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Abstract

Background: Colorectal cancer (CRC) is the third most common type of cancer diagnosed

worldwide, with about 1.4 million new cases each year. Surgery is the most frequently used

treatment option, followed by a five-year post-surgery observation period to monitor the

prognosis including the carcinoembryonic antigen (CEA) biomarkers. A rise in CEA levels

may indicate a recurrence of the tumor.

Objectives: This study aimed to create a model to predict the CRC tumor recurrence using

the baseline patient characteristics and longitudinal CEA measurement to help physicians

make an optimal decision on individual medical care.

Methodology: A total of 2100 CRC patients who underwent surgery at Zyuderland Medical

Centre (Netherlands) between 2008 and 2018 were followed up for five years. A joint model for

time-to-event and longitudinal data was used. “Current value”, “current slope,” and “current

value plus slope” parameterizations were used to link the time-to-event and longitudinal data.

Time-dependent area under the curves (AUCs) and dynamic discrimination index (DDI) were

used to evaluate the discrimination capability of the joint models for three and six-month

intervals. The choice of best-fit model was based on the lowest Akaike information criterion

(AIC) or Bayesian information criterion (BIC) and also a high DDI value was considered.

Results: 17.4% of the patients experienced tumor recurrence and 14.2% died after surgery.

The results revealed that the “current value plus slope” parameterization had the highest

discrimination power (DDI = 0.67) and lowest AIC (7849.92) and BIC (8007.28) values. The

risk of tumor recurrence was significantly associated with current log CEA value (HR= 1.99,

95% CI: 1.66 - 2.41), the rate of change of the log CEA value (log hazard=12.29, 95% CI:

5.09 - 19.50), age above 75 years (HR= 1.41, 95% CI: 1.06 - 1.86), tumor stage three (HR=

1.99, 95% CI: 1.30 - 3.03), tumor stage four (HR= 7.91, 95% CI: 4.64 - 13.49), pre-surgery

log CEA measurement (HR= 1.16, 95% CI: 1.03 - 1.32). Smoking status was not significantly

associated with the risk of tumor recurrence.

Conclusion: In addition to their expertise, physicians can utilize a “current value plus

slope” joint model formulation to help them make optimal medical care decisions.

Keywords: carcinoembryonic antigen, colorectal cancer, joint model, linear mixed model, cox

proportional hazard model, time to event, area under the curve.
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1 Introduction

1.1 Background

Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide and one of the

leading causes of cancer-related death, with about 1.4 million new cases and 700,000 deaths per

year (Haggar et al., 2009; Ferlay et al., 2018). CRC is commonly found in the lining of the

colon (large intestine) or the rectum, and it usually develops from focal changes within benign,

precancerous polyps (Simon et al., 2016). CRC results from the gradual accumulation of genetic

and epigenetic changes that transform the normal colonic epithelium into cancer (Coppedè et

al., 2014). Age, sex (males), smoking status, excessive alcohol consumption, physical inactivity,

high consumption of red and processed meat, obesity, and having a family history of CRC are

the most commonly reported risk factors for CRC (Brenner et al., 2018). In most cases, surgery

has been the first line of treatment, with minimally invasive surgery becoming increasingly pop-

ular (Babaei et al., 2016).

The burden of the CRC is a significant challenge in public health worldwide (Keum & Gio-

vannucci, 2019). The incidence of CRC varies geographically, with the more-developed regions

like Europe, Northern America, Australia, New Zealand, and Japan having a higher incidence

compared to developing countries (Kuipers et al., 2015). In Europe, there are about 3.91 million

new cases of cancers and 1.93 million deaths, and CRC is among the most common type of

cancer with 12.8% cases of the total (Kuipers et al., 2015). Hungary (51.2), Slovakia (43.8),

Norway (42.9), Slovenia (41.1), Denmark (41.0), Portugal (40.0), Netherlands (37.8), Belgium

(35.3), Ireland (34.0), and Spain (33.4) were among the European countries with the highest

age-standardised rates per 100 000 people in 2018 (Bray et al., 2018).

Various types of research have been conducted to study the prevention of CRC tumor recurrence,

and numerous lifestyle behavioral factors and biomarkers have been identified as important de-

terminants. For example, physical activities and healthy dietary habits are among the primary

protective factors of CRC recurrence (Brenner et al., 2018; ACS, 2020). After surgical treatment

of CRC, the patients are followed up for five years, where the standard follow-up includes the

clinical examination, for example, to monitor the serum carcinoembryonic antigen (CEA) levels,
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imaging procedures such as ultrasound of the liver and computed tomography (CT) or PET-CT

scan of the abdomen (Godhi et al., 2017). Serum carcinoembryonic antigen (CEA) is a protein

which normally is in low levels among adults, but its levels are often elevated in the presence of

some cancer and non-cancerous (benign) conditions (CCS, 2021; Wang et al., 2007). The CEA

is the most commonly utilized biomarker test for CRC, and it is conducted as blood test to

measure the amount of CEA protein in the blood. CRC develops slowly Brenner et al. (2013)

and some studies have shown the continuous measurement of the CEA values can predict CRC

tumor recurrence (Borges et al., 2017; Peng et al., 2015). Therefore, is of great importance to

continue investing in statistical and epidemiological studies in CRC in order to study tumor

recurrence.

In most cases, during the follow-up of the CRC patients, the time-to-event (e.g., tumor recur-

rence or death) data and the repeated measurements data (e.g., biomarker) among other clinical

conditions are recorded for each patient. In the literature, methods for the separate analyses

of the longitudinal outcomes and time-to-event are well documented, and these mainly include

the Cox proportional hazard model for the survival outcome and mixed effect models for the

repeated measurements (Cox, 1972; Molenberghs and Verbeke, 2005). However, the repeated

measurements may be associated with the risk of an event of interest; hence modeling the sur-

vival and longitudinal data separately will not account for this association (Ibrahim et al., 2010).

An alternative solution is to use the repeated measurement as a time-varying covariate specified

in the Cox regression model. Consequently, this increases the bias in parameter estimation,

because the extended Cox regression model assumes the covariate can be measured all the time

without error (Rizopoulos, 2012).

The joint modeling (JM) approach has been receiving more attention for the last years. Joint

models for longitudinal and time-to-event data allow us to simultaneously model both the two

processes to assess the association of repeated measurement and the time-to-event of the event

of interest (Rizopoulos, 2012). JM has more advantages than the traditional methods because

it provides efficient estimates of the covariates to the time-to-event and repeated measurements,

and it also reduces the bias in the parameter estimation because it accounts for the measurement

error (Ibrahim et al., 2010). Also, JM allows for individual-specific predictions, which may help

physicians make optimal decisions for individual patients (Lawrence et al., 2015).
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1.2 Rationale

Approximately 35% to 40% of CRC patients who receive surgery with or without chemotherapy,

tumor recurrence may occur within 3 to 5 years of treatment (Colorectal Cancer Alliance, 2019;

Guthrie, 2002). Usually, CRC patients are followed up with scheduled CEA testing for five years

after surgery, and the clinical decisions to investigate further tumor recurrence using imaging

are reached based on the CEA biomarker value and other clinical conditions (Shinkins et al.,

2017). An increase in CEA value may result in CRC tumor recurrence, but this is not always

the case in some patients because CEA levels can increase despite the absence of recurrence,

whereas in others, CEA values are high at the time of initial surgery but lower at the time of

tumor recurrence (Saito et al., 2016). As a result, the sensitivity and specificity of serum CEA

for detecting recurrence are reported not to be high (Sorensen et al., 2016). Despite its poor

sensitivity and specificity in cases of early cancer, CEA can detect recurrence early in colorectal

cancer with a continuous examination after surgery (Fletcher, 1996; Duffy et al., 2013a). Also,

the CEA is the most cost-effective way of detecting the recurrence of CRC in the primary care

context (Mant et al., 2013).

Identifying patients at high risk of tumor recurrence at an early stage would allow for more

intensive follow-up on these patients, potentially allowing them to begin second-line treatment

sooner. In order to contribute to the understanding of the progression of the CRC, we propose

to develop a joint model for the longitudinal CEA measurement and tumor recurrence to study

the CRC among patients from Zyuderland Medical Center, located in the Netherlands. We

hypothesize that the tumor recurrence might depend on the current value of CEA plus the pace

of slope trajectory at a specific time point, and therefore they would be incorporated in the

model. Given that physicians utilize different types of information to predict patient progno-

sis, such as patient characteristics, medical history, and biomarkers such as CEA, the proposed

prognostic model would not only be based on the longitudinal CEA measurements but also on

other characteristics.

This project aims to refine and optimize the clinical decision for individual patients who re-

ceived surgery using joint modeling. Particularly, we analyze the longitudinal CEA measures

obtained in all blood tests for each patient diagnosed with CRC, tumor recurrence variable,

3



and baseline characteristics (age, sex, tumor stage, tumor type, smoking and resection margin)

from the Zyuderland Medical Center. As the follow-up continues, the clinicians take new CEA

measurements, and therefore this accentuates that the joint model should be updated with these

new measurements to aid in making appropriate intervention decisions.

The rest of the report is organized as follows. Section 1.3 describes the underlying research

objective. Section 2 gives the details of the study setting, data description, and the main

methodology employed in this report. Section 3 represents the results, Section 4 illustrates the

discussion of the main results and finally, Section 5 represents conclusion and recommendation.

1.3 Research objective

To create a model to predict recurrence of the CRC tumor, using baseline patient characteristics

and longitudinal CEA measurements.
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2 Methods

2.1 Study setting and participants

This is a retrospective cohort study. Data used in this analysis were obtained from patients at-

tending cancer treatment at Zyuderland Medical Center (in Netherlands) between 20th March

2003 and 8th October 2018. Specifically, these were patients who had surgery to remove colorec-

tal cancer tumors. Zuyderland MC has specific expertise on oncology, obesity, neurocognitive

diseases, mobility, and interstitial lung diseases. In collaboration with Maastricht University

Medical Centre, among others, Zuyderland offers top clinical courses. Also, it serves as a re-

gional teaching hospital for physicians. The Hospital has 980 beds, about 42000 submissions per

year, 170000 nursing days per year, 86000 daycare submissions per year, and 845000 outpatient

per year (Zuyderland, 2021).

The data set contained a total of 2301 patients. The CEA biomarker was measured for all

patient in the follow up period after surgery at different time points. In addition, physicians

performed liver echography or a CT scan or a PET-CT scan on occasion if the CEA levels rose

quickly, or the patient was unwell, or other clinical signs. A rule of thumb was used for the

decision to perform imaging. Patients with a CEA increase of 40% or 20% at two consecutive

measurements were referred to a CT scan.

2.2 Data description

The data set contained the repeated CEA measurement, tumor recurrence, and death infor-

mation. In addition, the following baseline characteristics variables were also available; age in

years, smoking status, sex, tumor stage, tumor type, and resection margin (whether surgeon

removed all tumor tissue). The analysis for this report only included those patients with CRC

and had received their final surgery treatment between 1st January 2008 and 1st January 2018.

The patients were excluded from the analysis if they corresponded to the following exclusion

criteria; cancer stage 0, received palliative treatment, and received operation before 1st January

2008 and after 1st January 2018.
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The measurements that were collected after tumor recurrence or death, or follow-up period not

more than 5 years, were not included in the longitudinal data analysis because no participant’s

information was collected after death. Whereas in the case of tumor recurrence, the distribution

of CEA measurement may change. Since the main purpose of this work was to predict CRC

tumor recurrence, we treated death before tumor recurrence and all the observations collected

after a five-year follow-up as a right-censored event-time. The time-to-event (in months) was

the difference between the date of tumor recurrence from the final surgery date. A Pre-surgery

CEA measurement was the value closest to the surgery date, and we concluded CEA value

taken after more than six months before surgery as a missing value. The outcome variable

CEA measurement overtime was log-transformed as follows; CEA(Ug/L) = ln(CEA(Ug/L)+1)

to reduce the skewness of the data (Curran-Everett, 2018). We divided our data set into two

parts; we randomly selected 80% of the total sample and named it ”training data set,” and the

remaining 20% was named ”test data set.” The training data set was used to build joint model,

whereas we used the test data set to assess the predictive ability of the joint model. Table 1

represents the variables used in the data analysis for this report.

Table 1: Covariates used in analyes of CEA data set

Variable Explanation

Pre-surgery CEA The closest CEA value before surgery
Follow-up Date at measurement - Date at Final surgery
Tumor type 0 if adenocarcinoma, 1 if Mucinous carcinoma, and 2 if other
Tumor stage 1 if stage one, 2 if stage two, 3 if stage three, and 4 if stage four
Smoking 0 if never smoked, 1 if current smoker, and 2 if stopped smoking
Age in years Date at final surgery - Date at birth
Sex 0 if male, 1 if female
Resection Merging 0 if no, if yes

2.3 Exploratory data analysis

In order to gain additional insights from the data, we conducted exploratory data analyses.

The Kaplan-Meier survival analysis estimated the survival rate, and the log-rank test assessed

the difference in the survival rate between the groups. Histograms examined the distribution

of events over time. We used individual profile plots to investigate intra- and inter-patient

variability for CEA measurement over time. Understanding data through data exploration

facilitated the joint model building.
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2.4 Joint model framework

The data used for this project contained both time-to-event data for tumor recurrence and longi-

tudinal measures of tumor marker (CEA), and therefore joint modeling these two processes was

deemed by us to be the best suited approach. The joint model is made up of two sub-models:

a mixed effect sub-model for repeated measurement and a time to event sub-model for survival

data, which are linked together via an association structure that assesses the relationship be-

tween the outcomes of interest (Ibrahim et al., 2010; Wulfsohn and Tsiatis, 1997). The defining

characteristic of a joint model is that survival and longitudinal data are modeled simultaneously

with respect to a conditional density, instead of modeling them with two marginal and indepen-

dent densities (Rizopoulos, 2012). The idea behind the joint model used for this study was that

we used an appropriate random effect model to describe each patient’s evolution of the CEA

biomarker in time and then incorporated the estimated patient-specific evolution in the time-to-

event model. In the next section, the longitudinal sub-model, the time-to-event sub-model, and

parameterization options used for this study to associate the time-to-event (tumor recurrence)

and the repeated CEA measurements in the joint modeling are discussed.

2.5 Joint model specification and formulation

The joint model formally associates the longitudinal and survival process through shared pa-

rameters (Henderson et al., 2000; Rizopoulos, 2012). Therefore this model models the hazard

of experiencing the event as dependent on the subject-specific characteristic of its longitudinal

trajectory.

For the ith subject, let Ti be the observed event time, T ∗i be the ‘true’ time-to-event, Ci is the

censoring time, Ti = min(T ∗i , Ci) be observed event time and δi is the event indicator where

δi = 1 if event; δi = 0 if censored. Let yi(t) denote the longitudinal outcomes for subject i

(i = 1, · · · , n) taken at different time points time t (t = 1, · · · , T ∗i ). Longitudinal outcomes

are often composed of observations of subjects that are measured repeatedly over time. For

instance, the CEA values belonging to the same person were measured repeatedly at different

time point. Based on the data exploration in Figure 5, the linear mixed model was the most
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reasonable model to consider. The longitudinal linear mixed effect submodel is in the form;

yi(t) = mi(t) + ei(t) = xTi (t)β + zTi (t)bi + ei(t) (1)

Where bi is the subject-specific random effect which we assume a multivariate normally distri-

bution, namely bi ∼ N(0, D) (where D is a covariance matrix). mi(t) denotes the true and

unobserved value for the longitudinal outcome at time t. yi(t) is the observed measured value

which deviates from mi(t) by the amount of error εi(t), where εi(t) ∼ N(0, σ2). xi(t) and zi(t)

depict the design matrix for the fixed effects β and random effects bi (random intercepts and

slopes), respectively. Random effects (random intercepts and slopes) express how the individual

intercepts and slopes deviate from the average intercept and slope.

This report postulated different varying joint models for the association between the time to

tumor recurrence and longitudinal CEA values. The survival submodel takes the form:

hi(t|Mi(t), wi) = h0(t)exp[βTwi + f{mi(t), bi, α}], t > 0, (2)

where Mi(t) = {mi(q), 0 ≤ q < t} represents the history of the true unobserved longitudinal

process mi(t) up to time point t, and q is the time point prior to t. Parameter α quantifies the

association of the underlying longitudinal process (e.g., CEA biomarker) at time t and the risk

for an event (e.g., tumor recurrence) at the same time. hi(t) is the hazard for the ith patient

to experience the event of interest at time t. wi is a vector of the baseline covariates with

corresponding regression coefficients β. h0(t) is the baseline hazard when all covariates wi are

equal to zero. bi is a vector of random effects for patient i. Various options of the function f are

usually used to associate the time-to-the event submodel (Equation (2)) and the longitudinal

submodel (Equation (1)) (Rizopoulos, 2012). This report highlights some of the options used to

associate the two processes in the following paragraph.

Several options of function f include; “interaction effects”, “lagged effects”, “current true value

plus the slope”, “random effects” and “cumulative effect” parameterizations. “Interaction ef-

fects” parameterization assumes the current level of longitudinal measure is the same in all

subgroups of the population under interest. “Lagged effect” parameterization assumes the risk

of an event is associated with the repeated measurement at the previous time point t− c, where
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c specifies the time lag of interest. “Cumulative effects” parameterization assumes the whole

history of longitudinal measurement up to time t predicts the risk of experiencing an event at

time t. “Random effects” parameterization only includes the random effect for the longitudinal

submodel in the survival submodel (see Rizopoulos, 2012; Cekic et al., 2019).

In particular, we used the “current true value” and “current true value plus the slope” pa-

rameterizations because it was hypothesized that the colorectal cancer tumor recurrence would

depend on the current CEA value at time t and slope trajectory at the same time.

The “Current value” parameterization. This association assumes the risk for an event for

the individual i at time t is associated with the true value mi(t) of the longitudinal outcome at

the same time. However, this association does not differentiate between the individuals with an

equal longitudinal score (e.g., biomarker) at a specific time point. The corresponding survival

submodel has the form:

hi(t|Mi(t), wi) = h0(t)exp{βTwi + αmi(t)}, t > 0, (3)

Where α indicates the strength of association. Therefore the hazard of experiencing an event

at time t depends on the true value of the longitudinal outcome at that time, baseline hazard,

and baseline covariates.

The “Current value plus the slope” parameterization. This association extends the

“current value” parameterization (Equation (3)) by adding the rate of change of the measurement

at time t, which is estimated by the derivative of mi(t) with respect to time as shown in the

Equation (5). The corresponding, relative risk sub-model has the form;

hi(t|Mi(t), wi) = h0(t)exp{βTwi + α1mi(t) + α2m
′
i(t)}, t > 0, (4)

Where

m
′
i(t) =

d

dt
mi(t) =

d

dt
{XT

i (t)β + zTi (t)bi}, (5)

This association structure assumes the hazard of experiencing an event at time t depends on
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both the current value of mi(t) and the slope of the current trajectory at time t (m
′
i(t)) (Ye et

al., 2008). The parameters α1 is the association between the longitudinal current value (e.g.,

biomarker) with time-to-event at time t, and α2 is the association between the value of the slope

of the longitudinal outcome at time t with the time-to-event at the same time. This model

can distinguish between the patients with the same biomarker value but with different slope

trajectories at a specific time point. Also, the current slope trajectory association at a specific

time point t can be obtained, excluding the current value association from Equation (4). The

corresponding current slope association model is in the form;

hi(t|Mi(t), wi) = h0(t)exp{βTwi + α2m
′
i(t)} (6)

The Cox proportion model allows the baseline hazard function to be unspecified so that the

misspecification of the distribution survival time is avoided but is not the same case for the

joint model (Rizopoulos, 2012). Leaving the baseline hazard function unspecified in joint model

can result in biased parameter estimates due to the underestimation of the standard errors

(Rizopoulos, 2012; Lawrence et al., 2015). The baseline hazard function can be estimated using

non-parametric or parametric distributions (Kalbfleisch and Prentice, 2011). The most common

parametric specification are the Weibull, the log-normal, and the gamma, while nonparametric

specifications can be obtained using step functions and splines (Rizopoulos, 2012). Maximizing

the likelihood is commonly used to estimate the parameters of the joint model.

2.6 Dynamic predictions

Frequently, physicians are interested in reliable prognostics about a patient to help them ad-

minister appropriate medical care. Therefore, based on the fitted joint model, conditional

survival probabilities and projected longitudinal profiles are computed for a new subject i

who has provided the set of longitudinal measurements up to a particular time point t. Let

yi(t) = {yi(s), 0 ≤ s ≤ t} be a set of longitudinal measurements for a new subject i, Rizopoulos

(2011) considers based on the fitted joint model, conditional probability the of surviving up to

time u (where u > t), given survival up to t, can be estimated as follows;

πi(u|t) =pr{T ∗i ≥ u|T ∗i > t, yi(t), wi, Dn; θ∗} (7)
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Similarly, the predicted longitudinal outcomes at time u, is given by;

wi(u|t) = E{yi(u)|T ∗i > yi(t), Dn} (8)

Where Dn = {Ti, δi, i = 1, · · · , n} represents the sample on which joint model was fitted, wi

represent the baseline covariates, θ∗ represents the true parameter values and E denotes the

expectation. The Bayesian approach is usually used in the computation of the probability

because it eliminates the difficulties encountered when computing standard errors caused by

the variability of both maximum likelihood and empirical Bayes estimates (Rizopoulos, 2011,

2012). The new information is added when new longitudinal measurements are recorded for

subject i at time t′ > t, where this information is used to update the predictions of πi(u|t′)

(conditional survival probabilities) and wi(u|t′) (longitudinal outcomes), respectively (for details,

see Rizopoulos, 2011, 2014).

2.7 Time dependent area under the curves (AUCs) and dynamic discrimina-

tion index (DDI)

It was of good interest to assess the predictive performance of the joint model in tumor recur-

rence. In this case, we were interested in the discriminative capability of the joint model within

a given time window that was of medical relevance, in which it could distinguish those patients

who would experience the tumor recurrence versus those who would not. Given the available

longitudinal measurement yi(t) up to time t for subject j, the interest was to use this information

on the medically relevant time frame (t, t+ ∆t] in which a physician could make an appropriate

intervention decision. Rizopoulos (2014), defined a prediction rule using πj(t + ∆t|t), where,

for c [0,1] (c denotes the threshold value at a specific time point), patient j is termed as the

case (e.g., tumor recurrence) if πj(t + ∆t|t) ≤ c and as control (e.g., no tumor recurrence) if

πj(t+ ∆t|t) > c. Hence, the sensitivity and specificity is defined as;

Sensitivity = P{πj(t+ ∆t|t) ≤ c|T ∗j ∈ (t, t+ ∆t)}, and

Specificity = P{πj(t+ ∆t|t) > c|T ∗j > (t, t+ ∆t)},

The area under the curve (AUC) method based on Operating Characteristic (ROC) methodology

is commonly used to assess the discriminative capability of models (Antolini et al., 2005). The
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AUC obtained for varying c is used to assess the discriminative capability of the joint model,

and is given by;

AUC(t,∆t) = P [πi(t+ ∆t|t) < πj(t+ ∆t|t)]|{T ∗i ∈ (t, t+ ∆t} ∩ {T ∗j > (t, t+ ∆t]}

Where i and j represent a pair of comparable patients who have provided the measurement (e.g,

CEA values) up to time t. Here, the idea is that if we consider two patients, where one would

experience the event (tumor recurrence), and the other will not experience the event at each

time point and for a given time period. Then, joint model would assign a higher probability of

not experiencing tumor recurrence beyond the selected time window for the patients who did

not experience the tumor recurrence for a given time period of interest.

The AUC evaluates the discrimination accuracy of joint model at a particular time point. How-

ever, the dynamic discrimination index (DDI), which is the summary of AUCs, can be used to

assess the overall discriminative capability of a biomarker at a given follow-up period (Njagi et

al., 2013). Rizopoulos (2014) proposed the following formula to compute the weighted average

AUCs;

C∆t
dyn =

∫ τ
0 AUC(t,∆t)P{ε(t)}dt∫ τ

0 P{ε(t)}dt

Where ε(t) = [{T ∗i ∈ (t,∆t]} ∩ {T ∗j > t + ∆t}], and P{ε(t)} denotes the probability of random

pairs of subjects comparable at time t, and τ represent the main period of interest. C∆t
dyn is

the dynamic discrimination index and it depends on the length ∆t, which means that different

models might have different discriminatory capability for different ∆t. AUC(t,∆t) estimate is

based directly on its definition by properly counting the concordant pairs of subjects. The pair

of subjects is concordant if the survival probability of subject i at time c is less than the survival

probability of subject j. The estimation of C∆t
dyn is to obtain estimates for weight P{ε(t)} after

AUC(t,∆t) has been estimated. Note, the DDI do not fully account for censoring because the

weighted proportion of pairs that cannot be compared due to censoring (Rizopoulos, 2011, 2014).

A value of DDI value close to one implies the model has an excellent discrimination power.
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2.8 The joint model set up for the CEA analysis

The data set used for this report comprised the baseline characteristics (age, sex, smoking sta-

tus, tumor stage, tumor type and resection margin), and two outcomes, time-to-event (tumor

recurrence), and the longitudinal CEA measurements. Before estimating the joint model, longi-

tudinal and time-to-event submodels were selected independently. Hence, our analysis involved

three main steps: (i) Separate longitudinal analysis of the repeated CEA measurement; (ii) Sep-

arate survival analysis of time to tumor recurrence using the Cox proportional hazard model;

and (iii) Joint analysis of the repeated CEA measurement and time to tumor recurrence. Note,

we used cross-validation to validate the joint model in this report. This method was adopted

because it is one way to ensure the fitted joint model would be a good predictive model for

tumor recurrence. Figure 1 shows the steps used to fit the joint model.

Figure 1: Steps used to fit joint model

In the first step: We built a linear mixed model with repeated CEA measurements as the out-

come variable where the response was log transformed as follows (ln(CEA+1)). We incorporated

random intercepts in the model since the individuals had a different CEA values after surgery.

Smoking status and tumor stage covariates were added in the model as fixed effects because

they significantly affect the CEA biomarker (Thota et al., 2012; Beom et al., 2020). Time in

months was added as a random slope because individuals’ CEA values were different over time.

Besides, a mixture of chi-square was used to test whether the random slope was needed (Verbeke

and Molenberghs, 2000). Also, we added sex and age into the model where likelihood ratio tests

(LRT) were employed to assess their effect on the CEA levels. Note, in order to use LRT; we

fitted the models using maximum likelihood estimation (ML) because the models with the same

random effects (intercepts and slopes) and different fixed effects are comparable (Verbeke and

Molenberghs, 2000). Maximum likelihood or restricted maximum likelihood (ML or REML,

respectively) are typically used in the parameter estimation. In this report the REML was used

in the parameter estimation because it produces the unbiased estimates of the variance and

covariance parameters (Verbeke and Molenberghs, 2000).
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In the second step, we analyzed the time to CRC tumor recurrence outcome using the Cox

proportional hazard (PH) model. (Cox, 1972) proposed the Cox PH model, and this model is

usually used to analyze the time-to-event data, and it assumes the baseline hazard functions of

the covariates are proportional at a given time (Collett, 2015). The general form of cox model

is:

hi(t) = h0(t)exp{βTwi}, (9)

Where, hi(t) is the hazard for the ith patient to experience the event of interest, e.g. tumor

recurrence, at time t. ho(t) is the unspecified baseline hazard function at time t, given the ref-

erence category or 0 for all covariates. This baseline hazard function is assumed to be invariant

across all the individuals meaning ho(t) does not depend on the individual i. βT is the parameter

effect which indicates how the hazard varies as a function of the explanatory variables wi. In

this analysis, age, sex, smoking status, tumor stage, tumor type, and resection margin were the

potential prognostic factors for tumor recurrence. We included all these factors in the Cox PH

model, where the outcome was the time to tumor recurrence. Also, we added the pre-surgery

CEA measurement variable in the model, and the LRT was used to assess its effect. Moreover,

the discriminative capability of the Cox PH model was evaluated using the concordance index

(C index) proposed by (Harrell et al., 1982). A model has an excellent discriminative power if it

assigns patient i with a high-risk score than patient j given Ti < Tj . However, if pair of patients

are censored, then C index does not consider them in computation. Values of C index close to

0.5 indicates poor prediction, and value close to one indicates excellent discrimination.

In the third step, the joint model consisting of Equations (1), and (2) was considered. First, base-

line covariates were not included in the joint model to determine the effect of the longitudinal

CEA biomarker on tumor recurrence. In this case, the longitudinal submodel only included the

time in the fixed-effect structure, while in the survival submodel, it only incorporated the CEA

biomarker’s effect, as shown in Equation (13). Then, the baseline covariates were considered in

the joint model. The “current value”, “current value plus slope,” and “current slope” parame-

terizations as discussed in the Equations (3), (4), and (6) were used to evaluate the association

between the longitudinal CEA measurement and the time-to-tumor recurrence, respectively.

14



Moreover, a Weibull baseline hazard risk function h0(t) = ρtρ−1 was assumed. Where ρ is the

shape parameter. Our primary motivation for using this parametric assumption was that it is

usually more valuable and convenient when the objective is to obtain the absolute measure of

the relative risk, such as predicting the outcomes for individual subjects (Lawrence et al., 2015),

which was in line with our objective.

2.9 Model diagnostics

The model diagnostic of the selected joint model was carried out by checking the diagnostics

of the survival submodel and longitudinal submodel separately since the responses of these two

parts are not comparable (Rizopoulos, 2012). For the Cox PH model (Equation (12)), Martin-

gale residuals were calculated for the null model (a model with no explanatory variables) and

plotted against the continuous covariates to determine the functional forms of these covariates,

respectively. Next, we used the Schoenfeld Residuals test (SRT) to assess the PH assumptions

of the Cox PH model. SRT determines whether the relationship between the scaled residuals

and the time variable is significantly different from zero (Collett, 2015). Finally, we used the

Cox-snell residuals to assess the overall fit of the joint survival submodel. In this case, the

Kaplan-Meier plot of the Cox snell residuals estimates was compared with a unit exponential

distribution survival function. If the assumed survival submodel fitted the data well, the cox

snell residuals would follow a unit exponential distribution.

The assumptions of the linear mixed model are often assessed using subject-specific and marginal

residuals (Verbeke and Molenberghs, 2000; Rizopoulos, 2010). However, the nonrandom nature

of the dropout caused by the occurrence of events, affects these residuals for longitudinal pro-

cesses. As a result, these residuals may not exhibit the standard properties of a linear mixed

model, which can be misleading for validating joint model assumptions (Rizopoulos, 2010).

Therefore, Rizopoulos (2010) proposed the multiple imputation residuals as a model assessment

tool for linear mixed submodel. Further, under the complete data model, Rizopoulos (2010)

proposed to supplement the observed data with randomly imputed longitudinal responses, cor-

responding to the longitudinal outcomes that would have been observed if the patients did not

leave the study.
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2.10 Model selection

The prediction of the joint models depends on the longitudinal biomarker itself in predicting the

occurrence of the events and on the correct formulation of the joint models (Rizopoulos (2012)).

Therefore, the Akaike information criterion (AIC) and Bayesian information criterion were used

in conjunction with the dynamic discrimination index (DDI) to choose the best model. The

AIC and BIC formulas are given by; AIC= −2`(θ̂) + 2p and BIC=−2`(θ̂) + p log(n) where p

represents the number of parameters in the model, `(θ̂) is the log-likelihood of the fitted model

and n is the number of observations. AIC tends to choose the most complex model while BIC

tends to choose the most parsimonious model. The smaller values of BIC and AIC indicated

the model had a better fit to the data .

2.11 Sensitivity analysis

It was important to assess the stability of the fitted joint models because the model’s predictions

are dependent on its specification and the biomarker itself (Rizopoulos, 2012). Therefore, we

performed sensitivity analysis by re-specifying the baseline hazard with B-splines (see, Equation

(A.18), in Appendix), with six knots spaced equally in the percentiles of the observed event

times. B-splines are considered to be more flexible in most cases because increasing the number

of knots may increase the flexibility in approximating the baseline hazard. In addition, we also

linked the survival and longitudinal submodels using the lag of the current log CEA value, which

assumed the risk of tumor recurrence was dependent on longitudinal log CEA at time t-c. This

lagged effect survival submodel was expressed as follows:

hi(t|Mi(t), wi) = h0(t)exp[βTwi + αmi{max(t− c, 0)}], t > 0, (10)

In this case, we assumed the risk of tumor recurrence depended on previous time point earlier

the current log value at time t. We used AIC and BIC to compare the various joint model

formulations.

2.12 Handling the missing covariates

Missing data in the baseline covariates were assumed missing at random, meaning the missing

values depended on the observed values but not on the unobserved values. Then, the missing

data were imputed using the multiple imputation method because it accounts for the uncertainty
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given the imputed values were not observed (Groenwold et al., 2012; Sterne et al., 2009).

2.13 Software

The data management was done in Python and using open-source software for statistical com-

puting and graphics, R version 4.0.5 (R Core Team, 2016). All the analyses were performed

using R software. Under nlme package (Pinheiro et al., 2017), a linear mixed model was fitted

by lme function while coxph function under survival package (Therneau et al., 2015) was

employed to fit the survival submodel. jointModel function under JM package (Rizopoulos,

2010) was used to fit the joint model. 5% significance level was used for all data analyses.
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3 Results

3.1 Exploratory data analysis

Figure 2 depicts the inclusion and exclusion criteria for the patients in this analysis. Of the total,

201 patients were excluded from the analysis, and of these, 30 patients had cancer stage 0, 80

patients received the palliative treatment, and 91 patients received surgery before 1st January

2008 or after 1st January 2018. In total, 2100 patients were included in the analysis because

they corresponded to the following inclusion criteria; treated with surgery between 1st January

2008 and 1st January 2018.

Figure 2: Inclusion and exclusion criteria flow chart

Table 2 summarizes sociodemographic characteristics (age, pre-surgery CEA measurement, tu-

mor type, tumor stage, and resection margin) of study participants by tumor recurrence and

death. Age at baseline was grouped as <= 75 or > 75 years old (<= 75 years as reference).

For smoking status, patients were categorized as never smokers, former smokers (non smokers as

reference). The resection margin was classified as yes or no (no as reference). The tumor stage

was classified into stage one, stage two, stage three, and stage four (stage one as reference).

Tumor type was grouped as adenocarcinoma and mucinous carcinoma (adenocarcinoma as ref-

erence). Of the total sample (n=2100), 366 (17.4%) of patients experienced the CRC tumor

recurrence, and 299 (14.2%) patients died. The majority of the patients were females (56.2%),

non-smokers (60.3%), had adenocarcinoma type of tumor (92.1%), were in cancer stage three

(44.7%), and with resection margin (89.5%). Of the 2100 patients, 278, 112, 12, and 45 had

their pre-surgery CEA measurement, smoking status, tumor type missing and resection margin,
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respectively. Their age at the first CEA measurement after surgery ranged from 62 to 75 years,

with a median value equal to 69 years. The median follow up period was 18.9 months (IQR; 9.8

- 32.3). The number of visits per patient after surgery varied from 1 to 24, with a total of 19291

observations. The median of the number of visits was 10 (IQR; 6.0 - 9.2)

Table 2: Characteristics of participants by tumor, death and tumor or death (n=2100)

Baseline Characteristic Overall n (%) Tumor recurrence Death Death or Tumor recurrence

No Yes No Yes No Yes

Total number of patients 2100 1734 366 1801 299 1614 486
Pre-surgery CEA (Median (IQR)) 2.67 (1.47 - 5.10) 2.53 (1.40 - 4.73) 3.50 (1.99 - 8.08) 2.57 (1.40 - 4.93) 3.35 (2.10 - 6.81) 2.47 (1.40 - 4.60) 3.48 (1.99 - 7.66)
Age n (%)
<= 75 years 1624 (7.3) 1346 (77.6) 278 (76) 1445 (80.2) 179 (59.9) 1285 (79.6) 339 (69.8)
> 75 years 476 (22.7) 388 (22.4) 88 (24) 356 (19.8) 120 (40.1) 329 (20.4) 147 (30.2)
Sex n (%), (missing = 0)
Female 1183 (56.3) 974 (56.2) 209 (57.1) 1012 (56.2) 171 (57.2) 902 (55.9) 281 (57.8)
Male 917 (43.7) 760 (43.8) 157 (42.9) 789 (43.8) 128 (42.8) 712 (44.1) 205 (42.2)
Smoking n (%), (missing = 112)
Current 336 (16.0) 269 (16.4) 67 (19.4) 278 (16.3) 58 (20.4) 244 (16.0) 92 (19.9)
Former 451 (21.5) 366 (22.3) 85 (24.6) 372 (21.8) 79 (27.7) 327 (21.4) 124 (26.8)
No 1201 (57.2) 1008 (61.3) 193 (55.9) 1053 (61.8) 148 (51.9) 955 (62.6) 256 (53.2)
Tumor type n (%), (missing = 8)
Adenocarcinoma 1935 (92.1) 1600 (92.6) 335 (91.8) 1670 (93.0) 265 (89.2) 1495 (93.0) 440 (90.9)
Mucinous carcinoma 148 (7.1) 119 (6.9) 29 (7.9) 117 (6.5) 31 (10.5) 105 (6.5) 43 (8.9)
Other 9 (0.4) 8 (0.5) 1 (0.3) 8 (0.4) 1 (0.3) 8 (0.5) 1 (0.2)
Cancer stage n (%), (missing = 0)
Stage one 372 (17.7) 337 (19.4) 35 (9.6) 340 (18.9) 32 (10.7) 316 (19.6) 56 (11.5)
Stage two 720 (34.3) 626 (36.1) 94 (25.7) 622 (34.5) 98 (32.8) 572 (35.4) 148 (30.5)
Stage three 939 (44.7) 740 (42.7) 199 (54.4) 793 (44.0) 146 (48.8) 696 (43.1) 243 (50.0)
Stage four 69 (3.3) 31 (1.8) 38 (10.4) 46 (2.6) 23 (7.7) 30 (1.9) 39 (8.0)
Resection margin n (%), (missing = 45)
No 176 (8.4) 130 (7.7) 46 (12.6) 135 (7.7) 41 (13.9) 118 (7.5) 58 (12.1)
Yes 1879 (89.5) 1561 (92.3) 318 (87.4) 1625 (92.3) 254 (86.1) 1456 (92.5) 423 (87.9)

Figure 3 shows the overall and variable specific Kaplan-Meir survival curves of the CRC tumor

recurrence, and each contained the p-value of the univariate log-rank test. The overall survival

curve (Figure 3a) indicated a decrease in survival probability over time. The overall survival

probability of the tumor recurrence was 93.0% at 1 year, 86.0% at 2 years, 83.5% at 3 years,

81.5% at 4 years and 80.0% at 5 years, respectively. There was no statistically significant

difference seen between the survival curves of males and females (Figure (3b)). The patients

with adenocarcinoma tumor type had a higher tumor free-recurrence survival than patients

with mucinous carcinoma tumor type, although it was not statistically significant (Figure (3c)).

Patients with cancer stage one had the highest free-recurrence survival probability, followed by

cancer stage two, then cancer stage three, and patients with cancer stage four had the lowest

free-recurrence survival probability, and this was statistically significant (Figure (3d)). In Figure

(3e), the results revealed no significant difference in the free-recurrence survival probability

among smokers, but the non-smokers had a higher probability of the disease-free response time.

Those patients where the surgeon removed all their tumor tissue had a significantly higher

free-recurrence survival probability than to those their tumor was not entirely removed during

surgery (Figure (3f)). We observed a similar trend as previously discussed in the overall and

variable specific Kaplan-Meir survival curves of the death event (Figure (A.1)) (in Appendix).
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(a) All (b) Sex

(c) Tumor type (d) Cancer stage

(e) Smoking status (f) Resection margin

Figure 3: Overall and variable specific survival curves (Tumor Recurrence). For sex (b), Tumor type
(c), Cancer stage (d), Smoking status (e), and resection margin (f). The p-value was obtained using the
log-rank test

Figure (4a) depicts the histogram on the total number of patients per month who experienced

tumor recurrence during the follow-up. It indicates that the majority of patients experienced

tumor recurrence in the first 19 months after surgery. Figure (4b) shows a histogram of the

number of patients at different number of CEA measurements. The number of CEA measure-

ments after surgery varied from 1 to 24, and there were 19291 measurements of CEA values.

The median number of CEA measurements was 10.
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(a) (b)

Figure 4: Figure (4a) is the histogram for the total number of patients per month who experienced
tumor recurrence and Figure (4b) is the histogram for the total number of patients for different number
of CEA measurement

Figure (5) represents the individual profile plots of the transformed CEA measurements against

time in months. Figure (5a) shows the individual profiles for 50 randomly selected with tumor

recurrence. It was observed that majority the patients had an increase of CEA value over

time. Figure (5b) represents the individuals profiles for 50 randomly selected without tumor

recurrence. It can be seen the CEA evolution for most of the individual profile almost remained

constant during the follow up period. In general the plots indicated that for many individuals,

their log CEA measurements seemed to be linear. Also, the individual profiles plots suggested

that the CEA values started at different values after surgery, and there was variability within

the subjects. Hence, a linear mixed model with random intercepts and slopes was the most

plausible.
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(a) Tumor recurrence (b) No tumor recurrence

Figure 5: Figure (5a) represent the individual profiles for 50 randomly selected patients who experienced
tumor recurrence. Figure (5b) represent the individual profiles for 50 randomly selected patients who
didn’t experienced tumor recurrence. The red line represents the loess smoother.

3.2 Linear mixed model results

First, the linear mixed model incorporated smoking status and tumor stage as fixed effects. Then,

age and sex variables were added separately to the model, and the LRT results revealed that

only age had a significant effect. Finally, using the LRT: −2lnλN = −2(−3204.334+2209.152) =

1990.364 ∼ χ2
(0:1), the random slope was found to affect the model significantly (p value <0.0001).

Therefore, LMM with age, smoking status, tumor stage as the fixed covariate, and time as the

random slope was considered. Note, we did not specify the correlation structure because the

current JM R package works with a linear mixed model with no serial correlation structure. The

package also assumes an unstructured covariance structure of the random effects (Rizopoulos,

2012). Thus, the final longitudinal submodel was in the form:

ln(yi(t) + 1) =mi(t) + ei(t) (11)

=β0 + β1Agei +

2∑
s=1

β2sSmokes +

4∑
t=2

β3tTumor Staget

+ β4Time+ β5Time ∗Agei + bi0 + bi1Time+ ei(t)

Here, yi(t) denotes the ith patient CEA measurement at the tth time point and this value is typ-

ically measured with the error. mi(t) represents the true unobserved CEA measurement at time

t and ei(t) denotes the measurement error which is normally distributed with mean zero and
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variance σ2. βi denotes the effect of the baseline covariates. bi0 and bi1 represents the random

intercepts and random slopes and they indicate the subject-specific deviations from the sample

average intercept and average slope, respectively. Agei= 1 for patients above 75 years and 0

for patients below or equal 75 years. Smokes =0 for non smokers, 1 for current smokers and 2

for former smokers. Tumor staget= 1 for stage one, 2 for stage two, 3 for stage three and 4 for

stage four. Type three F test Table A.1 (in Appendix) indicated that age, smoking status, tu-

mor stage, time and interaction between age and time had a significant effect on the ln(CEA+1).

Table 3 depicts the linear mixed model results for the separate longitudinal analysis. The patients

aged above than 75 years had a 8.3% higher expected ln(CEA+1) values than those aged below

or equal 75 years old. For patients older than 75 years, the average ln(CEA+1) value increased

by 0.59% for every one-month increase. The results revealed that the current and former smokers

had 39.1% and 13.0% higher expected ln(CEA+1) values than non-smokers. The patients who

had tumor stage four had 30.6% higher expected ln(CEA+1) values than patients who had

tumor stage one. There were no statistical differences between the tumor stage two or tumor

stage three and tumor stage one; respective p-values were 0.2881 and 0.0595.

Table 3: Paremeter estimates, 95% confidence interval (95% CI), standard error, and relative effects
(RE) in separate linear mixed model fitted to the training dataset

Variable Estimates 95% CI SE p-value RE

(Intercept) 0.9262 (0.8638; 0.9886) 0.0318 <0.0001 2.5249
Age (above 75 years) 0.0801 (0.0197; 0.1405) 0.0308 0.0094 1.0834
Smoking

Current smokers 0.3303 (0.2623; 0.3982) 0.0347 <0.0001 1.3913
Former smokers 0.1224 (0.0619; 0.1829) 0.0309 0.0001 1.1302

Tumor stage
Two 0.0386 (-0.0325; 0.1097) 0.0363 0.2880 1.0393
Three 0.0659 (-0.0026; 0.1345) 0.0350 0.0596 1.0682
Four 0.2673 (0.1172; 0.4173) 0.0765 0.0005 1.3064

Time 0.0059 (0.0050; 0.0067) 0.0004 <0.0001 1.0059
Age*time 0.0025 (0.0006; 0.0044) 0.0010 0.0111 1.0025

3.3 Cox proportional hazard model results

In the Cox PH model, the potential prognostic factors were age, sex, smoking status, tumor stage,

tumor type, and resection margin. Additional covariate such as pre-surgery CEA measurement

was included in the Cox model, and the LRT results revealed it significantly impacted the model.

Furthermore, using the martingale residuals plotted against the continuous pre-surgery CEA

24



covariate revealed that linear assumption was not appropriate, and after log transforming, the

linear assumption was met as shown in Figure A.3 (in Appendix). Also, using Schoenfeld’s test

revealed that all the variables met the proportional hazard assumption of the Cox PH model

except resection margin Table A.2 (in Appendix). After stratification by resection margin,

all variables met the PH assumption Table A.3 (in Appendix). Therefore, the final survival

submodel was in the form:

hi(t) =h0(t)exp{β1Agei + β2Sexi +

2∑
s=1

β3sSmokes + β4Tumor Typei (12)

+
4∑
s=2

β5sTumor Stages + β6Pre Surgery log CEA},

The results of the likelihood ratio test to assess the overall effect of the covariates in the Cox

model revealed that age, tumor stage, pre-surgery log CEA measurement had a significant effect

on the risk of tumor recurrence as shown in Table A.4 (in Appendix). Table 4 displays the re-

sults obtained from the Cox PH model for the tumor recurrence outcome. Patients aged above

75 years had a 39.0% higher risk of tumor recurrence compared to those age below or equal 75

years. For one unit increase in the pre-surgery log CEA, increased the hazard of tumor recur-

rence by 26.6%. Patients with tumors stage three and four, their risk of the tumor recurrence

increased by 2.3 and 8.3 times, respectively compared to patients with tumor stage one. On the

other hand, there were no differences between the current or former smokers and non-smokers,

and the type of tumors; p-values were 0.0868, 0.4336, and 0.7192, respectively. Furthermore,

the C index was calculated at 36 months and yielded a value of 0.6040.

Table 4: Parameter estimates, 95% confidence interval (95%), standard error (SE), hazard ratio (HR)
in separate Cox PH model fitted to the training dataset

Variable Estimate 95% CI SE p-value HR (95% CI)

Age (above 75 years) 0.3294 (0.0533, 0.6055) 0.1409 0.0194 1.3901 (1.0548, 1.8322)
Sex (male) -0.0464 (-0.2859, 0.1932) 0.1222 0.7045 0.9547 (0.7513, 1.2131)
Smoking

Current smokers 0.2679 (-0.0387, 0.5744) 0.1564 0.0868 1.3072 (0.9620, 1.7761)
Former smokers 0.1157 (-0.1739, 0.4054) 0.1478 0.4336 1.1227 (0.8404, 1.4999)

Tumor type (Mucinous carcinoma) -0.0859 (-0.5539, 0.3822) 0.2388 0.7192 0.9177 (0.5747, 1.4654)
Tumor stage

Two 0.2546 (-0.1963, 0.7055) 0.2301 0.2685 1.2899 (0.8217, 2.0248)
Three 0.8185 (0.3977, 1.2392) 0.2146 0.0001 2.2670 (1.4885, 3.4527)
Four 2.1171 (1.5795, 2.6547) 0.2743 <0.0001 8.3069 (4.8523, 14.2210)

Pre-surgery log CEA 0.2362 (0.1257, 0.3467) 0.0564 <0.0001 1.2664 (1.1339, 1.4145)

C index at 36 months 0.6040

C index: concordance index
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3.4 Joint Models

The joint model was fitted by linking the estimated individual-specific evolutions’ from the linear

mixed model in the fitted Cox PH model as discussed in the methodology. We estimated the

following joint models:

hi(t) = ρtρ−1exp{β0 + α1mi(t)}, (13)

hi(t) = ρtρ−1exp{β0 + β1Agei + β2Sexi +

2∑
s=1

β3sSmokes + β4Tumor Typei (14)

+

4∑
s=2

β5sTumor Stages + β6Pre Surgery log CEA+ α1mi(t)},

hi(t) = ρtρ−1exp{β0 + β1Agei + β2Sexi +

2∑
s=1

β3sSmokes + β4Tumor Typei (15)

+

4∑
s=2

β5sTumor Stages + β6Pre Surgery log CEA+ α2m
′
i(t)},

hi(t) = ρtρ−1exp{β0 + β1Agei + β2Sexi +
2∑
s=1

β3sSmokes + β4Tumor Typei (16)

+
4∑
s=2

β5sTumor Stages + β6Pre Surgery log CEA+ α1mi(t) + α2m
′
i(t)},

Where: m
′
i(t) =

∂(mi(t))

∂(Time)
= β5Agei + bi1 (17)

The Weibull baseline risk hazard function h0(t) = ρtρ−1, was assumed, where ρ is the shape

parameter and exp(β0) is the scale parameter. Equation (13) was used to evaluate the effect of

the longitudinal log CEA measurement on the tumor recurrence by not considering the baseline

covariates in both longitudinal and survival submodels. Equation (14) assumes that the risk for

tumor recurrence at time t is associated with the current value of the log CEA measurement at

the same time point. Equation (15) assumes the risk for tumor recurrence at time t is related

to the slope of the current log CEA trajectory at the same time point. Equation (17) is the

derivative of the longitudinal submodel (Equation (11)) with respect to time while Equation

(16) postulates that the risk of the tumor recurrence depends on both the current value of

the log CEA and the current slope of the log CEA trajectory. hi(t) is the hazard for the ith

patient to experience the the tumor recurrence, α1 in Equation (13), (14) and (16) estimates the

26



association between the current log CEA measurement at time t and the risk of tumor recurrence

at the same time point and α2 in Equation (15) and (16) quantifies the association of the current

change of the log CEA measurements and the relative risk of the tumor recurrence.

3.4.1 Joint Model without baseline covariates

We first fitted the joint model without the baseline covariates as shown in Equation (13). The

current value of the log CEA measurement was significantly predictive of the tumor recurrence

(HR=2.6395, 95% CI: 2.4032 - 2.8990). This finding implied that the hazard of tumor recurrence

was 2.6 times higher for every unit increase in the current log CEA value at a specific time point

without considering the baseline covariates.

3.4.2 Association between the longitudinal and survival process

Different joint models formulation were considered; “current value”, “current slope”, “current

value plus slope” parameterizations (Equation (14), (15), and (16)). The “current value” param-

eterization results revealed that the risk of tumor recurrence was 2.3 times higher for every one

unit increase of the current log CEA value Table A.6 (in Appendix). Furthermore, in the “cur-

rent slope” parameterization results, we observed that the slope trajectory of the log CEA was

highly associated with the risk for tumor recurrence, and the corresponding log hazard ratio was

30.8016 (95% CI: 26.6870 - 34.9162) Table A.7 (in Appendix). For instance, this can translate

that for every 0.02 unit change in the slope per month, the risk of tumor recurrence is associ-

ated with exp(30.8016×0.02) = 1.8515-fold (95% CI: 1.7052 - 2.0103) increase in the hazard.

Also, the “current value plus slope” parameterization results revealed a significant association

between the current value and the current rate of change of log CEA and the relative risk of the

tumor recurrence. The hazard of the tumor recurrence increased by 99.8% for one unit increase

in the current log CEA value while if the rate of the slope of log CEA measurement changed

by 0.02 units, the risk of tumor recurrence increased by exp(12.2972×0.02) = 1.2788-fold (95%

CI: 1.1073 - 1.4768) for patients having the same sex, smoking status, tumor type, and tumor

stage (Table 6). Note, we did not use a one-unit change in the rate of change of current log

CEA measurement slope trajectory because it is not meaningful, and it is enormous for the

rate of change. From these three fitted joint models, we observed no material difference in their

longitudinal submodel and survival submodel parameter estimates, respectively.
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3.4.3 The time-dependent area under the curve (AUCs) and dynamic discrimina-

tion index (DDI)

We further evaluated how well the joint models would discriminate between patients who would

experience the tumor recurrence and those who did not using the test data set. Finally, we

computed the AUC(t,∆t) for the 420 patients in the test data set. On many occasions, CRC

patients visit the clinic for clinical examination every 3 to 6 months (Ryuk et al., 2014; Godhi

et al., 2017). Therefore, AUCs were calculated at the follow-up times {t = 10, 20, 30, 40, 50, 60}

using ∆t = 3 and ∆t = 6, respectively. Also, most tumor recurrences may occur during the first

two to three years after initial treatment (Jeffery et al., 2016; Sargent et al., 2005), and according

to the Dutch guidelines, CEA testing is done every three to six months during the first three

years and every six months for the remaining two years (Duineveld et al., 2016). Therefore, in

this analysis, the dynamic discrimination index (DDI) was computed for a follow-up period of

3 years or 36 months at a time length of 3 and 6 months, respectively. 200 number of Monte

Carlo samples were used in the estimation of AUCs and DDIs, respectively.

Table A.9 (in Appendix) represents the results of the AUCs for the selected follow-ups times

and the time considered to calculate AUCs at a certain time point. It can be observed that

the AUCs are of varying degrees of the discriminative ability of the different joint models at

different time points, where at time 50 months for ∆t = 3 (Model III) had the highest AUC =

0.7956 and time 40 months for ∆t = 6 (Model I) had the lowest AUC= 0.3044. Table 5 depict

the results of dynamic discrimination index (DDI) for first 3 years of follow-up, AIC and BIC

for the fitted joint models. The DDI results revealed that using the time window of 3 months

had a better prediction of the patient who would experience the tumor recurrence versus not

than a time window of 6 months in all four fitted joint models, respectively.

In contrast, to the C index computed at 36 months for the Cox model, all joint model formula-

tions had a better discrimination power using the DDI considering the same follow-up period.
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Table 5: Internal validity results showing the dynamic discriminative index (DDI) computed using the
test dataset. Bayesian information criterion (BIC) and Akaike information criterion (AIC) values for four
joint models fitted to the training dataset.

Joint model parameterization Time window t (∆t) DDI (0-36 months) AIC BIC

I: Current value 3 0.6363 10049.260 10087.240
(No baseline covariates) 6 0.6332
II: Current value 3 0.6671 7868.916 8020.859

6 0.6531
III: current slope 3 0.6674 7890.566 8042.509

6 0.6422
IV: Current value plus slope 3 0.6706 7849.915 8007.284

6 0.6553

Model I: no baseline covariates in both survival and longitudinal submodels

Model II, III, IV includes the baseline covariates in both survival and longitudinal submodels

3.4.4 Joint Model selection

The AIC and BIC alongside with DDI were consinder to settle on the best joint model formu-

lation. Based on AIC, BIC and DDI results as shown in Table 5, there was evidence that the

joint model (IV) which includes the current log CEA value plus log CEA slope trajectory asso-

ciation as predictors of the risk of tumor recurrence was the best fitting joint model and higher

discrimination power compared to joint model without baseline covariates, “current value” and

“current slope” parameterizations, respectively. Therefore, we considered the “current value

plus slope” joint model formulation as our best model, and was used to interpret final results

and illustration of the dynamic predictions.

3.4.5 Joint model diagnostics

We further assessed the diagnostics of the best fitting joint model. Finally, we used the Cox

Snell residuals plot to evaluate the overall fit of the survival submodel. Figure 6 shows the

Kaplan-Meier estimates of the Cox Snell residuals. It can be seen that the gray line does not

entirely hover through the solid line, especially for the residuals below 1.5. This plot suggests

the survival submodel did not fully fit the data. Although we can argue the model did fit the

data well because the unit exponential distribution lies within the 95% pointwise confidence

intervals apart from residuals below 0.5. However, we did not evaluate the assumption linear

mixed submodel because the residuals plots will not be reliable due to the non-random dropout

of patients caused by tumor recurrence or death.
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Figure 6: Cox Snell residuals plot. The black solid line denote the Kaplan Meier estimates of the
survival functions of the Cox-Snell residuals. Dashed lines corresponds to the 95% pointwise confidence
intervals. The gray line represent the survival function of the unit exponential distribution

3.4.6 Results for the “current value plus slope” parameterization

Table 6 represents the parameter estimates and the 95% confidence interval results for the

“current value plus slope” parameterization. The results of the longitudinal sub-model were

consistent with the results of the separate longitudinal analysis, as shown in Table 3. Thus,

there was a slight difference, but there was no difference in their statistical significance. This

similarity is because we used maximum likelihood to estimate the parameters in both models.

Therefore, the interpretation of the results remains the same.

In contrast, in the survival submodel, the results were different from the separate survival

analysis. This difference is because the joint model takes into account the measurement error

in the CEA measurements. The likelihood ratio test, which was used to assess the overall effect

of the covariate in the survival submodel, revealed that age, tumor stage, pre-surgery log CEA

values, current log CEA value, and the rate of change of log CEA all significantly affected the

risk of tumor recurrence as shown in Table A.8 (in Appendix). Males had a 33.1% lower risk of

tumor recurrence compared to females. For patients who had tumor stage four during surgery,

their hazard of the tumor recurrence increased by 7.9 times, while patients who had tumor stage

three, their risk of the tumor increased by 2.0 times compared to those who had tumor stage

one, respectively. The risk of tumor recurrence increased by 92.9% for a unit increase in the

log CEA value before the surgery. There was no significant risk difference between current or

former smokers and non-smokers.
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Table 6: Parameter estimates and 95% confidence intervals for the “current value plus slope” parame-
terization results fitted to the training dataset

Variable Estimate 95% CI SE p-value RE

Longitudinal Sub-model
(Intercept) 0.9229 (0.8606; 0.9853) 0.0318 <0.0001 2.5166
Age (above 75 years) 0.0789 (0.0190; 0.1389) 0.0306 0.0099 1.0821
Smoking

Current smokers 0.3308 (0.2628; 0.3988) 0.0347 <0.0001 1.3921
Former smokers 0.1247 (0.0642; 0.1851) 0.0308 0.0001 1.1328

Tumor stage
Two 0.0386 (-0.0324; 0.1097) 0.0363 0.2866 1.0394
Three 0.0646 (-0.0039; 0.1332) 0.0350 0.0647 1.0667
Four 0.2586 (0.1077; 0.4095) 0.0770 0.0008 1.2951

Time 0.0064 (0.0055; 0.0073) 0.0005 <0.0001 1.0064
Age:Time 0.0026 (0.0007; 0.0046) 0.0010 0.0086 1.0026

Variable Estimate 95% CI SE p-value HR (95% CI)

Survival Sub-model
Intercept -7.1357 (-7.7514; -6.5199) 0.3142 <0.0001 -
Age (above 75 years) 0.3410 (0.0619; 0.6200) 0.1424 0.0166 1.4063 (1.0638; 1.8590)
Sex (male) -0.2660 (-0.5207; -0.0114) 0.1299 0.0406 0.7664 (0.5941; 0.9886)
Smoking

Current smokers 0.2182 (-0.1013; 0.5378) 0.1630 0.1806 1.2439 (0.9037; 1.7122)
Former smokers 0.2099 (-0.0880; 0.5078) 0.1520 0.1673 1.2335 (0.9157; 1.6616)

Tumor type (Mucinous carcinoma) -0.0089 (-0.4801; 0.4623) 0.2404 0.9704 0.9911 (0.6187; 1.5877)
Tumor stage

Two 0.2412 (-0.2096; 0.6919) 0.2300 0.2943 1.2727 (0.8109; 1.9975)
Three 0.6868 (0.2638; 1.1098) 0.2158 0.0015 1.9874 (1.3019; 3.0337)
Four 2.0687 (1.5355; 2.6018) 0.2720 <0.0001 7.9143 (4.6438; 13.4882)

Pre-surgery log CEA 0.1507 (0.0263; 0.2752) 0.0635 0.0176 1.1627 (1.0266; 1.3168)
Current value 0.6919 (0.5049; 0.8789) 0.0954 <0.0001 1.9975 (1.6567; 2.4084)
Slope association 12.2972 (5.0972; 19.4971) 3.6734 0.0008

3.4.7 Dynamic predictions

We considered the dynamic predictions for two randomly selected patients (subject 16 and

subject 1022) from the test data based on the best fitted joint model (“current value plus slope”

parameterization). These two patients had different baseline characteristics and longitudinal

CEA measurements. Also, these patients had more than 10 visits, and they had provided the

longitudinal CEA measurement for the first 40 months. Therefore, we considered the first 20

and 40 months for each patient because they had survived until this time. The conditional

survival probability and the log CEA measurement trajectory predictions were then calculated

for each patient for the remaining time up to the end of the follow-up period. Figure 7 represents

the prediction of the log measurement trajectory for the two subjects using different time points

until end of follow-up period, respectively. In general, subject 1022 had slightly higher increasing

log CEA measurements, and the prediction of his log CEA measurement trajectory was higher

than subject 16. Figure 8 shows the conditional probability plots at each of the remaining
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time points until end of follow-up period. Patient 16 had a more stable log CEA measurement

profile; hence, he had a higher recurrence-free survival probability than patients 1022, who had

a slightly increasing log CEA measurement trajectory. This finding seemed logical because the

continuous increase of the CEA measurement may indicate tumor recurrence. These prediction

plots illustrated how the joint model could help physicians make subject-specific decisions in

terms of medical care.

(a) CEA measurements collected during the first to 20 months follow-up

(b) CEA measurements collected during the first to 40 months follow-up

Figure 7: Predicted longitudinal CEA trajectory (with a 95% pointwise confidence interval) for Patient
16 and 1022 from the test dataset. The dotted line denotes the last time point Patient 16 and 1022 were
still event-free, respectively. The dashed line represent the 95% pointwise confidence interval.
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(a) CEA measurements collected during the first to 20 months follow-up

(b) CEA measurements collected during the first to 40 months follow-up

Figure 8: Estimated conditional survival probabilities for Patient 16 and 1022 from the test dataset.
The vertical dotted line represents the time point of the last log CEA measurement. The stars indicate
the observed longitudinal data. The red line on the left of dotted line indicates the fitted log CEA
measurement while the red line on the right represents the conditional survival probability and the
dashed lines is the corresponding 95% pointwise confidence intervals

3.4.8 Sensitivity analysis

Finally, we tested the stability of the “current value”, “current slope”, and “current value plus

slope” joint model formulations shown in Equation (14), (15), and (16), but with a B-splines

baseline hazard function. Furthermore, we assumed that the risk of tumor recurrence was

dependent on the current log CEA value one month before (Equation (A.19), in Appendix);

thus, we fitted the model with the Weibull baseline hazard function and the B-splines baseline

hazard function, respectively. Table 7 shows the AIC, BIC, and DDI for different joint model

formulations. The results revealed that all of the fitted models had a DDI greater than 0.6. Thus,
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according to the results, AIC chooses the “current value plus slope” joint model formulation with

the Weibull baseline hazard function (IV). In contrast, BIC selects the lagged effect joint model

formulation (V) with Weibull baseline hazard function. Based on AIC and DDI, the Weibull

baseline hazard joint model (IV), which incorporated both current log CEA values and slopes

trajectory as predictors of the risk of tumor recurrence, had the best data fit and discrimination

power.

Table 7: Dynamic discriminative index (DDI) computed using the test dataset. Bayesian information
criterion (BIC) and Akaike information criterion (AIC) values for four joint models fitted to the training
dataset.

Joint model parameterization Baseline hazard Time window ∆t DDI (0-36 months) AIC BIC

II: Current value Weibull 3 0.6671 7868.916 8020.859
6 0.6531

B-splines 3 0.6488 9555.423 9767.059
6 0.6016

III: Current slope Weibull 3 0.6674 7890.566 8042.509
6 0.6422

B-splines 3 0.6497 9501.205 9712.84
6 0.6038

Iv: Current value plus slope Weibull 3 0.6706 7849.915 8007.284
6 0.6553

B-splines 3 0.6473 9528.629 9745.691
6 0.6021

V: Lagged effect Weibull 3 0.6664 7859.299 7994.963
6 0.6536

B-splines 3 0.6487 9558.346 9769.981
6 0.6001
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4 Discussion

Studies utilizing the joint models in predicting the CRC tumor recurrence are limited, and to

the best of our knowledge, we found none in the literature. This report aimed to create a joint

model for time-to-tumor recurrence and longitudinal CEA measurements while considering the

baseline covariates to help the physicians make the optimal decision on individual medical care.

The results demonstrated the usefulness of the repeated CEA measurement in the prediction of

tumor recurrence. We found that baseline covariates age, sex, tumor stage, and the pre-surgery

CEA measurement baseline covariates significantly affected the risk of tumor recurrence. Also,

the results revealed that the risk of the tumor recurrence depended on the current log CEA

value, current log CEA slope trajectory, and current log CEA value plus the current log CEA

slope trajectory. Furthermore, the dynamic predictions plots demonstrated how a new CEA

measurement could be utilized in the joint model to help physicians make the right decisions on

the future medical care for individual patients. Using the baseline covariates and the longitu-

dinal CEA measurements showed a good discriminative capability, with the DDI value for the

three-year follow-up ranged above 0.6.

One of the key findings of this study is that it confirms repeated CEA measurements after

CRC surgery is a good predictor of cancer recurrence after adjusting for the baseline covariates.

Past studies also reported similar findings using different approaches of analysis (Kwaan et al.,

2020). In our findings, only 17.4% of patients experienced tumor recurrence after surgery. A

study by Wieldraaijer et al. (2018) which looked at the clinical pattern of recurrence during

the follow-up in the Netherlands, found a similar percentage of patients who experienced tumor

recurrence. Also, similar findings have been reported by Primeau (2018). In this study, the

cancer stage influenced the tumor recurrence, consistent with the results found by Azzam et

al. (2020). Also, patients aged above 75 years had a high risk of tumor recurrence, which was

consistent with the results reported by Macrae (2016). Our study found the males had a lower

risk of tumor recurrence than females, contrary to what has been reported by previous studies

(Ferlay et al., 2015; Brenner et al., 2018). On the other hand, some studies have shown that

older women above 65 have a lower recurrence-free survival probability than men (Park et al.,

2013; Hansen et al., 2012; Benedix et al., 2010). In our study, most patients (63.2%) were aged

above 65 years, which might explain why males had a lower risk in our finding than females.
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However, we cannot justify our finding of males having a lower risk, and it needs further research.

Another key finding this study is that the joint model estimates were more robust than the

estimates of the Cox PH model. Intuitively, this finding might be as result of the joint model

producing less biased estimates. Corroboratively, a study by Powney et al. (2014) reported that

the use of the joint model showed better significant difference in predicting treatment outcomes

than when prediction was done in the separate analysis. Indeed, joint models have been applied

in the literature to investigates the link between longitudinal biomarkers and events of interest

on numerous diseases like cancer, HIV/AIDS, transplant studies, among others (Proust et al.,

2009; Brombin et al., 2016; Abdi et al., 2013). The preference for joint models partly stems

from advantages such as reduction of bias in parameter estimation, account for the intermittent

missing data in repeated measurements, and the inclusion of longitudinal covariates measured

with errors into the survival submodel (Ibrahim et al., 2010).

This study’s main strength was sufficient sample size availability and the time-to-tumor recur-

rence, and the longitudinal CEA measurement was analyzed simultaneously while considering a

breadth of risk factors. Hence, this led to an increase of power in predicting tumor recurrence

and reduction of bias in estimating the repeated CEA measurement effect on the CRC recur-

rence. However, the proposed methodology had several limitations. Only tumor recurrence-free

survival was considered, and from the clinical point of view, the doctors might be interested in

disease-free progression and overall survival. Besides, not all potential risk factors like lifestyle,

medical history, genetic data, physical activities, and diet, as reported by Liang et al. (2020) and

Primeau (2018), were available for analysis, and that might influence the decision making. The

discrimination accuracy of the joint models was assessed via internal validation, which has some

drawbacks as the model cannot be used outside the study setting. In this report, we assumed

linear trajectories for the longitudinal CEA measurement, but this might not be the case for all

individuals. However, the splines, nonlinear mixed models among others, can be considered if

patients have highly nonlinear evolution (Desmée et al., 2017).
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5 Conclusion and recommendation

Our findings show that the “current value plus slope” joint model formulation was more reliable

and offered better discrimination power than other joint models’ formulations. It appeared that

this joint model was a valuable model for predicting the risk of tumor recurrence, and physicians

can apply it to help in deciding on personalized medical care. However, this model should

be used with some caution and should not replace physician expertise because other special

individual characteristics might influence the risk of tumor recurrence. Besides, it has been

shown that combining different biomarkers like carbohydrate antigen (CA) 19-9, CA72-4, and

CA125 can have a higher sensitivity and specificity than using the CEA alone (Gao et al., 2018;

Wu et al., 2020). Therefore, we recommend that future research studies should incorporate more

biomarkers in multivariate joint modeling to enhance the accuracy of the predictions. To improve

the utility of such models, for medical practice and among other professionals, we recommend

that it is necessary to integrate the joint model in an interactive web-based platform where such

professionals are able to update the patient’s information and predict health outcomes in a more

simplified and user-friendly manner that is beneficial for decision making on individual medical

care.
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Cekic, S., Aichele, S., Brandmaier, A. M., Köhncke, Y., Ghisletta, P. (2019). A tutorial for

joint modeling of longitudinal and time-to-event data in R. arXiv preprint arXiv :1909.05661.

Collett, D. (2015). Modelling survival data in medical research. CRC press

Colorectal Cancer Alliance (2019). Carcinoembryonic Antigen (CEA) Biomarker.

https://www.ccalliance.org/colorectal-cancer-information/biomarkers/biomarkers-cea.
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A Appendix

A.1 Kaplan-Meier curves

(a) All (b) Sex

(c) Tumor type (d) Cancer stage

(e) Smoking status (f) Resection margin

Figure A.1: Overall and variable specific survival curves (Death). For sex (b), Tumor type (c), Cancer
stage (d), Smoking status (e), and resection margin (f). The p-value was obtained using the log-rank test
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(a) All (b) Sex

(c) Tumor type (d) Cancer stage

(e) Smoking status (f) Resection margin

Figure A.2: Overall and variable specific survival curves (Tumor recurrence or Death). For sex (b),
Tumor type (c), Cancer stage (d), Smoke (e), and resection margin (f). The p-value was obtained using
the log-rank test
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A.2 Linear mixed model type three F test

Table A.1: Type 3 Tests of Fixed Effects

Variables df F-value p-value

(Intercept) 1 846.7362 <.0001
Age 1 6.762 0.0094
Smoking 2 46.7452 <.0001
Cancer stage 3 4.4428 0.0041
Time 1 187.2354 <.0001
Age:Time 1 6.4512 0.0111

A.3 Cox proportional hazard model

(a) (b)

Figure A.3: Functional form of pre-surgery CEA measurements based on Martingale Residual Plots
before log transforming (Figure A.3a) and after log transforming (Figure A.3b).

Table A.2: Schoenfeld’s test for the proportional hazard assumption in the Cox Model

chi square Df P value

Age 3.4100 1 0.065
Sex 0.6870 1 0.407
Smoking 0.7280 2 0.695
Tumor type 0.0004 1 0.985
Tumor stage 4.1700 3 0.244
Resection Margin 5.1100 1 0.024
Log CEA baseline 1.4800 1 0.224
GLOBAL 13.0000 10 0.225
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Table A.3: Schoenfeld’s test for the proportional hazard assumption in the Cox Model stratified by
resection margin

chi square Df P value

Age 3.553 1 0.059
Sex 0.959 1 0.327
Smoking 0.850 2 0.654
Tumor type 0.066 1 0.797
Tumor stage 2.985 3 0.394
Log CEA baseline 0.628 1 0.428
GLOBAL 7.687 9 0.566

Table A.4: The overall effect of each covariate in the Cox PH model fitted to the training dataset

Variables Likelihood Ratio Test Df p value

Age 5.1886 1 0.0227
Sex 0.1441 1 0.7042
Smoking 2.9359 2 0.2304
type 0.1325 1 0.7159
tumor stage 71.1416 3 <0.0001
Log CEA baseline 15.549 1 <0.0001

A.4 Joint models

Table A.5: AIC, BIC, Log-likelihood values for the four joint models fitted to the training dataset. The
last three columns indicates the likelihood ratio test statistics, degrees of freedom and p-values for testing
the null model (I) against model (II), (III), and (IV), respectively

Joint model parameterization AIC BIC loglikelihood LRT df P value

I: Current value (No baseline covariates) 8043.46 8092.29 -4012.73
II: Current value 7868.92 8020.86 -3906.46 212.54 19 <0.0001
III: Slope value 7890.68 8042.63 -3917.34 190.77 19 <0.0001
IV: Current value plus slope 7849.13 8006.50 -3895.56 234.33 20 <0.0001

Model I: no baseline covariates in both survival and longitudinal submodels

Model II, III, IV includes the baseline covariates in both survival and longitudinal submodels
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Table A.6: Parameter estimates and 95% confidence intervals for the “current value” parameterization
results fitted to the training dataset

Variable Estimate 95% CI SE p-value RE

Longitudinal Sub-model
Intercept 0.9249 (0.8625; 0.9873) 0.0318 <0.0001 2.5217
Age (above 75 years) 0.0788 (0.0185; 0.1391) 0.0308 0.0104 1.082
Smoking

Current smokers 0.3305 (0.2626; 0.3985) 0.0347 <0.0001 1.3917
Former smokers 0.1231 (0.0626; 0.1837) 0.0309 0.0001 1.1311

Tumor stage
Two 0.0388 (-0.0323; 0.1100) 0.0363 0.2845 1.0396
Three 0.0661 (-0.0025; 0.1346) 0.035 0.0589 1.0683
Four 0.2665 (0.1157; 0.4173) 0.0769 0.0005 1.3053

Time 0.0061 (0.0052; 0.0069) 0.0004 <0.0001 1.0061
Age:Time 0.0026 (0.0007; 0.0045) 0.001 0.0081 1.0026

Variable Estimate 95% CI SE p-value HR 95% CI

Survival Sub-model
Intercept -7.3383 (-7.9490; -6.7276) 0.3116 <0.0001 -
Age (above 75 years) 0.3520 (0.0736; 0.6304) 0.1421 0.0132 1.4219 (1.0763; 1.8784)
Sex (male) -0.2175 (-0.4665; 0.0315) 0.127 0.0869 0.8045 (0.6272; 1.0320)
Smoking

Current smokers 0.1255 (-0.1860; 0.4370) 0.1589 0.4298 1.1337 (0.8303; 1.5480)
Former smokers 0.1536 (-0.1398; 0.4471) 0.1497 0.3048 1.1661 (0.8695; 1.5638)

Tumor type (mucinous carcinoma) -0.0539 (-0.5229; 0.4151) 0.2393 0.8217 0.9475 (0.5928; 1.5146)
Tumor stage

Two 0.2376 (-0.2139; 0.6892) 0.2304 0.3022 1.2683 (0.8075; 1.9921)
Three 0.7291 (0.3072; 1.1510) 0.2153 0.0007 2.0732 (1.3596; 3.1614)
Four 2.0983 (1.5661; 2.6305) 0.2715 <0.0001 8.1526 (4.7881; 13.8811)

Log CEA baseline 0.1314 (0.0066; 0.2562) 0.0637 0.0391 1.1404 (1.0066; 1.2920)
Current value association 0.9492 (0.8444; 1.0540) 0.0535 <0.0001 2.5836 (2.3266; 2.8691)
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Table A.7: Parameter estimates and 95% confidence intervals for the “current slope” joint model
parameterization results fitted to the training dataset

Variable Estimate lower SE p-value RE

Longitudinal Sub-model
Intercept 0.9155 (0.8540; 0.9769) 0.0313 <0.0001 2.4979
Age (above 75 years) 0.0790 (0.0214; 0.1367) 0.0294 0.0072 1.0822
Smoking

Current smokers 0.3287 (0.2621; 0.3954) 0.0340 <0.0001 1.3892
Former smokers 0.1273 (0.0702; 0.1843) 0.0291 <0.0001 1.1357

Tumor stage
Two 0.0450 (-0.0239; 0.1139) 0.0352 0.2005 1.0460
Three 0.0666 (-0.0010; 0.1342) 0.0345 0.0536 1.0688
Four 0.2434 (0.0940; 0.3928) 0.0762 0.0014 1.2756

Time 0.0068 (0.0059; 0.0077) 0.0005 <0.0001 1.0069
Age (above 75 years):months 0.0026 (0.0007; 0.0046) 0.0010 0.0082 1.0026

Variable Estimate 95% CI SE p-value HR (95% CI)

Survival Sub-model
Intercept -7.0007 (-7.6252; -6.3762) 0.3186 <0.0001 -
Age (above 75 years) 0.2538 (-0.0294; 0.5370) 0.1445 0.0790 1.2889 (0.9710; 1.7109)
Sex (male) -0.2507 (-0.5072; 0.0058) 0.1309 0.0554 0.7783 (0.6022; 1.0058)
Smoking

Current smokers 0.4087 (0.0921; 0.7254) 0.1616 0.0114 1.5049 (1.0964; 2.0656)
Former smokers 0.3062 (0.0081; 0.6043) 0.1521 0.0441 1.3583 (1.0081; 1.8300)

Tumor type (Mucinous carcinoma) 0.0644 (-0.4082; 0.5371) 0.2411 0.7894 1.0665 (0.6648; 1.7110)
Tumor stage

Two 0.2557 (-0.1956; 0.7070) 0.2303 0.2668 1.2914 (0.8223; 2.0279)
Three 0.6818 (0.2583; 1.1054) 0.2161 0.0016 1.9775 (1.2947; 3.0204)
Four 1.9908 (1.4466; 2.5350) 0.2777 <0.0001 7.3213 (4.2486; 12.6165)

Log CEA baseline 0.2049 (0.0864; 0.3234) 0.0604 0.0007 1.2274 (1.0903; 1.3818)
Slope association 30.8016 (26.6870; 34.9162) 2.0993 <0.0001

Table A.8: The overall effect of each covariate in the “current value plus slope” joint model parameter-
ization fitted to the training dataset

Likelihood Ratio Test Df p value

Age 4.9000 1 0.0237
Sex 3.4900 1 0.1749
Smoking 4.7100 2 0.0300
Tumor type 0.1100 1 0.9984
tumor stage 62.3100 3 <0.0001
Log CEA baseline 5.5100 1 0.0189
Current value association 16.3200 1 <0.0001
Slope association 46.8900 1 <0.0001
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Table A.9: Internal validity results showing the area under the curves (AUCs) computed from test data,
under various joint model formulations

Joint model parameterization Time Information used time point AUC (t)
window ∆t up time t

I: Current value 3 7 10 0.6324
No baseline covariates 17 20 0.5446

27 30 0.7042
37 40 0.7310
47 50 0.7147
57 60 0.5525

6 4 10 0.6452
14 20 0.6009
24 30 0.5104
34 40 0.7549
44 50 0.5508
54 60 0.4676

II: Current value 3 7 10 0.7001
17 20 0.6927
27 30 0.7748
37 40 0.6825
47 50 0.7136
57 60 0.5938

6 4 10 0.6266
14 20 0.5999
24 30 0.6500
34 40 0.4605
44 50 0.6221
54 60 0.4909

III: Current slope 3 7 10 0.7280
17 20 0.7163
27 30 0.6635
37 40 0.7035
47 50 0.7956
57 60 0.6381

6 4 10 0.5889
14 20 0.6185
24 30 0.7364
34 40 0.3044
44 50 0.7032
54 60 0.5053

IV: Current value plus slope 3 7 10 0.7062
17 20 0.7407
27 30 0.7072
37 40 0.6982
47 50 0.7723
57 60 0.5920

6 4 10 0.6111
14 20 0.6316
24 30 0.6915
34 40 0.3933
44 50 0.6554
54 60 0.4839

Model I: no baseline covariates in both survival and longitudinal submodels

Model II, III, IV includes the baseline covariates in both survival and longitudinal submodels
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A.5 More equations

The log baseline hazard risk function log h0(t) is expressed into B-splines as follows.

log h0(t) = k0 +

Q∑
q=1

kqBq(t, v) (A.18)

Where k is a vector of the spline coefficient and Bq(t, v) represent the qth basis function of a

B-spline with knots v1, · · · , vq.

hi(t) = h0(t)exp[β0 + β1Agei + β2Sexi +

2∑
s=1

β3sSmokes + β4Tumor Typei (A.19)

+

4∑
s=2

β5sTumor Stages + β6Pre Surgery log CEA+ αmi(t){max(t− 1, 0)}]

Equation A.19 is the lagged effect joint model formulation, which assumes the the risk of tumor

recurrence depends on the previous log CEA value earlier the current log CEA value.
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A.6 R Code

#clear the space

rm(list=ls())

#Load the required packages

library(rjags)

require(rstan)

library(pacman)

p_load(readxl, ggplot2, dplyr,survival,JM,survival,survminer,janitor,ggplot2,epicalc, reshape2,lattice)

# Load the data

df <- read_excel("CEA_masters_20210324.xlsx")

dim(df);str(df)

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

# Functions for extracting the parameters

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

# LME

print.lmm.wald<-function(mod.lmm)

{

c.tab<-coef(summary(mod.lmm))

new.tab<-data.frame(round(c.tab[,1],4),round(c.tab[,2], 4),round(c.tab[,1]-1.96*c.tab[,2], 4),round(c.tab[,1]+1.96*c.tab[,2],4),

round(c.tab[,5],4),round(exp(c.tab[,1]),4))

names(new.tab)<-c("Estimates","SE","L95", "U95","p-value","RE %")

return(new.tab)

}

# Cox model

print.HRCIs<-function(mod.coxph)

{

log_hazard <-coef(summary(mod.coxph))[,1]

L95 <- coef(summary(mod.coxph))[,1]-1.96*coef(summary(mod.coxph))[,3]

U95 <- coef(summary(mod.coxph))[,1]+1.96*coef(summary(mod.coxph))[,3]

SE <- coef(summary(mod.coxph))[,3]

HR<-coef(summary(mod.coxph))[,2]

H_L95<-summary(mod.coxph)$conf.int[,3]

H_U95<-summary(mod.coxph)$conf.int[,4]

p.val<-coef(summary(mod.coxph))[,5]

new.tab<-data.frame(round(log_hazard, 4), round(L95, 4), round(U95, 4),round(SE, 4),round(p.val,4),round(HR, 4), round(H_L95, 4), round(H_U95, 4))

names(new.tab)<-c("log_hazard","L95","U95","SE","P.val","HR", "H_L95", "H_U95")

row.names(new.tab)<-t(t(row.names(coef(summary(mod.coxph)))))

return(new.tab)

}

# Joint Model

print.joint.lda<-function(mod.joint.lda)

{

Estimates <- coef(summary(mod.joint.lda))$Longitudinal[,1]

L95 <- coef(summary(mod.joint.lda))$Longitudinal[,1] - 1.96*coef(summary(mod.joint.lda))$Longitudinal[,2]

U95 <- coef(summary(mod.joint.lda))$Longitudinal[,1] + 1.96*coef(summary(mod.joint.lda))$Longitudinal[,2]

SE <- coef(summary(mod.joint.lda))$Longitudinal[,2]

p.val <- coef(summary(mod.joint.lda))$Longitudinal[,4]

RE <- exp(coef(summary(mod.joint.lda))$Longitudinal[,1])

new.tab<-data.frame(round(Estimates, 4), round(L95, 4), round(U95, 4),round(SE, 4),round(p.val,4),round(RE, 4))

names(new.tab)<-c("Estimates","L95","U95","SE","P.val","RE")

return(new.tab)

}
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print.joint.event<-function(mod.joint.event)

{

Estimates <- coef(summary(mod.joint.event))$Event[,1]

L95 <- coef(summary(mod.joint.event))$Event[,1] - 1.96*coef(summary(mod.joint.event))$Event[,2]

U95 <- coef(summary(mod.joint.event))$Event[,1] + 1.96*coef(summary(mod.joint.event))$Event[,2]

SE <- coef(summary(mod.joint.event))$Event[,2]

p.val <- coef(summary(mod.joint.event))$Event[,4]

HR <- exp(coef(summary(mod.joint.event))$Event[,1])

LHR_95 <- exp(coef(summary(mod.joint.event))$Event[,1] - 1.96*coef(summary(mod.joint.event))$Event[,2])

UHR_95 <- exp(coef(summary(mod.joint.event))$Event[,1] + 1.96*coef(summary(mod.joint.event))$Event[,2])

new.tab<-data.frame(round(Estimates, 4), round(L95, 4), round(U95, 4),round(SE, 4),round(p.val,4),round(HR, 4),round(LHR_95, 4), round(UHR_95, 4))

names(new.tab)<-c("Estimates","L95","U95","SE","P.val","HR","LHR_95","UHR_95")

return(new.tab)

}

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

# Data management #

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

## ------- Recoding varibales ------

#------------------------------------------------------------------------------------------------------------------------

## Tumor type

df$Tumor_cat <- as.factor(ifelse(df$Tumor == 0, "Adenocarcinoma",ifelse(df$Tumor == 1,"Mucinous carcinoma", "Other")))

tab1(df$Tumor_cat)

## TResection merging

df$ResectionMargeFree_cat <- as.factor(ifelse(df$ResectionMargeFree == 1, "Yes","No"))

tab1(df$ResectionMargeFree_cat)

## Tumor stage

df$Stadium_cat1 <- as.factor(ifelse(df$Stadium_cat == "T1/T2 N0 M0","stage 1",ifelse(df$Stadium_cat == "T3/T4 N0 M0","stage 2",

ifelse(df$Stadium_cat == "T1-4 N1-3 M0","stage 3","stage 4"))))

table(df$Stadium_cat)

table(df$Stadium_cat1)

df$Stadium_cat2 <- as.factor(ifelse((df$Stadium_cat == "T1/T2 N0 M0" | df$Stadium_cat == "T3/T4 N0 M0"),"stage 1 and 2","stage 3 and 4"))

table(df$Stadium_cat)

table(df$Stadium_cat2)

# Age category

#https://www.cancer.net/cancer-types/colorectal-cancer/risk-factors-and-prevention

df$Age_cat <- as.factor(ifelse(df$AgeOK <= 75, "0", "1"))

tab1(df$Age_cat)

#------------------------------------------------------------------------------------------------------------------------

#Basic statistics of ’CEA Outcome 1 and CEA Outcome 1’

summary(df$CeaOutcome1)

summary(df$CeaOutcome2)

CeaOutcome1 <- df$CeaOutcome1

tab1(df$CeaOutcome1, graph = T)

CeaOutcome1.1 <- ifelse((df$CeaOutcome1>0 & df$CeaOutcome1 <= 20),df$CeaOutcome1,NA)

hist(CeaOutcome1.1, xlim = c(0,20), nclass = 20)

summary(CeaOutcome1.1)
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hist(df$CeaBaseline, xlim = c(0,20), nclass = 20)

#********************************************************************************************************

# Time difference (in days study follow period 5yrs (we drop patients with more than 5 years followup))

#********************************************************************************************************

head(df[,c("Date_FU_Recurrence","Date_FU_Surv_Rec","Date_FU_Surv")],20)

df$time_rec = as.numeric(as.Date(df$Date_FU_Recurrence)- as.Date(df$DateFinalOperation)) # Tumor reccurrence

df$time_DFS = as.numeric(as.Date(df$Date_FU_Surv_Rec) - as.Date(df$DateFinalOperation)) # Tumor reccurence or Death

df$time_surv = as.numeric(as.Date(df$Date_FU_Surv) - as.Date(df$DateFinalOperation)) # Death

df[,c("Id","DateRecurrence","Laatste_FU_datum","LastSeenHospital",

"Date_FU_Recurrence","DateMortality","Date_FU_Surv","Date_FU_Surv_Rec")]

#*****************************************************************************************

#Number of patients with DFS ( Disease Free Survival (event is death or reccurence)) longer than 5 year:

#********************************************************************************************************

length(which(df$time_DFS>1825))

length(which(df$time_DFS<=1825))

#Replace FU times longer than 5 year (1826 days) with 1826 and censor the event variable

df$day_DFS_max1826 = df$time_DFS

df$cen_dfs_1826 = df$cen_dfs

for(i in 1:dim(df)[1]){

if(df$time_DFS[i] > 1825){df$day_DFS_max1826[i] <- 1826}

if(df$time_DFS[i] > 1825){df$cen_dfs_1826[i] <- 0}

}

table(df$cen_dfs[df$time_DFS <= 1825])

table(df$cen_dfs_1826)

#*****************************************************************************************

#Number of patients with reccurence longer than 5 year:

#*****************************************************************************************

length(which(df$time_rec>1825))

length(which(df$time_rec<=1825))

#Replace Recurrence times longer than 5 year (1826 days) with 1826 and censor the event variable

df$day_rec_max1826 = df$time_rec

df$cen_rec_1826 = df$cen_rec

for(i in 1:dim(df)[1]){

if(df$time_rec[i] > 1825){df$day_rec_max1826[i] <- 1826}

if(df$time_rec[i] > 1825){df$cen_rec_1826[i] <- 0}

}

table(df$cen_rec)

table(df$cen_rec[df$time_rec <= 1825])

table(df$cen_rec_1826)

#*****************************************************************************************

#Number of patients with event is death longer than 5 year:

#********************************************************************************************************

length(which(df$time_surv>1825))

length(which(df$time_surv<=1825))
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#Replace FU times longer than 5 year (1826 days) with 1826 and censor the death event variable

df$day_surv_max1826 = df$time_surv

df$cen_surv_1826 = df$cen_surv

for(i in 1:dim(df)[1]){

if(df$time_surv[i] > 1825){df$day_surv_max1826[i] <- 1826}

if(df$time_surv[i] > 1825){df$cen_surv_1826[i] <- 0}

}

table(df$cen_surv[df$time_surv <= 1825])

table(df$cen_surv_1826)

#------------------------------------------

# Change date difference from days to months

#------------------------------------------

df$month_rec_max60 = 12*(df$day_rec_max1826/365.25)

df$month_DFS_max60 = 12*(df$day_DFS_max1826/365.25)

df$month_surv_max60 = 12*(df$day_surv_max1826/365.25)

summary(df[,c("month_rec_max60","month_DFS_max60","month_surv_max60")])

#----------------------------------------------------------------------------------------

# CEA measurement taken => six months before surgery (code cea at baseline to be missing)

#----------------------------------------------------------------------------------------

head(df[,c("DateFinalOperation","DateCeaBaseline","CeaBaseline")],20)

df$time_difference <- as.numeric(as.Date(df$DateFinalOperation) - as.Date(df$DateCeaBaseline))

summary(df$time_difference)

df$time_diff_months <- 12*(df$time_difference/365.25)

summary(df$time_diff_months)

df$CeaBaseline1 <- ifelse(df$time_diff_months < 6,df$CeaBaseline,NA)

summary(df$CeaBaseline1)

hist(df$CeaBaseline1, xlim = c(0,20), breaks = 10000)

length(which(is.na(df$CeaBaseline1))) # 282

length(which(!is.na(df$CeaBaseline1))) # 1835

#------------------------------------------------------------------------

# Imputing the missing covariate (Smoking, Tumor type, Resection merging)

#-------------------------------------------------------------------------

library(pacman)

p_load(tidyverse,haven,mice,sjPlot,sjmisc,VIM)

#coding other to missing (Tumor type)

table(df$Tumor)

df$Tumor_1 <- ifelse(df$Tumor == 3,NA,df$Tumor)

table(df$Tumor_1)

## plot of missingness (baseline characteristics)

VIM::aggr(df[,c("CeaBaseline1","Sex_cat","Smoke_cat","Tumor_1","Stadium_cat","ResectionMargeFree_cat")])

dat_imp <- df[,c("Id","CeaBaseline1","Smoke","Tumor_1","ResectionMargeFree")]

dat_imp <- dat_imp %>%
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mutate_at(c("Smoke","Tumor_1","ResectionMargeFree"), as.factor)

set.seed(12345)

dat_imp_m <- mice(dat_imp, m = 5, method = c("","pmm","polyreg","logreg","logreg"), maxit = 0)

summary(dat_imp_m)

dat_imp_final <- complete(dat_imp_m, 1)

summary(dat_imp_final)

summary(df$CeaBaseline1)

summary(dat_imp_final$CeaBaseline1)

table(dat_imp_final$Smoke)

table(dat_imp_final$Tumor_1)

table(dat_imp_final$ResectionMargeFree)

head(dat_imp_final,10)

colnames(dat_imp_final) <- c("Id","CeaBaseline_imp","Smoke_imp","Tumor_imp","ResectionMargeFree_imp")

head(dat_imp_final,10)

# merge original data with imputed data

df_imp <- merge(df,dat_imp_final,by = "Id", all =T)

dim(df_imp)

df <- df_imp

# ---------------- log transform the baseline CEA value

df$CeaBaseline_imp_log <- log(df$CeaBaseline_imp+1)

df$CeaBaseline_cat <- as.factor(ifelse(df$CeaBaseline_imp >= 2.660, "Yes","No"))

tab1(df$CeaBaseline_cat)

#------------------------------

df$Stadium_two <- as.numeric(df$Stadium_cat1 == "stage 2")

df$Stadium_three<- as.numeric(df$Stadium_cat1 == "stage 3")

df$Stadium_four <- as.numeric(df$Stadium_cat1 == "stage 4")

df$Smoke_1 <- as.numeric(df$Smoke_imp == 1)

df$Smoke_2 <- as.numeric(df$Smoke_imp == 2)

table(df$Stadium_cat1)

table(df$Smoke_imp)

table(df$Stadium_two);table(df$Stadium_three);table(df$Stadium_four)

table(df$Smoke_1);table(df$Smoke_2)

df$Smoke_imp_cat <- ifelse(df$Smoke_imp == 1 | df$Smoke_imp == 2, "smoking","non_smokers")

table(df$Smoke_imp_cat)

#-------------------------------------------------------------------------------------------------------------------------

#######################################################

# preparing the data from wide formart to long format

######################################################

#-------------------------------------------------------------------------------------------------------------------------

library(reshape2)

# Make list of clinical variables that should be included in wide dataframe
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df_wide <- df[,c("Id","CeaBaseline","DateCeaBaseline","Sex","Sex_cat","AgeOK","Age_cat","Smoke","Smoke_cat","Smoke_imp","Smoke_imp_cat",

"DateOperation","StadiumCancer","Stadium_cat1","Stadium_cat2","AdjuvChemo","Neoadj_group",

"Tumor","Tumor_cat","Tumor_imp","CeaBaseline1","CeaBaseline_imp","CeaBaseline_imp_log","CeaBaseline_cat",

"ResectionMargeFree","ResectionMargeFree_cat","ResectionMargeFree_imp","DateFinalOperation",

"day_DFS_max1826","month_DFS_max60","cen_dfs_1826",

"time_rec","month_rec_max60","cen_rec_1826","cen_surv_1826","month_surv_max60",

"Stadium_two","Stadium_three","Stadium_four","Smoke_1","Smoke_2",

"CeaDate1","CeaDate2","CeaDate3","CeaDate4","CeaDate5","CeaDate6","CeaDate7","CeaDate8","CeaDate9","CeaDate10",

"CeaDate11","CeaDate12","CeaDate13","CeaDate14","CeaDate15","CeaDate16","CeaDate17","CeaDate18","CeaDate19","CeaDate20",

"CeaDate21","CeaDate22","CeaDate23","CeaDate24","CeaDate25","CeaDate26","CeaDate27","CeaDate28","CeaDate29","CeaDate30",

"CeaDate31","CeaDate32","CeaDate33","CeaDate34","CeaDate35","CeaDate36","CeaDate37","CeaDate38","CeaDate39","CeaDate40",

"CeaOutcome1","CeaOutcome2","CeaOutcome3","CeaOutcome4","CeaOutcome5","CeaOutcome6","CeaOutcome7","CeaOutcome8",

"CeaOutcome9","CeaOutcome10","CeaOutcome11","CeaOutcome12","CeaOutcome13","CeaOutcome14","CeaOutcome15","CeaOutcome16",

"CeaOutcome17","CeaOutcome18","CeaOutcome19","CeaOutcome20","CeaOutcome21","CeaOutcome22","CeaOutcome23","CeaOutcome24",

"CeaOutcome25","CeaOutcome26","CeaOutcome27","CeaOutcome28","CeaOutcome29","CeaOutcome30","CeaOutcome31","CeaOutcome32",

"CeaOutcome33","CeaOutcome34","CeaOutcome35","CeaOutcome36","CeaOutcome37","CeaOutcome38","CeaOutcome39","CeaOutcome40"

)]

str(df_wide)

df_wide<-as.data.frame(df_wide)

# Make list of clinical variables that should be included in long dataframe

df_long <- reshape(df_wide, idvar = "Id",

varying = list(c("CeaDate1","CeaDate2","CeaDate3","CeaDate4","CeaDate5","CeaDate6","CeaDate7","CeaDate8","CeaDate9","CeaDate10",

"CeaDate11","CeaDate12","CeaDate13","CeaDate14","CeaDate15","CeaDate16","CeaDate17","CeaDate18","CeaDate19",

"CeaDate20","CeaDate21","CeaDate22","CeaDate23","CeaDate24","CeaDate25","CeaDate26","CeaDate27","CeaDate28",

"CeaDate29","CeaDate30","CeaDate31","CeaDate32","CeaDate33","CeaDate34","CeaDate35","CeaDate36","CeaDate37",

"CeaDate38","CeaDate39","CeaDate40"),

c("CeaOutcome1","CeaOutcome2","CeaOutcome3","CeaOutcome4","CeaOutcome5","CeaOutcome6","CeaOutcome7",

"CeaOutcome8","CeaOutcome9","CeaOutcome10","CeaOutcome11","CeaOutcome12","CeaOutcome13","CeaOutcome14",

"CeaOutcome15","CeaOutcome16","CeaOutcome17","CeaOutcome18","CeaOutcome19","CeaOutcome20","CeaOutcome21",

"CeaOutcome22","CeaOutcome23","CeaOutcome24","CeaOutcome25","CeaOutcome26","CeaOutcome27","CeaOutcome28",

"CeaOutcome29","CeaOutcome30","CeaOutcome31","CeaOutcome32","CeaOutcome33","CeaOutcome34","CeaOutcome35",

"CeaOutcome36","CeaOutcome37","CeaOutcome38","CeaOutcome39","CeaOutcome40")),

v.names = c("CEADATE", "Cea_measure"), direction = "long")

#Check for the duplicate

#which(duplicated(df_long[,c("Id")]))

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

# sorting the data by ID

df_long1 <- df_long %>%

arrange(Id, CEADATE)

# Remove missing CEA measurement dates

df_long2 <- df_long1[complete.cases(df_long1[ ,"CEADATE"]),]

# Remove CEA measurement before date of the finaloperation

df_long2$cea_datebefore_operation <- ifelse(df_long2$CEADATE < df_long2$DateFinalOperation, 1,0)

tab1(df_long2$cea_datebefore_operation)

df_long2 <- df_long2[which(df_long2$cea_datebefore_operation == 0),]

dim(df_long2)

# Compute duration from DateOperation till date CEA measurement

df_long2$time_cea = as.Date(df_long2$CEADATE) - as.Date(df_long2$DateFinalOperation)
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head(df_long2[, c("DateFinalOperation", "CEADATE", "time_cea")], 20)

#Change date difference in time_cea to numeric then to months

df_long2$time_cea_num = as.numeric(df_long2$time_cea)

df_long2$time_cea_month =12*(df_long2$time_cea_num/365.25)

summary(df_long2$time_cea_month)

head(df_long2[, c("DateFinalOperation", "CEADATE", "time_cea","time_cea_month")], 20)

# Remove CEA measurements taken after a Tumor recurrence or after maximum FU of 60 months (after operation)

df_long2$cea_dateafter_rec_60 <- ifelse(df_long2$time_cea_month < df_long2$month_DFS_max60, 1,0)

tab1(df_long2$cea_dateafter_rec_60)

head(df_long2[, c("Id","DateFinalOperation", "CEADATE", "time_cea","time_cea_month","month_DFS_max60","cea_dateafter_rec_60")], 20)

df_long2.2 <- df_long2[which(df_long2$cea_dateafter_rec_60 == 1),]

dim(df_long2.2)

head(df_long2.2[, c("DateFinalOperation", "CEADATE", "time_cea","time_cea_month","month_DFS_max60")], 20)

summary(df_long2.2$time_cea_month)

df_long2.2 <- df_long2.2[which(df_long2.2$time_cea_month > 0),]

dim(df_long2.2)

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

#######################################################################

# Log transforming (the CEA outcome to reduce the skewness of the data)

#######################################################################

df_long2.2$Cea_measure1 <- ifelse((df_long2.2$Cea_measure == -0.5 & df_long2.2$Id == 1760),0,df_long2.2$Cea_measure)

#--------------------------------------------------------

df_long2.2$Cea_measure_ln <- log(df_long2.2$Cea_measure1+1)

#--------------------------------------------------------

#head(df_long2.2[,c("Cea_measure_ln","Cea_measure","Cea_measure1")],20)

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

#######################################################################################################

# No of individuals with a follow up data.

# Make sure the number of patients in time to event data (wide format) is the same with the

# longitindal data (long format)

#######################################################################################################

df_long2.3 <- df_long2.2[,c("Id","Cea_measure","Cea_measure_ln","time_cea_month","AgeOK","Age_cat","Sex_cat","Smoke_imp","Tumor_imp",

"Stadium_cat2","Stadium_cat1","ResectionMargeFree_imp","CeaBaseline_imp_log","month_rec_max60",

"cen_rec_1826","Stadium_two","Stadium_three","Stadium_four","Smoke_1","Smoke_2","Smoke_imp_cat")]

df_long2.3 <- df_long2.3 %>%

mutate_at(c("Smoke_imp","Tumor_imp","ResectionMargeFree_imp","Stadium_cat1","Stadium_cat2","Smoke_imp_cat","Sex_cat",

"Stadium_two","Stadium_three", "Stadium_four","Smoke_1","Smoke_2"), as.factor)

dim(df_long2.3)

df_long2.4 <- df_long2.3[complete.cases(df_long2.3), ]

dim(df_long2.4)

long <- df_long2.4[!duplicated(df_long2.4$Id), ]
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long2 <- as.data.frame(cbind(long$Id,long$Cea_measure))

colnames(long2) <- c("Id","Cea_measure")

df_wide2 <- merge(df_wide,long2,by = "Id", all.y =T)

dim(df_wide2)

df_long2.4$months <- df_long2.4$time_cea_month

df_long2.4 <- df_long2.4 %>% dplyr::select("Id","Cea_measure","Cea_measure_ln","months","AgeOK","Age_cat","Sex_cat","Smoke_imp",

"Tumor_imp","Stadium_cat1","Stadium_cat2", "ResectionMargeFree_imp", "Stadium_two","Stadium_three","Stadium_four","Smoke_1","Smoke_2",

"Smoke_imp_cat","CeaBaseline_imp_log","month_rec_max60", "cen_rec_1826")

head(df_long2.4)

# check which variables are factors

(l <- sapply(df_long2.4, function(x) is.factor(x)))

########################################################################################################

# Creating the training data set (80 %) and testing data set (20 %)

########################################################################################################

#---------------------------------------------------------------

set.seed(678867)

#Create training set (wide format)

train_wide <- df_wide2 %>%

dplyr::sample_frac(.80)

#Create test set ((wide format))

test_wide <- anti_join(df_wide2, train_wide, by = ’Id’)

#---------------------------------------------------------------

##Create training set (Long format)

train_long <- anti_join(df_long2.4, test_wide, by = ’Id’)

##Create test set (Long format)

test_long <- anti_join(df_long2.4, train_wide, by = ’Id’)

#---------------------------------------------------------------

# Sorting the data sets

train_wide <- train_wide %>% dplyr::arrange(Id)

test_wide <- test_wide %>% dplyr::arrange(Id)

train_long <- train_long %>% dplyr::arrange(Id)

test_long <- test_long %>% dplyr::arrange(Id)

#---------------------------------------------------------------

#######################################################################

# Data exploration

#######################################################################

#------------------------------------------------------------------------

# Descriptive statistics

#-----------------------------------------------------------------------

summary(df_wide2[,c("time_rec","time_DFS","time_surv")])

summary(df_wide2$AgeOK)

summary(df_wide2$CeaBaseline1)
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tab1(df_wide2$Age_cat, graph = F)

tab1(df_wide2$Sex_cat, graph = F)

tab1(df_wide2$Smoke_cat, graph = F)

tab1(df_wide2$Palliative_cat, graph = F)

tab1(df_wide2$Tumor_cat, graph = F)

tab1(df_wide2$Stadium_cat1, graph = F)

#******************************************************

#tumor Reccurence

#******************************************************

tabyl(df_wide2$cen_rec_1826, sort = TRUE)

by(df_wide2$AgeOK,df_wide2$cen_rec_1826, summary)

by(df_wide2$CeaBaseline1,df_wide2$cen_rec_1826, summary)

df_wide2 %>% tabyl(Sex_cat, cen_rec_1826)

df_wide2 %>% tabyl(Smoke_cat, cen_rec_1826)

df_wide2 %>% tabyl(Tumor_cat, cen_rec_1826)

df_wide2 %>% tabyl(Stadium_cat1, cen_rec_1826)

df_wide2 %>% tabyl(ResectionMargeFree_cat, cen_rec_1826)

tabpct(df_wide2$Age_cat, df_wide2$cen_rec_1826, percent = "col", graph = F)

tabpct(df_wide2$Sex_cat, df_wide2$cen_rec_1826, percent = "col", graph = F)

tabpct(df_wide2$Smoke_cat, df_wide2$cen_rec_1826, percent = "col", graph = F)

tabpct(df_wide2$Tumor_cat, df_wide2$cen_rec_1826, percent = "col", graph = F)

tabpct(df_wide2$Stadium_cat1, df_wide2$cen_rec_1826, percent = "col", graph = F)

tabpct(df_wide2$ResectionMargeFree_cat, df_wide2$cen_rec_1826, percent = "col", graph = F)

#******************************************************

#Death event

#******************************************************

tabyl(df_wide2$cen_surv_1826, sort = TRUE)

by(df_wide2$AgeOK,df_wide2$cen_surv_1826, summary)

by(df_wide2$CeaBaseline1,df_wide2$cen_surv_1826, summary)

df_wide2 %>% tabyl(Sex_cat, cen_surv_1826)

df_wide2 %>% tabyl(Smoke_cat, cen_surv_1826)

df_wide2 %>% tabyl(Tumor_cat, cen_surv_1826)

df_wide2 %>% tabyl(Stadium_cat1, cen_surv_1826)

df_wide2 %>% tabyl(ResectionMargeFree_cat, cen_surv_1826)

tabpct(df_wide2$Age_cat, df_wide2$cen_surv_1826, percent = "col", graph = F)

tabpct(df_wide2$Sex_cat, df_wide2$cen_surv_1826, percent = "col", graph = F)

tabpct(df_wide2$Smoke_cat, df_wide2$cen_surv_1826, percent = "col", graph = F)

tabpct(df_wide2$Tumor_cat, df_wide2$cen_surv_1826, percent = "col", graph = F)

tabpct(df_wide2$Stadium_cat1, df_wide2$cen_surv_1826, percent = "col", graph = F)

tabpct(df_wide2$ResectionMargeFree_cat, df_wide2$cen_surv_1826, percent = "col", graph = F)

#******************************************************

#Disease Free Survival (event is death or reccurence))

#******************************************************

tabyl(df_wide2$cen_dfs_1826, sort = TRUE)
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by(df_wide2$AgeOK,df_wide2$cen_dfs_1826, summary)

by(df_wide2$CeaBaseline1,df_wide2$cen_dfs_1826, summary)

df_wide2 %>% tabyl(Sex_cat, cen_dfs_1826)

df_wide2 %>% tabyl(Smoke_cat, cen_dfs_1826)

df_wide2 %>% tabyl(Tumor_cat, cen_dfs_1826)

df_wide2 %>% tabyl(Stadium_cat1, cen_dfs_1826)

df_wide2 %>% tabyl(ResectionMargeFree_cat, cen_dfs_1826)

tabpct(df_wide2$Age_cat, df_wide2$cen_dfs_1826, percent = "col", graph = F)

tabpct(df_wide2$Sex_cat, df_wide2$cen_dfs_1826, percent = "col", graph = F)

tabpct(df_wide2$Smoke_cat, df_wide2$cen_dfs_1826, percent = "col", graph = F)

tabpct(df_wide2$Tumor_cat, df_wide2$cen_dfs_1826, percent = "col", graph = F)

tabpct(df_wide2$Stadium_cat1, df_wide2$cen_dfs_1826, percent = "col", graph = F)

tabpct(df_wide2$ResectionMargeFree_cat, df_wide2$cen_dfs_1826, percent = "col", graph = F)

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

# The histogram of the distribuition of the Tumor recurrence event over time (5 years)

summary(df_wide2$month_rec_max60)

df_wide2$month_rec_max60_1 <- round(df_wide2$month_rec_max60)

summary(df_wide2$month_rec_max60_1)

p <- df_wide2 %>% filter(cen_rec_1826 == 1) %>% dplyr::select(month_rec_max60_1,cen_rec_1826)

#table(p$month_rec_max60_1);barplot(table(p$month_rec_max60_1))

dist_rec_event <- as.data.frame(table(p$month_rec_max60_1))

ggplot(data=p, aes(x=month_rec_max60_1)) +

geom_histogram(breaks=seq(0, 60, by=1),

col="white",

fill="black",

alpha = .2) +

labs(title="", x="months", y="count") +

xlim(c(0,60)) +

ylim(c(0,25)) +

theme_classic(base_size = 12)

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

# CEA baseline

length(which(is.na(df_wide2$CeaBaseline1))) # 278

length(which(!is.na(df_wide2$CeaBaseline1))) # 1822

#summary(df_wide2$CeaBaseline1)

#df_wide2$CeaBaseline_cat <- as.factor(ifelse(df_wide2$CeaBaseline1 >= 2.660, "Yes","No"))

#tab1(df_wide2$CeaBaseline_cat)

###############################################################################################################

# K.M Plots #

###############################################################################################################

#-----------------------------------------------------------------------------------------------------------

#overall (Reccurence)

#-----------------------------------------------------------------------------------------------------------

rec.KM <- survfit(Surv(month_rec_max60, cen_rec_1826 ) ~ 1, data=df_wide2)

summary(rec.KM)

ggsurvplot(rec.KM,data=df_wide2,xlab="Survival time (Months)",legend.labs =c("Tumor recurrence"),legend.title="", ylab="Survival probability")
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plot(rec.KM)

abline(v = c(12,24,36,48,60),lty = 3)

abline(h = c(.93,.86,.835,.815,.80),lty = 3, col = c(1:5))

#sex

rec_sex.KM <- survfit(Surv(month_rec_max60, cen_rec_1826) ~ Sex, data=df_wide2)

print(rec_sex.KM)

ggsurvplot(rec_sex.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",

legend.labs =c("Female","Male"),legend.title="Sex:",pval = TRUE)

#Smoking status

rec_smoke.KM <- survfit(Surv(month_rec_max60, cen_rec_1826) ~ Smoke_imp, data=df_wide2)

print(rec_smoke.KM)

ggsurvplot(rec_smoke.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",

legend.labs =c("Non smoker","Current","Former"),legend.title="Smoke:",pval = TRUE)

#Tumor_cat

rec_tumor.KM <- survfit(Surv(month_rec_max60, cen_rec_1826) ~ Tumor_imp, data=df_wide2)

print(rec_tumor.KM)

ggsurvplot(rec_tumor.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",

legend.labs =c("Adenocarcinoma","Mucinous carcinoma"),

legend.title="Tumor stage:",pval = TRUE)

#Tumor stage

rec_Stadium.KM <- survfit(Surv(month_rec_max60, cen_rec_1826) ~ as.factor(Stadium_cat1), data=df_wide2)

print(rec_Stadium.KM)

ggsurvplot(rec_Stadium.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",

legend.labs =c("Stage 1","Stage 2","Stage 3","Stage 4"),legend.title="Cancer stage:",pval = TRUE)

#Resection Margin

rec_Stadium.KM <- survfit(Surv(month_rec_max60, cen_rec_1826) ~ ResectionMargeFree, data=df_wide2)

print(rec_Stadium.KM)

ggsurvplot(rec_Stadium.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",

legend.labs =c("No","Yes"),legend.title="Resection margin:",pval = TRUE)

#Pre-CEA measurement

rec_base.KM <- survfit(Surv(month_rec_max60, cen_rec_1826) ~ df_wide2$CeaBaseline_cat, data=df_wide2)

print(rec_base.KM)

ggsurvplot(rec_base.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",

legend.labs =c("No","Yes"),legend.title="Baseline CEA:",pval = TRUE)

#Age_cat

rec_age.KM <- survfit(Surv(month_rec_max60, cen_rec_1826) ~ df_wide2$Age_cat, data=df_wide2)

print(rec_age.KM)

ggsurvplot(rec_age.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",

legend.title="Age:",pval = TRUE)

#-----------------------------------------------------------------------------------------------------------

#overall (Death)

#-----------------------------------------------------------------------------------------------------------

surv.KM <- survfit(Surv(month_surv_max60, cen_surv_1826 ) ~ 1, data=df_wide2)

summary(surv.KM)

ggsurvplot(surv.KM,data=df_wide2,xlab="Survival time (Months)",legend.labs =c("Tumor survurrence"),legend.title="", ylab="Survival probability")

#sex
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surv_sex.KM <- survfit(Surv(month_surv_max60, cen_surv_1826) ~ Sex, data=df_wide2)

print(surv_sex.KM)

ggsurvplot(surv_sex.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",

legend.labs =c("Female","Male"),legend.title="Sex:",pval = TRUE)

#Smoking status

surv_smoke.KM <- survfit(Surv(month_surv_max60, cen_surv_1826) ~ Smoke_imp, data=df_wide2)

print(surv_smoke.KM)

ggsurvplot(surv_smoke.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",

legend.labs =c("Non smoker","Current","Former"),legend.title="Smoke:",pval = TRUE)

#Tumor type

surv_tumor.KM <- survfit(Surv(month_surv_max60, cen_surv_1826) ~ Tumor_imp, data=df_wide2)

print(surv_tumor.KM)

ggsurvplot(surv_tumor.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",

legend.labs =c("Adenocarcinoma","Mucinous carcinoma"),

legend.title="Tumor stage:",pval = TRUE)

#Tumor stage

surv_Stadium.KM <- survfit(Surv(month_surv_max60, cen_surv_1826) ~ as.factor(Stadium_cat1), data=df_wide2)

print(surv_Stadium.KM)

ggsurvplot(surv_Stadium.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",

legend.labs =c("Stage 1","Stage 2","Stage 3","Stage 4"),legend.title="Cancer stage:",pval = TRUE)

#Resection Margin

surv_Stadium.KM <- survfit(Surv(month_surv_max60, cen_surv_1826) ~ ResectionMargeFree_imp, data=df_wide2)

print(surv_Stadium.KM)

ggsurvplot(surv_Stadium.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",

legend.labs =c("No","Yes"),legend.title="Resection margin:",pval = TRUE)

#-----------------------------------------------------------------------------------------------------------

# Disease Free Survival (event is death or reccurence))

#-----------------------------------------------------------------------------------------------------------

dfs.KM <- survfit(Surv(month_DFS_max60, cen_dfs_1826) ~ 1, data=df_wide2)

print(dfs.KM)

ggsurvplot(dfs.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability")

#Sex

dfs_sex.KM <- survfit(Surv(month_DFS_max60, cen_dfs_1826) ~ Sex, data=df_wide2)

print(dfs_sex.KM)

ggsurvplot(dfs_sex.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",

legend.labs =c("Female","Male"),legend.title="Sex:", pval = TRUE)

#Smoking status

dfs_smoke.KM <- survfit(Surv(month_DFS_max60, cen_dfs_1826) ~ Smoke_imp, data=df_wide2)

print(dfs_smoke.KM)

ggsurvplot(dfs_smoke.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",

legend.labs =c("Non smoker","Current","Former"),legend.title="Smoke:",pval = TRUE)

#Tumor type

dfs_tumor.KM <- survfit(Surv(month_DFS_max60, cen_dfs_1826) ~ Tumor_imp, data=df_wide2)

print(dfs_tumor.KM)

ggsurvplot(dfs_tumor.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",
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legend.labs =c("Adenocarcinoma","Mucinous carcinoma"),

legend.title="Tumor Stage:",pval = TRUE)

#Tumor stage

dfs_Stadium.KM <- survfit(Surv(month_DFS_max60, cen_dfs_1826) ~ as.factor(Stadium_cat1), data=df_wide2)

print(dfs_Stadium.KM)

ggsurvplot(dfs_Stadium.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",

legend.labs =c("Stage 1","Stage 2","Stage 3","Stage 4"),legend.title="Cancer stage:",pval = TRUE)

#Resection Margin

dfs_Stadium.KM <- survfit(Surv(month_DFS_max60, cen_dfs_1826) ~ ResectionMargeFree_imp, data=df_wide2)

print(dfs_Stadium.KM)

ggsurvplot(dfs_Stadium.KM,data=df_wide2,xlab="Survival time (Months)", ylab="Survival probability",

legend.labs =c("No","Yes"),legend.title="Resection margin:",pval = TRUE)

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

#######################################################################

# LDA Data exploration

#######################################################################

# number of visits

visit <- as.data.frame(table(df_long2.4$Id))

visit <- visit %>%

arrange(Freq)

summary(visit$Freq)

# Frequency of number of CEA measurement per patient

ggplot(data=visit, aes(x=Freq)) +

geom_histogram(breaks=seq(0, 25, by=1),

col="white",

fill="black",

alpha = .2) +

labs(title="", x="Number of measurements", y="Number of patients") +

xlim(c(0,25)) +

ylim(c(0,250)) +

theme_classic(base_size = 12)

#----------------------------------------------------------------------------------

#******************* Individual profiles (after log transformation) *******************

#----------------------------------------------------------------------------------

#library(data.table)

set.seed(84948)

#-------------------------------------------------------------------------------------------

# select the x % of the data

plot_sample <- df_wide2 %>%

dplyr::sample_frac(.98)

plot_sample1 <- anti_join(train_long, plot_sample, by = ’Id’)

xyplot(Cea_measure_ln ~ months, group = Id, data = plot_sample1,ylim = c(0,6),

scales = list(tck = c(-1, 0)),

panel = function(x, y, ...) {

panel.xyplot(x, y, type = "l", col = "gray", ...)

panel.loess(x, y, col = 2, lwd = 2)

}, xlab = "Follow-up time (Months)", ylab = "ln(CEA+1) Ug/L")

#-------------------------------------------------------------------------------------------
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#-------------------------------------------------------------------------------------------

#(Tumor reccurence) #

x.rec1 <- df_long2.4[which(df_long2.4$cen_rec_1826 == 1),]

set.seed(84948)

#Create training set (wide format)

x.rec1_sample <- df_wide2 %>%

dplyr::sample_frac(.86)

x.rec1_sample1 <- anti_join(x.rec1, x.rec1_sample, by = ’Id’)

xyplot(Cea_measure_ln ~ months, group = Id, data = x.rec1_sample1,ylim = c(0,4.5),

scales = list(tck = c(-1, 0),y=list(at=c(0.5,1,1.5,2,2.5,3,3.5,4,4.5,5))),

panel = function(x, y, ...) {

panel.xyplot(x, y, type = "l", lwd = 1,col = "gray", ...)

panel.loess(x, y, col = 2, lwd = 2)

},xlab = "Follow-up time (Months)", ylab = "ln(CEA+1) Ug/L")

#-------------------------------------------------------------------------------------------

# patients Without tumor recurrence

x.rec2 <- df_long2.4[which(df_long2.4$cen_rec_1826 == 0),]

set.seed(84948)

#Create training set (wide format)

x.rec2_sample <- df_wide2 %>%

dplyr::sample_frac(.97)

x.rec2_sample1 <- anti_join(x.rec2, x.rec2_sample, by = ’Id’)

xyplot(Cea_measure_ln ~ months, group = Id, data = x.rec2_sample1,ylim = c(0,4.5),

scales = list(tck = c(-1, 0),y=list(at=c(0.5,1,1.5,2,2.5,3,3.5,4,4.5))),

panel = function(x, y, ...) {

panel.xyplot(x, y, type = "l", lwd = 1,col = "gray", ...)

panel.loess(x, y, col = 2, lwd = 2)

},xlab = "Follow-up time (Months)", ylab = "ln(CEA+1) Ug/L")

#------------------------------------------------------------------------------------------

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

#---------------------------------------------

#---------------- LDA submodel ----------------

#---------------------------------------------

lmeFit1 <- lme(Cea_measure_ln ~ Age_cat+Sex_cat+Smoke_imp+Stadium_cat1+months+ months*Age_cat,

random = ~ 1 | Id, data = train_long)

summary(lmeFit1)

# Without age variables

lmeFit2 <- lme(Cea_measure_ln ~ Sex_cat+Smoke_imp+Stadium_cat1+months+ months*Age_cat,

random = ~ 1 | Id, data = train_long)

summary(lmeFit2)

# Without sex

lmeFit3 <- lme(Cea_measure_ln ~ Age_cat+Smoke_imp+Stadium_cat1+months+ months*Age_cat,

random = ~ 1 | Id, data = train_long)
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summary(lmeFit3)

m1 <- update(lmeFit1, method = "ML") #(all variables)

m2 <- update(lmeFit2, method = "ML") #(without age variable)

m3 <- update(lmeFit3, method = "ML") #(Without sex variables)

1-pchisq(-2*(m2$logLik-m1$logLik),1) #(without age variable)

1-pchisq(-2*(m2$logLik-m1$logLik),1) #(Without sex variables)

#--------------------------------------------------------------------

#test for need random slope

#--------------------------------------------------------------------

lmeFit11 <- lme(Cea_measure_ln ~ Age_cat+Smoke_imp+Stadium_cat1+months+ months*Age_cat,

random = ~ 1 | Id, data = train_long)

summary(lmeFit11)

lmeFit12 <- lme(Cea_measure_ln ~ Age_cat+Smoke_imp+Stadium_cat1+months+ months*Age_cat,

random = ~ months | Id, data = train_long)

summary(lmeFit12)

lmeFit11$logLik

lmeFit12$logLik

# Mixture chi square

0.5*(1-pchisq(1990.364,1))+0.5*(1-pchisq(1990.364,2))

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

######################################################################################

# Seperate Survival submodel (Cox PH regression Model) #

######################################################################################

#functional form of size; plots based on the martingale residuals

empty.PH <- coxph(Surv(month_rec_max60, cen_rec_1826)~1, data = train_wide)

mart.res <- resid(empty.PH)

plot(train_wide$CeaBaseline_imp,mart.res, xlab = "Pre-surgery CEA measurement", ylab = "Martingale residuals")

lines(lowess(train_wide$CeaBaseline_imp,mart.res,iter=0,f=0.6))

# log

plot(train_wide$CeaBaseline_imp_log,mart.res, xlab = "CEA baseline measurement", ylab = "Martingale residuals")

lines(lowess(train_wide$CeaBaseline_imp_log,mart.res,iter=0,f=0.6))

# add all the baseline characteristics to the null model

coxFit10 <- coxph(Surv(month_rec_max60, cen_rec_1826) ~ Age_cat +Sex_cat + Smoke_imp + as.factor(Tumor_imp) + Stadium_cat1

+ strata(as.factor(ResectionMargeFree_imp))+ CeaBaseline_imp_log,

data = train_wide, x = TRUE,model = TRUE)

summary(coxFit10)

# Using the schoenfield residuals to check the model diagnostic

gbcs.PHfit <- cox.zph(coxFit10, transform="log")

gbcs.PHfit

plot(gbcs.PHfit)
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#overal fit of the model:

devres <- residuals(coxFit10,type="deviance")

fitval<- predict(coxFit10,type="lp")

plot(fitval,devres)

######################################################################################################

# Overall effect of the covariates in the Cox PH model

#######################################################################################################

coxFit10 <- coxph(Surv(month_rec_max60, cen_rec_1826) ~ Age_cat +Sex_cat + Smoke_imp + Tumor_imp + Stadium_cat1

+ strata(as.factor(ResectionMargeFree_imp))+ CeaBaseline_imp_log,

data = train_wide, x = TRUE,model = TRUE)

summary(coxFit10)

# no including age

coxFit_noage <- coxph(Surv(month_rec_max60, cen_rec_1826) ~ Sex_cat + Smoke_imp + Tumor_imp + Stadium_cat1

+ strata(as.factor(ResectionMargeFree_imp))+ CeaBaseline_imp_log,

data = train_wide, x = TRUE,model = TRUE)

summary(coxFit_noage)

# no including smoke

coxFit_nosmoke <- coxph(Surv(month_rec_max60, cen_rec_1826) ~ Age_cat + Sex_cat +Tumor_imp + Stadium_cat1

+ strata(as.factor(ResectionMargeFree_imp))+ CeaBaseline_imp_log,

data = train_wide, x = TRUE,model = TRUE)

summary(coxFit_nosmoke)

# no including sex

coxFit_nosex <- coxph(Surv(month_rec_max60, cen_rec_1826) ~ Age_cat + Smoke_imp + Tumor_imp + Stadium_cat1

+ strata(as.factor(ResectionMargeFree_imp))+ CeaBaseline_imp_log,

data = train_wide, x = TRUE,model = TRUE)

summary(coxFit_nosex)

# no including smoke

coxFit_nosmoke <- coxph(Surv(month_rec_max60, cen_rec_1826) ~ Age_cat + Sex_cat + Tumor_imp + Stadium_cat1

+ strata(as.factor(ResectionMargeFree_imp))+ CeaBaseline_imp_log,

data = train_wide, x = TRUE,model = TRUE)

summary(coxFit_nosmoke)

# no including tumor type

coxFit_notumortype <- coxph(Surv(month_rec_max60, cen_rec_1826) ~ Age_cat + Sex_cat + Smoke_imp + Stadium_cat1

+ strata(as.factor(ResectionMargeFree_imp))+ CeaBaseline_imp_log,

data = train_wide, x = TRUE,model = TRUE)

summary(coxFit_notumortype)

# no including tumor stage

coxFit_notumorstage <- coxph(Surv(month_rec_max60, cen_rec_1826) ~ Age_cat +Sex_cat + Smoke_imp +Tumor_imp

+ strata(as.factor(ResectionMargeFree_imp))+ CeaBaseline_imp_log,

data = train_wide, x = TRUE,model = TRUE)

summary(coxFit_notumorstage)

# no including pre-surgery

coxFit_noprecea <- coxph(Surv(month_rec_max60, cen_rec_1826) ~ Age_cat +Sex_cat + Smoke_imp + Tumor_imp + Stadium_cat1

+ strata(as.factor(ResectionMargeFree_imp)),

data = train_wide, x = TRUE,model = TRUE)

summary(coxFit_noprecea)

# Using the log likelihood ratio

-2*(coxFit_noage$loglik[2]-coxFit10$loglik[2]);1-pchisq(-2*(coxFit_noage$loglik[2]-coxFit10$loglik[2]),1)

-2*(coxFit_nosex$loglik[2]-coxFit10$loglik[2]);1-pchisq(-2*(coxFit_nosex$loglik[2]-coxFit10$loglik[2]),1)
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-2*(coxFit_nosmoke$loglik[2]-coxFit10$loglik[2]);1-pchisq(-2*(coxFit_nosmoke$loglik[2]-coxFit10$loglik[2]),2)

-2*(coxFit_notumortype$loglik[2]-coxFit10$loglik[2]);1-pchisq(-2*(coxFit_notumortype$loglik[2]-coxFit10$loglik[2]),1)

-2*(coxFit_notumorstage$loglik[2]-coxFit10$loglik[2]);1-pchisq(-2*(coxFit_notumorstage$loglik[2]-coxFit10$loglik[2]),3)

-2*(coxFit_noprecea$loglik[2]-coxFit10$loglik[2]);1-pchisq(-2*(coxFit_noprecea$loglik[2]-coxFit10$loglik[2]),1)

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

# Concordance Index

library(dynpred)

library(prodlim)

library(pec)

cox1 <- coxph(Surv(month_rec_max60, cen_rec_1826)~ Age_cat +Sex_cat + Smoke_imp + as.factor(Tumor_imp) + Stadium_cat1

+ strata(as.factor(ResectionMargeFree_imp))+ CeaBaseline_imp_log, x=TRUE, data = train_wide)

A1 <- pec::cindex(cox1,

formula=Surv(month_rec_max60, cen_rec_1826)~ Age_cat +Sex_cat + Smoke_imp + as.factor(Tumor_imp) + Stadium_cat1

+ strata(as.factor(ResectionMargeFree_imp))+ CeaBaseline_imp_log,

data=test_wide,

eval.times=36)

A1

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

#######################################################################################

# JOINT MODELLING #

#######################################################################################

# Joint model with no baseline covariates

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

lmeFit1 <- lme(Cea_measure_ln ~ months,

random = ~ months | Id, data = train_long)

summary(lmeFit1)

print.lmm.wald(lmeFit1)

#train_wide$month_rec_max60 <- round(train_wide$month_rec_max60)

coxFit1 <- coxph(Surv(month_rec_max60, cen_rec_1826) ~ 1,

data = train_wide, x = TRUE,model = TRUE)

summary(coxFit1)

#print.HRCIs(coxFit1)

#---------------------------

jointFit.1 <- jointModel(lmeFit1, coxFit1,

timeVar = "months", method = "weibull-PH-aGH")

summary(jointFit.1)

print.joint.lda(jointFit.1)

print.joint.event(jointFit.1)

plot(jointFit.1)

#-----------------------------

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
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#-------------- Final Joint Models assuming Weibull assumption in baseline hazard ----------------------

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

lmeFit <- lme(Cea_measure_ln ~ Age_cat+Smoke_imp+Stadium_cat1+months+ months*Age_cat,

random = ~ months| Id, data = train_long)

summary(lmeFit)

anova.lme(lmeFit, type = "marginal", adjustSigma = F)

print.lmm.wald(lmeFit)

coxFit <- coxph(Surv(month_rec_max60, cen_rec_1826) ~ Age_cat + Sex_cat + Smoke_imp + Tumor_imp+Stadium_cat1

+ strata(as.factor(ResectionMargeFree_imp))+ CeaBaseline_imp_log,

data = train_wide, x = TRUE,model = TRUE)

summary(coxFit)

print.HRCIs(coxFit)

#--------------------------------------------------------------------------

# Weibull assumption weibull-PH-aGH;

#--------------------------------------------------------------------------

jointFit1 <- jointModel(lmeFit, coxFit,

timeVar = "months", method = "weibull-PH-aGH")

summary(jointFit1)

print.joint.lda(jointFit1)

print.joint.event(jointFit1)

#################### True slope value trajectory association ##############################

dForm1 <- list(fixed = ~ Age_cat, random = ~1, indFixed = c(8:9), indRandom = 2)

#

jointFit1.1 <- update(jointFit1, param = "slope", derivForm = dForm1)

summary(jointFit1.1)

print.joint.lda(jointFit1.1)

print.joint.event(jointFit1.1)

#################### True value plus the true slope value trajectory association ##############################

jointFit1.2 <- update(jointFit1, param = "both", derivForm = dForm1)

summary(jointFit1.2)

print.joint.lda(jointFit1.2)

print.joint.event(jointFit1.2)

plot(jointFit1.2)

######

BIC(jointFit1,jointFit1.1,jointFit1.2);AIC(jointFit1,jointFit1.1,jointFit1.2)

#-----------------------------------------------------------------------------

# Overall effects of covariates in current plus slope joint model formulation

#-----------------------------------------------------------------------------

#coxFit_noage coxFit_nosmoke coxFit_nosex coxFit_notumortype coxFit_notumorstage coxFit_noprecea

jointFit1.2_noage <- update(jointFit1.2, survObject = coxFit_noage,

parameterization = "both", derivForm = dForm1)

jointFit1.2_nosmoke<- update(jointFit1.2, survObject = coxFit_nosmoke,

parameterization = "both", derivForm = dForm1)
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jointFit1.2_nosex <- update(jointFit1.2, survObject = coxFit_nosex,

parameterization = "both", derivForm = dForm1)

jointFit1.2_notumortype <- update(jointFit1.2, survObject = coxFit_notumortype,

parameterization = "both", derivForm = dForm1)

jointFit1.2_notumorstage <- update(jointFit1.2, survObject = coxFit_notumorstage,

parameterization = "both", derivForm = dForm1)

jointFit1.2_noprecea <- update(jointFit1.2, survObject = coxFit_noprecea,

parameterization = "both", derivForm = dForm1)

anova(jointFit1.2_noage,jointFit1.2) # overall effect of the age

anova(jointFit1.2_nosmoke,jointFit1.2) # overall effect of the smoking status

anova(jointFit1.2_nosex,jointFit1.2) # overall effect of the sex

anova(jointFit1.2_notumortype,jointFit1.2) # overall effect of the tumor type

anova(jointFit1.2_notumorstage,jointFit1.2) # overall effect of the tumor stage

anova(jointFit1.2_noprecea,jointFit1.2) # overall effect of the pre-suregery

anova(jointFit1,jointFit1.2) # overall effect of the current value

anova(jointFit1.1,jointFit1.2) # overall effect of the slope

#----------------------------------------------------------------------------------------------------------------------------------------

# Joint Model discrimination accuarcy using the Area under the Curve. (Current value without baseline covariates)

#----------------------------------------------------------------------------------------------------------------------------------------

auc.roc.fit.1_7.3 <- aucJM(jointFit.1, newdata = test_long, Tstart = 7, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 12 months

auc.roc.fit.1_17.3 <- aucJM(jointFit.1, newdata = test_long, Tstart = 17, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 24 months

auc.roc.fit.1_27.3 <- aucJM(jointFit.1, newdata = test_long, Tstart = 27, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 36 months

auc.roc.fit.1_37.3 <- aucJM(jointFit.1, newdata = test_long, Tstart = 37, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 45 months

auc.roc.fit.1_47.3 <- aucJM(jointFit.1, newdata = test_long, Tstart = 47, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 57 months

auc.roc.fit.1_57.3 <- aucJM(jointFit.1, newdata = test_long, Tstart = 57, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 57 months

months_t.1.3 <- c(10,20,30,40,50,60)

auc_t.1.3 <- c(auc.roc.fit.1_7.3$auc,auc.roc.fit.1_17.3$auc,auc.roc.fit.1_27.3$auc,

auc.roc.fit.1_37.3$auc,auc.roc.fit.1_47.3$auc,auc.roc.fit.1_57.3$auc)

at_risk.1.3 <- c(auc.roc.fit.1_7.3$nr,auc.roc.fit.1_17.3$nr,auc.roc.fit.1_27.3$nr,

auc.roc.fit.1_37.3$nr,auc.roc.fit.1_47.3$nr,auc.roc.fit.1_57.3$nr)

auc.roc.fit.1.3 <- cbind(months_t.1.3,at_risk.1.3,auc_t.1.3)

auc.roc.fit.1.3 <- as.data.frame(auc.roc.fit.1.3)

colnames(auc.roc.fit.1.3) <- c("time","at_risk","AUC")

auc.roc.fit.1.3

ddi.1.3 <- dynCJM(jointFit.1, newdata = test_long, Dt = 3, t.max = 36,idVar = "Id", M = 200)

#---------------------------------------------------------------------------

auc.roc.fit.1_4.6 <- aucJM(jointFit.1, newdata = test_long, Tstart = 4, Dt =6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 12 months

auc.roc.fit.1_14.6 <- aucJM(jointFit.1, newdata = test_long, Tstart = 14, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 24 months

auc.roc.fit.1_24.6 <- aucJM(jointFit.1, newdata = test_long, Tstart = 24, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 36 months

auc.roc.fit.1_34.6 <- aucJM(jointFit.1, newdata = test_long, Tstart = 34, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 45 months

auc.roc.fit.1_44.6 <- aucJM(jointFit.1, newdata = test_long, Tstart = 44, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 57 months

auc.roc.fit.1_54.6 <- aucJM(jointFit.1, newdata = test_long, Tstart = 54, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 57 months

months_t.1.6 <- c(10,20,30,40,50,60)

auc_t.1.6 <- c(auc.roc.fit.1_4.6$auc,auc.roc.fit.1_14.6$auc,auc.roc.fit.1_24.6$auc,

auc.roc.fit.1_34.6$auc,auc.roc.fit.1_44.6$auc,auc.roc.fit.1_54.6$auc)

at_risk.1.6 <- c(auc.roc.fit.1_4.6$nr,auc.roc.fit.1_14.6$nr,auc.roc.fit.1_24.6$nr,

auc.roc.fit.1_34.6$nr,auc.roc.fit.1_44.6$nr,auc.roc.fit.1_54.6$nr)
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auc.roc.fit.1.6 <- cbind(months_t.1.6,at_risk.1.6,auc_t.1.6)

auc.roc.fit.1.6 <- as.data.frame(auc.roc.fit.1.6)

colnames(auc.roc.fit.1.6) <- c("time","at_risk","AUC")

auc.roc.fit.1.6

ddi.1.6 <- dynCJM(jointFit.1, newdata = test_long, Dt = 6, t.max = 36,idVar = "Id", M = 200)

#------------------------------------------------------------------------------------------------------------------------------------

# Model accuarcy using the Area under the Curve and DDI. (Current value log CEA value association

#-----------------------------------------------------------------------------------------------------------------------------------

auc.roc.fit_7.3 <- aucJM(jointFit1, newdata = test_long, Tstart = 7, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 10 months

auc.roc.fit_17.3 <- aucJM(jointFit1, newdata = test_long, Tstart = 17, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 20 months

auc.roc.fit_27.3 <- aucJM(jointFit1, newdata = test_long, Tstart = 27, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 30 months

auc.roc.fit_37.3 <- aucJM(jointFit1, newdata = test_long, Tstart = 37, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 40 months

auc.roc.fit_47.3 <- aucJM(jointFit1, newdata = test_long, Tstart = 47, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 50 months

auc.roc.fit_57.3 <- aucJM(jointFit1, newdata = test_long, Tstart = 57, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 60 months

months_t.3 <- c(10,20,30,40,50,60)

auc_t.3 <- c(auc.roc.fit_7.3$auc,auc.roc.fit_17.3$auc,auc.roc.fit_27.3$auc,

auc.roc.fit_37.3$auc,auc.roc.fit_47.3$auc,auc.roc.fit_57.3$auc)

at_risk.3 <- c(auc.roc.fit_7.3$nr,auc.roc.fit_17.3$nr,auc.roc.fit_27.3$nr,

auc.roc.fit_37.3$nr,auc.roc.fit_47.3$nr,auc.roc.fit_57.3$nr)

auc.roc.fit.3 <- cbind(months_t.3,at_risk.3,auc_t.3)

auc.roc.fit.3 <- as.data.frame(auc.roc.fit.3)

colnames(auc.roc.fit.3) <- c("time","at_risk","AUC")

auc.roc.fit.3

ddi.3 <- dynCJM(jointFit1, newdata = test_long, Dt = 3, t.max = 36,idVar = "Id", M = 200)

#---------------------------------------------------------------------------

auc.roc.fit_4.6 <- aucJM(jointFit1, newdata = test_long, Tstart = 4, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 10 months

auc.roc.fit_14.6 <- aucJM(jointFit1, newdata = test_long, Tstart = 14, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 20 months

auc.roc.fit_24.6 <- aucJM(jointFit1, newdata = test_long, Tstart = 24, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 30 months

auc.roc.fit_34.6 <- aucJM(jointFit1, newdata = test_long, Tstart = 34, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 40 months

auc.roc.fit_44.6 <- aucJM(jointFit1, newdata = test_long, Tstart = 44, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 50 months

auc.roc.fit_54.6 <- aucJM(jointFit1, newdata = test_long, Tstart = 54, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 60 months

months_t.6 <- c(10,20,30,40,50,60)

auc_t.6 <- c(auc.roc.fit_4.6$auc,auc.roc.fit_14.6$auc,auc.roc.fit_24.6$auc,

auc.roc.fit_34.6$auc,auc.roc.fit_44.6$auc,auc.roc.fit_54.6$auc)

at_risk.6 <- c(auc.roc.fit_4.6$nr,auc.roc.fit_14.6$nr,auc.roc.fit_24.6$nr,

auc.roc.fit_34.6$nr,auc.roc.fit_44.6$nr,auc.roc.fit_44.6$nr)

auc.roc.fit.6 <- cbind(months_t.6,at_risk.6,auc_t.6)

auc.roc.fit.6 <- as.data.frame(auc.roc.fit.6)

colnames(auc.roc.fit.6) <- c("time","at_risk","AUC")

auc.roc.fit.6

ddi.6 <- dynCJM(jointFit1, newdata = test_long, Dt = 6, t.max = 36,idVar = "Id", M = 200)

#----------------------------------------------------------------------------------------------------------------------------------------------

# Model accuarcy using the Area under the Curve. (slope value)

#-----------------------------------------------------------------------------------------------------------------------
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auc.roc.fit1_7.3 <- aucJM(jointFit1.1, newdata = test_long, Tstart = 7, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 10 months

auc.roc.fit1_17.3 <- aucJM(jointFit1.1, newdata = test_long, Tstart = 17, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 20 months

auc.roc.fit1_27.3 <- aucJM(jointFit1.1, newdata = test_long, Tstart = 27, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 30 months

auc.roc.fit1_37.3 <- aucJM(jointFit1.1, newdata = test_long, Tstart = 37, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 40 months

auc.roc.fit1_47.3 <- aucJM(jointFit1.1, newdata = test_long, Tstart = 47, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 50 months

auc.roc.fit1_57.3 <- aucJM(jointFit1.1, newdata = test_long, Tstart = 57, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 60 months

months_t1.3 <- c(10,20,30,40,50,60)

auc_t1.3 <- c(auc.roc.fit1_7.3$auc,auc.roc.fit1_17.3$auc,auc.roc.fit1_27.3$auc,

auc.roc.fit1_37.3$auc,auc.roc.fit1_47.3$auc,auc.roc.fit1_57.3$auc)

at_risk1.3 <- c(auc.roc.fit1_7.3$nr,auc.roc.fit1_17.3$nr,auc.roc.fit1_27.3$nr,

auc.roc.fit1_37.3$nr,auc.roc.fit1_47.3$nr,auc.roc.fit1_57.3$nr)

auc.roc.fit1.3 <- cbind(months_t1.3,at_risk1.3,auc_t1.3)

auc.roc.fit1.3 <- as.data.frame(auc.roc.fit1.3)

colnames(auc.roc.fit1.3) <- c("time","at_risk","AUC")

auc.roc.fit1.3

ddi1.3 <- dynCJM(jointFit1.1, newdata = test_long, Dt = 3, t.max = 36,idVar = "Id", M = 200)

ddi1.3

#---------------------------------------------------------------------------

auc.roc.fit1_4.6 <- aucJM(jointFit1.1, newdata = test_long, Tstart = 4, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 10 months

auc.roc.fit1_14.6 <- aucJM(jointFit1.1, newdata = test_long, Tstart = 14, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 20 months

auc.roc.fit1_24.6 <- aucJM(jointFit1.1, newdata = test_long, Tstart = 24, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 30 months

auc.roc.fit1_34.6 <- aucJM(jointFit1.1, newdata = test_long, Tstart = 34, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 40 months

auc.roc.fit1_44.6 <- aucJM(jointFit1.1, newdata = test_long, Tstart = 44, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 50 months

auc.roc.fit1_54.6 <- aucJM(jointFit1.1, newdata = test_long, Tstart = 54, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 60 months

months_t1.6 <- c(10,20,30,40,50,60)

auc_t1.6 <- c(auc.roc.fit1_4.6$auc,auc.roc.fit1_14.6$auc,auc.roc.fit1_24.6$auc,

auc.roc.fit1_34.6$auc,auc.roc.fit1_44.6$auc,auc.roc.fit1_54.6$auc)

at_risk1.6 <- c(auc.roc.fit1_4.6$nr,auc.roc.fit1_14.6$nr,auc.roc.fit1_24.6$nr,

auc.roc.fit1_34.6$nr,auc.roc.fit1_44.6$nr,auc.roc.fit1_44.6$nr)

auc.roc.fit1.6 <- cbind(months_t1.6,at_risk1.6,auc_t1.6)

auc.roc.fit1.6 <- as.data.frame(auc.roc.fit1.6)

colnames(auc.roc.fit1.6) <- c("time","at_risk","AUC")

auc.roc.fit1.6

ddi1.6 <- dynCJM(jointFit1.1, newdata = test_long, Dt = 6, t.max = 36,idVar = "Id", M = 200)

ddi1.6

# Model accuarcy using the Area under the Curve. (Current value plus slope)

#-----------------------------------------------------------------------------------------------------------------------

auc.roc.fit2_7.3 <- aucJM(jointFit1.2, newdata = test_long, Tstart = 7, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 10 months

auc.roc.fit2_17.3 <- aucJM(jointFit1.2, newdata = test_long, Tstart = 17, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 20 months

auc.roc.fit2_27.3 <- aucJM(jointFit1.2, newdata = test_long, Tstart = 27, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 30 months

auc.roc.fit2_37.3 <- aucJM(jointFit1.2, newdata = test_long, Tstart = 37, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 40 months

auc.roc.fit2_47.3 <- aucJM(jointFit1.2, newdata = test_long, Tstart = 47, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 50 months

auc.roc.fit2_57.3 <- aucJM(jointFit1.2, newdata = test_long, Tstart = 57, Dt = 3,idVar = "Id",simulate = TRUE, M = 200) # AUC at 60 months

months_t2.3 <- c(10,20,30,40,50,60)

auc_t2.3 <- c(auc.roc.fit2_7.3$auc,auc.roc.fit2_17.3$auc,auc.roc.fit2_27.3$auc,

auc.roc.fit2_37.3$auc,auc.roc.fit2_47.3$auc,auc.roc.fit2_57.3$auc)
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at_risk2.3 <- c(auc.roc.fit2_7.3$nr,auc.roc.fit2_17.3$nr,auc.roc.fit2_27.3$nr,

auc.roc.fit2_37.3$nr,auc.roc.fit2_47.3$nr,auc.roc.fit2_57.3$nr)

auc.roc.fit2.3 <- cbind(months_t2.3,at_risk2.3,auc_t2.3)

auc.roc.fit2.3 <- as.data.frame(auc.roc.fit2.3)

colnames(auc.roc.fit2.3) <- c("time","at_risk","AUC")

auc.roc.fit2.3

ddi2.3 <- dynCJM(jointFit1.2, newdata = test_long, Dt = 3, t.max = 36,idVar = "Id", M = 200)

ddi2.3

#---------------------------------------------------------------------------

auc.roc.fit2_4.6 <- aucJM(jointFit1.2, newdata = test_long, Tstart = 4, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 10 months

auc.roc.fit2_14.6 <- aucJM(jointFit1.2, newdata = test_long, Tstart = 14, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 20 months

auc.roc.fit2_24.6 <- aucJM(jointFit1.2, newdata = test_long, Tstart = 24, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 30 months

auc.roc.fit2_34.6 <- aucJM(jointFit1.2, newdata = test_long, Tstart = 34, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 40 months

auc.roc.fit2_44.6 <- aucJM(jointFit1.2, newdata = test_long, Tstart = 44, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 50 months

auc.roc.fit2_54.6 <- aucJM(jointFit1.2, newdata = test_long, Tstart = 54, Dt = 6,idVar = "Id",simulate = TRUE, M = 200) # AUC at 60 months

months_t2.6 <- c(10,20,30,40,50,60)

auc_t2.6 <- c(auc.roc.fit2_4.6$auc,auc.roc.fit2_14.6$auc,auc.roc.fit2_24.6$auc,

auc.roc.fit2_34.6$auc,auc.roc.fit2_44.6$auc,auc.roc.fit2_54.6$auc)

at_risk2.6 <- c(auc.roc.fit2_4.6$nr,auc.roc.fit2_14.6$nr,auc.roc.fit2_24.6$nr,

auc.roc.fit2_34.6$nr,auc.roc.fit2_44.6$nr,auc.roc.fit2_44.6$nr)

auc.roc.fit2.6 <- cbind(months_t2.6,at_risk2.6,auc_t2.6)

auc.roc.fit2.6 <- as.data.frame(auc.roc.fit2.6)

colnames(auc.roc.fit2.6) <- c("time","at_risk","AUC")

auc.roc.fit2.6

ddi2.6 <- dynCJM(jointFit1.2, newdata = test_long, Dt = 6, t.max = 36,idVar = "Id", M = 200)

ddi2.6

#-----------------------------------------------------------------------------------

# Dynamic prediction (Subject 16 and subject 1022)

#------------------------------------------------------------------------------------

#-------------> Conditional survival probabilities <----------

#VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV#

----------------------------------------------------------------

# Information up to 20 months

#----------------------------------------------------------------

par(mfrow = c(1,2))

fit1520.1 <- survfitJM(jointFit1.2, newdata = test_long[which(test_long$Id == 16 & test_long$months <= 20),], idVar = "Id")

plot(fit1520.1, estimator = "mean", include.y = TRUE,

xlab = "Time (months)",

conf.int = TRUE, fill.area = TRUE, col.area = "lightgrey")

mtext("ln(CEA+1) Ug/L",side=2,line=2)

fit1755.1 <- survfitJM(jointFit1.2, newdata = test_long[which(test_long$Id == 1022 & test_long$months <= 20),], idVar = "Id")

plot(fit1755.1, estimator = "mean", include.y = TRUE,

xlab = "Time (months)",

conf.int = TRUE, fill.area = TRUE, col.area = "lightgrey")

mtext("ln(CEA+1) Ug/L",side=2,line=2)

#------------------------------------------------------------------------------------
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# Information up to 40 months

#------------------------------------------------------------------------------------

fit1520.2 <- survfitJM(jointFit1.2, newdata = test_long[which(test_long$Id == 16 & test_long$months <= 40),], idVar = "Id")

plot(fit1520.2, estimator = "mean", include.y = TRUE,

xlab = "Time (months)",

conf.int = TRUE, fill.area = TRUE, col.area = "lightgrey")

mtext("ln(CEA+1) Ug/L",side=2,col="black",line=2)

fit1755.2 <- survfitJM(jointFit1.2, newdata = test_long[which(test_long$Id == 1022 & test_long$months <= 40),], idVar = "Id")

plot(fit1755.2, estimator = "mean", include.y = TRUE,

xlab = "Time (months)",

conf.int = TRUE, fill.area = TRUE, col.area = "lightgrey")

mtext("ln(CEA+1) Ug/L",side=2,col="black",line=2)

#-------------> longitudinal CEA measurements predictions <----------

#VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV#

#----------------------------------------------------------------------------------------

#par(mfrow = c(2,2))

lfit1 <- predict(jointFit1.2, newdata = test_long[which(test_long$Id == 16 & test_long$months <= 20),],

type = "Subject", interval = "conf", returnData = TRUE,idVar = "Id")

last.time <- with(lfit1, months[!is.na(low)][1])

p1 <- xyplot(pred + low + upp ~ months, data = lfit1, type = "l",xlab = "Time (Months)",ylim = c(0,3),

ylab = "Predicted log(CEA)", main = "Subject 16",

lty = c(1,2,2), col = c(2,1,1), lwd = 2,abline = list(v = last.time, lty = 3))

lfit1.1 <- predict(jointFit1.2, newdata = test_long[which(test_long$Id == 1022 & test_long$months <= 20),],

type = "Subject", interval = "conf", returnData = TRUE,idVar = "Id")

last.time <- with(lfit1.1, months[!is.na(low)][1])

p2 <- xyplot(pred + low + upp ~ months, data = lfit1.1, type = "l",xlab = "Time (Months)",ylim = c(0,3),

ylab = "Predicted log(CEA)", main = "Subject 1022",

lty = c(1,2,2), col = c(2,1,1), lwd = 2,abline = list(v = last.time, lty = 3))

#------------------------------------------------------------------------------------------------------------------------

lfit2 <- predict(jointFit1.2, newdata = test_long[which(test_long$Id == 16 & test_long$months <= 40),],

type = "Subject", interval = "conf", returnData = TRUE,idVar = "Id")

last.time <- with(lfit2, months[!is.na(low)][1])

p3 <- xyplot(pred + low + upp ~ months, data = lfit2, type = "l",xlab = "Time (Months)",ylim = c(0,3),

ylab = "Predicted log(CEA)",main = "Subject 16",

lty = c(1,2,2), col = c(2,1,1), lwd = 2,abline = list(v = last.time, lty = 3))

lfit2.1 <- predict(jointFit1.2, newdata = test_long[which(test_long$Id == 1022 & test_long$months <= 40),],

type = "Subject", interval = "conf", returnData = TRUE,idVar = "Id")

last.time <- with(lfit2.1, months[!is.na(low)][1])

p4 <- xyplot(pred + low + upp ~ months, data = lfit2.1, type = "l",xlab = "Time (Months)",ylim = c(0,3),

ylab = "Predicted log(CEA)",main = "Subject 1022",

lty = c(1,2,2), col = c(2,1,1), lwd = 2,abline = list(v = last.time, lty = 3))

library(magrittr)

library(multipanelfigure)

figure1 <- multi_panel_figure(columns = 2, rows = 1, panel_label_type = "none",width = "auto",height = "auto")

figure1 %<>%

fill_panel(p1, column = 1, row = 1) %<>%

fill_panel(p2, column = 2, row = 1)
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figure1

figure2 <- multi_panel_figure(columns = 2, rows = 1, panel_label_type = "none",width = "auto",height = "auto")

figure2 %<>%

fill_panel(p3, column = 1, row = 1) %<>%

fill_panel(p4, column = 2, row = 1)

figure2

#---------------------------------------------------------------------------------------

# Model diagnostic (Survival submodel) : current log CEA plus slope association

#---------------------------------------------------------------------------------------

# Cox snell residuals

res <- residuals(jointFit1.2, process = "Event", type = "CoxSnell")

sfit <- survfit(Surv(res,cen_rec_1826)~1, data = train_wide)

plot(sfit, mark.time = FALSE, conf.int = TRUE, xlab = "Cox snell residuals", ylab = "Survival probablity",

main = "", xlim=c(0,5))

curve(exp(-x), from = 0, to = max(train_wide$month_rec_max60), add = TRUE, col = "gray", lwd=2)

# Martingaele residuals

martRes<- residuals(jointFit1.2, process = "Event")

mi.t <- fitted(jointFit1.2, process = "Longitudinal",

type = "EventTime")

plotResid <- function (x, y, col.loess = "black", ...) {

plot(x, y, ...)

lines(lowess(x, y), col = col.loess, lwd = 2)

abline(h = 0, lty = 3, col = "grey", lwd = 2)

}

plotResid(mi.t, martRes, col.loess = "gray",

ylab = "Martingale Residuals",

xlab = "Subject-Specific Fitted Values Longitudinal Outcome")

xyplot(martRes ~ mi.t, type = c("p", "smooth"),col.loess = "gray",

col = "black", lwd = 3, ylab = "Martingale Residuals",

xlab = "Subject-Specific Fitted Values Longitudinal Outcome")

#-------------------------------------------------------------------------------------

# Sentivity analysis #

#-------------------------------------------------------------------------------------

#------------------------- > Baseline hazard (Weibull)

# ------- lagged effect --------------------------

jointFit1_lagged <- update(jointFit1, lag =1)

summary(jointFit1_lagged)

ddi.l1.3 <- dynCJM(jointFit1_lagged, newdata = test_long, Dt = 3, t.max = 36,idVar = "Id", M = 200)

ddi.l1.3

ddi.l1.6 <- dynCJM(jointFit1_lagged, newdata = test_long, Dt = 6, t.max = 36,idVar = "Id", M = 200)

ddi.l1.6
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#

#--------------------------------------------------------------------------

# B-spline baseline hazard assumption

#----------------------------------------------------------------------

#################### Current value association ##############################

jointFit4 <- jointModel(lmeFit, coxFit,

timeVar = "months", method = "spline-PH-GH")

summary(jointFit4)

#################### Current slope value trajectory association ##############################

dForm1 <- list(fixed = ~ Age_cat, random = ~1, indFixed = c(8:9), indRandom = 2)

#

jointFit4.1 <- update(jointFit4, param = "slope", derivForm = dForm1)

summary(jointFit4.1)

#################### Current value plus the Current slope value trajectory association ##############################

jointFit4.2 <- update(jointFit4, param = "both", derivForm = dForm1)

summary(jointFit4.2)

#################### lagged association ##############################

jointFit4_lagged <- update(jointFit4, lag =1)

summary(jointFit4_lagged)

#DDI

#

ddi.4.3 <- dynCJM(jointFit4, newdata = test_long, Dt = 3, t.max = 36,idVar = "Id", M = 200)

ddi.4.6 <- dynCJM(jointFit4, newdata = test_long, Dt = 6, t.max = 36,idVar = "Id", M = 200)

#

ddi.41.3 <- dynCJM(jointFit4.1, newdata = test_long, Dt = 3, t.max = 36,idVar = "Id", M = 200)

ddi.41.6 <- dynCJM(jointFit4.1, newdata = test_long, Dt = 6, t.max = 36,idVar = "Id", M = 200)

#

ddi.42.3 <- dynCJM(jointFit4.2, newdata = test_long, Dt = 3, t.max = 36,idVar = "Id", M = 200)

ddi.42.6 <- dynCJM(jointFit4.2, newdata = test_long, Dt = 6, t.max = 36,idVar = "Id", M = 200)

#

ddi.4l.3 <- dynCJM(jointFit4_lagged, newdata = test_long, Dt = 3, t.max = 36,idVar = "Id", M = 200)

ddi.4l.3

ddi.4l.6 <- dynCJM(jointFit4_lagged, newdata = test_long, Dt = 6, t.max = 36,idVar = "Id", M = 200)

ddi.4l.6

#-------------------------------------------------------------------------------------------------------
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