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Abstract

In this study, data from the survey ”de Grote Corona-Studie” are used to derive suspected COVID-19
cases and compare these to the official laboratory-confirmed incidence in Belgium. There are two goals
to this: Firstly, to assess the general feasibility of using citizen science data to estimate incidence, and
secondly, to compare the performance of different case definitions as given by national and supranational
health agencies, namely Sciensano, CDC, RKI, ECDC and WHO. The comparison is performed using
graphical means, raw correlations between the different time series, and correlations between the time
series after pre-whitening using ARIMA models. Furthermore, different lags between the survey derived
times series and the laboratory confirmed cases are tested and additional correlation analyses are per-
formed for different gender and age groups. Lastly, sensitivity and specificity of the case definitions are
compared based on a small subset of the survey data for which PCR test results were available.
As a main result, robust correlations are found that persist after removing autocorrelation when using
the case definitions of ECDC, CDC, or Sciensano. For the time series based on the case definitions of
WHO and RKI, correlations are vulnerable to the removal of autocorrelation. Greater correlations are
observed for the female subgroup and the senior age group for all but the WHO case definition, whereas
correlations are lower for the underpopulated group of teenagers and children. A zero lag is found to
result in the highest correlations in the pre-whitened time series for all but the RKI case definition, which
shows highest correlation for a 6-day lag and thus has a greater potential to predict cases in the future.

All results are to be treated with caution when applying to future scenarios, as the anti COVID-19

measures in place in Belgium reduced the prevalence of ILI and common cold, which are easily confused

with COVID-19.

1 Introduction

Surveillance of epidemics and pandemics is vital for the health sector of a country. As we have
seen during the current COVID-19 pandemic, incidence data can be used to anticipate short-
ages in intensive care capacities as well as to inform political decision makers of the necessity
as well as the effectiveness of non-pharmaceutical interventions. For influenza, this has long
been acknowledged and there are multiple surveillance systems in place, including the sentinel
network EISN, combining national sentinel systems from different European countries, the U.S.
Influenza Surveillance System by the CDC, the Canadian FluWatch and many others. In addi-
tion to surveillance based on either laboratory confirmed cases or cases as reported by general
practitioners, it is possible to use symptom questionnaires for the general public, which can be
filled in online and are conducted in regular intervals. For influenza, these kinds of citizen sci-
ence projects are used in many countries, including Australia, the USA, the U.K. and in many
European countries as part of the Influenzanet network. For the current COVID-19 pandemic,
there are also a number of citizen science surveys, which address symptom burden as well as
general well-being, compliance with measures in place and many more aspects. In this study,
we will use the symptom data from “De Grote Corona-studie” in Belgium and correlate the
symptom burden over time to the official incidence data for COVID-19 obtained from Sciensano.
In contrast to influenza, COVID-19 is only a young disease, where the clinical appearance in
terms of signs and symptoms is still controversial and has undergone several amendments since
its first recorded appearance in Wuhan in December 2019. As an example, the loss of smell
and taste was not part of the very early descriptions (Huang et al., 2020), but has gained
rapid acknowledgment as an indicative symptom in late spring 2020 (Giacomelli et al., 2020).
Fever and a dry cough, in contrast, have always been considered prominent features of COVID-
19, but have much less decisive potential, as they are also common for influenza and other
influenza-like illnesses (ILIs). As a consequence of the still rapidly developing understanding of
the disease and its most prominent symptoms, multiple clinical case definitions of COVID-19 are
currently is use, issued by different authorities like the WHO, the ECDC and national agencies
like Sciensano, the CDC, the RKI and many others. Our second objective in this study is to
compare different clinical case definitions in terms of their correlation with the confirmed cases.
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Figure 1: Evolution of symptoms over time

2 Data and summary statistics

The data analyzed here come from two main sources, namely the Grote Corona-studie (GCS),
and the daily numbers of confirmed COVID-19 cases in Belgium. Two auxiliary data sources
used to motivate methodological decisions are the Belgian demographic data as published by
the Belgian national statistics institute statbel from the year 2019, and the number of PCR
tests conducted per day, provided by the Belgian health institute Sciensano, which allows us to
derive the positive test rate.
The GCS started in March 17, 2020, and is still ongoing. It is a survey which can be com-
pleted online by all residents of Belgium on a voluntary basis and is available in four languages
(Dutch, French, German, English). While the questionnaire also covers the behavior and mental
well-being during the pandemic, we will focus our attention on COVID-19-related symptoms
and make use of the demographic data (age, gender, province, occupation, etc.). The data set
also contains three sets of weights, we will use the raking weight by age, gender, and province.
During its deployment, there have been several changes to the composition and timing of the
questionnaire. Up to the 12th round (June 02, 2020) the survey was conducted weekly, and it
switched to biweekly after that. Most importantly for the present study, symptoms were not
queried after the 21st round (October 06, 2020). Therefore, we will only use the data up to
that point and furthermore exclude the first round due to problems in the data collection pro-
cess. Other important modifications concern the presence of specific symptoms in the symptom
questionnaire, where some symptoms were added at later stages (see Figure 1).
The second main data set is the number of lab-confirmed cases provided by the Belgian popu-
lation health institute (Sciensano). This data set is publicly available and contains aggregated
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case numbers by age class in steps of 10, by gender and by province per day. While presently
also positive rapid-antigen tests are included in this data set, this is not the case for the period
we are investigating (until mid October 2020), when only positive PCR tests were counted.
Table 1 shows that the survey is not representative of the Belgian population in terms of age and
gender. In particular, most rounds contain more than twice as many completed questionnaires
by female participants than by male participants. Also, the younger age group (0–19) is largely
underrepresented in the sample. With regard to older age groups, there seem to be some shifts
over time: Up to round 5, the young adult age group (20–39) was overrepresented, while later
proportions of older adults (40–59) and seniors (60+) increase. The total number in all age
groups decrease over time, so this effect is likely due to the young adults dropping out with a
higher rate. Tables 2 and 3 give the total numbers and percentages over the provinces with a
comparison to the Belgian population. Here we also see large differences between sample and
study population, in that notably the Antwerp region makes up almost half of the sample, while
regions in Walloon and Brussels are underrepresented.

3 Related work

Although we find that the numbers of studies related to COVID-19 is rapidly increasing, few
prove to be directly of interest in the context of our current research question. With regard
to the importance of different symptoms associated with COVID-19, a recent Cochrane review
article summarizes the findings of 44 studies that investigated the specificity and sensitivity
of a number of symptoms in isolation and two studies that looked at symptom combinations
(Struyf et al., 2021). Some of the results were high sensitivity, but low specificity for cough
and fever and the reverse pattern for the loss of smell and taste. The authors conclude that no
symptom in isolation exhibits high diagnostic accuracy and the rarity of studies that look at
combinations of symptoms is regretted. The studies looking at combinations found relatively
high specificity, but very low sensitivity (< 30%). A different attempt to combine different
symptoms is described by Menni et al., 2020, who analyzed data from a U.K.-based citizen
science project. Using a subset of cases for which the result of a laboratory test was available,
they build a logistic regression model that identifies loss of smell and taste, cough, fatigue, and
anorexia as significant predictors for a positive PCR test. Subsequently, they use this model
and the symptoms data from the complete data set to predict the number of COVID-19 cases
among their respondents. In contrast to their approach, we will use predefined case definitions
that do not quantify the influence of isolated symptoms. A further difference is that they only
use data from one time frame, while we aim to account for the longitudinal evolution of cases
derived from the citizen science symptom data.
Another relevant line of research comes from the study of ILI epidemics. For ILI, a larger number
of surveillance systems are in place, including citizen science projects, networks of general
practitioners, and national registers of laboratory-confirmed cases. A number of studies evaluate
citizen science projects by comparing them to more traditional sentinel systems (Richard et al.,
2020; Carlson et al., 2009; Friesema et al., 2009; Noort et al., 2015; Vandendijck, Faes, and
Hens, 2013) All of these studies relate the time series derived from the citizen science survey to
another time series, which is either laboratory confirmed cases, or a GP network. With regard
to the methods, we identify three approaches: A purely graphical evaluation by plotting the
two time series together, an evaluation based on correlations between individual time points
of the two time series, and an evaluation based on correlations between the two data set after
accounting for their autocorrelation structure by an ARIMA model.
For the latter, there are two distinct uses: Carlson et al., 2009 build an ARIMA model and pre-
whiten both time series prior to the calculation of correlation with the goal to filter out common
temporal trends, that are not causally related. As a result, their survey derived pre-whitened
incidence is correlated with pre-whitened laboratory confirmed influenza cases only for the
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Table 1: Demographics (age and gender) of the GCS by survey round

2 3 4 5 6 7 8 9 10 11
March 24 March 31 April 07 April 14 April 21 April 28 Mai 05 Mai 12 Mai 19 Mai 26 Belgian population

total 345966 415073 224437 197705 169876 119634 80595 82961 71592 49039 11492641

Gender
male 118561 140110 67326 58165 50753 34589 22511 23878 20336 13551 5660064

34% 34% 30% 29% 30% 29% 28% 29% 28% 28% 49%
female 226989 274485 156843 139323 118950 84904 57978 58991 51161 35435 5832577

66% 66% 70% 70% 70% 71% 72% 71% 71% 72% 51%
other 414 468 268 217 173 141 105 92 95 51

< 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1%

Age

0-19 years 12849 13496 5852 5054 3828 2629 1744 1734 1273 754 2569322
4% 3% 3% 3% 2% 2% 2% 2% 2% 2% 22%

20-39 years 173506 189173 98662 84741 65297 45557 29341 26643 23419 14396 2899935
50% 46% 44% 43% 38% 38% 36% 32% 33% 29% 25%

40-59 years 120649 155115 87459 77950 68672 47613 31771 32808 28757 19372 3095167
35% 37% 39% 39% 40% 40% 39% 40% 40% 40% 27%

60+ years 38960 57279 32464 29960 32079 23835 17739 21776 18143 14515 2928217
11% 14% 14% 15% 19% 20% 22% 26% 25% 30% 26%

12 13 14 15 16 17 18 19 20 21
June 02 June 16 June 30 July 14 July 27 Aug 11 Aug 25 Sept 08 Sept 22 Oct 06 Belgian population

total 60583 35772 26688 27537 35618 29944 24947 22357 19425 19750 11492641

Gender
male 18328 10052 7830 8160 10638 8950 7390 6387 5898 6187 5660064

30% 28% 29% 30% 30% 30% 30% 29% 30% 31% 49%
female 42188 25671 18828 19351 24927 20950 17525 15939 13504 13540 5832577

70% 72% 71% 70% 70% 70% 70% 71% 70% 69% 51%
other 67 49 29 26 53 44 32 31 23 23

< 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1%

Age

0-19 years 859 376 199 144 267 218 197 134 128 153 2569322
1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 22%

20-39 years 18897 8480 5781 5884 9501 7008 5302 4520 3706 3756 2899935
31% 24% 22% 21% 27% 23% 21% 20% 19% 19% 25%

40-59 years 24201 14201 10458 11211 14364 12389 10418 9509 7996 7835 3095167
40% 40% 39% 41% 40% 41% 42% 43% 41% 40% 27%

60+ years 16626 12715 10248 10298 11486 10329 9030 8194 7595 8006 2928217
27% 36% 38% 37% 32% 34% 36% 37% 39% 41% 26%



Table 2: Number of completed surveys by province, rounds 2 to 11, and Belgian population

2 3 4 5 6 7 8 9 10 11
March 24 March 31 April 07 April 14 April 21 April 28 Mai 05 Mai 12 Mai 19 Mai 26 Belgian population

Antwerp 126347 148743 94854 82152 68403 52562 36264 37368 32468 23540 1869730
37% 36% 42% 42% 40% 44% 45% 45% 45% 48% 16%

Brussels 14321 11992 4980 3985 3072 2314 1642 1464 1720 1042 1218255
4% 3% 2% 2% 2% 2% 2% 2% 2% 2% 11%

Hainaut 5242 4378 1645 1194 809 573 428 380 379 233 1346840
2% 1% 1% 1% < 1% < 1% 1% < 1% 1% < 1% 12%

Limburg 33211 42075 20315 18483 16590 10304 7111 7211 6158 4200 877370
10% 10% 9% 9% 10% 9% 9% 9% 9% 9% 8%

Liège 4795 3699 1183 761 538 403 255 221 312 194 1109800
1% 1% 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% 10%

Luxembourg 1609 882 336 322 223 181 130 93 126 76 286752
< 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% 3%

Namur 2963 2026 949 523 399 314 245 175 248 128 495832
1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% 4%

East Flanders 65586 80030 39512 35523 30505 20188 13064 13649 12281 8103 1525255
19% 19% 18% 18% 18% 17% 16% 16% 17% 17% 13%

Flemish Brabant 47415 59186 30872 26555 23523 16015 10466 10901 10110 6669 1155843
14% 14% 14% 13% 14% 13% 13% 13% 14% 14% 10%

Walloon Brabant 4408 3722 1281 1081 724 541 423 351 402 263 406019
1% 1% 1% 1% < 1% < 1% 1% < 1% 1% 1% 4%

West Flanders 35975 47287 22426 19719 18020 10709 6931 7278 6617 4109 1200945
10% 11% 10% 10% 11% 9% 9% 9% 9% 8% 11%

Missing 4094 11053 6084 7407 7070 5530 3636 3870 771 482
1% 3% 3% 4% 4% 5% 5% 5% 1% 1%



Table 3: Number of completed surveys by province, rounds 12 to 21, and Belgian population

12 13 14 15 16 17 18 19 20 21
June 02 June 16 June 30 July 14 July 27 Aug 11 Aug 25 Sept 08 Sept 22 Oct 06 Belgian population

Antwerp 27249 16856 12630 12623 18242 14145 11904 10533 9043 9223 1869730
45% 47% 47% 46% 51% 47% 48% 47% 47% 47 % 16%

Brussels 1193 692 503 547 566 504 481 436 406 473 1218255
2% 2% 2% 2% 2% 2% 2% 2% 2% 2 % 11%

Hainaut 240 145 105 103 137 96 102 83 95 90 1346840
< 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% 12%

Limburg 5408 3267 2271 2412 2865 2577 2100 1887 1657 1601 877370
9% 9% 9% 9% 8% 9% 8% 8% 9% 8 % 8%

Liège 185 99 62 80 101 73 60 65 83 82 1109800
< 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% 10%

Luxembourg 74 40 34 40 45 34 29 26 27 36 286752
< 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% 3%

Namur 130 69 46 44 77 41 44 41 48 53 495832
< 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% < 1% 4%

East Flanders 10528 5824 4395 4704 5406 5008 4081 3683 3138 3162 1525255
17% 16% 16% 17% 15% 17% 16% 16% 16% 16% 13%

Flemish Brabant 8890 4937 3864 4016 4862 4177 3507 3191 2800 2862 1155843
15% 14% 14% 15% 14% 14% 14% 14% 14% 14% 10%

Walloon Brabant 246 169 114 113 151 114 132 94 115 117 406019
< 1% < 1% < 1% < 1% < 1% < 1% 1% < 1% 1% 1% 4%

West Flanders 5941 3382 2432 2607 2888 2931 2279 2117 1823 1823 1200945
10% 9% 9% 9% 8% 10% 9% 9% 9% 9% 11%

Missing 499 292 232 248 278 244 228 201 190 228
1% 1% 1% 1% 1% 1% 1% 1% 1% 1%



unvaccinated group, while the vaccinated group only shows a correlation in the unfiltered data
sets. This is intuitively appealing, as ILIs that are not due to influenza can be expected to be
correlated simply by their appearance in a similar period of the year, whereas the pre-whitened
series specifically inform about departures from the general trend and the correlation shows
whether these departures are related. Noort et al., 2015 use the same methodology to account
for seasonal effects in their multi-seasonal data set and to identify optimal lags between the two
time series. Another approach is taken by Vandendijck, Faes, and Hens, 2013. Here, a random
walk model, which belongs to the class of ARIMA models, is used to model the survey derived
incidence. The correlation, however, is calculated between the fitted values of the random walk
model, rather than the residuals as above. The result is that the time series essentially becomes
smoother and takes into account the longitudinal nature of the data. Correlations are rather
expected to be higher with this approach and it does not prevent from finding correlations that
are rooted in the season rather than the incidence of a specific pathogen. As they compare
survey ILI incidence to clinical ILI incidence and do not differentiate between influenza and
similar illnesses, this is not per se problematic. In the present study, we will focus on the first
approach, as we also compare to laboratory confirmed cases. In addition, we expect COVID-19
incidence to show similar temporal patterns as ILI, and at the same time the clinical diagnosis
of COVID-19 and ILI show considerable overlap. We therefore expect these two diseases to be
confounded in the survey derived incidence and expect the correlation between the pre-whitened
time series to be a better indicator of the ability of one case definition over the other to predict
COVID-19.

4 Case definitions

The following provides an overview of different case definitions. It should be noted that the term
case definition is not unambiguous and that they are formed for different purposes, most notably
for either surveillance (CDC) or as a diagnostic guideline to decide which individuals should
be tested (RKI). Not all definitions specify their purpose. Furthermore, most case definitions
contain clinical criteria, which can be matched to the symptoms in the GCS, epidemiological
criteria and laboratory criteria. We will only take into account the clinical criteria. Finally,
case definitions are sometimes further divided into suspected, probable, and confirmed, with
clinical symptoms either indicating suspected or probable cases. We will consider all categories
alike and in the following reformulate the case definitions only considering clinical criteria. Each
bullet point represents a sufficient criterion for a case, which can either consist of one symptom,
two symptoms together, or two to three symptoms from a longer list of symptoms.

WHO The case definition was retrieved at https://www.who.int/publications/i/
item/WHO-2019-nCoV-Surveillance_Case_Definition-2020.2 and published on December
16, 2020.

• Acute onset of fever and cough
• Acute onset of any three or more of the following signs or symptoms:

fever, cough, general weakness/fatigue, headache, myalgia, sore throat, coryza,
dyspnoea, anorexia/nausea/vomiting, diarrhea, altered mental status

• recent onset of anosmia or ageusia

CDC The case definition was retrieved at https://wwwn.cdc.gov/nndss/
conditions/coronavirus-disease-2019-covid-19/case-definition/2020/08/05/ and
published on August 08, 2020.

• at least two of the following:
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Fever, chills, rigors, myalgia, headache, sore throat,
nausea/vomiting, diarrhea, fatigue, congestion or runny nose

• cough
• shortness of breath
• difficulty breathing
• new olfactory disorder
• new taste disorder

Sciensano The case definition was retrieved at https://covid-19.sciensano.be/nl/
covid-19-gevalsdefinitie-en-testing on March 10, 2021.

• cough
• dyspnoea
• thoracic pain
• acute anosmia or dysgeusia
• at least two of the following symptoms:

fever; muscle strain; fatigue; rhinitis; sore throat; headache; anorexia;
watery diarrhea; acute confusion; sudden fall

ECDC The case definition was retrieved at https://www.ecdc.europa.eu/en/covid-19/

surveillance/case-definition and published on December 3, 2020.

• cough
• fever
• shortness of breath
• sudden onset of anosmia, ageusia or dysgeusia

RKI The case definition was retrieved at https://www.rki.de/DE/Content/InfAZ/N/
Neuartiges_Coronavirus/Falldefinition.pdf and published on December 23, 2020.

• any respiratory complaints
• loss of taste and/or smell

For a summary and comparison, please refer to Table 4. The table shows that some symptoms
are used throughout all case definitions, e.g., the loss of smell and taste is a sufficient criterion
in all clinical case definitions. Other symptoms, like nausea and vomiting, appear only in a
subset of case definitions and yet other symptoms, like cough and rhinitis, are sufficient criteria
in some definitions while in other definitions additional symptoms have to be added to identify
a case. There were also a number of symptoms present in a case definition, but not queried in
the GCS, e.g., anorexia or an altered mental status.
In order to compare the case definitions, it would be interesting to impose a ranking based on the
relative strictness. This is a difficult task, as the symptom sets used in the different definitions
are not generally subsets of each other and because of the different status as sufficient or not.
As an example, consider the ECDC definition and the WHO definition: The ECDC definition
only uses symptoms, which are also used in the WHO definition, but not all of them, suggesting
the ECDC definition to be stricter than WHO. At the same time, all symptoms are considered
sufficient in the ECDC definition, while for a WHO case there have to be two or even three
symptoms in combination, which in turn suggests the WHO definition to be stricter. Which one
is ultimately triggered more often thus crucially depends on the prevalence of the symptoms in
isolation as well as in combination. An easy to establish ordering is that the CDC definition is
more lenient than WHO, as it includes the same set of symptoms, but counts more symptoms
as sufficient to define a case. The Sciensano definition lacks nausea from the list of symptoms,
but also includes more sufficient symptoms than the WHO: together with the observation that
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Table 4: Table of different case definitions in relation to the symptoms queried in the Grote
Corona Studie (GCS). S stands for sufficient cause, C2 for conjunction of at least two symptoms,
C3 for conjunction of at least 3 symptoms

Symptom in GCS WHO CDC ECDC RKI Sciensano
S C2 C3 S C2 S S S C2

Rapid fever/ High fever X X X X
Sore throat X X X X
Shortness of breath X X X X
Dry cough/Chest cough X X X X X
Chest pain X
Rhinitis X X X X
Muscle pain X X X
Fatigue X X X
Chills X
Nausea, vomiting X X
Painful eyes
Diarrhea X X X
Loss of smell and taste X X X X X
Severe headache X X X
Not part of GCS
Altered mental status X X
Difficulty breathing X
Headache X X X
Anorexia X
Sudden fall X

nausea is a rather rare symptom (see Figure 1), we also conclude that it is more lenient than
WHO and very similar to the CDC case definition. The RKI case definition uses a subset of
the WHO symptoms, but again all of them are sufficient criteria. In contrast to the ECDC
definition, even rhinitis is considered sufficient, which we can see in Figure 1 is by far the
most frequently observed symptom overall. We thus conclude that despite the low number of
symptoms included, this is the most lenient one. We arrive at an ordering, where WHO is the
strictest definition, followed by CDC and Sciensano and with RKI being the most lenient one,
whereas it is difficult to place the ECDC definition in this ranking.

5 Methods

5.1 Data preprocessing

5.1.1 Cases derived from GCS data

The case definitions as described above were implemented in R after mapping the symptoms
to their GCS counterparts (see Table 5). As noted above, some symptoms used in the case
definitions were not part of the GCS and can thus not be taken into account. Other symptoms,
in particular “(severe) headache”, “loss of smell and taste”, and “diarrhea” were only included
from waves 16, 10, and 7 respectively. These symptoms were partly recovered from the free
text symptom field by a simple regular expression match, i.e. each case containing the strings
“oofdpijn”, “maak”, or “iarree”, excluding the first character to match both lower and upper
case, were counted as positive cases. With this technique, 9126 cases of headache, 2261 cases
of loss of smell or taste and 1579 cases of diarrhea could be recovered. For “confusion”, and
“sudden fall” which are part of the Sciensano case definition, this method was not attempted
and they were not included in the case definition coding, as they were only queried in the last
wave.
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Table 5: Symptom correspondence table, leaving out literal correspondence

GCS Case definitions

Rapid fever Fever
High fever Fever
Sore throat Any respiratory complaints
Shortness of breath Dyspnoea
Dry cough Cough, any respiratory complaints
Chest cough Cough, any respiratory complaints
Rhinitis Coryza, congestion or runny nose, any respiratory complaints
Muscle pain Myalgia, muscle strain
Diarrhea Watery diarrhea
Loss of smell and taste Recent onset of anosmia or ageusia, new olfactory disorder,

new taste disorder, acute anosmia or dysgeusia,
sudden onset of anosmia, ageusia or dysgeusia

Severe headache Headache

Cases for which all symptoms were attributed to a known allergy were set to zero as they cannot
be regarded as indicative of COVID-19. This could only be done from wave 5 onward, as the
question was not part of the survey in waves 2–4.
Because we have largely different numbers of completed surveys for the different waves, we
will systematically use the percentage or the incidence per 100,000 participants, not the total
numbers.

5.1.2 Weights

The GCS is not a representative survey, and we find that it is not balanced over the provinces
(see Table 2). Since we know that the incidence of COVID-19 has a spatial component, this
is expected to reduce a possible correlation between observed cases and cases derived from the
GCS. For this reason, in addition to the raw percentage of clinical cases, we also look at the
percentage of weighted case, where we use a raking weight including age, gender and province
which was included in the data set. Raking is an iterative procedure of proportional fitting to
marginal frequencies of the population. Using raking over post-stratification weights is mostly
motivated by either using a larger number of variables and wanting to avoid the resulting small
strata, or the sole availability of marginal frequencies for the population. Weights were used to
be able to compare the two quantities (cases from the survey with confirmed cases in the general
population), assuming that the laboratory confirmed cases are associated with a smaller bias,
although whether a test is taken, of course, also depends on external factors and demographics.
Since not all participants specified their province, cases without this information were excluded
from further analysis (2.6%)

5.1.3 Confirmed cases

Although symptoms were reported either for the preceding 10 days (waves 2–12) or the preceding
14 days (waves 13–21), confirmed cases were always aggregated over the week preceding the
survey date. This was done primarily to obtain a time series with equal intervals over the whole
period. Moreover, it could be argued that symptoms more than a week ago may not be reported
accurately. The aggregation was a simple summation over all confirmed cases in the aggregation
interval.
For the analyses by gender and age group, confirmed cases were aggregated only over those
subgroups. For the analyses pertaining to the optimal lag between GCS cases and confirmed
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Figure 2: Illustration of aggregation windows for laboratory confirmed cases for baseline time
series (lag=0) and with shifts by day. Small ticks are days, bigger ticks weeks. Days on the
edge of the box are included in the aggregation interval.

cases, the aggregation window was shifted forward by 1 day up to 8 days obtaining thus 9
distinct time series, see Figure 2 for an illustration.
For the Figures, the summed confirmed cases were transformed to a 7-day incidence rate by
dividing the number of cases with the size of the Belgian population (11,492,641) and multiplying
by 100,000.

5.2 Statistical analysis

To validate that the cases derived from the GCS are a viable proxy for confirmed cases and to
select the best fitting case definition, we proceed in three steps. Firstly, we inspect the evolution
of the incidence of confirmed cases as compared to cases derived from GCS in line graphs. To
facilitate means of comparison, confirmed cases are displayed on their own scale. Secondly,
we calculate Pearson correlations between confirmed cases and GCS case proportions for the
different case definitions. In a third step, we take into account that the two vectors are actually
time series and pre-whiten the original data using an ARIMA before we calculate correlations.
While we will include all available data for step 1, we will leave out waves 2–4 from the two
subsequent steps, because of the potential unreliability of the confirmed cases. In particular, the
ratio of positive tests was substantial in this period, namely above 25%, which we will use as the
threshold here (see also Figure 3). Such a high positive test rate usually means that not enough
tests were available and only those individuals got tested, where the suspicion of COVID-19
was highest. With this testing strategy, a large number of undetected cases is expected hence
the observed number of cases will underestimate the true number of infections.
For all correlation analyses, proportions (GCS data) are first subjected to a logit transformation
(Warton and Hui, 2011) and the incidence data is subjected to a log transformation (Benvenuto
et al., 2020) in order to stabilize the mean and approach a normal distribution, which is assumed
in the inferential tests for the correlation as well as in comparisons of correlations. The data is
plotted without the transformation.

5.2.1 ARIMA pre-whitening

ARIMA models are used to model and predict time series data. In addition, they can be
used as a filter in a pre-processing step to avoid to overestimate the correlation between two
autocorrelated time series (Carlson et al., 2009; Bloom, Buckeridge, and Cheng, 2007) and to
facilitate identification of a suitable lag (Helfenstein, 1991).

11



0.0

0.2

0.4

0.6

0

10000

20000

30000

Mar Apr May Jun Jul Aug Sep Oct
date

po
si

tiv
e 

te
st

 r
at

e w
eekly tests [N

]

colour
# of weekly 
tests (RA)
positive test 
rate (RA)

Figure 3: Rolling averages of positive test rate and weekly number of conducted tests. Vertical
lines mark beginning and end of the time frame asked about in wave 5, which is the first wave
that is used for correlation analyses.

In general, an ARIMA model may contain three components: an autoregressive component, a
differencing component, and a moving average component. All of these components can be of
different orders. A differencing component of second order, for instance, means that the data is
first replaced by the differences between two consecutive data points, and on these differenced
data the operation is repeated. Similarly, we can add autoregression components of second
or third order and also moving average components of multiple orders. The autoregressive
components enter the model equation by including previous measurements with coefficients
(the φs in the general ARIMA model formula in equation 1). The moving average components,
on the other hand, are the errors of previous measurements again multiplied by their own
coefficients (the θs in equation 1). The differencing components are integrated by replacing the
yts by the required difference.

yt = µ+ φ1yt−1 + . . . + φpyt−p − θet−1 − . . . − θqet−q (1)

The instantiation of an ARIMA (1,1,0) would then be

yt − yt−1 = µ+ φ1(yt−1 − yt−2) or equivalently yt = µ+ φ1(yt−1 − yt−2) + yt−1 (2)

In determining the ARIMA parameterization, we rely on the Box-Jenkin’s method (e.g. Helfen-
stein, 1991), which is a stepwise procedure. Initially, the time series is subjected to transfor-
mations and differencing to improve stationarity and account for general trends in the data.
The residuals are then inspected in plots of the autocorrelation function (ACF) and the partial
autocorrelation function (PACF) to determine whether autocorrelation terms or moving average
terms should be added and the model is refitted, if necessary. The residuals are again inspected
until no apparent autocorrelation is left, which can be validated using a Ljung-Box test.
After building a suitable ARIMA model for the confirmed cases, the estimates of this model
are used to pre-whiten both the confirmed cases and the case proportions as derived from the
GCS, by applying the model to the data and storing the residuals. For the pre-whitened values,
correlations are again calculated. The expectation is that, once we have removed common self-
dependencies in the data, the correlation coefficient is less influenced by common overall trends,
like for example an increase in all kinds of respiratory complaints induced by the season. Instead,
more subtle correlations in the change of the signal possibly will be detected. In addition, we
expect the pre-whitened series to give a better insight into which shift of the time window is
most suitable.
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5.2.2 Missing data

Although we do not observe missing data in the general sense, the different intervals between
survey rounds (1 week or 2 weeks) can be conceptualized as a time series with a 1-week interval
with observations systematically missing every second time in the later part of the series. The
ARIMA model assumes an equally spaced time series, as e.g., the differencing operation is only
meaningful for equal distances. We will therefore impute the missing values.
There are numerous techniques for imputation of missing data, but in general few are applicable
to the univariate data of a time series. Simple techniques include last observation carried
forward, nearest neighbor, and linear interpolation. Linear interpolation is generally found to
perform well for short gaps, while longer gaps can be problematic (Junninen et al., 2004). In
these contexts, it can even outperform more advanced methods based on ARIMA modeling and
multiple machine learning techniques (Salles et al., 2015). As linear interpolation has also been
used for ILI incidence before (Rasmussen et al., 2019), we are confident that the method is
adequate for our data set and will use it to interpolate between surveys in the second part of
the time series.

5.2.3 Influence of weights

The papers discussed above which aimed at validating ILI cases derived from citizen science
projects did not use weights. We are interested to investigate, whether using weights is affecting
correlations and, if so, in what direction. To this end, we will perform inferential tests on the
magnitude of correlations between weighted GCS cases and confirmed cases and unweighted
GCS cases and confirmed cases, for each case definition separately. We will use Williams’
t statistic (Williams, 1959) for dependent correlations on each of the pairs and subject the
resulting p-values to Hommel’s adjustment to account for multiple testing. William’s t statistic
in the formulation of Steiger, 1980 is given in equation 3, where j is the common variable,
whereas k and h are the different second variables.

T = (rjk − rjh)

√
(N− 1)(1 + rkh)

2(N−1
N−3)|R|+ r̄

2(1 − r3kh)

with |R| = (1 − r2jh − r2jk − r2hk) + (2rjhrjkrhk) and r̄ =
1

2
(rjk + rjh) (3)

5.2.4 Comparison of different case definitions

We will compare the different case definitions mainly on a descriptive level, i.e., using the graphs
and correlations described in the previous subsections. In addition and as described above for
testing for the importance of weights, we will use Williams’ t test on a subset of contrasts and
apply Hommel’s correction to the p-values of these pairwise comparisons.
While theoretically all contrasts could arguably be of interest, we restrict ourselves here to
contrasting the Belgian Sciensano case definition to all other case definitions in order not to
suffer either from inflation of α or from an extreme loss in power, when applying a suitable
multiple testing correction to the full set of 20 comparisons.

5.2.5 Identification of optimal lag

To test whether correlations improve or deteriorate if a lag is introduced between GCS cases
and confirmed cases, we make use of the different aggregation windows described above and
compare each case definition proportion to each lag.
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This step will also be performed for the pre-whitened time series, where an individual ARIMA
model with the same parameterization as identified for the 0-lag time series will be fitted to
each of the shifted time series.

5.2.6 Effects of gender and age

COVID-19 is known to affect male and females differently on average and age also plays a
prominent role in the progression and prospect of an illness. To investigate whether these
differences also amount to different case definitions being more or less related to the observed
incidence of this group, we calculate correlations in the subgroups male/female as well as within
the age groups 0–19, 20–39, 40–59, and 60+. The reasoning behind the age groups is twofold:
Theoretically and based on the literature, distinctions between children, young adults, older
adults, young seniors and older seniors would be interesting to look at. However, among the
respondents to the GCS, there are very few children and older seniors, therefore these categories
had to be merged with adjacent ones. In addition, for the confirmed cases, we only have
categorized age in steps of ten, which reduces the possibilities to split up the data. As can be
seen in the demographics table above (1), this produces three more or less balanced groups and
an additional underpopulated group of 0–19. For the latter group, results should be treated
with caution and when interpreting their results, it is important to note that most responses
came from older teenagers, with few participants below 10 and none below 6.
Correlations by gender and age are only calculated for unweighted cases, as weights include age
and gender information.

5.2.7 Sensitivity and specificity for waves 20 and 21

For waves 20 and 21, there is survey information on whether a laboratory test was taken and
about the result. For this subset, specificity and sensitivity will be calculated for the different
case definitions. Sensitivity and Specificity for a case definition A are defined as

SensitivityA =
# of cases with positive PCR test and identified by case definition A

# of cases with positive PCR test
(4)

SpecificityA =
# of cases with negative PCR test and not identified by case definition A

# of cases with negative PCR test
(5)

As testing was likely conducted based on the symptoms that were reported, however, results
should not be over interpreted. Normal approximation confidence intervals are reported.

5.3 Software

All statistical analyses are performed in R version 4.0.4 (R Core Team, 2021). The ARIMA
analysis was conducted using the R base function arima() and the package forecast (Hyndman
and Khandakar, 2008) and in particular the Arima() function to apply the derived model to
the different series for pre-whitening. William’s t statistic was calculated with the function
r.test() from the package psych.

6 Results

6.1 Visual comparison

In Figure 4, we plot the incidence rate for each case definition derived from the GCS data
and the laboratory confirmed incidence as reported by Sciensano. First focusing on the case
definitions, we observe that the ECDC, CDC and Sciensano definitions largely pattern together.
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Figure 4: Incidence of COVID-19 cases by case definition as obtained from GCS data and
laboratory confirmed COVID-19 incidence (see right y axis for scale), no weights

Based on the case definitions, this was expected for CDC and Sciensano, but unclear for ECDC.
Cases according to the WHO are detected at a lower rate and show less of a seasonal effect:
there is certainly a drop in the beginning, but the rise starting at the end of the summer and
potentially signaling the beginning of the second wave is much less pronounced. The very
broad RKI case definition, on the other hand, shows a much higher rate. Comparing to the
laboratory confirmed incidence, we observe that the overall pattern of decreasing numbers in
spring, low numbers over the summer and an increase towards autumn is reflected in all case
definitions. For the confirmed cases, we additionally see a rise in cases from the beginning of
the survey period (March 17) extending roughly until mid April. As discussed above (section
5.2), it is likely that the rise is, in fact, the result of the increasing number of tests and that
cases are underestimated in this period. Here, the GCS derived incidence might actually be a
better reflection of the overall pattern. Overall, the incidence rates differ by a factor of about
100, i.e., incidence as derived by the GCS is a hundred times higher than laboratory confirmed
incidence. This may be due to a systematic underestimation of the real incidence by the number
of laboratory confirmed tests, a lack of specificity of the case definitions, or a combination of
both.
Figure 5 distinguishes between weighted and unweighted cases. There are some noticeable
differences between the two curves. In general, it is hard to tell whether the weighted incidence
resemble the time course of the laboratory confirmed incidence more closely. In the second wave,
especially after September 8, the confirmed incidence rises rapidly, approximately doubling in
two weeks. The rise is less pronounced in general for the GCS derived incidence, but the weighted
cases show a larger increase than the unweighted cases for all case definitions, suggesting a closer
fit. To compare the predictive ability of weighted and unweighted cases in a principled fashion,
we refer to the next section where we look at correlations.
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Figure 5: Incidence of COVID-19 cases by case definition and including raking weights (+W)
as obtained from GCS data and laboratory confirmed COVID-19 incidence (see right y axis for
scale)

6.2 Raw cross correlations

6.2.1 Complete data set without lag

Table 6 lists correlations between logit transformed case proportions derived using the different
case definitions from the GCS symptom data, and log transformed laboratory confirmed cases.
Only data from wave five onward is used and the table differentiates between using weighted or
raw case percentages.

Table 6: Correlations between weighted and unweighted GCS derived case proportions and
laboratory confirmed cases without lag, rounds 5–21

WHO CDC ECDC Sciensano RKI

weighted

r 0.660 0.815 0.796 0.796 0.811
95% CI lower bound 0.262 0.550 0.511 0.512 0.542
95% CI upper bound 0.866 0.931 0.924 0.924 0.930

p 0.004 0.000 0.000 0.000 0.000

unweighted

r 0.765 0.805 0.758 0.778 0.799
95% CI lower bound 0.450 0.529 0.437 0.475 0.516
95% CI upper bound 0.911 0.927 0.908 0.916 0.924

p 0.000 0.000 0.000 0.000 0.000

In general, we observe moderate to high positive correlations between the proportion of weighted
cases and the confirmed cases ranging between .660 and .815. All correlations are highly signif-
icant. The highest correlation is observed for the CDC case definition for both weighted and
unweighted analyses. For the WHO case definition the correlation decreases when using weights,
whereas all other correlations increase with weights. A statistical test for the difference between
correlations showed no significant difference between weighted and unweighted correlations (all
p>0.05 after applying Hommel correction). The correlation for the case definition of Sciensano
was not significantly different from any correlation using the other case definitions (all p>0.05
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after applying Hommel correction).

6.2.2 Different time lags

Table 7 lists correlations for weighted case proportions derived from the symptom data and
confirmed cases aggregated over 1 week preceding the survey (lag 0) or aggregated over a
shifted 7-day time interval, where shifts are performed in days. The same transformations as
above were applied. We observe that for most case definitions, the optimal lag is 1 day, which
includes all confirmed cases between 6 days before the survey was taken until one day after the
survey was taken. This suggests that the survey data can already help to estimate confirmed
cases one day ahead, which may well be related to the average time a PCR test needs to be
evaluated (between 12 and 48 hours). We also observe that correlations decrease only slowly
and are still in general high for the interval 1 week after the survey date (all r>0.74). This
might indicate that the GCS data has a high predictive capacity, but may also be related to
high auto correlation in the data. This will be resolved in section 6.3.2. A special case seems
to be the WHO case definition, which shows an increasing correlation with longer lags.

Table 7: Correlations between weighted GCS derived case proportion and confirmed cases
calculated for different lags, rounds 5–21

lag 0 1 day 2 days 3 days 4 days 5 days 6 days 1 week 1 week+1

WHO 0.660 0.698 0.726 0.752 0.767 0.772 0.791 0.809 0.822
CDC 0.815 0.828 0.823 0.815 0.814 0.811 0.810 0.796 0.787
ECDC 0.796 0.803 0.792 0.777 0.773 0.768 0.764 0.745 0.731
Sciensano 0.796 0.805 0.796 0.784 0.781 0.776 0.773 0.756 0.743
RKI 0.811 0.829 0.825 0.820 0.821 0.818 0.824 0.812 0.803

6.2.3 Analyses by gender and age

Table 8 shows correlations between unweighted GCS derived case proportions and laboratory
confirmed cases by gender. Except for the WHO case definition, we observe higher correlations
for females than for males, especially for the Sciensano and ECDC case definitions. This suggests
that these case definitions are better able to capture the prototypical clinical appearance of
COVID-19 in women. For the WHO case definition, the correlation is higher for males, but the
difference is also smaller than for the other case definitions, which points to the case definition
being more general. When comparing the case definitions, we see that the WHO case definition
exhibits the highest correlation in males, while in females again the CDC case definition shows
the highest correlation with confirmed cases. All correlations are highly significant.

Table 8: Correlations between unweighted GCS derived case proportion and confirmed cases by
gender, transformed, rounds 5–21

male r males 95% CI female r female 95% CI

WHO 0.766 [ 0.452 ; 0.911 ] 0.728 [ 0.380 ; 0.895 ]
CDC 0.646 [ 0.240 ; 0.860 ] 0.848 [ 0.620 ; 0.944 ]
ECDC 0.598 [ 0.165 ; 0.838 ] 0.816 [ 0.552 ; 0.931 ]
Sciensano 0.608 [ 0.180 ; 0.842 ] 0.833 [ 0.587 ; 0.938 ]
RKI 0.712 [ 0.352 ; 0.889 ] 0.814 [ 0.547 ; 0.930 ]

Table 9 gives correlations between unweighted GCS derived case proportions and laboratory
confirmed cases by age group. We first note that correlations are in general much lower for
teenagers and children, with the ECDC case definition not differing significantly from zero.
As pointed out in section 5.2.6, this might be due to the sparsity of the data, other possible
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explanations will be explored in the discussion. Similar to the general population, the CDC
case definition results in the highest correlation for teenagers and children. In young adults, the
correlations are similar as in the general population, with the highest correlation found for the
CDC case definition. In older adults, correlations are also comparable to the general population,
and here we find the highest correlation for the WHO case definition. For the senior group,
finally, we see that except for the WHO case definition, correlations are very high (all r > 0.8),
with the RKI case definition resulting in the highest correlation. The WHO case definition, by
contrast, shows only a moderate correlation of 0.375, which is not significantly different from
zero.

Table 9: Correlations between unweighted GCS derived case proportion and confirmed cases by
age group, transformed, rounds 5–21

Age r 95% CI

teenagers WHO 0.595 [ 0.141 ; 0.842 ]
and children CDC 0.597 [ 0.143 ; 0.843 ]
0–19 ECDC 0.443 [ -0.067 ; 0.770 ]

Sciensano 0.586 [ 0.127 ; 0.838 ]
RKI 0.500 [ 0.006 ; 0.798 ]

young adults WHO 0.715 [ 0.357 ; 0.890 ]
20–39 CDC 0.834 [ 0.589 ; 0.938 ]

ECDC 0.792 [ 0.503 ; 0.922 ]
Sciensano 0.809 [ 0.538 ; 0.929 ]
RKI 0.776 [ 0.471 ; 0.915 ]

older adults WHO 0.801 [ 0.522 ; 0.926 ]
40–59 CDC 0.776 [ 0.471 ; 0.915 ]

ECDC 0.716 [ 0.360 ; 0.890 ]
Sciensano 0.743 [ 0.407 ; 0.901 ]
RKI 0.794 [ 0.507 ; 0.923 ]

seniors WHO 0.375 [ -0.129 ; 0.725 ]
60+ CDC 0.867 [ 0.661 ; 0.951 ]

ECDC 0.858 [ 0.643 ; 0.948 ]
Sciensano 0.875 [ 0.681 ; 0.954 ]
RKI 0.895 [ 0.728 ; 0.962 ]

6.3 Pre-whitened cross correlations

6.3.1 Complete data set without lag

To approach stationarity in the time series of confirmed cases, the series was first log trans-
formed and differenced to account for the time trend in the data. Inspection of PACF and
ACF on the transformed and differenced data showed a significant partial autocorrelation at
lag 1 and a decreasing pattern of autocorrelations with increasing lag for the ACF, therefore
an autocorrelation term of first order was included and estimated at 0.736 (0.143). Model di-
agnostics of the resulting ARIMA of the form (1,1,0) are displayed in Figure 6 and show that
the time series was successfully detrended. This was confirmed by a Ljung-Box test on the
residuals (p = 0.865). Alternative ARIMA models (0,1,0) and (0,2,0) were fitted in addition.
The random walk model (0,1,0) displays significant autocorrelation in the residuals and a signif-
icant Ljung-Box test and is hence not considered adequate. The random walk model of second
order (0,2,0) shows similarly good diagnostics as the selected model and a slightly smaller AIC
value. If applied to the GCS data, however, it produces as an artifact a zero residual for all
interpolated values, which distorts the general picture considerably and hence this model is also
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Figure 6: Model diagnostics of ARIMA model for confirmed cases time series.

not used.
Figure 7 shows the residuals of the selected ARIMA model along with the pre-whitened GCS
derived case definition time series. After detrending, we notice that graphical inspection is
not very informative and gives little intuition as to which case definition produces the greatest
correlation. We therefore turn to Table 10, which lists correlation coefficient, 95% confidence
intervals and p-values for the pre-whitened series. As expected, correlations are in general much
reduced because the common trend is removed from the data and only reach small to moderate
effect sizes (between 0.12 and 0.48). We further observe that some correlations do not reach
significance any longer, in particular the WHO and RKI case definitions. The highest correlation
is observed for the ECDC case definition for both weighted and unweighted cases and closely
followed by the CDC and Sciensano case definitions. For these three, the weighted cases result
in slightly stronger correlations, whereas for RKI and WHO case definitions, the unweighted
cases show a larger correlation coefficient. For the RKI and WHO case definitions, we can thus
not conclude that they correlate to confirmed cases more than expected by a common temporal
trend. For the other three, the correlations are only moderate after accounting for the common
trend, but still significantly different from zero.

6.3.2 Different time lags

For each of the time series obtained by shifting the aggregation window, the same procedure as
above was applied to obtain an appropriate ARIMA model. For all lags, the ARIMA (1,1,0) was
found to be an adequate model with Table 11 giving the autocorrelation estimate and standard
error along with the AIC and the Ljung-Box p-value.
Table 12 shows correlation coefficients for the weighted and pre-whitened time series derived
from the GCS and the pre-whitened confirmed cases aggregated over different time windows
with lag 0 starting 6 days before the survey was filled in and extending to the survey date and
the subsequent windows each shifted by one day to the right (see Figure 2). For CDC, ECDC,

19



−0.01

0.00

0.01

−0.3

0.0

0.3

27 Apr 25 May 22 Jun 20 Jul 17 Aug 14 Sep 12 Oct

pr
e−

w
hi

te
ne

d 
ca

se
s 

de
riv

ed
 fr

om
 G

C
S

confirm
ed cases residuals

WHO+W filtered

CDC+W filtered

ECDC+W filtered

Sciensano+W filtered

confirmed cases filtered

Figure 7: Time series pre-whitened by ARIMA (1,1,0)

Table 10: Correlations between ARIMA pre-whitened weighted and unweighted GCS derived
case proportions and pre-whitened laboratory confirmed cases without lag, rounds 5–21

WHO CDC ECDC Sciensano RKI

weighted

r 0.117 0.427 0.479 0.412 0.238
95% CI lower bound -0.301 0.028 0.093 0.010 -0.183
95% CI upper bound 0.497 0.708 0.739 0.699 0.586

p 0.587 0.038 0.018 0.046 0.262

unweighted

r 0.143 0.426 0.453 0.410 0.271
95% CI lower bound -0.277 0.027 0.061 0.008 -0.148
95% CI upper bound 0.516 0.707 0.724 0.698 0.608

p 0.506 0.038 0.026 0.046 0.200

and Sciensano, we see highest correlations for the 0 shift, which is closest to the time window
for which symptoms were reported. In contrast to our observations in section 6.2.2, correlations
decrease quite quickly when moving to the future, with no significant correlations after lag 0
for the CDC, ECDC, and Sciensano case definitions. This indicates that the high correlations
observed for longer shifts for the unfiltered time series were largely due to the autocorrelation in
the data. Even shifting one day into the post-survey period results in non-significant correlations
for all case definitions. For the RKI case definition, on the other hand, correlations fluctuate
between 0.175 and 0.410 with no apparent pattern and with only the correlation at the 6 day
lag reaching significance. While this pattern was not expected, it is in line with a virtually
non-decreasing correlation for the raw time series with the lags studied here.

Table 11: Autocorrelation estimates and diagnostics of ARIMA (1,1,0) model at different shifts.

lag 0 1 day 2 days 3 days 4 days 5 days 6 days 1 week 1 week+1
AR1 0.736 0.805 0.806 0.749 0.737 0.752 0.714 0.770 0.822
(SE) 0.143 0.128 0.129 0.145 0.149 0.147 0.160 0.150 0.130
AIC 8.01 3.69 3.82 8.43 9.82 9.14 13.60 12.05 7.00
Ljung-Box p 0.865 0.547 0.522 0.708 0.911 0.927 0.468 0.929 0.614
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Table 12: Correlations between ARIMA pre-whitened weighted and unweighted GCS derived
case proportions and pre-whitened laboratory confirmed cases at different lags, rounds 5–21

lag 0 1 day 2 days 3 days 4 days 5 days 6 days 1 week 1 week+1
WHO 0.117 0.096 0.065 0.054 0.044 0.013 -0.044 -0.009 -0.109
CDC 0.427* 0.329 0.339 0.256 0.243 0.192 0.131 0.030 0.098
ECDC 0.479* 0.373 0.396 0.294 0.279 0.228 0.140 0.024 0.094
Sciensano 0.412* 0.325 0.340 0.279 0.266 0.217 0.140 0.050 0.085
RKI 0.238 0.356 0.201 0.129 0.193 0.175 0.410* 0.325 0.297

Table 13: Cross tabulation of lab-confirmed cases and cases as derived from different case
definitions for the subset of participants who reported a PCR test from rounds 20 and 21 of the
GCS

pos PCR pos PCR pos PCR

WHO

1 0

1 28 306
0 15 1637

CDC

1 0

1 36 592
0 7 1351

ECDC

1 0

1 35 475
0 8 1468

Sciensano

1 0

1 36 580
0 7 1363

RKI

1 0

1 35 754
0 8 1189

6.4 Specificity and sensitivity of different case definitions

Table 13 gives the frequencies of true positives, false positives, false negatives and true negatives
of GCS-derived cases using the different case definitions when compared to the result of a
PCR test. From the subtables, specificity and sensitivity measures are derived and given in
Table 14 and plotted in Figure 8. Unsurprisingly, the strict definition of WHO results in the
lowest sensitivity, but highest specificity. CDC, ECDC and Sciensano again pattern very closely
together, with relatively high sensitivity of above 80% and medium specificity of around 70%.
Somewhat surprisingly, the RKI case definition does not result in higher sensitivity than these,
with the exact same number of cases covered as the ECDC definition and even one less than
Sciensano and CDC. Specificity, on the other hand, is lowest for the RKI definition. We can
conclude that the use of this very broad definition only increases false positives, but not true
positives when compared to ECDC, Sciensano and CDC case definitions and is hence strictly
worse, at least in the sample we investigate here. Of course, there are only 43 positive cases in
total, so potentially more subtle differences might not become apparent.

Table 14: Sensitivity and specificity of different case definitions with confidence interal, calcu-
lated on tested subset of rounds 20 and 21.

Sensitivity 95% CI Specificity 95% CI

WHO 0.651 [0.509; 0.794] 0.843 [0.859; 0.827]
CDC 0.837 [0.727; 0.947] 0.695 [0.675; 0.716]

ECDC 0.814 [0.698; 0.930] 0.756 [0.737; 0.775]
Sciensano 0.837 [0.727; 0.947] 0.701 [0.681; 0.721]

RKI 0.814 [0.698; 0.930] 0.612 [0.590; 0.634]

7 General Discussion

In general, the presented results show that longitudinal data from the citizen science project
“De Grote Corona-Studie” can be used as an indicator of the ongoing COVID-19 epidemic in
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Figure 8: Sensitivity vs 1-Specificity for different case definitions for tested individuals in rounds
20 and 21

Belgium. In particular, strong correlations are observed between the percentage of cases derived
with different case definitions and the summed laboratory confirmed cases in the week preceding
the survey. After accounting for autocorrelation in the data, correlations decrease, but remain
significant for three out of five case definitions. Correlations show different strengths for different
gender and age groups and restricted ability to predict incidence rather than reproducing the
current occurrence of infections. In the following, we will discuss the findings for the different
case definitions in detail and compare the results again, before discussing possible shortcomings
and limitations of the current analysis.

7.1 Sciensano, ECDC, and CDC

Since the results for the cases derived using the definitions by Sciensano, ECDC and CDC are
so similar, we discuss these three together. As noted above, for Sciensano and CDC the case
definitions themselves are very similar, such that the similar patterns were expected, while for
ECDC this was less clear a priori. Sensitivity and specificity values are very similar and in
general impressive, compared to the results for single symptoms and symptom combinations
investigated in previous research (Struyf et al., 2021). Possibly, this is due to testing being
largely dependent on the presence of symptoms. Given the values observed, we would likely
conclude that the ECDC case definition is the best diagnostic test for COVID-19. Our aim,
however, is not to diagnose patients, but to find a correlate for laboratory confirmed cases. For
this task, the same case definition does not necessarily perform best. If we had a small data
set, high sensitivity might be more important, while in a very large data set, a very specific test
with low sensitivity might also be able to successfully detect trends.
In the correlation analyses, we see that all three case definitions lead to significant correlations to
laboratory confirmed cases in the week preceding the survey. This is true for raw percentages,
but also after accounting for common autocorrelation and irrespective of the use of weights.
Overall, these three case definitions are thus a viable proxy for true COVID-19 cases and
can be used to estimate concurrent incidence. We also see, however, that the correlation is
reduced considerably for the male subgroup, where both the broader definition of RKI and the
stricter definition of WHO perform better. It would be interesting to see whether specificity
and sensitivity are also dependent on gender, but unfortunately we cannot investigate this
further as our subset of laboratory tested individuals is fairly small. As it is, it is difficult
to say whether the difference is observed because of chance and the male population being
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smaller and hence providing less accurate estimates, or whether it is due to the difference of
the clinical appearance of COVID-19 in males and females. Indeed, a relatively small study
on differences between symptom burden between males and females showed that females show
a higher prevalence for virtually all symptoms and most strongly for anosmia (Biadsee et al.,
2020). If symptom burden is on average higher in women for COVID-19, we would indeed
expect to correctly identify more cases with all case definitions for women compared to men.
In this respect, however, it is also important to consider whether symptom burden for ILIs and
other respiratory illnesses that tend to be confused with COVID-19 is also higher for women or
not, because more false positives would weaken the correlation in turn.
For the different age groups, we see stable and high correlations for young adults, older adults,
and seniors for all three definitions. In seniors, the correlation is highest, reaching up to 0.88
for the Sciensano definition. In teenagers and children, on the other hand, the correlations
are considerably smaller and not reaching significance for the ECDC case definition. We have
noted above already that this might be due to the small sample we have from this group, with
only around 200 responses per survey round after round 12. Given that the 7-day incidence
per 100,000 ranged between 5 and 200 in the period we investigate, we would therefore not
necessarily expect any actual COVID-19 cases in our sample in this age group. An alternative
line of thought could start with the observation that the case definitions are better suited to
diagnosing adults than children, as children are known to remain more often asymptomatic
than adults, but to show gastrointestinal symptoms like vomiting and diarrhea more often
(Zare-Zardini et al., 2020). These symptoms are only considered in combination with other
symptoms, if at all. Although this might well be the case, it is probably not an explanation for
the low correlations we observed here, as even in the 0-19 age group, most participants were at
least 17 and would thus not be counted as children in most studies.
Potentially due to the differences between age and gender groups, but possibly rather due to
spatially varying incidence, the use of raking weights was found to be beneficial for correlations
both for the raw time series, as well as for the pre-whitened time series, although the differences
did not reach significance. This result is expected to carry over to other citizen science projects,
whenever there is a severe imbalance of participants from different age and gender groups or
from different regions.
With regard to the best lag to match confirmed cases to GCS-derived cases, our results are not
entirely consistent. In the raw time series, we see higher correlation with confirmed cases in
the one day ahead shifted time window, i.e., including five days before the survey date and one
day after the survey date. Together with only slightly decreasing correlations for higher lags, it
seemed that the GCS data can be predictive of laboratory-confirmed cases. The analysis of the
pre-whitened time series, however, refutes this conclusion by only showing significant correlation
for the zero-lag time window, which stretches from 6 days prior to the survey date until the
survey date itself. Looking in some more detail at the ARIMA models used for pre-whitening,
it becomes clear why the correlations for lags up to 8 days remain so high: the fitted ARIMA
model shows an autocorrelation estimate of roughly 0.75. We can therefore conclude that the
high correlations for lags of several days are not to be taken as indicative of the predictive
nature of the GCS data, but rather as the result of high autocorrelation — here, the original
confirmed cases data could equally well be used to predict cases in the future. The one point
that remains unclear is why correlations are actually higher for a one-day shift when looking
at the raw time series. As the difference is not big, we conjecture that this difference is not
systematic and leave this point for further research.
In summary, the three case definitions presented in this section all exhibit the ability to estimate
concurrent incidence, with only subtle differences between the different definitions. If a choice
has to be made, it will be the ECDC definition, which has highest specificity and sensitivity and
which shows the highest correlation with confirmed cases after accounting for autocorrelation.
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7.2 WHO

In comparison to the three case definitions discussed in the previous section, the WHO case
definition is stricter in that only the loss of smell or taste is a sufficient criterion, whereas cough,
fever and other more general symptoms have to be encountered in combination. As a result,
we see much lower sensitivity, but considerably higher specificity, as could be expected.
In the correlation analysis, we see in general good correlations when looking at the raw time
series, while the correlation drops severely to a non-significant level when removing autocor-
relation. Also, for seniors, as well as for teenagers and children, this case definition is not
correlating highly. With regard to gender, on the other hand, we do not see the distinctive
pattern described above, but indeed see a slightly higher correlation for males. We can only
speculate why this is the case - possibly the more severe cases with multiple symptoms present
are distributed equally across gender. The low performance in seniors further suggests that this
age group tends to exhibit fewer symptoms in combination, although this seems counterintuitive
given that seniors show more severe progressions in general.
While for the original time series correlations increased with increasing lags, this pattern did
not persist after removing autocorrelation and hence has to be considered a spurious effect.
In conclusion, the WHO case definition seems to be less suited to estimate concurrent incidence
compared to the definitions by ECDC, CDC, and Sciensano.

7.3 RKI

From all case definitions investigated here, the RKI case definition can be argued to be the
widest one, including all respiratory symptoms in isolation and resulting in the highest rate of
detected cases. On the other hand, more general symptoms like fever, headache, and fatigue are
missing from this case definition. This combination leads to a considerable drop in specificity
compared to the other case definitions, but also no higher sensitivity - at least not in the sample
at hand. This already suggests that it is less suited as an indicator of incidence.
Looking at the raw time series, however, this prediction is not borne out, as it is on par with the
set of three case definitions discussed above and even surpasses them at a one-day lag and when
looking at the male subset as well as for the elderly. Only after correcting for autocorrelation,
the correlation with the confirmed cases drops to a non-significant level. We can understand
this finding, by thinking about the false positives produced by the RKI case definition: these
will mostly be cases of common cold or ILI. In general, these illnesses show a strong seasonal
effect and in particular a rise in early autumn, which resembles the emergence of the second
wave for COVID-19. Here the importance of correcting for autocorrelation becomes apparent,
only after removing these general trends, the specific ability of the RKI case definition becomes
tractable and is found to be very low.
A possible advantage of the RKI definition, however, might be in predicting future incidence.
In both the raw time series as well as the pre-whitened time series, we see comparatively high
correlation for lags around 6 days, which is significant even in the pre-whitened data set. While
this could, of course, also be a chance finding (note that we do not adjust the p-values for
multiple testing), it is not unlikely that the more lenient case definition is better able to capture
COVID-19 cases in the earliest stage, i.e., before individuals feel so sick they will consult a
physician and potentially well before being administered a PCR test. Whether this advantage
outweighs the disadvantages depends on how stable this effect is and what the goal of using the
citizen science data is exactly.
In summary, the RKI case definition is too broad to be a good estimate of incidence, but might
have a stronger predictive component than the other case definitions investigated here.
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7.4 Limitations

While the results discussed above suggest that data from a citizen science project can be used
to estimate the incidence of COVID-19 when using existing case definitions, there are some
limitations that we acknowledge. Most importantly, it is not clear how our results carry over to
future COVID-19 waves. In the time period we analyzed, there were various and changing non-
pharmaceutical interventions in place, including school closures, closures of nonessential shops,
but also social distancing measures and enhanced hygiene exercised by the general public. These
measures and the increased alertness in the population reduced the occurrence of the common
cold as well as influenza to a considerable degree. This has implications for the estimates of
specificity as well as to correlations between GCS derived cases and confirmed cases. Since
common cold and ILI, which are easily confused with COVID-19 based on the clinical profile,
had a lower than usual prevalence, less false positives are expected to have occurred. In the
situation where ILI and common cold rates would be similar to preceding years, a lot more
false positives would be expected, hence reducing the specificity of all our case definitions, but
potentially more for the more lenient ones. The correlations would then be expected to be much
lower and susceptible to influenza outbreaks that are asynchronous to COVID-19 outbreaks.
Whether any of our case definitions would be capable to successfully differentiate between
COVID-19 and ILI, is an open question. Our qualitative result preferring the case definitions of
medium rigor (ECDC, CDC or Sciensano) might also not hold in a post-pandemic state: Here
more specific case definitions, as the WHO one, might fare much better, depending again on
how well it differentiates between COVID-19 and other respiratory illnesses.
If we think one step further, however, anticipating the next pandemic caused by a novel
pathogen, our insights might still be useful. Especially in the early phase of this pandemic,
there were a lot of restrictive measures, reducing other illnesses, but at the same time there
were not enough tests available to obtain realistic estimates of incidence. In the population, the
willingness to invest time and participate in citizen science projects was enormous, providing
a good and stable data basis. We suspect that in this early stage, results from citizen science
projects could have been used and might have been more reliable than the official numbers of
confirmed cases.
The analysis itself also has some drawbacks. Our main correlation analyses using pre-whitened
time series rely partly on interpolated values. This was a compromise in order to use all available
data, but also to respect the requirement of equal spacing when using ARIMA models. An
alternative would have been to construct a consistently biweekly time series by discarding every
second survey round from the first phase. With this method, however, we would not only
have lost available data, but also shortened the time series so severely that ARIMA modeling
would not have been appropriate any longer. This problem, of course, only occurred, because
the survey was conceived and realized as a fast reaction to the evolving pandemic. If instead
existing citizen science projects targeted at ILI incidence and instantiated in a regular manner
would have been used, these problems would not have been present. The consequences of
this choice are not so clear. On the one hand, using linear interpolation and a combination
of differencing and autocorrelation for pre-whitening resulted in artificially low residuals, as
the interpolation can be expected to be closer to the model than a real and potentially noisy
data point. This might result in an increased correlation, but can equally well result in the
opposite—depending on the missing value itself. Fortunately, this problem does not hold for
the raw time series, where we only took the available data into account.

8 Conclusion

The present work aimed to investigate whether citizen science symptom burden data can be
used to estimate incidence of COVID-19 and to evaluate which case definition from a set of
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five is best suited for the task. We found robust correlations that persisted after removing
autocorrelation and conclude that indeed this data source can be used to estimate concurrent
COVID-19 incidence. The best performing case definitions were those of ECDC,CDC and
Sciensano, while the stricter WHO case definition was less correlated and vulnerable to the
removal of the autocorrelation. The case definition from RKI was also susceptible to removal
of the autocorrelation, but was found to have a greater potential to predict incidence in the
future. All results are to be treated with caution when applying to future scenarios, as the anti
COVID-19 measures in place in Belgium reduced the prevalence of ILI and common cold, which
are easily confused with COVID-19.
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Noort, Sander P. van, Cláudia T. Codeço, Carl E. Koppeschaar, Marc van Ranst, Daniela
Paolotti, and M. Gabriela M. Gomes (2015). “Ten-year performance of Influenzanet: ILI
time series, risks, vaccine effects, and care-seeking behaviour”. en. In: Epidemics 13, pp. 28–
36. (Visited on 03/17/2021).

27



R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing. Vienna, Austria. url: https://www.R-project.org/.

Rasmussen, I. S., L. H. Mortensen, T. G. Krause, and A-M. Nybo Andersen (2019). “The
association between seasonal influenza-like illness cases and foetal death: a time series anal-
ysis”. en. In: Epidemiology and Infection 147, e61. url: https://www.cambridge.org/
core / product / identifier / S0950268818003254 / type / journal _ article (visited on
05/05/2021).

Richard, Aude, Laura Müller, Ania Wisniak, Amaury Thiabaud, Thibaut Merle, Damien Diet-
rich, Daniela Paolotti, Emilien Jeannot, and Antoine Flahault (2020). “Grippenet: A New
Tool for the Monitoring, Risk-Factor and Vaccination Coverage Analysis of Influenza-Like
Illness in Switzerland”. en. In: Vaccines 8.3, p. 343. url: https://www.mdpi.com/2076-
393X/8/3/343 (visited on 03/17/2021).

Salles, Rebecca, Eduardo Bezerra, Jorge Soares, and Eduardo Ogasawara (2015). “Evaluating
Linear Models as a Baseline for Time Series Imputation”. en. In: p. 6.

Steiger, James H (1980). “Tests for comparing elements of a correlation matrix.” In: Psycholog-
ical bulletin 87.2, p. 245.

Struyf, Thomas et al. (2021). “Signs and symptoms to determine if a patient presenting in
primary care or hospital outpatient settings has COVID-19”. en. In: Cochrane Database of
Systematic Reviews. Ed. by Cochrane Infectious Diseases Group. url: http://doi.wiley.
com/10.1002/14651858.CD013665.pub2 (visited on 03/22/2021).

Vandendijck, Yannick, Christel Faes, and Niel Hens (2013). “Eight Years of the Great Influenza
Survey to Monitor Influenza-Like Illness in Flanders”. en. In: PLoS ONE 8.5. Ed. by Jodie
McVernon, e64156. url: https://dx.plos.org/10.1371/journal.pone.0064156 (visited
on 05/04/2021).

Warton, David I. and Francis K. C. Hui (2011). “The arcsine is asinine: the analysis of propor-
tions in ecology”. en. In: Ecology 92.1, pp. 3–10. url: http://doi.wiley.com/10.1890/10-
0340.1 (visited on 05/09/2021).

Williams, Evan J (1959). “The comparison of regression variables”. In: Journal of the Royal
Statistical Society: Series B (Methodological) 21.2, pp. 396–399.

Zare-Zardini, Hadi, Hossein Soltaninejad, Farzad Ferdosian, Amir Ali Hamidieh, and Mina
Memarpoor-Yazdi (2020). “Coronavirus Disease 2019 (COVID-19) in Children: Prevalence,
Diagnosis, Clinical Symptoms, and Treatment”. en. In: International Journal of General
Medicine Volume 13, pp. 477–482. url: https://www.dovepress.com/coronavirus-

disease-2019-covid-19-in-children-prevalence-diagnosis-cli-peer-reviewed-

article-IJGM (visited on 05/27/2021).

28


