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Abstract

Introduction: The COVID-19 pandemic is now a major global health threat. COVID-

19 is an infectious disease caused by a newly discovered coronavirus. This newly identi-

fied coronavirus, SARS-CoV-2, has caused a worldwide pandemic of respiratory illness.

The World Health Organization China country office reported a cluster of pneumonia

cases in Wuhan, Hubei Province of China on 31 December 2019. The first confirmed

case of the coronavirus in Ireland was reported by the National Public Health Emer-

gency Team on 29 February 2020 and up to now Ireland have seen a three wave pattern

in reported cases of COVID-19.

Objectives: The main objectives of this study were to make short term prediction of

COVID-19 cases by using the data on the period of 4 March 2020 to 30 June 2020 and

to investigation of model selection procedures.

Methodology: The cumulative number of reported COVID-19 cases on the period 04

March to 30 June 2020 were analyzed. Nonlinear growth curves models to the daily

cumulative COVID-19 cases were implemented in two basic distribution assumption,

namely Poisson and normal. And to achieve the objective of this study AIC and chi-

squared were used to select the best model on the estimation period and prediction

period respectively.

Results: The non linear models were fit to make a short term prediction. The five pa-

rameter logistic model was found to be the best fit model compared to others proposed

models in the estimation period during the first wave under the Poisson assumption

and Richards was found to be the best fit model in all eleven different estimation pe-

riod under normal assumption . Nevertheless, Richards and Gompertz models have the

best performance to make short term prediction relative to others candidates of non

linear growth models for Poisson and normal respectively. In conclusion, the results

suggested that to to select the best model according to the performance of predic-

tion to use chi-squared value instead of AIC. Moreover, the non linear models was very

important to describe and to make a short term prediction of the daily cumulative cases.

Key Words: COVID-19, Non linear model, Short term prediction, AIC, Chi-squared,

Richards, Gompertz
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1 Introduction

1.1 Background of the study

The Coronavirus disease (COVID-19) pandemic is now a serious global health threat.

COVID-19 is an infectious disease caused by a newly discovered coronavirus. Most of

the people infected with the COVID-19 virus will experience mild to moderate respiratory

disease and recover without requiring special treatment. Older people, and people with

underlying medical problems like cardiovascular disease, diabetes, chronic respiratory ill-

ness, and cancer are more likely to develop serious illness.The best way to prevent and slow

down transmission is to be informed about the COVID-19 virus, the disease it causes and

the way it spreads. Protect yourself and others from infection by washing your hands or

using an alcohol based rub frequently and not touching your face. The COVID-19 virus

spreads primarily through droplets of saliva or discharge from the nose when an infected

person coughs or sneezes, so it’s important that you also practice respiratory etiquette (for

example, by coughing into a flexed elbow)[16].

A newly identified coronavirus, SARS-CoV-2, has caused a worldwide pandemic of respi-

ratory disease, called COVID-19. The World Health Organization (WHO) China country

office reported a cluster of pneumonia cases in Wuhan, Hubei Province of China on 31

December 2019. Case in China are now declining but, there is a rapidly increase in an-

other country. The disease has spread all over the world is alarming and the therefore case

number continue to rise. It is almost hard to believe that some countries still haven’t any

reported cases of the COVID-19. As of MAY 30th 2021, only 7 countries haven’t confirmed

any cases of COVID-19. Many of these countries without COVID-19 are Pacific Island

countries in Oceania [20].

The first cases of 2019-nCoV are reported with in the European Region on 24 January 2020,

France has officially notified to the WHO Regional Office for Europe of three confirmed

cases of 2019-nCoV. Two patients were detected in Paris and one in Bordeaux. All 3 had

travelled from Wuhan, China and are now hospitalized in France[17].The first confirmed

case of the coronavirus in Ireland was reported by the National Public Health Emergency

Team on 29 February 2020 and the first death by Coronavirus on 11th March. The case is

related to travel from an affected area in northern Italy, instead of contact with another

confirmed case in Ireland [3]. Within three weeks, cases had been confirmed in all counties.

The government shut all schools, colleges, childcare facilities and cultural institutions on 12

March 2020 [10]. On march 27 Ireland will be place a restriction like: non essential shops

closed, stay at home except essential worker, banned all non essential travel and contact

with other people [5], cancelling all large gathering and all business were shut on march 24

2020.
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On the middle of April the spread of COVID-19 has reached as low as it needs to be in Ire-

land. As the National Public Health Emergency Team reported that the growth rate is close

to zero, which is the spread of the virus has been stopped effectively by the restriction[4].

New daily cases and deaths were decreased by June and the restriction were relaxed slowly

lifted, whereas for summer break the schools remained closed.

Ireland have seen a three wave pattern in reported cases of COVID-19 up to now. Timeline

of the first, second and third waves of of COVID-19 infection in Ireland is on 01 March to 01

August 2020, 02 August to 21 November2020 and 22 November 2020 onwards respectively

. In Ireland, from 3 January 2020 to 26 May 2021, there have been 258,968 confirmed cases

of COVID-19 with 4,941 deaths, reported to WHO. As of 23 May 2021, a total of 2,349,207

vaccine doses have been administered [18]. For this study the first wave of COVID-19 in

Ireland was used from late February up to end of July.

The non linear epidemiological models studies aim to to generate and assess short-term

forecasts of the cumulative number of confirmed reported cases. These non linear epidemi-

ological models have previously been used to model other disease outbreaks for instance

Zika virus [15], Dengue [9], and human mortality [6]. Recently, the COVID-19 pandemic

fitted the generalized logistic model, Richards model and a sub-epidemic model to the cu-

mulative COVID-19 cases in the Hubei province of China and the rest of China and made

a short-term forecast of 5, 10 and 15 days ahead for five consecutive days [14]. In recently

Reddy and colleagues fitting several nonlinear growth curves (Richards, 3 and 4 parameter

logistic, Weibull and Gompertz), to made short term forecasts of 5, 10, 15, 20, 25 and 30-

day ahead for COVID-19 cases and deaths at the national level and also as the provincial

level in South Africa [12].

In this study non linear epidemiological models are used to produce short term(ten consec-

utive days) predictions of the total number of reported cases in Ireland. In addition to this

short term prediction we studied one, two ,three, four, five and ten days. The short term

prediction produced from such models can be useful to guide the allocation of resources

that are critical to bring the epidemic under control and to to make a decision for policy

maker.
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The paper is structured as follows: in section 2 outlines the study data. In section 3, we

described the statistical methodology of non linear growth model. In this section detailed

about several nonlinear growth curves, model selection and short term predication. Then,

section 4 presents the main findings. Finally, Section 5, discusses the main findings and

draw conclusion.

1.2 Objectives

The main objectives of this study were to make short term prediction of COVID-19 cases

by using the data on the period of 4 March 2020 to 30 June 2020 and to investigation of

model selection procedures.
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2 Data

2.1 Publicly Available COVID-19 data

The source of data for this study is publicly available daily reported cumulative COVID-19

case [8]. The daily updated data are currently stored at https://covid19datahub.io/.

The data was read by using R software and drive the daily new COVID-19 case. As

mentioned in the previous part for this study the first wave in Ireland were used, from

04 March 2020 to 30 June 2020, there have been 25,473 confirmed cases of COVID-19

with 1,736 deaths, reported to WHO. As of 31 May 2021, the Department of Health had

confirmed 261,686 cases and 4,949 deaths. More than 90% of those who have died were

aged over 65[11].

2.2 Incidence data and cumulative cases

The publicly available database contains the total daily COVID-19 cases which is updated

each days and other variables. A total daily record of COVID-19 cases were extracted and

the new daily cases (incidence) calculated from the total daily cases by: Y(t)-Y(t-1) where

Y(t) is Cumulative number of cases and t is the time point.

The data which is extracted from the database and derived from the given data set during

the period 04 March 2020 to 30 June 2020 is presented in Table 1.

Table 1: The sample of data set which is used in this study.

date confirmed(y(t)) administrative area level 1 confirmed daily time(t)

04/03/2020 6 Ireland 6 1

05/03/2020 13 Ireland 7 2

06/03/2020 18 Ireland 5 3

07/03/2020 19 Ireland 1 4

. . . . .

. . . . .

. . . . .

29/06/2020 25462 Ireland 23 118

30/06/2020 25473 Ireland 11 119

4
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The daily new cases of COVID-19 in Ireland for the first wave of the pandemic and the

cumulative case of COVID-19 are displayed in Figure 1. The spread of COVID-19 was high

over the period second week of March to the middle of April. The highest number(peak

point) of daily new COVID-19 cases was reported on 2020-04-17 and then spread of COVID-

19 starts to decrease.

Figure 1: The scatter plot for the daily confirmed COVID-19 cases (left) and cumulative

COVID-19 cases(right) for the period 04 March 2020 to 30 June 2020 (first wave)
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3 Methodology

3.1 Non-linear growth model

To achieve the objectives of this study, a set of several nonlinear growth curves fitted for the

daily cumulative number of reported COVID-19 cases and produce short term prediction of

COVID-19 cases which has an important role in shaping public policy and decision-making.

The assumption of a Poisson and normal distribution were used for the daily cumulative

number of reported COVID-19cases.

The fitted daily new number of COVID-19 cases was obtained from the fitted daily total

number by taking the first derivative of the mean (dµ(t)dt ). By consider both Poisson dis-

tribution (Y(t)∼ Poisson(µ(t))) and normal distribution (Y (t) ∼ N(µ(t), σ2)) where Y(t)

is Cumulative number of COVID-19 cases, µ(t) = E(Y (t)) and σ2 is the variance of Y(t),

the Richards, three parameter logistic, five parameter logistic and Gompertz model were

fitted to the reported daily total number of cases. For all models α is the final size of

the epidemic, γ is the per capita intrinsic growth rate of the infected population, k is the

exponent of the deviation from the standard logistic curve η is the turning point and α0

the initial size. All the analysis was performed by using SAS software for fitting nonlinear

growth curves and to make a short term prediction and R software for reading the data

and to make some plots and Chi-squared calculation software.

3.1.1 The Richards model

The Richards model has often been used to model reported cumulative cases in disease

outbreaks and widely used growth model. The basic premise of the Richards model is that

the daily incidence curve consists of a single peak of high incidence, resulting in an S-shaped

epidemic curve and a single turning point of the outbreak. These turning points, defined as

times at which the rate of accumulation changes from increasing to decreasing or vice versa,

can be easily located by finding the inflection point of the epidemic curve, the moment at

which the trajectory begins to decline [19]. It is useful to capture the temporal variations of

an outbreak, in particular the turning points (or peaks and valleys of the incidence curve)

[15, 14]. The mean structure of the model and incidence respectively are given by:

µ(t) = α(1 + ke−r(t−η))−1/k,

dµ(t)

dt
=
γ

k
[(
µ(t)

α
)k − 1].
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The plot in Figure 2 shows an example of the incidence and mean structure of the cumulative

daily cases of the Richards model for Nigeria outbreak during March 1-October 31, 2020

Figure 2: The daily COVID-19 cases incidence curve(left) and the theoretical epidemic

curve using Richards model (right) for Nigeria outbreak during March 1-October 31, 2020.

3.1.2 The Three Parameter Logistic model

This model is the special case of the Richards model, obtained when the exponent parameter

k = 1. The growth curve is symmetric around turning point and has equal periods of slow

and fast growth. The mean structure of the model and incidence respectively are given by:

µ(t) =
α

1 + e−r(t−η))
,

dµ(t)

dt
= γµ(t)

[
µ(t)

α
− 1

]
.

3.1.3 The Five parameter Logistic model

The five-parameter logistic model, which includes a fifth parameter, permits asymmetry to

be effectively modeled.This model has asymmetric factor k that makes it to be asymmet-

ric.The 5PL model is able to eliminate most of the lack of-fit error present in fitted 4PL

models [7]. The mean structure of the model and incidence respectively are given by:

µ(t) = α0 +
α− α0

[1 + (2(1/k) − 1)( tη )γ ]k
,

dµ(t)

dt
=
kγ

t
[(u(t)− α0]

[
[
µ(t)− α0

α− α0
]1/k − 1

]
.
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3.1.4 The Gompertz model

The Gompertz model is one of the most frequently used sigmoid models fitted to growth

data and other data [6]. This function is especially useful in describing the rapid growth of a

certain population of organisms while also being able to account for the eventual horizontal

asymptote. This model is a very flexible model that the mean structure of the model and

incidence is given by:

µ(t) = α0 + (α− α0)e
−e−γ(t−η),

dµ(t)
dt = γ[µ(t)− α0]ln

[
µ(t)−α0

α−α0

]
.

3.2 Short term prediction

The main interest of this paper is to use the available data and make a short term prediction

to the total number of COVID-19 cases for the ten days ahead. By using four different

models and two different assumption of the daily cumulative cases that have been previ-

ously used to derive a short term prediction. In this study we used different estimation

period(t) which is t = 70, 71, 72, . . . , 80 and 119 and make a ten consecutive days a head

prediction of the total number of cases for each estimation period. A ten days a head (t up

to t + 10) period is the prediction period.

Figure 3: The estimation and prediction period of cumulative COVID-19 cases during

March 4- May 12 2020(left) and during March 4-June 30 2020 (right).

Figure 3 shows that the estimation period and predication period of 70 days and for the

first wave of COVID-19 in Ireland. The red line indicates the number of days which is

used to make an estimation of the model. On both plot, the number of days before red

line used for estimation of model and , the number of days after red line , indicates the

prediction period. On the estimation period, the AIC value were calculated where as on the
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prediction period the Pearson chi-squared were calculated which is used for model selection.

Furthermore, the estimation of different models with respect to different estimation period

and a ten days consecutive ahead prediction will be presented in section 4.

Another way of make a predication in this study is to use different estimation period

(t = 70, 71, 72, . . . , 80), which has different non linear growth model for each distribution

and then make one days (t+1), two days (t+2), three days (t+3), four days (t+4), five

days (t+5) and ten days (t+10) ahead prediction. We predicted each of the eleven different

models and collocated a one, two, three, four, five and ten days ahead from each model,

respectively.

Table 2 illustrates the prediction of cumulative COVID-19 cases ahead of the selected

number of days. First, estimated each of the eleven different models then, made a ten

consecutive days ahead prediction from each models finally, collocated a one, two, three,

four, five and ten days ahead prediction from each model, respectively.

Table 2: Illustration of one days, two days,three days, four days, five days and ten days

ahead prediction.

Prediction Day

Estimation period

(1-t)

One Days ahead

(t+1)

Two Days ahead

(t+2)

Three Days ahead

(t+3)

Four Days ahead

(t+4)

Five Days ahead

(t+5)

Ten Days ahead

(t+10)

1-70 71 72 73 74 75 80

1 71 72 73 74 75 76 81

. . . . . . .

. . . . . . .

. . . . . . .

1-80 81 82 83 84 85 90
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3.3 Model selection

Model selection plays a fundamental role in choosing a best model from a series of candidate

models for data driven modelling and system identification problems. The goodness of fit of

a statistical model describes how well it fits a set of observations. Measures of goodness of fit

typically summarize the discrepancy between observed values and the values expected under

the model in question. To select the model which has the best goodness fit to the data

Akaike Information criteria(AIC) for the estimation period and the Pearson chi-squared

value for predilection period were used.

3.3.1 Akaike Information criteria

Among various model selection methods, Akaike information criterion (AIC) is the most

popular measures. Given a collection of models for the data, AIC estimates the quality of

each model, relative to each of the other models. Thus, the model with a minimum value is

then treated as an optimal choice for the estimation period. AIC can be calculated as [2]:

AIC(k) = −2nln(L) + 2k

where k is the number of fitted parameters in the model, L is the maximum likelihood

estimate for the model and N is the sample size.

3.3.2 Pearson Chi-squared

Pearson chi-squared uses a measure of goodness of fit which is the sum of differences between

observed and expected outcome. In this study the Pearson Chi-squared were calculated for

the ten days prediction period for each model corresponding to the two assumed distribu-

tion. And also Chi-squared were calculated for one days, two days,three days, four days, five

days and ten days ahead prediction to select the best model. The smallest the chi-square

is provided the best model according to the performance of short term prediction period.

Here the Pearson chi-squared value calculated for ten predicted days with the corresponding

observed cumulative daily cases. Pearson Chi-squared be calculated as [1]

χ2 =
∑t+1o

t=t+1
(Y (t)−Ŷ (t))2

Ŷ (t)
.

where t is the estimation period, Y (t) is the observed data, and Ŷ (t) is the corresponding

predicted value from the given model.
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4 Results

4.1 Estimation Periods

The incidences and cumulative cases of COVID-19 are displayed in Figure 4. The read lines

in both plot of COVID-19 cases at the days of 70,72,74, . . . , 80 and 119 indicates all the

the estimation period which is used in this study to make estimation, model selection and

short term prediction.

Figure 4: The daily new cases (left) and cumulative confirmed (right) COVID-19 outbreak

cases for Ireland during March 4-June 30, 2020.

4.2 Analysis of Non-linear growth model for the assumption of Poisson

and Normal distribution

In Table 3, we can see that the AIC value of all the four candidate models were calculated

across the assumption of Poisson and normal distribution for the first wave in Ireland. The

AIC value suggests a choice of the five parameter logistic, which has the smallest AIC value

for both Poisson assumption and normal assumption. On the estimation period the five

parameter logistic model is the best fit model compared to others proposed models.

11



The prediction performances can be affected by the uncertainty brought by the noise, so to

select the best model according to prediction performance the χ2 were calculated for the ten

days prediction and select the one that has smallest value. The χ2 values for the prediction

period of all the four candidate models were calculated across the assumption of Poisson

and normal distribution for the first wave in Ireland were displayed in Table 3. In the first

wave of COVID-19 cases in Ireland Richards model has the smallest Chi-square value rel-

ative to others in the Poisson distribution whereas, Gompertz has the smallest Chi-square

value relative to others in the normal distribution. so, Richards and Gompertz models have

the best performance to make a short term prediction relative to others candidates of non

linear growth models.

Table 3: AIC value of four different models and Chi-squared value for the Poisson and

Normal distribution in the first wave of Ireland during estimation period & prediction

period respectively.

Estimation Period Prediction Period

Model AIC(Poisson) AIC(Normal) chisq(Poisson) chisq(Normal)

Richards 2440.3 1736.9 6.482 19.684

Three parameter logistic 5462.1 2403.7 231.714 82.5808

Five Parameter logistic 2250.3 1721.9 37.79 2.89513

Gompertz 4683.9 2068.1 88.7678 1.133

The estimated parameter value of the selected model which has smallest AIC five param-

eter logistic model on both Poisson and normal assumption are shown in Table 4 and 5

respectively. The estimated turning point and final size of COVID-19 were 43.9968 and

25224 respectively. In this study the long term parameter estimates are less of interest

because the main objectives were to make a short term prediction and investigate on the

model selection criteria.

Table 4: Parameter estimates of five parameter logistic model for Poisson assumption during

March 4-June 30 2020 2020.

Parameter Estimate Std.error DF t Value Pr >|t| 95% Confidence Limits

alpha 25224 30.763 119 819.95 <.0001 25163 25285

alpha0 15.7219 1.7295 119 9.09 <.0001 12.2972 19.1465

k 3.51 0.196 119 17.9 <.0001 3.1218 3.8982

gamma 3.7369 0.01635 119 228.61 <.0001 3.7045 3.7692

eta 43.9968 0.04127 119 1066.18 <.0001 43.9151 44.0785

12



The observed and predicted incidence, and the total daily reported and predicted number

of COVID-19 cases from observed and 5PL during March 4-June 30 2020 under Poisson

are displayed in Figure 5. From this graph we can observe that, the estimated tuning point

and the estimated final size of COVID-19.

Figure 5: The incidence and predicted incidence(left) and the predicted and daily total

reported (right) of COVID-19 cases from observed and 5PL during March 4-June 30 2020.

Table 5: Parameter estimates of five parameter logistic model for Normal assumption during

March 4-June 30 2020.

Parameter Estimate Std.error DF t Value Pr >|t| 95% Confidence Limits

alpha 25522 32.9275 119 775.08 <.0001 25456 25587

k 1.3343 0.05581 119 23.91 <.0001 1.2238 1.4448

alpha0 221.47 28.9167 119 7.66 <.0001 164.22 278.73

gamma 4.5267 0.05526 119 81.91 <.0001 4.4172 4.6361

eta 43.9415 0.04696 119 935.69 <.0001 43.8485 44.0345

se 14030 816.34 119 17.19 <.0001 12414 15646

The incidence and predicted incidence and the predicted and reported daily total number

of COVID-19 cases from observed, Richards, 3PL, 5PL and Gompertz during March 4-June

30 2020 for Poisson (the left two) and for normal (the right two) are displayed in Figure

6. From this graph we can observe that, even though the three parameter logistic model

does not fit the data well than the others, they tried to handle the peak of the incidence

for both Poisson and normal distribution assumption.

13



Figure 6: The incidence and predicted incidence(top two) and the predicted and daily

total reported (bottom two) of COVID-19 cases from observed, Richards, 3PL, 5PL and

Gompertz during March 4-June 30 2020.

In Figure 7 and 9 the fitted and reported daily total number of cases are shown. We can see

that, the lines for the estimated model and reported cases follow each other closely, which

is all the models fit the data pretty well on both distribution assumption. The fitted daily

new number of cases was obtained from the fitted daily total number by taking the first

derivative of the mean, shown in Figure 8 and 10 with the reported daily new number of

cases. In this graph we can see that a good fit between the reported and the fitted and the

three parameter logistic model tried to handle the peak of the incidence relative to others

model on both distribution assumption.

14



Figure 7: Predicted and reported daily total number of COVID-19 cases for the first wave

under Poisson assumption during March 4-June 30 2020.

Figure 8: The fitted and reported daily new number of COVID-19 cases in the first wave

under Poisson assumption during March 4-June 30 2020.

Figure 9: Predicted and reported daily total number of COVID-19 cases for the first wave

under normal assumption during March 4-June 30 2020.

Figure 10: The fitted and reported daily new number of COVID-19 cases in the first wave

under normal assumption during March 4-June 30 2020.
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4.3 Short term prediction of the total number of reported COVID-19

cases

The ten consecutive days prediction of the total number of reported COVID-19 cases, under

Poisson and normal assumption for Richards, 3PL, 5PL and Gompertz model respectively

are presented in Table 6 and 7. The predicted total COVID-19 cases on 01 July were 25394

(95% C.I 25341,25446), 24769 (95% C.I 24726, 24812), 25217 (95% C.I 25341,25446) and

25976 (95% C.I 25341, 25446) for Richards, 3PL, 5PL and Gompertz model respectively

under the Poisson assumption. The predicted total COVID-19 cases on 01 July were 25300

(95% C.I 25258, 25341), 25071 (95% C.I 25035, 25107), 25426 (95% C.I 25376, 25476) and

25467 (95% C.I 25427, 25507) for Richards, 3PL, 5PL and Gompertz model respectively

under the normal assumption. Under the normal assumption the prediction based on

Gompertz model were more close to the observed total COVID-19 cases than others model.

However, on the assumption of Poisson Richards model were more close to the observed

total COVID-19 cases than others model.

Table 6: A short term predictions of the total number of reported COVID-19 cases under

Richards, 3PL, 5PL and Gompertz on the Poisson distribution during the estimation period

March 4-June 30 2020.

Richards model 3 Parameter Logistic 5 Parameter Logistic Gompertz

Date Observed Prediction Prediction Interval Prediction Prediction Interval Prediction Prediction Interval Prediction Prediction Interval

01/07/2020 25477 25394 25341 25446 24769 24726 24812 25217 25341 25446 25976 25341 25446

02/07/2020 25489 25396 25343 25449 24769 24726 24812 25218 25343 25449 25984 25343 25449

03/07/2020 25498 25398 25345 25451 24769 24726 24812 25218 25345 25451 25992 25345 25451

04/07/2020 25509 25399 25346 25453 24769 24726 24813 25219 25346 25453 25999 25346 25453

05/07/2020 25527 25401 25348 25454 24770 24726 24813 25219 25348 25454 26005 25348 25454

06/07/2020 25531 25403 25349 25456 24770 24726 24813 25220 25349 25456 26011 25349 25456

07/07/2020 25538 25404 25351 25457 24770 24727 24813 25220 25351 25457 26017 25351 25457

08/07/2020 25542 25405 25352 25459 24770 24727 24813 25221 25352 25459 26023 25352 25459

09/07/2020 25565 25406 25353 25460 24770 24727 24813 25221 25353 25460 26028 25353 25460

10/07/2020 25589 25408 25354 25461 24770 24727 24813 25221 25354 25461 26032 25354 25461

The predictive accuracy of the models to predict the total COVID-19 cases beyond the

estimation period are displayed graphically in Figure 11 over a Poisson and normal as-

sumption, for 10 days ahead period prediction form all models. In both graphs after the

red vertical line it is prediction period and before it is the estimation period. The 3P

and 5P models underestimate and Gompertz overestimate the cumulative cases for Poisson

assumption. We observe that the Richards model yields substantially best prediction for

ten days ahead than the others in case of Poisson assumption. The 3P, 5P and Richards

models underestimate while, Gompertz yields best prediction for ten days ahead of the

total COVID-19 cases under normal assumption. For the estimation period 70,71,. . . , 80,

predict the total COVID-19 cases beyond the estimation period are displayed in Figure 14

& 15 in the Appendix B under Poisson and normal assumption respectively.
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Table 7: A short term predictions of the total number of reported COVID-19 cases under

Richards, 3PL, 5PL and Gompertz on the normal distribution during the estimation period

March 4-June 30 2020.

Richards model 3 Parameter Logistic 5 Parameter Logistic Gompertz

Date Observed Prediction Prediction Interval Prediction Prediction Interval Prediction Prediction Interval Prediction Prediction Interval

01/07/2020 25477 25300 25258 25341 25071 25035 25107 25426 25376 25476 25467 25427 25507

02/07/2020 25489 25301 25259 25343 25072 25036 25107 25430 25380 25481 25471 25431 25511

03/07/2020 25498 25303 25261 25345 25072 25036 25108 25435 25384 25486 25474 25433 25514

04/07/2020 25509 25304 25262 25346 25072 25036 25108 25439 25387 25490 25476 25436 25517

05/07/2020 25527 25305 25263 25347 25073 25037 25109 25443 25391 25495 25479 25439 25519

06/07/2020 25531 25306 25264 25349 25073 25037 25109 25446 25394 25499 25481 25441 25522

07/07/2020 25538 25307 25265 25350 25073 25037 25109 25450 25397 25503 25484 25443 25524

08/07/2020 25542 25308 25266 25351 25073 25037 25109 25453 25400 25507 25486 25445 25526

09/07/2020 25565 25309 25267 25352 25073 25038 25109 25456 25403 25510 25488 25447 25528

10/07/2020 25589 25310 25267 25352 25074 25038 25110 25459 25405 25513 25489 25449 25530

Figure 11: Predicted daily total number of COVID-19 cases from Richards, 3PL, 5PL and

Gompertz and observed under the Poisson (left) and normal (right).
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4.4 Goodness of fit for different estimation period and prediction Period

4.4.1 Goodness of fit on all eleven estimation period

The AIC and chi-squared for all four models on eleven different estimation period (70, 71,

. . . , 80 days) were displayed under Poisson and normal assumption are presented in Table

8. According to the AIC, the 5P logistic model had the smallest value under all eleven

estimation period relative to others candidate model under Poisson distribution assumption.

However, under normal distribution assumption Richards model had the smallest AIC value

on all eleven estimation period relative to others candidate model. The smallest AIC

indicating that the 5P logistic model and Richards model to be the best fit model in the

estimation period for Poisson and normal assumption respectively.

4.4.2 Goodness of fit on all eleven estimation period for the prediction period

To select the best model for prediction, we used Pearson chi-squared for prediction pe-

riod. According to the chi-squared value in Table 8 for Poisson distribution assumption,

Richards had the smallest value under all eleven estimation period, which suggests that

the best model for prediction of ten successive days relative to others models. Conversely,

for normal distribution assumption, Gompertz had the smallest value in Table 8 under all

eleven estimation period, which indicates that the best model for prediction of ten con-

secutive days relative to others. This results indicates that the best fit to the cumulative

COVID-19 cases can be predict poorly due to the uncertainty brought by the noise.
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Table 8: AIC and chi-squared for four models, two distribution on 11 different estimation

period (70, 71, . . . , 80 days).

Estimation Period Prediction Period

No. of days in

the estimation period

Model AIC(Poisson) AIC(Normal) chisq(Poisson) chisq(Normal)

70 Richards 1833.3 987.2 48.82559 185.202

3p logistic 3230.4 1012.7 902.9766 327.1458

5p logistic 1372.3 1063.3 217.7025 294.9895

Gompertz 2591.3 1449.9 1267.752 44.15149

71 Richards 1853 1010.7 27.42302 187.6401

3p logistic 3272.7 1044.8 911.6323 338.9701

5p logistic 1386.5 1094.3 236.5153 251.4118

Gompertz 2680.5 1522.3 1395.035 29.39806

72 Richards 1865.4 1030.4 26.56455 150.2046

3p logistic 3340.3 1075.7 861.9739 309.1327

5p logistic 1408.2 1110.8 232.0423 179.4014

Gompertz 1120.395 1486.6 1123.3 31.28429

73 Richards 1877.9 1057 25.80068 119.5072

3p logistic 3407.4 1117.5 815.0648 285.7456

5p logistic 1429.7 1137.5 257.1313 117.4597

Gompertz 2797.6 1500.7 1087.155 32.90451

74 Richards 1890.5 1080.3 24.37115 97.23934

3p logistic 3471.6 1156.2 773.4841 263.2989

5p logistic 1454.3 1160.1 247.5568 84.72195

Gompertz 2858 1513.9 1050.647 33.79318

75 Richards 1903.5 1100.2 21.08806 84.13319

3p logistic 3531.3 1190.9 743.0804 247.8134

5p logistic 1471.3 1178 257.5778 62.60566

Gompertz 2921.7 1527.8 1002.933 32.02975

76 Richards 1916.5 1131.8 18.07222 73.57644

3p logistic 3589.6 1245.8 715.2119 236.0881

5p logistic 1493.1 1214.4 260.3409 51.15754

Gompertz 2985.6 1586.1 955.6551 30.57808

77 Richards 1930 1148.6 14.37939 67.44428

3p logistic 3644.2 1277.5 693.6695 213.485

5p logistic 1514.3 1229.5 264.8965 43.42842

Gompertz 3052 1601.2 903.7591 27.00348

78 Richards 1943.5 1164.4 10.51942 64.03319

3p logistic 3696.8 1305.3 678.6021 213.8908

5p logistic 1535.6 1243.6 271.5711 38.88799

Gompertz 3118.8 1616.7 849.0743 23.26585

79 Richards 1957.3 1179.9 7.189958 61.94266

3p logistic 3748.9 1338 655.8355 220.2228

5p logistic 1557.5 1257.3 268.0032 35.61862

Gompertz 3184.2 1632.1 794.0964 19.08338

80 Richards 1969.4 1182.7 5.293357 59.20057

3p logistic 3804.2 1344.8 649.8869 215.8939

5p logistic 1581 1252.6 249.4869 31.48529

Gompertz 3244.2 1600.9 745.5794 16.23784
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4.5 Goodness of fit for one, two,three, four, five and ten days ahead

Prediction

In this study also make a prediction for one, two, three, four, five and ten days ahead by

using eleven different estimation period(t=70,71 . . . , 80). This type of prediction were done

by first, fit all this eleven models second, make t+1 prediction for each estimation period

third, collect this predicted value from each estimation period consecutively from t=70,71

. . . , 80 finally, all this predicted value from each models gives one days ahead prediction.

Applying the same procedure for the remaining prediction except the second step which

is changed to t+2, t+3, t+4, t+5 and t+10 for two, three, four, five and ten days ahead

prediction respectively. To select the best model according to prediction performance chi-

squared were calculated for each days ahead prediction. The calculated chi-squared is of

each days ahead prediction for all four proposed different models under the assumption of

Poisson and normal distribution assumption presented in Table 9. Likewise the previous

section the model with the smallest chi-squared is best model relative to others according

prediction performance. The Richards model had the smallest chi-squared value under

the Poisson distribution assumption while, Gompertz model had the smallest chi-squared

value under the normal distribution assumption. So, the Richards and Gompertz model are

the best model in terms of prediction performance under Poisson and normal distribution

assumption respectively.

The internal validation of the performance of prediction for the Richards, 3PL, 5PL and

Gompertz models under the Poisson and normal distribution assumption are displayed in

Figure 12 and 13 respectively. The Pearson correlation coefficient was high in all proposed

models for one days ahead prediction. The Richards model for one days ahead prediction

under the Poisson distribution had a higher correlation and we can also see it from Figure

12 it is much closer to the observed cases. However, the Gompertz model for one days

ahead prediction under the normal distribution had a higher correlation and as we can see

from Figure 13 it is much closer to the observed COVID-19 cases.
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Table 9: Chi-squared of a predication period for four different models and six different day

ahead.

Day ahead Model chisq(Poisson) chisq(Normal)

One days ahead Richards 19.50548 58.92673

3p logistic 532.8995 149.585

5p logistic 109.9854 52.94483

Gompertz 637.93 18.97963

Two days ahead Richards 14.44419 77.84179

3p logistic 628.5141 187.2363

5p logistic 148.0867 75.21441

Gompertz 713.256 16.54887

Three days ahead Richards 17.2091 86.80644

3p logistic 531.8038 219.2704

5p logistic 179.4335 86.05263

Gompertz 824.5353 20.79948

Four days ahead Richards 20.37062 94.83963

3p logistic 745.632 242.4324

5p logistic 211.3298 95.75746

Gompertz 943.3673 25.80146

Five days ahead Richards 23.29913 104.2195

3p logistic 805.0675 268.1092

5p logistic 246.9054 106.5046

Gompertz 1060.973 30.66412

Ten days ahead Richards 26.4612 180.809

3p logistic 1141.44 433.015

5p logistic 469.087 196.597

Gompertz 1605.72 45.2913
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Figure 12: Internal validation for prediction of one days ahead from Richards, 3PL, 5PL,

Gompertz and observed under the Poisson distribution.

Figure 13: Internal validation for prediction of one days ahead from Richards, 3PL, 5PL

and Gompertz and observed under the normal distribution.
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5 Discussion and Conclusion

The main aim of this study was to use several previously validated approach of phenomeno-

logical models to make short term prediction of COVID-19 cases, and to develop a criteria

for model selection for this purpose. To address these main objectives, the publicly available

COVID-19 during March 4-June 30 2020 data were analysed using several non linear growth

models under the Poisson and normal distribution assumption. This method requires that

an initial value for each parameter be estimated, Starting value specification is one of the

most difficult problems encountered in estimating parameters of non linear models. This

impact also on the convergence process and obtaining a Positive definite Hessian matrix.

Therefore, we fitted four models in each distribution for each estimation period. In both

distribution and all estimation period, we used Richards, three parameter logistic, five pa-

rameter logistic and Gompertz model.

The first main objective of this study to make a short term prediction such as, ten con-

secutive days ahead, and one, two, three, four, five and ten days ahead prediction which is

generated from eleven different estimation period. On a ten days ahead prediction, first fit

the models for each different eleven estimation period and also for the first wave and then

make a ten consecutive days prediction for each models under both assumption. Whereas,

on one, two, three, four, five and ten days ahead prediction the predicted value were col-

lected from each estimation period. And the other main aim of this study was model

selection out of all proposed model on the estimation and prediction period under both

distribution. So to made a model selection, we used AIC and the Pearson chi-squared value

for estimation and prediction period respectively.

Based on the results presented in this study the five parameter logistic model was found to

be the best fit model compared to others proposed models in the estimation period during

the first wave under the Poisson assumption and Richards was found to be the best fit

model in all eleven different estimation period under the normal assumption. On the other

hand, a several non linear growth models were fitted to COVID-19 cases during the period

5 March 2020 to 22 June 2020 in South Africa [12], and they saw that the Richards models

favored within the estimation period according to the AIC.

Nevertheless, Richards and Gompertz models have the best performance to make a short

term prediction relative to others candidates of non linear growth models for Poisson and

normal respectively during the first wave. This result agreed with that was fitted by Roosa

to the COVID-19 pandemic China from February 5th to February 24th, 2020 [14] ,and the

GLM and Richards models was favored to 5-day ahead forecasts generated in Hubei. A

variety of phenomenological growth models were fitted to the COVID-19 pandemic during

22 January to 13 February 2020 for provinces of Guangdong and Zhejiang, China by Roosa
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and and colleagues [13], and they saw that the GLM and Richards model provide best pre-

diction comparable mean estimates and prediction intervals, while the sub-epidemic model

forecasts exhibit significantly greater uncertainty.

In this study we fitted a several models for eleven different estimation period and made a

short term prediction. So, form this eleven different estimation period the 5P logistic model

and Richards model were the best fit model in each estimation period based on their AIC

under Poisson and normal distribution respectively. Nevertheless, Richards and Gompertz

had the smallest chi-squared value on the prediction period which is the best model accord-

ing to the performance of prediction for Poisson and normal respectively. The models that

have the best goodness to fit within the estimation period can predict poorly beyond the

estimation period were also observed by Reddy and colleagues [12].

In this particular study, the results suggested that the five parameters logistic model was

found to be the best fit model on the estimation period during the first wave in both as-

sumption.The five parameter logistic model and Richards was found to be the best fit model

on the in all different eleven estimation period.Nevertheless, Richards and Gompertz mod-

els have the best performance to make a short term prediction relative to others candidates

of non linear growth models under Poisson and normal assumption respectively during the

first wave and in all different eleven estimation period. In conclusion, we have seen that

Richards and Gompertz model have the best performance to make a short term prediction,

but five parameter logistic model was found to be the best fit on estimation period under

the Poisson and normal distribution assumption respectively. This suggested in general

that to use AIC and chi-squared model selection criteria to select the best model relative

to others proposed models on the estimation and prediction period respectively. Finally,

we recommended to extend this study for up to date Covid-19 cases as well as deaths data

including others non linear models.
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Appendix A: Tables

Parameter Estimate Std.error DF t Value Pr >|t| 95% Confidence Limits

alpha 25419 27.4285 119 926.75 <.0001 25365 25474

k 0.3604 0.008566 119 42.08 <.0001 0.3435 0.3774

gamma 0.08735 0.000606 119 144.1 <.0001 0.08615 0.08855

eta 41.0674 0.05733 119 716.3 <.0001 40.9539 41.1809

Table 10: Parameter estimates of Richards model for Poisson assumption during March

4-June 30 2020 2020.

Parameter Estimate Std.error DF t Value Pr >|t| 95% Confidence Limits

alpha 24770 21.7997 119 1136.26 <.0001 24727 24813

gamma 0.1318 0.000336 119 391.94 <.0001 0.1311 0.1324

eta 43.5155 0.03729 119 1167.01 <.0001 43.4416 43.5893

Table 11: Parameter estimates of three parameter logistic model for Poisson assumption

during March 4-June 30 2020 2020.

Parameter Estimate Std.error DF t Value Pr >|t| 95% Confidence Limits

alpha 26102 27.4821 119 949.79 <.0001 26048 26157

alpha0 40.3101 2.8055 119 14.37 <.0001 34.7549 45.8654

gamma 0.06562 0.000183 119 357.84 <.0001 0.06526 0.06599

eta 38.7703 0.03698 119 1048.27 <.0001 38.697 38.8435

Table 12: Parameter estimates of Gompertz model for Poisson assumption during March

4-June 30 2020 2020.

Parameter Estimate Std.error DF t Value Pr >|t| 95% Confidence Limits

alpha 25318 21.7747 119 1162.72 <.0001 25275 25361

k 0.4277 0.01956 119 21.86 <.0001 0.389 0.4665

gamma 0.09216 0.00085 119 108.33 <.0001 0.09048 0.09385

eta 41.4269 0.1156 119 358.34 <.0001 41.198 41.6558

se 14023 793.32 119 17.68 <.0001 12452 15594

Table 13: Parameter estimates of Richards model for normal assumption during March

4-June 30 2020 2020.
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Parameter Estimate Std.error DF t Value Pr >|t| 95% Confidence Limits

alpha 25075 18.196 119 1378.05 <.0001 25039 25111

gamma 0.1158 0.00046 119 254.12 <.0001 0.1149 0.1167

eta 44.1022 0.03936 119 1120.43 <.0001 44.0243 44.1802

se 14043 448.36 119 31.32 <.0001 13155 14931

Table 14: Parameter estimates of three parameter logistic model for normal assumption

during March 4-June 30 2020 2020.

Parameter Estimate Std.error DF t Value Pr >|t| 95% Confidence Limits

alpha 25511 21.0137 119 1214.02 <.0001 25469 25553

alpha0 405.76 26.5084 119 15.31 <.0001 353.27 458.25

gamma 0.07855 0.00037 119 213.61 <.0001 0.07782 0.07928

eta 39.1494 0.04912 119 796.97 <.0001 39.0522 39.2467

se 14041 553.55 119 25.37 <.0001 12945 15137

Table 15: Parameter estimates of Gompertz model for normal assumption during March4-

June 30 2020 2020
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Appendix B: Graphs

Figure 14: The incidence and predicted incidence of a COVID-19 cases from observed,

Richards, 3PL, 5PL and Gompertz for 7o,71 and 72 days estimation period(row wise)

under Poisson(left) and normal(right).
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Figure 15: A ten day Predicted cumulative COVID-19 cases in Ireland from the Richards,

3P,5P and Gompertz model under Poisson on the estimation periods of 70, 71, 72, . . . , 80

days.
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Figure 16: A ten day Predicted cumulative COVID-19 cases in Ireland from the Richards,

3P,5P and Gompertz model under normal on the estimation periods of 70, 71, 72, . . . , 80

days.
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Figure 17: Internal validation for predictions 2, 3, 4, and 5 days ahead prediction for the

estimation period 70,71,. . . , 80 days under Poisson assumption.
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Figure 18: Internal validation for predictions 2, 3, 4, and 5 days ahead prediction for the

estimation period 70,71,. . . , 80 days under normal assumption.
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Code for basic models

proc import datafile="C:\Users\Haymanot\Desktop\thesis2021\Idata.csv"

out=dataId dbms=csv;

run;

/**** Richards Model for Ireland */

proc nlmixed data=dataId;

title ’Richards model’;

parms alpha=26000 k=0.5 gamma=0.05 eta=45;

bounds K>0, alpha>0, eta>0, gamma>0;

mu = alpha*((1+k*exp(-gamma*(time-eta)))**(-1/k));

model confirmed ~ poisson(mu);

predict mu out= rpred;

run;

/**** 3 parameter logistic Model for Ireland****/

proc nlmixed data=dataId;

title ’3 param logistic’;

parms alpha = 26000, gamma = 0.05, eta = 45;

bounds alpha>0, eta>0, gamma>0;

mu = alpha/(1+exp(-gamma*(time-eta)));

model confirmed ~ poisson(mu);

predict mu out=pred3;

run;

/**** 5 parameter logistic Model for Ireland ****/

proc nlmixed data=dataId;

title ’5 param logistic’;

parms alpha = 26000, alpha0=1, k = 0.005, gamma = 0.05, eta = 45;

bounds k>0, alpha>0, alpha0>0, eta>0, gamma>0;

mu = alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*((time/eta)**gamma))**k;

model confirmed ~ poisson(mu);

predict mu out=pred5;

run;

/**** Gompertz Model for Ireland ****/

proc nlmixed data=dataId;

title ’Gompertz ’;

parms alpha = 26000, alpha0 = 1, gamma = 0.05, eta = 45;

bounds alpha > 0, alpha0> 0, gamma > 0, eta > 0;

mu = alpha0+((alpha-alpha0)*exp(-exp(-gamma*(time-eta))));

model confirmed ~ poisson(mu);

predict mu out=gopred;
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run;

/******plote of predictive and observed ****/

data datar; set rpred;

keep id time date confirmed pred confirmed_daily

administrative_area_level_1;

rename pred=predr;

run;

data data3; set pred3;

keep time pred;

rename pred=pred3;

run;

data data5; set pred5;

keep time pred;

rename pred=pred5;

run;

data datag; set gopred;

keep time pred;

rename pred=predg;

run;

data Ireland_poisson;

merge datar data3 data5 datag;

by time;

run;

proc print data=Ireland_poisson; run;

proc export

data=Ireland_poisson

dbms=CSV

outfile="C:\Users\Haymanot\Desktop\thesis2021\Ireland_poisson.csv"

replace;

run;

proc sgplot data= Ireland_poisson;

title "Predicted and reported daily total number of COVID-19 cases";

scatter x=date y=confirmed / LEGENDLABEL = "Observed cases";

series x=date y=predr / lineattrs=(color=black PATTERN= 1)

LEGENDLABEL = "Richard";

series x=date y=pred3 / lineattrs=(color= orange PATTERN= 5)

LEGENDLABEL = "3 Parm Logistic";

series x=date y=pred5 / lineattrs=(color=green PATTERN= 6)

LEGENDLABEL = "5 Parm Logistic";

series x=date y=predg / lineattrs=(color=red PATTERN= 2)
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LEGENDLABEL = "Gompertz";

YAXIS LABEL = ’Total cases’;

XAXIS LABEL = ’Date’;

run;

title " ";

proc sgplot data= Ireland_poisson;

title "Predicted and reported daily total number of COVID-19 cases";

scatter x=date y=confirmed / LEGENDLABEL = "Observed cases";

series x=date y=predr / lineattrs=(color=black PATTERN= 1)

LEGENDLABEL = "Richard";

YAXIS LABEL = ’Total cases’;

XAXIS LABEL = ’Date’;

run;

proc sgplot data= Ireland_poisson;

title "Predicted and reported daily total number of COVID-19 cases";

scatter x=date y=confirmed /

LEGENDLABEL = "Observed cases";

series x=date y=pred3 / lineattrs=(color= orange PATTERN= 5)

LEGENDLABEL = "3 Parm Logistic";

YAXIS LABEL = ’Total cases’;

XAXIS LABEL = ’Date’;

run;

proc sgplot data= Ireland_poisson;

title "Predicted and reported daily total number of COVID-19 cases";

scatter x=date y=confirmed / LEGENDLABEL = "Observed cases";

series x=date y=pred5 / lineattrs=(color=green PATTERN= 6)

LEGENDLABEL = "5 Parm Logistic";

YAXIS LABEL = ’Total cases’;

XAXIS LABEL = ’Date’;

run;

proc sgplot data= Ireland_poisson;

title "Predicted and reported daily total number of COVID-19 cases";

scatter x=date y=confirmed / LEGENDLABEL = "Observed cases";

series x=date y=predg / lineattrs=(color=red PATTERN= 2)

LEGENDLABEL = "Gompertz";

YAXIS LABEL = ’Total cases’;

XAXIS LABEL = ’Date’;

run;

/****plots of incidence and predicted incidence****/

data Ireland_poisson_model_1;
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set Ireland_poisson;

by time;

prev_rpred = lag(predr);

prev_pred3 = lag(pred3);

prev_pred5 = lag(pred5);

prev_predg = lag(predg);

inc_rpred = predr - prev_rpred;

inc_pred3 = pred3 - prev_pred3;

inc_pred5 = pred5 - prev_pred5;

inc_predg = predg - prev_predg;

if time =1 then delete;

run;

title " ";

proc sgplot data= Ireland_poisson_model_1 noborder;

scatter x=date y=confirmed_daily / LEGENDLABEL = "Observed cases";

series x=date y=inc_rpred / lineattrs=(color=black PATTERN= 1)

LEGENDLABEL = "Richard";

series x=date y=inc_pred3 / lineattrs=(color= red PATTERN= 2)

LEGENDLABEL = "3 Parm Logistic";

series x=date y=inc_pred5 / lineattrs=(color=green PATTERN= 3)

LEGENDLABEL = "5 Parm Logistic";

series x=date y=inc_predg / lineattrs=(color=purple PATTERN= 4)

LEGENDLABEL = " Gompertz";

YAXIS LABEL = ’daily new number’;

XAXIS LABEL = ’Date’;

run;

title " ";

proc sgplot data= Ireland_poisson_model_1 noborder;

scatter x=date y=confirmed_daily / LEGENDLABEL = "Observed cases";

series x=date y=inc_rpred / lineattrs=(color=black PATTERN= 1)

LEGENDLABEL = "Richard";

YAXIS LABEL = ’daily new number’;

XAXIS LABEL = ’Date’;

run;

title " ";

proc sgplot data= Ireland_poisson_model_1 noborder;

scatter x=date y=confirmed_daily / LEGENDLABEL = "Observed cases";

series x=date y=inc_pred3 / lineattrs=(color= red PATTERN= 2)

LEGENDLABEL = "3 Parm Logistic";
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YAXIS LABEL = ’daily new number’;

XAXIS LABEL = ’Date’;

run;

title " ";

proc sgplot data= Ireland_poisson_model_1 noborder;

scatter x=date y=confirmed_daily / LEGENDLABEL = "Observed cases";

series x=date y=inc_pred5 / lineattrs=(color=green PATTERN= 3)

LEGENDLABEL = "5 Parm Logistic";

YAXIS LABEL = ’daily new number’;

XAXIS LABEL = ’Date’;

run;

title " ";

proc sgplot data= Ireland_poisson_model_1 noborder;

scatter x=date y=confirmed_daily / LEGENDLABEL = "Observed cases";

series x=date y=inc_predg / lineattrs=(color=purple PATTERN= 4)

LEGENDLABEL = " Gompertz";

YAXIS LABEL = ’daily new number’;

XAXIS LABEL = ’Date’;

run;

/********** Normal **********/

/**** Richards Model for Ireland****/

proc nlmixed data=dataId;

title ’Richards model’;

parms alpha=26000 k=0.5 gamma=0.04 eta=45, se=14000;

bounds K>0, alpha>0, eta>0, gamma>0;

mu = alpha*((1+k*exp(-gamma*(time-eta)))**(-1/k));

model confirmed ~ normal(mu,se);

predict mu out=rpredn;

run;

/**** 3 parameter logistic Model for Ireland****/

proc nlmixed data=dataId;

title ’3 param logistic | normal’;

parms alpha = 26000, gamma = 0.04, eta = 45, se=14000;

bounds alpha>0, eta>0, gamma>0;

mu = alpha/(1+exp(-gamma*(time-eta)));

model confirmed ~ normal(mu,se);

predict mu out=pred3n;

run;

/**** 5 parameter logistic Model for Ireland****/

proc nlmixed data=dataId ;
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title ’5 param logistic’;

parms alpha = 26000, k = 0.5, alpha0=1, gamma = 0.04, eta = 45, se=14000;

bounds k>0, alpha>0, eta>0, gamma>0;

mu = alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*((time/eta)**gamma))**k;

model confirmed ~ normal(mu, se);

predict mu out=pred5n;

run;

/**** Gompertz Model for Ireland ****/

proc nlmixed data=dataId;

title ’Gompertz ’;

parms alpha = 26000 alpha0 = 1 gamma = 0.04 eta = 45 se=14000;

bounds alpha0 >0, alpha>0, eta>0, gamma>0;

mu = alpha0+((alpha-alpha0)*exp(-exp(-gamma*(time-eta))));

model confirmed ~ normal(mu, se);

predict mu out=gopredn;

run;

/******plote of predictive and observed ****/

data datar; set rpred;

keep id time date confirmed pred confirmed_daily

administrative_area_level_1;

rename pred=predr;

run;

data data3; set pred3;

keep time pred;

rename pred=pred3;

run;

proc print data=pred3;run;

data data5; set pred5;

keep time pred;

rename pred=pred5;

run;

data datag; set gopred;

keep time pred;

rename pred=predg;

run;

data Ireland_normal;

merge datar data3 data5 datag;

by time;

run;

proc export
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data=Ireland_normal

dbms=CSV

outfile="C:\Users\Haymanot\Desktop\thesis2021\Ireland_normal.csv"

replace;

run;

proc sgplot data= Ireland_normal;

title "Predicted and reported daily total number of COVID-19 cases";

scatter x=date y=confirmed / LEGENDLABEL = "Observed cases";

series x=date y=predr / lineattrs=(color=black PATTERN= 1)

LEGENDLABEL = "Richard";

series x=date y=pred3 / lineattrs=(color= orange PATTERN= 5)

LEGENDLABEL = "3 Parm Logistic";

series x=date y=pred5 / lineattrs=(color=green PATTERN= 6)

LEGENDLABEL = "5 Parm Logistic";

series x=date y=predg / lineattrs=(color=red PATTERN= 2)

LEGENDLABEL = "Gompertz";

YAXIS LABEL = ’Total cases’;

XAXIS LABEL = ’Date’;

run;

proc sgplot data= Ireland_normal;

title "Predicted and reported daily total number of COVID-19 cases";

scatter x=date y=confirmed / LEGENDLABEL = "Observed cases";

series x=date y=predr / lineattrs=(color=black PATTERN= 1)

LEGENDLABEL = "Richard";

YAXIS LABEL = ’Total cases’;

XAXIS LABEL = ’Date’;

run;

proc sgplot data= Ireland_normal;

title "Predicted and reported daily total number of COVID-19 cases";

scatter x=date y=confirmed / LEGENDLABEL = "Observed cases";

series x=date y=pred3 / lineattrs=(color= orange PATTERN= 5)

LEGENDLABEL = "3 Parm Logistic";

YAXIS LABEL = ’Total cases’;

XAXIS LABEL = ’Date’;

run;

proc sgplot data= Ireland_normal;

title "Predicted and reported daily total number of COVID-19 cases";

scatter x=date y=confirmed / LEGENDLABEL = "Observed cases";

series x=date y=pred5 / lineattrs=(color=green PATTERN= 6)

LEGENDLABEL = "5 Parm Logistic";
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YAXIS LABEL = ’Total cases’;

XAXIS LABEL = ’Date’;

run;

proc sgplot data= Ireland_normal;

title "Predicted and reported daily total number of COVID-19 cases";

scatter x=date y=confirmed / LEGENDLABEL = "Observed cases";

series x=date y=predg / lineattrs=(color=red PATTERN= 2)

LEGENDLABEL = "Gompertz";

YAXIS LABEL = ’Total cases’;

XAXIS LABEL = ’Date’;

run;

/****plots of incidence and predicted incidence****/

data Ireland_normal_model_1;

set Ireland_normal;

by time;

prev_rpred = lag(predr);

prev_pred3 = lag(pred3);

prev_pred5 = lag(pred5);

prev_predg = lag(predg);

inc_rpred = predr - prev_rpred;

inc_pred3 = pred3 - prev_pred3;

inc_pred5 = pred5 - prev_pred5;

inc_predg = predg - prev_predg;

if time =1 then delete;

run;

title " ";

proc sgplot data= Ireland_normal_model_1 noborder;

scatter x=date y=confirmed_daily / LEGENDLABEL = "Observed cases";

series x=date y=inc_rpred / lineattrs=(color=black PATTERN= 1)

LEGENDLABEL = "Richard";

series x=date y=inc_pred3 / lineattrs=(color= red PATTERN= 2)

LEGENDLABEL = "3 Parm Logistic";

series x=date y=inc_pred5 / lineattrs=(color=green PATTERN= 3)

LEGENDLABEL = "5 Parm Logistic";

series x=date y=inc_predg / lineattrs=(color=purple PATTERN= 4)

LEGENDLABEL = " Gompertz";

YAXIS LABEL = ’daily new number’;

XAXIS LABEL = ’Date’;

run;
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title " ";

proc sgplot data= Ireland_normal_model_1 noborder;

scatter x=date y=confirmed_daily / LEGENDLABEL = "Observed cases";

series x=date y=inc_rpred / lineattrs=(color=black PATTERN= 1)

LEGENDLABEL = "Richard";

YAXIS LABEL = ’daily new number’;

XAXIS LABEL = ’Date’;

run;

title " ";

proc sgplot data= Ireland_normal_model_1 noborder;

scatter x=date y=confirmed_daily / LEGENDLABEL = "Observed cases";

series x=date y=inc_pred3 / lineattrs=(color= red PATTERN= 2)

LEGENDLABEL = "3 Parm Logistic";

YAXIS LABEL = ’daily new number’;

XAXIS LABEL = ’Date’;

run;

title " ";

proc sgplot data= Ireland_normal_model_1 noborder;

scatter x=date y=confirmed_daily / LEGENDLABEL = "Observed cases";

series x=date y=inc_pred5 / lineattrs=(color=green PATTERN= 3)

LEGENDLABEL = "5 Parm Logistic";

YAXIS LABEL = ’daily new number’;

XAXIS LABEL = ’Date’;

run;

title " ";

proc sgplot data= Ireland_normal_model_1 noborder;

scatter x=date y=confirmed_daily / LEGENDLABEL = "Observed cases";

series x=date y=inc_predg / lineattrs=(color=purple PATTERN= 4)

LEGENDLABEL = " Gompertz";

YAXIS LABEL = ’daily new number’;

XAXIS LABEL = ’Date’;

run;

code for prediction

/*********Prediction for Poisson**********/

/**** Richards Model for Ireland */

proc nlmixed data=dataId;

title ’Richards model’;
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parms alpha=26000 k=0.5 gamma=0.05 eta=45;

bounds K>0, alpha>0, eta>0, gamma>0;

mu = alpha*((1+k*exp(-gamma*(time-eta)))**(-1/k));

model confirmed ~ poisson(mu);

predict mu out= rpred;

estimate "120" alpha*((1+k*exp(-gamma*(120-eta)))**(-1/k));

estimate "121" alpha*((1+k*exp(-gamma*(121-eta)))**(-1/k));

estimate "122" alpha*((1+k*exp(-gamma*(122-eta)))**(-1/k));

estimate "123" alpha*((1+k*exp(-gamma*(123-eta)))**(-1/k));

estimate "124" alpha*((1+k*exp(-gamma*(124-eta)))**(-1/k));

estimate "125" alpha*((1+k*exp(-gamma*(125-eta)))**(-1/k));

estimate "126" alpha*((1+k*exp(-gamma*(126-eta)))**(-1/k));

estimate "127" alpha*((1+k*exp(-gamma*(127-eta)))**(-1/k));

estimate "128" alpha*((1+k*exp(-gamma*(128-eta)))**(-1/k));

estimate "129" alpha*((1+k*exp(-gamma*(129-eta)))**(-1/k));

run;

/**** 3 parameter logistic Model for Ireland****/

proc nlmixed data=dataId;

title ’3 param logistic’;

parms alpha = 26000, gamma = 0.05, eta = 45;

bounds alpha>0, eta>0, gamma>0;

mu = alpha/(1+exp(-gamma*(time-eta)));

model confirmed ~ poisson(mu);

predict mu out=pred3;

estimate "120" alpha/(1+exp(-gamma*(120-eta)));

estimate "121" alpha/(1+exp(-gamma*(121-eta)));

estimate "122" alpha/(1+exp(-gamma*(122-eta)));

estimate "123" alpha/(1+exp(-gamma*(123-eta)));

estimate "124" alpha/(1+exp(-gamma*(124-eta)));

estimate "125" alpha/(1+exp(-gamma*(125-eta)));

estimate "126" alpha/(1+exp(-gamma*(126-eta)));

estimate "127" alpha/(1+exp(-gamma*(127-eta)));

estimate "128" alpha/(1+exp(-gamma*(128-eta)));

estimate "129" alpha/(1+exp(-gamma*(129-eta)));

run;

/**** 5 parameter logistic Model for Ireland ****/

proc nlmixed data=dataId;

title ’5 param logistic’;

parms alpha = 26000, alpha0=1, k = 0.005, gamma = 0.05, eta = 45;

bounds k>0, alpha>0, alpha0>0, eta>0, gamma>0;
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mu = alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*((time/eta)**gamma))**k;

model confirmed ~ poisson(mu);

predict mu out=pred5;

estimate "120" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((120/eta)**gamma))**k;

estimate "121" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((121/eta)**gamma))**k;

estimate "122" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((122/eta)**gamma))**k;

estimate "123" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((123/eta)**gamma))**k;

estimate "124" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((124/eta)**gamma))**k;

estimate "125" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((125/eta)**gamma))**k;

estimate "126" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((126/eta)**gamma))**k;

estimate "127" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((127/eta)**gamma))**k;

estimate "128" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((128/eta)**gamma))**k;

estimate "129" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((129/eta)**gamma))**k;

run;

/**** Gompertz Model for Ireland ****/

proc nlmixed data=dataId;

title ’Gompertz ’;

parms alpha = 26000, alpha0 = 1, gamma = 0.05, eta = 45;

bounds alpha > 0, alpha0> 0, gamma > 0, eta > 0;

mu = alpha0+((alpha-alpha0)*exp(-exp(-gamma*(time-eta))));

model confirmed ~ poisson(mu);

predict mu out=gopred;

estimate "120" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(120-eta))));

estimate "121" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(121-eta))));

estimate "122" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(122-eta))));

estimate "123" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(123-eta))));

estimate "124" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(124-eta))));

estimate "125" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(125-eta))));

estimate "126" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(126-eta))));

estimate "127" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(127-eta))));
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estimate "128" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(128-eta))));

estimate "129" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(129-eta))));

run;

proc import datafile="C:\Users\Haymanot\Desktop\thesis2021\ipp.csv"

out=ipp dbms=csv;

run;

title " ";

proc sgplot data=ipp;

scatter x=time y=confirmed / LEGENDLABEL = "Observed cases";

*scatter x=date y= obs/ markerattrs=(color=Gold symbol=Star)

LEGENDLABEL = "New observed";

series x=time y=predr / lineattrs=(color=black PATTERN= 1)

LEGENDLABEL = "Richard";

series x=time y=pred3 / lineattrs=(color= red PATTERN= 2)

LEGENDLABEL = "3 Parm Logistic";

series x=time y=pred5 / lineattrs=(color=green PATTERN= 3)

LEGENDLABEL = "5 Parm Logistic";

series x=time y=predg / lineattrs=(color=purple PATTERN= 4)

LEGENDLABEL = "Gompertz";

refline 119

/axis=x lineattrs=GraphData2(thickness=3);

YAXIS LABEL = ’Total cases’;

XAXIS LABEL = ’Date’;

run;

/*********Prediction for normal**********/

/**** Richards Model for Ireland */

proc nlmixed data=dataId;

title ’Richards model’;

parms alpha=26000 k=0.5 gamma=0.04 eta=45, se=14000;

bounds K>0, alpha>0, eta>0, gamma>0;

mu = alpha*((1+k*exp(-gamma*(time-eta)))**(-1/k));

model confirmed ~ normal(mu,se);

predict mu out=rpredn;

estimate "120" alpha*((1+k*exp(-gamma*(120-eta)))**(-1/k));

estimate "121" alpha*((1+k*exp(-gamma*(121-eta)))**(-1/k));

estimate "122" alpha*((1+k*exp(-gamma*(122-eta)))**(-1/k));

estimate "123" alpha*((1+k*exp(-gamma*(123-eta)))**(-1/k));

estimate "124" alpha*((1+k*exp(-gamma*(124-eta)))**(-1/k));

estimate "125" alpha*((1+k*exp(-gamma*(125-eta)))**(-1/k));

estimate "126" alpha*((1+k*exp(-gamma*(126-eta)))**(-1/k));
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estimate "127" alpha*((1+k*exp(-gamma*(127-eta)))**(-1/k));

estimate "128" alpha*((1+k*exp(-gamma*(128-eta)))**(-1/k));

estimate "129" alpha*((1+k*exp(-gamma*(129-eta)))**(-1/k));

run;

/**** 3 parameter logistic Model for Ireland****/

proc nlmixed data=dataId;

title ’3 param logistic | normal’;

parms alpha = 26000, gamma = 0.04, eta = 45, se=14000;

bounds alpha>0, eta>0, gamma>0;

mu = alpha/(1+exp(-gamma*(time-eta)));

model confirmed ~ normal(mu,se);

predict mu out=pred3n;

estimate "120" alpha/(1+exp(-gamma*(120-eta)));

estimate "121" alpha/(1+exp(-gamma*(121-eta)));

estimate "122" alpha/(1+exp(-gamma*(122-eta)));

estimate "123" alpha/(1+exp(-gamma*(123-eta)));

estimate "124" alpha/(1+exp(-gamma*(124-eta)));

estimate "125" alpha/(1+exp(-gamma*(125-eta)));

estimate "126" alpha/(1+exp(-gamma*(126-eta)));

estimate "127" alpha/(1+exp(-gamma*(127-eta)));

estimate "128" alpha/(1+exp(-gamma*(128-eta)));

estimate "129" alpha/(1+exp(-gamma*(129-eta)));

run;

/**** 5 parameter logistic Model for Ireland ****/

proc nlmixed data=dataId ;

title ’5 param logistic’;

parms alpha = 26000, k = 0.5, alpha0=1, gamma = 0.04, eta = 45, se=14000;

bounds k>0, alpha>0, eta>0, gamma>0;

mu = alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*((time/eta)**gamma))**k;

model confirmed ~ normal(mu, se);

predict mu out=pred5n;

estimate "120" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((120/eta)**gamma))**k;

estimate "121" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((121/eta)**gamma))**k;

estimate "122" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((122/eta)**gamma))**k;

estimate "123" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((123/eta)**gamma))**k;

estimate "124" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*
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((124/eta)**gamma))**k;

estimate "125" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((125/eta)**gamma))**k;

estimate "126" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((126/eta)**gamma))**k;

estimate "127" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((127/eta)**gamma))**k;

estimate "128" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((128/eta)**gamma))**k;

estimate "129" alpha+(alpha0-alpha)/(1+((2**(1/k))-1)*

((129/eta)**gamma))**k;

run;

/**** Gompertz Model for Ireland ****/

proc nlmixed data=dataId;

title ’Gompertz ’;

parms alpha = 26000 alpha0 = 1 gamma = 0.04 eta = 45 se=14000;

bounds alpha0 >0, alpha>0, eta>0, gamma>0;

mu = alpha0+((alpha-alpha0)*exp(-exp(-gamma*(time-eta))));

model confirmed ~ normal(mu, se);

predict mu out=gopredn;

estimate "120" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(120-eta))));

estimate "121" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(121-eta))));

estimate "122" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(122-eta))));

estimate "123" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(123-eta))));

estimate "124" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(124-eta))));

estimate "125" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(125-eta))));

estimate "126" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(126-eta))));

estimate "127" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(127-eta))));

estimate "128" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(128-eta))));

estimate "129" alpha0+((alpha-alpha0)*exp(-exp(-gamma*(129-eta))));

run;

proc import datafile="C:\Users\Haymanot\Desktop\thesis2021\ipn.csv"

out=ipn dbms=csv;

run;

proc print data=ipn;run;

title " ";

proc sgplot data=ipn;

scatter x=time y=confirmed / LEGENDLABEL = "Observed cases";

*scatter x=date y= obs/ markerattrs=(color=Gold symbol=Star)

LEGENDLABEL = "New observed";
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series x=time y=predr / lineattrs=(color=black PATTERN= 1)

LEGENDLABEL = "Richard";

series x=time y=pred3 / lineattrs=(color= red PATTERN= 2)

LEGENDLABEL = "3 Parm Logistic";

series x=time y=pred5 / lineattrs=(color=green PATTERN= 3)

LEGENDLABEL = "5 Parm Logistic";

series x=time y=predg / lineattrs=(color=purple PATTERN= 4)

LEGENDLABEL = "Gompertz";

refline 119

/axis=x lineattrs=GraphData2(thickness=3);

YAXIS LABEL = ’Total cases’;

XAXIS LABEL = ’Date’;

run;
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