fork in a road, which then
has paths which lead to the two t2’s. Starting from this fork in the path there
cannot be any other forks or possible paths in t2 other than the two previously
mentioned ones. This is enforced by the last part of this piece of the formula.

If we consider the example of Figure 5.9 we can understand what the second
part of the equation does. In this example we shall skip over the children of the
fork since this will be explained in the following paragraphs. Firstly the equation
enforces that everything above the fork, in this case at the ‘WhileStatement’
node, is a single path with ϕpath(t1, x3). In this case however it is rather trivial
since there are no nodes above the ‘WhileStatement’ node. Next it enforces
that there is no third child at our fork, which is again trivial in this case, as
the‘WhileStatement’ node only has two children. Lastly with ϕexact-base(t1, x3)
it enforces that entire subtree within the path starting from the ‘WhileState-
ment’ node is exactly the subtree of the path underneath the ‘WhileStatement’
node. This may seem rather self-fulfilling, however it is important because if this
were not the case it is possible that at the ‘WhileStatement’ node the path forks
in three. This would be possible since previously we were only considering one
subtree of the path where a fork occurs. However, if the path actually forks in
three, then there are three subtrees that we could have been considering where
all the proceeding statements were correct. ϕexact-base(t1, x3) enforces that this
is the only such subtree.

The final part of Equation 5.13 that needs to be explained is Equation 5.14.
This part of the formula enforces that the i-th child of the passed t1 is a path
from that node to t2, just like in Equation 5.10. However, in this case we do
not have to enforce that t1 is part of the AST, since this is already done by
Equation 5.13. We also do not need to enforce a particular label is the root
node since this is already enforced by passing x3 and extracting y4 from it.

To give an example of Equation 5.14, consider Figure 5.9. In this case the
fork happens at the root of the tree. Equation 5.14 enforces that the entire
subtree of the path starting from the node ‘Condition’ is one similar to the
paths described in Equation 5.10. It also does the same for the entire subtree
of the path starting from the ‘Body’ node.

This shows that with Equation 5.13 we can define in the relational subtree-
calculus the similarity query. It also shows that we can do this, even if the
different children of one node do not have different labels. This could computa-
tionally make the problem quicker to solve, since the AST could become more
compact, but the more complex formula might make it slower to execute, even
with the smaller tree. This clearly shows the trade-off between the two ap-
proaches. Another issue with this approach, is that like the previous approach,
it cannot simply be output to R. The reason is again that set semantics in
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combination with our similarity would cause all occurrences of a pair of similar
fragments to collapse into a single pair. Thus, we are again stuck with using a
different relation: Sim(C1, C2, P ). In Sim the fragments C1 and C2 are equal
but the path P clearly shows that they are both reached by a path that splits
at some point. Again here we thus solve the problem of set semantics by adding
a forked path that will be unique for each pair. This is also relatively simple to
replace R with. If we simply need to refer to the similar pairs but do not care
about their locations we use C1 and C2. If we care about the location of pair,
we use column P . Again, for this similarity using both C1 and C2 is rather
useless since they will always be the same.

5.3.2 Tree-mining algorithms

Now that we have defined how we could extract the pairs of similar trees, we
can also attempt to describe an entire algorithm. If the size of ast is know,
this task is easy: we take Equation 5.1 and replace R(c, cj) with ϕfork-a(cj , c).
To get all subtrees that are s-frequent, we simply need to take |ast| ∗ s where
|ast| is the amount of nodes in ast. This then gives us a query in the relational
subtree-calculus that immediately gives us the output of the FREQT algorithm.

Moving from FREQT to FREQTALS, would simply require us to translate the
particular constraints that we wish to impose upon our fragments into relational
subtree-calculus. We would then add these restrictions to the formula of FREQT
by adding them with conjunctions to the formula of FREQT. The only aspect
that is more difficult to add to FREQT in the relational subtree-calculus is the
maximal subtree mining. This could however be done by first executing the
constrained FREQT. After that, similar to Equation 5.11, we would check all
trees that originate from the same root as the input tree and have the input
tree as a subtree. Next, a binary relation could be created, mapping all paths
of the original code fragment to the paths of the new code fragment. If such a
relation is injective then the largest code fragments with the same original code
fragments should be chosen. Selecting the largest code fragments can be done
by expressing that there is not another code fragment that contains this code
fragment as a subtree of it.

5.3.3 Other types of similarity

So far we have only discussed the pattern tree similarity, but not any type
of similarity based on an intermediate language. This is because in relational
subtree-calculus there are no tools to rewrite subtrees at an arbitrary location.
This could be created by adding additional constructs such as a ‘rewrite-one’ and
‘rewrite-all’ operators, similar to those of the relational meta-algebra. F. Neven
et al. discussed in the relational meta-algebra how the rewrite operators were
not derived operators[NVVV99]. They also demonstrated that their ‘submatch’
operator, which is somewhat similar to our ‘subtree’ operator, could be written
with their ‘extract’ operator. Their ‘extract’ operator however extracts at an
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arbitrary depth. Given the similarities between the relational meta-algebra and
the relational subtree-algebra, it is thus likely that the rewrite operators could
not be expressed in the relational subtree-calculus. This would mean that to
support this type of similarity we would need to add even more operators to
our language. This would make the language more expressive and potentially
adds more computational complexity. Additionally, this shows how using an
intermediate language, can potentially make a query more complex when trying
to reduce the complexity.

It should be straightforward, once a set of rewrite operators are introduced
to write a query that mines using an intermediate language. The formula would
first rewrite the tree into the intermediate language and then replace the refer-
ences to ast in our previous equations with the rewritten tree. Alternatively, it
could also be used after pattern mining to consider code fragments the similar
if they can be rewritten to the same fragment in the intermediate language. If
we use Equation 5.13 for this, we would then also need to allow an additional
parameter t3 which would be subtree found at the end of the second path in
the fork. With this new operator we could then find all pairs of paths linking
up two trees that are similar in the intermediate language.

Similarly the API set similarity en API sequence similarity have not been
discussed so far. This is because they are not used in any of the algorithms we
discussed. However, these can be defined in the relational subtree-calculus. For
API set similarity, it would simply be a case of checking that every subtree of
one code pattern with as its root the label indicating a function statement and
its name child is also a subtree in the other code pattern. For API sequence
similarity, we would need to do the same but also match the control structures
they are in. We could to this by comparing all pairs of function calls of the
two code fragments and the control structures in their path above them to the
root node of the fragment. For each of the control structure labels, we would
then check that its other pair in the other fragment there is a similar control
structure with the same control structures below it. However, we would also
need to enforce the order in which these control structures are applied. We
would do this by enforcing pairs of control structures are above and below each
other with no other control structure in between. This would then be enforced
by a binary second-order variable, containing all these pairs. However, it is clear
that this very quickly becomes a very complex formula. Thus, we shall only give
the rough description of how to structure the formula rather than fully write
it out. We must acknowledge that this also leaves some gaps where it might
turn out to not be possible to define. However, we believe it will simply be very
complex, but not impossible.
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5.4 Relation with Other Languages

Now that we have discussed how the relational subtree-calculus can express
many of our desired queries, we will investigate how it compares to other lan-
guages we have discussed. We will start by comparing it to the relational meta-
algebra and relational meta-calculus. After this we will compare it to the Meta-
SQL, a language with a very similar goal to our relational subtree-algebra.

5.4.1 Relation with Relational Meta-Algebra

In the previous sections we have proven that certain queries like the ones dis-
cussed in Section 5.1 and Section 5.2 can be entirely written in the relational
subtree-calculus. When looking at the relational subtree-calculus, it seems
somewhat similar to the relational meta-calculus, which is the calculus of the
relational meta-algebra. This in turn seems to point that the relational meta-
calculus could also be used to mine frequent patterns in the relational algebra.
One issue however is that in the relational algebra, we typically do not have
very large formulas, unlike in code where we often have very large AST’s. This
means that we are more likely to want to search for common patterns across the
different formulas rather than within a single formula. This could be resolved
by creating one formula that is a Cartesian product of all the formulas we would
like to inspect. Defining this formula is difficult in the relational calculus and
would have some side effects. For example, it would create an extra pattern of
these chained Cartesian products. A formula to create this Cartesian product
could relatively easily be written for a fixed amount of elements. However, cre-
ating such a formula becomes an issue when the amount of relational algebra
formulas we wish to compare becomes of an arbitrary size. In the following
paragraphs we shall explain this and other issues when trying to mine relational
algebra patterns using the relational meta-algebra.

First we shall discuss the parts that are similar. When looking at the oper-
ators, there are some operators that are clearly similar. As an example, both
contain an ‘construct’ operator. In the relational meta-algebra, a construct
operator is expressed using a ‘wrap’, a ‘rewrite-one’, an ‘extract’, a ‘rewrite-
all’, a Cartesian product and a projection [NVVV99]. This means that even
though it is not a primitive operator, it can still be expressed in the relational
meta-algebra and thus the relational meta-calculus. This construct can then
be used to create a formula in which certain parts of it are replaced by other
values of relational algebra formulas. The usage of this operator is similar to
the construct operator of the relational tree-algebra. However, in the relational
tree-calculus and relational tree-algebra we can only construct a single layer at a
time. If we compare this with the AST of a relational algebra expression created
by the construct of the relational meta-algebra we see that it can produce an
entire subtree at once, compared to a single new layer. This can be seen when
looking at the AST of �i × (R ×�j) in Figure 5.10a. However, if we limit the
construction rules to only contain a single operator and operands referencing
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Figure 5.10: AST’s of construct formulas in relational meta-algebra

other columns, we can only do a single layer. An example of this can be seen
in Figure 5.10b, where we translate �i × �j . This means that the construct
operators would become equivalent, if we restricted the ‘construct’ operator of
the RTA to the CFG of the relational algebra. However, clearly the ‘construct’
operator of the RMA could not create an AST where a node has more than
two children. We can however simulate the ‘construct’ operator of the RMA
in the RTA if the formula is known beforehand, by simply chaining construct
operators to make the AST, one layer at a time.

The next operator of the relational tree-algebra to consider is the ‘extract’
operator. This operator extracts a given child from the root node of a given tree.
In the relational meta-algebra we also have an extract operator. This operator
however, extracts all subformulas of a particular arity at an arbitrary depth. Al-
though describing the ‘extract’ operator from the relational tree-algebra seems
hard in the relational meta-algebra, in the relational meta-calculus we can come
closer. Since we know there is a derived ‘construct’ operator in the relational
meta-algebra, there must also be one in the relational meta-calculus, because
they are proven to be equivalent [NVVV99]. We could then extract the first
child by constructing a large disjunction of the possible ‘construct’ operators
that could generate a formula with at least one or two children. The sets of
formulas our construct disjunction must generate depends on whether we are
extracting the first or second child. Since there are only a handful of opera-
tors, we could easily write all combinations of �i × �j , π(�i). Assume the
‘construct’ operator in the RMC was construct(result,�i,�j , formula) where
formula represents the formula with the �’s and �i,�j represent the vari-
able containing their values and result is the newly constructed formula. If we
then wanted to extract the first child as c from the expression e we could write
∃c2(construct(e, c, c2, formula)) for all formulas. However, while there may be
a limited amount of RA operators, these can have an infinite amount of param-
eters. Operators like the projection can have any number in them up to the size
of the relation. The size of a relation can be made arbitrarily large with Carte-
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sian products. Similarly, the selection operator would have an infinite amount
of possible labels. This shows that it is thus unlikely that the ‘extract’ operator
of the relational tree-algebra could be written in the relational meta-algebra.

Next there is the ‘match’ operator of the relational tree-algebra. It is easy
to assume that this operator can be written relatively easily in the relational
meta-calculus, using the ‘construct’ operator. All we need to do is to simply
construct a formula that uses the same operator and then has a single or two
children in its AST, depending on the RA operator in the root. We then check
that the constructed formula with the one or two children of the original formula
is the same as the original formula. However, this clearly shows the issue with
this approach: we rely on an extract operator, which we have shown to not be
likely to be possible. This means that if the ‘extract’ operator of the relational
tree-algebra is possible to be written in the relational meta-algebra, the same
will go for the ‘match’ operator. Note that this is only possible since we know
the CFG of the relational algebra and can use that.

Now that all operators of the relational tree-algebra have been discussed, we
shall consider those of the relational subtree-algebra. The only extra operator
is the ‘subtree’ operator, that we have shown gives a large amount of additional
strength. This operator cannot be written in the relational meta-algebra, even
though there is the similar ‘submatch’ operator. The ‘submatch’ operator how-
ever checks for the maximal subtree underneath a particular node. The ‘subtree’
operator on the other hand checks for a subtree, but this is not required to the
maximal subtree for a node. This could be attempted to be solved by writing
a set of rewrite rules that remove all the nodes underneath a certain node of
a tree and insert a new placeholder leaf node. This however cannot work as it
would require an infinite amount of rewrite rules. Note the similarity to how
the ‘extract’ operator could not be expressed due to an infinite amount of labels
the nodes could have. On top of this the size of the tree underneath a particular
node could be arbitrarily large and the relational meta-algebra cannot rewrite
arbitrarily trees. That is to say for a given rewrite we can always find a formula
that is larger than it can rewrite to a single node.

Finally there is the ‘rewrite’ operators of the relational meta-algebra that do
not have a counterpart in the relational subtree-algebra. As already discussed
in Section 5.3.3, adding these would add a considerable amount of expressive
power to the language. It is likely this is not possible to be written in the
relational subtree-calculus, due to the ability to quantify the tree that will be
rewritten. Once this is possible, we cannot simply look at the tree that we are
replacing and extract an according amount of levels down to reach what would
be the leaves of the subtree we are replacing. This is because this amount of
levels deep to extract could be arbitrarily large. However, this is for the ‘rewrite’
operators as they would be usefully defined for a tree. If we consider the ones
defined in the relational meta-algebra, we see that the leaf nodes of the tree
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being replaced are expected to be leaf nodes for the tree we are replacing it in.
This after filling in nodes of the type �i with the tree value found in column i.
This makes the problem considerably easier, since we will never have to go to
the leafs of these trees that we are replacing and extract the trees underneath
them to somehow reattach to the new tree. If we allow the tree to be replaced
to be quantified, we need to ensure that this is the maximal subtree starting
from the root node of the tree to be replaced in the tree to replace it in. This
formula would likely be something similar to Equation 5.11. If we allow the tree
that it will be replaced with to also be quantified, we need to confirm somehow
that its leafs are also leafs of a tree and not some incomplete tree. This would
be rather difficult, again due to the infinite amount of possible labels. If we
restrict our calculus to only quantify trees to the CFG of relational algebra, the
quantified trees will never be incomplete.

Another difficult part of defining the ‘rewrite’ operators is attempting to keep
the rest of the tree the same and attaching the new subtree in the parts that
need to be replaced. This is because removing a particular subtree is not easily
defined in the relational subtree-algebra. On top of this attaching something at
a fixed location would require following a chain of extract operators from the
root to the subtree to be replaced in the new tree. This of course cannot be
written in the relational subtree-calculus, since it may be at an arbitrary depth.

The preceding paragraphs have thus shown that it is likely not possible to
do pattern mining on relational algebra expressions with the relational meta-
algebra. This seems contrary to what one might expect, given the similarity
between it and the relational subtree-algebra. However, as has been shown in
the previous paragraphs, they cannot be easily translated into each other. In
the previous paragraph we mostly discussed how the operators of the relational
subtree-algebra could not be expressed in the relational meta algebra. However,
the other way around also holds due to the lack of the knowledge of the arity
of relations and formulas. The reason for the conclusion that pattern mining is
unlikely to be possible, comes from the fact that the ‘subtree’ operator cannot
be described in the relational meta-calculus. This operator plays an integral
role in making pattern mining possible in the relational subtree-calculus.

5.4.2 Relation with Meta-SQL

Meta-SQL is the one other language that we have discussed that take the same
approach to code querying as the relational subtree-algebra: it queries AST’s.
However, since the Meta-SQL is SQL with added functionality and the RSA
and RSC are algebraic and logical model, our comparison will be less detailed
than with the RMA and RMC.

As previously mentioned, the basic idea of both the Meta-SQL and the RSA
is very similar. Both of these approaches store the queries as an AST and
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then attempt to query and modify these through their operators. However,
we have also mentioned that XSLT, which is used in Meta-SQL to query the
AST’s, is Turing-complete. This means that it could simulate any operators
of the relational subtree-algebra. The reverse however cannot be said of the
RSA, as we have previously already mentioned how a rewrite operator cannot
be expressed in it. This means that XSLT clearly offers more power when it
comes to querying AST’s.

It is also clear that Meta-SQL has operators that the RSA and RSC do
not have, such as the EVAL and UEVAL functions. These could also not be
emulated in the RSA and RSC. However, these functions do not make sense
in the RSC and RSA, as they are intended to mine patterns form source code.
If we expected it to be able to evaluate any arbitrary program in an arbitrary
language, we would also somehow need to give meaning to these AST. This in
turn would require us to understand every AST for every programming language.
This is clearly not our intention. If we restrict the Meta-SQL to only being used
to query arbitrary code, rather than SQL expressions, we would only allow
UEVAL and EVAL of AST’s representing Meta-SQL queries. However, this is
still much more powerful than what the RSA and RSC have, since it allows
us to define functions that recurse an arbitrary amount. Thus, the EVAL and
UEVAL still provide a lot of expressive power, even when the Meta-SQL is used
to mine code patterns in AST’s, since XSLT can create any arbitrary Meta-SQL
expression to be evaluated with the EVAL and UEVAL functions.

This means that even though the RSA and the Meta-SQL take a similar ap-
proach on how to query code, the Meta-SQL is more powerful. This is mainly
caused by the Turing-completeness of XSLT and the power of the UEVAL
and EVAL functions. However, as already noted in Section 4.1.3 the Turing-
completeness of the XSLT is also its weakness as querying may go on forever.
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Chapter 6

Conclusion

In the previous chapter we defined the relational subtree-calculus and showed
its expressive power. Firstly, we showed that it was strong enough to define the
count comparison query. The reason that this could be achieved was thanks to
the ‘subtree’ operator added in the relational subtree-algebra to the relational
tree-algebra. The reason for this is that it can consider subtrees at an arbitrary
location, rather than simply at a specific child. We abused this fact to allow us to
create a second order variable, which allowed us to express the count comparison
query. Following this proof we also proved that pattern tree similarity can be
expressed with the relational subtree-calculus. This then lead us to given a
description of how someone would go about defining FREQT and FREQTALS
in the relational subtree-calculus. We then discussed how it likely not express
the similarities using intermediate languages. We also considered how it would
be possible to express the API set and API sequence similarities. Finally, we
compared the relational subtree-calculus to the relational meta-calculus and
Meta-SQL. For the relational meta-algebra we found that it could not simulate
the relational tree-calculus. We also found that the relational subtree-calculus
could not express the relational meta-algebra, not even without eval. This lead
us to the conclusion that pattern mining is likely not possible in the relational
meta-algebra. Finally, we compared the relational subtree-algebra to Meta-SQL.
Here we found that, while they have a similar approach too storing and querying
their data, Meta-SQL is vastly more powerful, which is both its strength and
one of its issues.

However, many of the conclusions do not come without their caveats, which
lead to future research questions. A first of these caveats in our result is that
almost all our results about what the relational subtree-calculus can do, cannot
be extended to the relational subtree-algebra. This is because we have not
defined a safe variant of the relational subtree-calculus. This task we would
likely look towards the definition of the safe relational meta-calculus for their
approach. The reason for this is that both do not simply deal with active
domain semantics, since both have operators that can produce values outside
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the active domain. We would then have to consider whether our results also
extend to the safe relational subtree-calculus. This was however not done in this
thesis, simply due to a lack of time. We would have preferred to guarantee that
the relational subtree-algebra can or cannot express the code pattern mining
queries. However, we thought it would be more useful if this result could at
least be fully achieved for the relational subtree-calculus, rather than only be
partial achieved by both.

Another caveat is that there are some results of what the relational subtree
algebra can say, where we have only described intuitively how to do it. This
means that while we have things are likely to be definable in the relational
subtree-algebra, we cannot say this for sure, since we have yet to fully write
them out. This is the case for the results of being able to define FREQTALS, as
well as for being able to define API set and API sequence similarities. If we had
had more time, we would have tried to at least properly write out the API set
similarity. We would do this since it would allow us to showcase the versatility
that the relational subtree-calculus offers. It would also allow us to easily define
a code pattern query using a different similarity than pattern tree similarity.

Another issue lies with the rewrite operators. We mentioned that to write any
intermediate language similarity we would need rewrite operators. We also claim
that it will probably add more expressive power. However, we do not ever define
such operators, nor do we prove that some query cannot be expressed by the
relational subtree-algebra. We would have liked to have explored the potential
added power of additional rewrite operators and compared their power to those
of the relational algebra. However, due to a lack of time, this was not further
explored, since it adds a lot of work that contributes a relatively small amount
to our research question. It would have allowed us to state that more kinds of
code pattern mining are possible. However, this is of less importance compared
to whether or not any code pattern mining is possible in the first place.

Finally we would like to summarize our most important contributions:

• We introduced the relational subtree algebra and the relational subtree
calculus

• We proved that the subtree operator makes it possible to define the count
comparison query

• We showed that the relational subtree-calculus allows us to use a query
language to do code pattern mining

6.1 Future Research

As discussed in the previous section there are a few future research questions
and opportunities that follow from this thesis. These mostly come from further
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investigation where this research stopped due to time constraints.

Safe relational subtree-calculus A first important research path to go
down, is that of the safe relational subtree-calculus. The safe relational subtree-
calculus should be defined and be proven to be equivalent to the relational
subtree-algebra. It can than be used to see if the results we found in with re-
gard to what can be expressed with the relational subtree-calculus still hold if
we restrict it to its safe counterpart. If this is the case then we can simply apply
the findings of this paper to the relational subtree-algebra, which would give us
a way to execute these queries we have defined. Should it not be possible to ex-
press our results in the safe RSA, it should be proven that these queries cannot
be expressed at all. It should then also be researched what kind of additional
operator would make these queries expressible.

Intuitive algorithm descriptions There are a few intuitive descriptions we
have given of algorithms. However, these are relatively high level and do not
account for possible problems that could be encountered when attempting to
write them down. We believe that these descriptions should lead to actual
formula that express these concepts, but a lot of the constructs used make
intuitive sense but might have some complications when actually writing them
down. Thus, it would be interesting to actually write these out, to prove that
they can be written in the relational tree algebra. This would also lead to new
tools being developed for the relational subtree-calculus, which would make it
easier in the future to prove other concepts in it.

Rewrite operators A final interesting piece of future research are the rewrite
operators. These operators are likely to add additional expressive power to the
relational subtree-algebra, but it is unclear how much. Thus, it would be a good
line of research to prove first that the translations into an intermediate language
cannot be expressed by the relational subtree algebra. Then it would be interest-
ing to see that it now suddenly does become possible with the rewrite operators.
It would also be interesting to see what other queries suddenly become possible
when we add the relational tree algebra.

Complexity of the relational subtree-algebra We have so far only consid-
ered the expressive power of the relational subtree-calculus. However, typically,
expressive power comes with a trade-off in computational complexity. Thus, an
interesting line of research would be to determine exactly how complex certain
operators are. Especially the ‘subtree’ operator seems a prime candidate, since
it adds a lot of expressive power.

6.2 Reflection

As a final section to this thesis, I would like to add some person reflection on how
the thesis went and what lessons I have learned from it. To start off with how it
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Reading and analysis

Writing

Meetings and reporting

Figure 6.1: A pie chart how time was spent during the thesis

went, consider the pie chart in Figure 6.1. This chart contains a breakdown of
on what the time was spent. It should be noted that the reading and analysis
section contains all the reading but only part of the analysis. This is because I
included only the analysis that I recorded as strictly analysis. However, while
writing this thesis it was very common that I would start to write a proof,
but would then find some issue with it. This would then cause me to stop
writing and actually start attempting to solve this problem. However, all this
time spent attempting to fix these problems were recorded under ‘Writing’.
Additionally, a fair amount of time from the meetings should also be categorized
under analysis. I would often come to professor Van den Bussche with my
problems I encountered during my research, and we would work through them
together. For this I am very thankful, as it helped me out of a lot of difficult
problems or put me on the right track to the solution.

During this thesis I learned a lot about finite model theory, beyond the shot
extract was given in this thesis. I also learned things to consider when defining
a query language. I also gained more of an intuition for what could affect the
expressive power of a language and what would be a useful operator to add.

Something else that I learned during this thesis, is that I need to make sure to
make things more concrete earlier. The reason for this is that a lot of the early
time was spent reading without really knowing what direction I would exactly
take this in. In the end I attempted to prove my research question by designing
a new language, inspired by the relational meta-algebra. However, if I had made
this concrete decision earlier on in the research, I could have potentially looked
in more detail at certain aspects of the language. Now however, I spent a lot of
time reading and considering many alternative approaches, rather than actively
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working on a concrete path to answering the research question.
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