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Abstract

Dengue fever is one of the most common diseases in Southeast Asia, with Indonesia

having one of the highest dengue case counts in the region. In Java, notably Central

Java, the number of dengue fever cases is considered high. The spread of dengue fever

throughout districts may affect one another because the mosquitoes could fly be-

tween areas, and the virus can be transported via infected person mobility. Because

mosquitoes can fly between locations and the virus can be transferred by infected

people moving around, the spread of dengue fever between districts may impact

one another, indicating that spatial effect needs to be considered. Furthermore, the

estimated dengue fever incidence rate in Central Java greatly varies. We develop

a Quantile Spatial Durbin Model (QSDM) method to explore the risk of dengue

disease at multiple quantile levels, considering the spatially lagged response and

explanatory variables to analyze the incidence rate of dengue fever across Central

Java. We investigate whether the incidence rate of dengue fever for different quan-

tiles in one area is related to the characteristics of neighboring areas, and if so, how

they are related. Population density per km2, percentages of households with ade-

quate sanitation, percentages of households with well-drinking sources, percentages

of low-income population, number of floods, and number of submerged households

during floods are the six predictors that are considered. When considering the total

effect, the dengue fever incidence rate at the lower, middle, and upper quantiles is

always inversely proportional to population density and low-income percentages. In

contrast, the number of flood-affected households has a positive effect on dengue

incidence rate. According to the findings, the eastern part of Central Java has a

higher dengue fever incidence rate. Regions with a low population density, stable

economy, vital water infrastructure, and weak flood management are more likely to

increase the dengue fever incidence rate.

Keywords: Spatial durbin model, quantile regression, dengue fever, Indonesia.
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1 Introduction

Dengue fever is considered a critical public health problem, especially in tropical and

subtropical countries, which ranks second only to malaria among deadly mosquito-borne

diseases. Dengue disease originates from a virus in the Flaviviridae family with four

known serotypes, namely DENV-1, DENV-2, DENV-3, and DENV-4, transmitted by the

Aedes mosquitoes (i.e., aegypti and albopictus) infected with the dengue virus (Beasley

and Barret, 2008). Even though a vaccine to prevent dengue fever has been discovered,

it only has an efficacy level of 60.3% and considered costly, which makes dengue fever

still classified as a dangerous disease (WHO, 2016). Roughly 2.5 billion people live in

dengue fever endemic countries, with about 1.8 billion (more than 70%) in Southeast

Asia and the Western Pacific Region (WHO, 2009), which carries nearly 75% of the

current global disease burden due to dengue. Indonesia has one of the highest dengue

case burdens in Southeast Asia, with an estimated 10 million clinical cases and 3000

deaths each year (Stanaway et al , 2016). The number of dengue fever cases is widely

spread in East Java, West Java, and Central Java (Haryanto, 2018).

The dengue virus transmission cycle can be summarized as follows: Firstly, the female

Aedes mosquito that brings the dengue virus bites a healthy individual to become in-

fected. This individual will get dengue fever. The transmission to other humans can

occur when another female Aedes mosquito, which does not carry the virus, bites the

infected individual, catch the virus, and bites another healthy individual, so it becomes

a cycle of transmission.

According to Whitehorn and Simmons (2011), Aedes inhabits domestic settings, par-

ticularly in large residential areas with high population density. Dengue viruses have

fully adapted to a human- Aedes aegypti- human transmission cycle in the tropics’

big metropolitan centers, where dense human populations coexist with equally dense

mosquito populations (Gubler, 2011). However, Thammapalo et al (2008) stated that it
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might also be present in rural areas. Aedes lays their eggs in artificial, uncovered water

containers around human habitations. Surendran et al (2012) suggests that frequently

used water domestic wells are suitable habitats for development of Aedes in tropical

coasts area. Abandoned litter, gutters, and receptacles in open spaces, also serve as

mosquito breeding sites. Therefore, water storage vessels can be associated with an

increased number of mosquitoes and dengue fever cases (Chen et al , 1994). Thus, the

risk of disease is higher in a poorly sanitized environment. This condition is positively

correlated with low-income populations due to inconsistent or non-existent waste collec-

tion (Weiss and McMichael, 2004). Bich et al (2011) and Jahan (2011) asserted that

the number of dengue fever is also associated with flooding, a common natural disaster

in Indonesia as a country with high rainfall intensity events throughout the year.

Spread of the dengue fever between neighboring districts may affect one another because

the mosquitoes could fly between areas (although the flight range of Aedes is minimal

(50–100 m) (WHO, 1997)), it can be transported from one location to another, or from

infected persons’ mobility. These transmission factors suggested that when the incidence

rate of dengue fever is high in one area, the other close regions will also have a higher

incidence rate, meaning that spatial effect needs to be considered. Whereas ignoring the

spatial effect can lead to biased estimates (Kostov, 2009).

The expected incidence rate of dengue fever in Central Java is equal to 12 out of 100,000

individuals. The difference between the expected incidence rate in Brebes (the region

with the lowest expected incidence rate of dengue fever; 2 for every 100,000 individu-

als) and Blora (the region with the highest expected incidence rate of dengue fever; 45

for every 100,000 individuals) has such a big gap. This discrepancy clearly shows that

in Central Java, the expected incidence rate is severely varied. To identify the factors

that determine the differences in the expected incidence rates, statistical procedures

that quantify the spatial effects and the heterogeneity of errors should be applied. Us-

ing the classical statistical methods that mainly focus on mean values (like the spatial
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models based on classical regression) can lead to misleading results on the dengue risk

determinants (Trzpiot and Orwat-Acedańska, 2016). To tackle this problem, quantile

regression introduced by Koenker and Bassett (1978) is used in the analysis. The spatial

model with quantile regression is powerful, especially when there is heterogeneity in the

response distribution. Using this method, an overall idea of how predictors affect the

response at many parts of the response distribution by assuming a regression model on

various quantiles can be obtained.

The objective of the study is to develop a Quantile version of the Spatial Durbin Model

as a statistical model that allows one to study dependencies between variables in dif-

ferent quantiles of the response distribution, which takes into account spatial effects

within both dependent and independent variables. To our knowledge, this is the first

research to develop Spatial Durbin Model into its quantile version. This model is then

used to identify the environmental and quality of life factors (population density per

km2, percentages of households with adequate sanitation, percentages of households

with well-drinking sources, percentages of the low-income population, number of floods,

and number of submerged households during flood per area) associated with the ex-

pected incidence rate of dengue fever varying across Central Java.

This study is organized as follows: in section 2, the description of the data used to fit

the models, the methods, including Quantile Regression, Contiguity Weights, Moran’s I,

Spatial Durbin Model (SDM), and Quantile Spatial Durbin Model (QSDM) are defined.

In section 3, data exploration, simulation study of QSDM, and the application of the

models (SDM and QSDM) on Central Java’s data for dengue disease in 35 districts are

shown. The discussion is presented in section 4. Finally, the conclusions and further

recommendations are presented in section 5.
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2 Methodology

2.1 Data Description

The analyzed dataset is obtained from the Central Java Center Bureau of Statistics.

The response (log(Yi)) is the log incidence rate of dengue fever per 100,000 individuals

in each of 35 districts in Central Java. The log incidence rate is a log transformation on

the total number of cases observed in the study period divided by the total number of

people at risk. In this study, six predictors were used, which were believed to affect the

dengue virus’s spread based on several studies. Those six predictors are:

1. Population density per km2 (X1):

The number of human inhabitants per square kilometer.

2. Percentages of households with adequate sanitation (X2):

The percentage of households that have access to proper sanitation services is the

ratio between the number of households that have access to appropriate sanitation

services to the number of households, expressed in percent (%). Proper sanitation

facilities are sanitation equipment that meets health requirements. Namely, those

facilities are used by households alone or together with other households, equipped

with toilets of the type of gooseneck, and a place for final disposal of feces in the

form of a septic tank (Wastewater Treatment Plant).

3. Percentages of households with well-drinking sources (X3):

The percentage of households that use improved drinking water sources is the per-

centage of households that use proper (quality) drinking water for drinking. This

adequate drinking water includes protected drinking water, including tap water,

public hydrant, water terminal, rainwater storage or springs and wells protected,

borehole or pump well, which is at least 10 meters away from construction sewage,

waste collection, and garbage disposal. Not including bottled water, water from

mobile vendors, water sold through tanks, and unprotected wells.
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4. Percentages of low-income population (X4):

Percentages of individuals with an average monthly expenditure per capita below

the poverty line.

5. Number of floods (X5):

Flood events include flash floods and river floods in Central Java.

6. Number of submerged households during floods (X6):

The number of houses submerged in water and mud caused by the natural disaster.

2.2 Exploratory Data Analysis

Data exploration is a fundamental step in data analysis since it helps to examine a

variety of aspects of the dataset. In this study, graphical representation such as scatter

plot for covariates, incidence risk plot, and quantile incidence risk plot across the areas

were used to explore the data.

2.3 Quantile Regression

Quantile regression as introduced by Koenker and Bassett (1978) quantifies the relation-

ship between dependent and independent variables across various quantiles of the condi-

tional distribution of the dependent variable. Quantile regression is more advantageous

than classical mean regression considering its ability to provide complete visualization

on the relationship between predictors and the response at all parts of its distribution.

In addition, quantile regression is better suited to examining a dependent variable with

changes in the distribution and more robust to outlying observations (McMillen, 2012).

Quantile function is the inverse of cumulative distribution function (CDF). Let Y be

the response variable and X1, . . . , Xp be a set of predictor variables. The CDF of Y

given X = (1, X1, . . . , Xp)
ᵀ can be expressed as FY (y|X) = P (Y ≤ y|X) = τ with the

inverse function F−1Y (τ |X) = QY (τ |X) = inf{y : FY (y|X) ≥ τ ∈ [0, 1]} called the τ -th

conditional quantile of the response Y given covariate X (Koenker, 2005). The linear
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model for quantile regression can be formulated as

Y = Xᵀβ + ε

where the vector β = (β0, β1, . . . , βp)
ᵀ is the regression coefficient vector and ε defined

as the error term in which we assume that the τ -th quantile of ε given X is equal to

zero. The distribution of the error (ε) is left unspecified, which is one of the virtues

of the method on the robustness. The conditional quantile function of the response Y

given X can be written as QY (τ |X) = Xᵀβτ (Koenker, 2005).

Suppose we have n independent observations (X11, . . . , Xp1, Y1), . . . , (X1n, . . . , Xpn, Yn)

from (X1, . . . , Xp, Y ). The quantile regression parameters are estimated by minimizing a

sum of asymmetrically weighted absolute residuals (by giving different weights to positive

and negative residuals) with respect to β:

min
β

n∑
i=1

ρτ (Yi −Xᵀ
i β) (1)

where the check function, ρτ (u) = u(τ − I(u < 0)) is the tilted absolute value function

illustrated in Figure 1 that yields to the τ -th sample quantile as its solution (Koenker and

Hallock, 2001). The quantile objective function in (1) is not differentiable, therefore the

quantile objective could be elucidated into a linear programming optimization problem

to determine the optimal solution (Koenker, 2005).
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Figure 1: Tilted absolute value function

2.4 Contiguity Weights

Spatial proximity matrices (neighborhood structure) are a key component in the analysis

of data with spatial dependence. Formally, the weights express the neighbor structure

between the observations as n × n matrix (W) which contains weights (wij) for each

pair of areas that determines the closeness or spatial relations of these locations (Zhou

and Lin, 2008). There are several ways to define the neighborhood structure. For the

purpose of this study, queen contiguity weights matrix was used. This neighborhood

matrix includes all of each area’s immediate neighbors that share common points with

the particular area, which can be seen in Figure 2 below.

Figure 2: Queen contiguity (share a common edge or vertex)

In its simplest form, the spatial weights matrix represents the existence of a neighbor

relation as a binary association, with weights 1 and 0. Formally, each spatial unit

is represented in the matrix by a row i, and the possible neighbors by the columns

j, with j 6= i. The existence of a neighborhood connection between the spatial unit
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corresponding to row i and the one matching column j follows then as wi,j = Wi,j = 1

and 0 otherwise. Additionally, The elements wii are commonly set to 0, implying there

is no neighborhood structure between an area and itself.

2.5 Moran’s I

Spatial autocorrelation is an integral concept in spatial analysis. It refers to the depen-

dency of observation from a certain location to another observation in a different geo-

graphical location. Its measurement depends on the defined spatial adjacency matrix.

Test of spatial dependency can be done using spatial autocorrelation test with Moran’s

I method. This measure, formulated by Moran (1950), can be used if the variable of

interest is continuous. It is calculated based on the cross products of the deviations of

the observation from the overall mean with associated weights. The formula is given by

I =
n
∑

i

∑
jWij(Yi − Ȳ )(Yj − Ȳ )(∑

i

∑
jWij

)∑
i(Yi − Ȳ )2

where n is the total number of observations, Ȳ is the overall mean, and the weights Wij

are obtained from the proximity matrix.

Under the assumption of independence, as shown in Moran (1950), I has an asymptotic

normal distribution with mean

E[I] = − 1

n− 1

and variance

V ar(I) =
n2
∑

ijW
2
ij + 3

(∑
ijWij

)2
− n

∑
i

(∑
jWij

)2
(n2 − 1)

(∑
ijWij

)2
Positive spatial autocorrelation occurs when I > E[I] which means that areas are more

alike and negative autocorrelation is when I < E[I]. Testing for spatial autocorrelation

can be done in two ways: by (i) randomization and (ii) normal approximation. For

9



randomization, observations are assigned randomly several times in the different areas.

The null hypothesis of independence is then rejected when the observed I lies in the tail

of this distribution. Using normal approximation, the test statistic

Z(I) =
I − E(I)√
V AR(I)

can be used. Under independence and for large n (n > 25), Z(I) is normally distributed

with mean 0 and variance 1. If the observed Z(I) lies in the tails of the standard normal

distribution then the assumption of independence is rejected.

2.6 Spatial Durbin Model

According to Manski (1993) and Elhorst (2010), various types of interaction effects can

be distinguished in modeling spatial data, such as:

1. An endogenous interaction relationship indicates that the dependent variable for

a spatial unit depends on the outcomes for other spatial units.

2. A correlated relationship refers to the situation where unobserved environmental

characteristics lead to similar outcomes across spatial units (i.e., error terms).

3. An exogenous interaction relationship implies that the outcome for a spatial unit

is associated with the covariates of the outcome in other spatial units.

Traditionally, spatial lag and spatial error models have focused on the endogenous in-

teraction and correlated relationship on the error term (Anselin, 1988). However, since

explanatory variables also show a spatial pattern, a Spatial Durbin Model (SDM) that

includes both a spatially lagged dependent variable and spatially lagged explanatory

variables (LeSage and Pace, 2009) is preferred.

The Spatial Durbin Model is an extension of Spatial Autoregressive Regression (SAR)

model augmented by spatially lagged explanatory variables (Fischer and Wang, 2011).

Via the Spatial Durbin Model we will examine whether the dengue’s incidence rate in
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one area is also related to neighboring areas’ characteristics and, if so, how they are

associated by including lags of the dependent variable and the independent variables to

quantify the magnitude of direct and indirect effects, which can be written in vector

form, as

Y = ρWY + αin +Xβ +WXγ + ε (2)

where Y = (Y1, Y2, . . . , Yn)′ represents a (n × 1) vector of dependent variable, W is a

(n × n) spatial weight matrix, ρ is the parameter that represents the strength of the

spatial autoregressive relation in the response, in is an n−dimensional column vector of

ones, α is the intercept coefficient, X = (X1, . . . ,Xn)′ is the n × (p − 1) non-intercept

explanatory variable matrix with Xi = (Xi1, Xi2, . . . , Xi(p−1)) with i = 1, . . . , n, β is a

(p−1)×1 vector of parameters that measures the marginal impact of the explanatory vari-

ables from neighbouring areas on the dependent variable Y , γ is the (p−1)×1 coefficient

vector for the exogenous spatially lagged independent variables, and ε = (ε1, . . . , εn)′ is

the error terms, which in the mean regression setting can be defined as a vector with mul-

tivariate normal distribution ε ∼ N(0, σ2In), with In as an identity matrix. Multiplying

X by W produces spatially lagged covariates that reflect an average of neighbouring

observations (Fischer and Wang, 2011).

Rearranging the equation (2) yields:

Y = (In − ρW )−1(αin +Xβ +WXγ + ε)

The matrix of partial derivatives for this model is:


∂Y1
X1k

. . . ∂Y1
Xnk

... . . .
...

∂Yn
X1k

. . . ∂Yn
Xnk

 = [In − ρW ]−1


βk . . . w1nγk
... . . .

...

w1nγk . . . βk
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= [In − ρW ]−1[βkIn +W γk]

The n×n matrix has non-zero elements off the major diagonal, implying the existence of

spatial spillovers, which suggests the model parameters are estimated under the explicit

assumption of dependency between observations; changes in values for one observation

will ”spillover” to affect values of other observations. By expressing the power series

expansion of the matrix (In − ρW )−1 as

(In − ρW )−1 = In + ρW + ρ2W 2 + ρ3W 3 + . . .

Golgher and Voss (2016) shows that the model generates a process of ”global spillover,”

designating that changes in an independent variable anywhere in the study domain will

influence the value of the dependent variable on the other areas, even when the matrix

W ’s characterization of neighborhood impacts indicates 1st-order of contiguity.

In order to overcome the difficulties to interpret the spillover effect within Spatial Durbin

Model, LeSage and Pace (2009) presents a means of summarizing the direct, indirect, and

total effects in such models through an averaging process. The direct effect is the value

of the main diagonal elements of the partial derivatives matrix (βk). In other words,

the direct effect represents the expected average change across all observations for the

dependent variable in a particular area due to an increase of one unit for covariates in this

area. The non-diagonal cross-partial derivatives represent the indirect spillovers, which

influence the dependent variable Yi in a region from one unit increase in an explanatory

variable in another regionXj . Moreover, for the spatial Durbin model, the indirect effect

can be divided into two parts, namely, the local effects due to the γ coefficient, and the

global effect arising from the inverse matrix involving ρ (Elhorst, 2010). The first is local

because their impact is only on its adjacent neighbors, while the global influence affects

all areas through (In − ρW )−1 matrix (Golgher and Voss, 2016).
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2.7 Quantile Spatial Durbin Model

QSDM model of order τ combines the two approaches mentioned in subsection 2.3 and

2.6. It has a similar form with model (2) with an assumption on the τ -th quantile of ε

given X is equal to zero, instead of ε ∼ N(0, σ2In). Vector ε contains independent and

identically distributed random variables whose distribution is not specified (Trzpiot and

Orwat-Acedańska, 2016).

Due to the endogeneity problems (there are spatial lags of the dependent variable ρWY

on the right hand side of the equation) in the model (2), using traditional method to

estimate the parameters on Spatial Durbin Model and Quantile Spatial Durbin Model

can not be done directly. In QSDM case, an alternative approach based on generalized

method of moments method allows the model to be estimated using a variant of two-

stage least squares (2SLS) (Kelejian and Prucha, 1998). Chernozhukov and Hansen

(2005) extend this approach by using instrumental variables. Though somewhat more

complicated, this approach is more robust and has a straightforward formulation of

covariance matrix estimates (McMillen, 2012). Below we briefly describe the method:

1. The endogenous variable, WY is regressed on a set of instruments (Z). In this

study we use (X,WX) as a set of instruments for WY as suggested by Kelejian

and Prucha (1998).

2. The predicted values of ŴY are then utilized as an explanatory variable for the

quantile regression Y − ρWY on X and ŴY with τ quantile, with a grid of

alternative values is used for ρ ∈ [−1, 1]. The estimated value of ρ is the value that

gives the coefficient on ŴY that is closest to zero.

3. After finding ρ̂, the estimated values of β and γ are calculated by a quantile

regression of Y − ρ̂WY on X and WX using the same quantile τ .

The motivation of these steps is, if the chosen instruments are optimal, the coefficient on

ŴY will be zero when both the actual variable, WY , and the instrumental variable are
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incorporated in a regression (Kim and Muller, 2004). The standard errors and p-values

for the estimates are calculated using the residual bootstrap as suggested by Trzpiot and

Orwat-Acedańska (2016). This method is chosen to ensure that the spatial structure of

the data is kept (Anselin, 1988). Kecojevic (2011) described the method as follows:

1. We fit a quantile regression model and calculate Q̂Y (τ |X) = Xᵀβ̂τ to obtain the

residuals

eτ = Y − Q̂Y (τ |X)

to get a set of empirical residuals on τ -th level eτ = eτ1 , e
τ
2 , . . . , e

τ
n from which a

bootstrap re-sample e∗b = eτ
∗
b,1, e

τ∗
b,2, . . . , e

τ∗
b,n is drawn with replacement.

2. A bootstrapped vector of the response variable for this re-sample is generated by

adding the re-sampled vector of residuals to the vector of fitted response values,

from the sample:

Y ∗b = Q̂Y (τ |X) + eτ
∗
b

3. These bootstrapped responses Y ∗b,i are then used to estimate quantile regression

coefficient and to calculate the standard error for each regression coefficient.
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3 Results

3.1 Exploratory Data Analysis

Data exploration is a fundamental step in data analysis since it examines various aspects

of the dataset. In this study, graphical representation of log incidence rate for dengue

fever spread will be illustrated and test on spatial heterogeneity in the observations using

Moran’s I index was performed. Additionally, plots of predictors against the response

variable are shown to describe the relationship between the variables.

The histogram illustrated in Figure 3 suggests that in 2018, the log incidence rate of

dengue fever in Central Java shows a right-skewed distribution. This indicates the need

to apply quantile regression as a more robust technique to handle this situation, since

there is no assumption of the response’s distribution was made on the method.

Figure 3: Histogram of the log incidence rate of dengue fever based on data from the 2018 in
Central Java

Figure 4 shows that there are more points at the lower values of predictors for popula-

tion density, number of floods, and number of submerged households during floods. In

comparison, percentages of households with well sanitation exhibit more points in higher

values, which implies well sanitation on most districts in Central Java. This figure also

shows more variability on the response compared to the population density, number of
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floods, and the number of submerged households during flood. Moreover, households

with well drinking sources and percentages of the low-income population are scattered,

with high variability on both the response and the predictors.

Figure 4: Scatter plot of predictors (left to the right: X1 −X6) against the response

Figure 5 illustrates the spread of dengue fever’s incidence rate and the log incidence

rate, over 35 districts in Central Java in 2018. The Incidence rate (left) ranges from 1

to 45 cases, with an average of 12 cases for every 100,000 individuals. According to the

figure, the incidence rate of dengue fever varies across districts. 23 out of 35 districts

have a low dengue fever risk (risk less than 10 cases for every 100,000 individuals), most

of them located side by side in the west part of Central Java. The middle and east parts

of the map have a darker color, indicating that dengue fever incidence rate is higher in

districts in these areas. The highest incidence rate can be observed in both the middle

and east parts of the map, corresponding to Magelang and Blora region, respectively.

On the right side of Figure 5, the log incidence rate of dengue disease also show a big

variation across districts, with the majority of darker colors observed in the east part of

the map.
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Figure 5: Map of the observed incidence rate per 100,000 individuals (left) and Map of the log
incidence rate (right) for the spread of dengue disease in Central Java on 2018

Figure 6 shows the illustration of the distribution of each covariates across Central Java,

which suggests the presence of spatial autocorrelation for the covariates of the data.

In addition, Moran’s I test was done to check the existence of spatial autocorrelation,

which refers to the dependency of an observation from a particular location to another

observation in different geographical areas. This Moran’s I tests resulted in a p-value

equal to 0.0061 for the response, which implies spatial autocorrelation in the log incidence

rate of dengue fever. These findings indicates that the presence of spatial autocorrelation

within covariates and the response, hence the use of Spatial Durbin Model would be

logical to be used.

Figure 6: Map of the covariates (left to the right: X1 −X6) with lower value of the covariates
when the color is lighter (white) and darker color when the value is higher (red).
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Figure 7 represents a map with the quantile of log incidence rate in Central Java. As can

be seen from the figure, the log incidence rate of dengue fever varies across the region.

Based on all the aforementioned findings, it can be concluded that the use of a Spatial

Durbin Quantile Regression Model is reasonable.

Figure 7: Map of the quantiles of log incidence rate with Quantile 1 (≤20%) - [0; 1.2217),
Quantile 2 (20%-40%) - [1.2217; 1.6753), Quantile 3 (40% - 60%) - [1.6753; 2.1963), Quantile 4
(60% - 80%) - [2.1963; 2.8240), and Quantile 5 (≥80%) - [2.8240; 3.8068)

3.2 Simulation study of Quantile Spatial Durbin Model

In this subsection, the Quantile Spatial Durbin Model (QSDM) performance will be eval-

uated. 100 simulations were conducted for ρ = 0.1, 0.2, . . . , 0.9 and τ = 0.1, 0.2, . . . , 0.9.

Let θ denotes the parameters to be assessed (e.g., β, γ, and ρ). Root Mean Square Error

for θ will be calculated (RMSE =
√

1
N

∑N
i=1(θ̂i − θi)

¯

2) with N is the number of simula-

tions, to evaluate the performance of each parameter estimates. Using the formula on

(2), we chose a value of each parameter, α = 1.439, β = 3.942, and γ = −0.182. ε are i.i.d

sampled from a standard normal distribution with a sample size of 35, X1 ∼ N(10, 1)

are sampled from a normal distribution with mean 10 and standard deviation of 1, and

W is the queen spatial weight matrix for Central Java. The resulting model can be

written as

Y = ρWY + 1.439 + 3.942X1 − 0.182WX1 + ε
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Figure 8 shows the results of the model performance in terms of estimating spatial

autocorrelation (ρ) in different level of quantiles (τ = 0.1, 0.2, . . . , 0.9). The horizontal

and vertical axis show the level of quantiles and ρ, respectively. It can be seen that the

estimation of ρ in each level of quantiles are close to the true parameter with relatively

small variability and small numbers of outliers. It can also be observed that the median

of ρ̂ is considerably close to the actual value of ρ.

Figure 8: Boxplot of the distribution of ρ̂ for ρ = 0.1, 0.2, . . . , 0.9 (from upper left to bottom
right) within 100 simulations. Each small boxes represent the distribution of estimated spatial
autocorrelation (ρ̂) in different level of quantiles (τ = 0.1, 0.2, . . . , 0.9).

A closer look at the model performance can be obtained from Figure 9, which provides

the RMSE value and its distribution for ρ̂, β̂ and γ̂ within 100 simulations. It can be

observed from the line figures (left) that all parameter estimates have small mean of

RMSE in every level of quantiles. Moreover, ρ̂ and β̂ suggest a clear U-shaped patterns,

indicating smallest RMSE in the median and higher values of RMSE in the first and

last level of τ . A same conclusion can be noticed from the boxplot (right) of ρ̂ and β̂.

For the estimation of the spatial lag parameter (γ̂), the boxplot suggests small RMSE
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for the median and higher variability in the first and last level of τ , although no clear

pattern can be concluded.

Figure 9: RMSE value (left) and its distribution (right) on ρ̂ (first row), β̂ (second row), γ̂
(third row) for ρ = 0.1, 0.2, . . . , 0.9 in each τ = 0.1, 0.2, . . . , 0.9 within 100 simulations.
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3.3 Spatial Durbin Model

Spatial Durbin Model (SDM) with log-transformed response variable is fitted to ensure

the resulting incidence risks to be positive. Parameter estimates on SDM are presented

on Table 1. It can be seen that low income is significantly affecting the log-incidence

rate of dengue cases in Central Java, and there is a significant (α = 5%) global spatial

autocorrelation (ρ = 0.5815) in the data.

Table 1: Parameter estimate of Spatial Durbin Model

Variable Estimate Std. Error z-value Pr(>|z|)
Population density per sq km (β1) -0.00008 0.00006 -1.3640 0.1725
Household well sanitation pctg (β2) -0.00933 0.00795 -1.1733 0.2460
Household well drinking source pctg (β3) -0.00987 0.01916 0.5152 0.6064
Poor pctg (β4) -0.11798 0.04675 -2.5235 0.0116
No of Flood (β5) -0.00717 0.01066 -0.672 0.5011
Submerged households (β6) 0.00002 0.00012 0.1723 0.8631
lag.Population density per sq km (γ1) -0.00023 0.00018 -1.2560 0.2091
lag.Household well sanitation pctg (γ2) 0.01265 0.14661 0.8632 0.3880
lag.Household well drinking source pctg (γ3) -0.02662 0.05195 -0.5124 0.6083
lag.Poor pctg (γ4) 0.06197 0.12636 0.4905 0.6238
lag.No of Flood (γ5) -0.02536 0.03738 -0.6784 0.4975
lag.Submerged households (γ6) 0.00011 0.00034 0.3287 0.7423

ρ = 0.58151 0.0151

Since direct interpretation of the Spatial Durbin Model’s coefficients is difficult because

they do not represent actual partial derivatives, the estimates from this model cannot be

interpreted as partial derivatives in a typical regression model. Therefore, the signs and

magnitudes resulting from changes in the explanatory variables are reported as summary

measures of total, direct and indirect effects shown in Table 2. Table 2 indicates that

the direct effect coefficient of percentages of households with well-drinking sources and

number of submerged households during floods has a positive effect on local log incidence

rate. At the same time, the spatial spillover effect coefficient of the percentages of

households with adequate sanitation and number of submerged households during floods

will positively affect the log incidence rate of dengue of its surrounding areas. From the

total effect in Table 2, it can be observed that the log incidence rate of dengue in Central
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Java will increase as the percentages of households with adequate sanitation and number

of submerged households during floods increases. Moreover, decomposing the marginal

effects into direct (own-area) and indirect (spillover) will also examine the effect that

significantly impacting the total value.

Table 2: Decomposition estimates of the total, direct and indirect effects of Spatial Durbin
Model (SDM)

Variable Direct Effect Indirect Effect Total Effect

Population density per sq km -0.0001 -0.0006 -0.0007
Household well sanitation pctg -0.0079 0.0158 0.0079
Household well drinking source pctg 0.0057 -0.0458 -0.4002
Poor pctg -0.1192 -0.0145 -0.1338
No of Flood -0.1293 -0.0648 -0.0777
Submerged households 0.00004 0.00027 0.0003

3.4 Quantile Spatial Durbin Model Application to Dengue Disease in

Central Java

In the following section, Quantile Spatial Durbin Model for dengue disease in 35 districts

on Central Java is utilized. From Figure 10, it can be seen that the spatial estimated

autoregressive coefficient ρ̂ is relatively lower at τ < 0.5 and higher at τ ≥ 0.5. This

shows that in districts with lower log incidence rate of dengue disease (τ < 0.5), any

changes in an independent variable that happen in the neighborhood anywhere, will have

low impact on the value of the dependent variable on the other areas.

Figure 10: Quantile estimates of spatial autoregressive coefficients (ρ̂) for dengue disease in
Central Java based on Quantile Spatial Durbin Model.
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Considering the influence factors and its lagged variables illustrated in Figure 11, we

obtain the following results:

• The coefficient of variable Population density per km2 shows small variability and

resulting in negative values across all quantiles, except for τ = 0.1. This shows a

negative correlation between the covariate and log incidence rate of dengue disease

in Central Java, that is, the risk ratio of dengue disease for areas with lower

population density per km2 is higher. The same pattern can be obtained from

the Lag of population density per km2, indicating that an increase in population

density per km2 on direct neighbors of an area will have a negative effect of dengue

disease log incidence rate in Central Java.

• The estimates of the parameter of the variable Percentages of households with ade-

quate sanitation are negative for all τ < 0.9 and the estimates are relatively smaller

at the lower quantile. This indicates that the percentages of households with ade-

quate sanitation increases the log incidence rate of dengue disease in Central Java.

On the other hand, Lag of percentages of households with adequate sanitation show

positive results for all level of quantiles, suggesting that a better sanitation on the

adjacency neighbors will positively impact the log incidence rate of dengue disease

in a particular area.

• The influence of Percentages of households with well-drinking sources shows a sim-

ilar pattern with the percentages of households with adequate sanitation. This

estimates shows a negative association in τ < 0.7, and positive association oth-

erwise. This suggests that there is a higher risk ratio of dengue disease for areas

with more households having well-drinking sources. Moreover, Lag of percentages

of households with well-drinking sources shows no clear pattern.

• The estimates of the parameter of the variable Percentages of low-income pop-

ulation are negative for all quantiles. This indicates that the level of economic

development reduces the log incidence rate of dengue disease in Central Java. The

Lag of percentages of low-income population also indicates that, when the neighbor
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of an area has a higher percentage of low-income population, log incidence rate of

dengue disease in Central Java will decrease.

• The estimates of the variable Number of floods shows small changes across quantiles

with negative values at all quantiles, except for τ = 0.3. This shows a negative

association between the number of floods and log incidence rate of dengue disease

in Central Java, that is, the risk ratio of dengue disease for areas with more floods

is lower. The Lag of number of floods implies a positive association for smaller

quantiles (τ < 0.4) and negative association otherwise. This indicates that the

number of floods in the neighborhood areas reduces the risk ratio of dengue disease

in a particular area in Central Java.

• For τ 6= 0.5, the Number of submerged households during floods shows a positive

association with dengue disease log incidence rate in Central Java. On the other

hand, Lag of number of submerged households during floods shows negative values

on τ = 0.1, 0.2, 0.3, 0.8 and 0.9. This suggests that the lower and higher values

of the number of submerged households during floods in the neighborhood areas

will reduces the log incidence rate of dengue disease in a particular area in Central

Java.
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(a) Population density per km2 (b) Percentages of households
with adequate sanitation

(c) Percentages of households
with well-drinking sources

(d) Percentages of low-income
population

(e) Number of floods (f) Number of submerged
households during floods

Figure 11: Regression coefficients of different influential factors for dengue disease in Central
Java based on Quantile Spatial Durbin Model. The black line and blue dashed line shows
the regression coefficients of different influential factors and lag of influential factors in each
τ = 0.1, 0.2, . . . , 0.9, respectively

As mentioned earlier, direct interpretation of the Spatial Durbin Model parameter esti-

mates is difficult because of the spillover effect, which also applies in Quantile Spatial

Durbin Model. As a result, the values that arise from changes in the explanatory vari-

ables on three chosen quantiles (τ = 0.2, 0.5, 0.7) are presented as a summary of total,

direct, and indirect effects in Table 3. These three levels of quantiles are chosen to

represent the lower, middle, and upper value of the dependent variable. Dengue fever

risk is negatively correlated with population density and poor percentages, whereas sub-

merged households gives a positive association across the chosen quantiles. A negative

value for direct effects of the number of flood cases across quantiles indicates a negative

relationship between dengue fever and flood cases in that quantile, whereas a positive

value for indirect effect on the lower quantile indicates that flooding events in the sur-
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rounding areas will increase the dengue risk of that quantile. It’s also worth noting

that an area surrounded by households with good sanitation has a higher dengue fever

incidence risk across quantiles. Households with good sanitation in a given district, on

the other hand, have a negative relationship with dengue fever incidence rates in the

middle and lower quantiles. Lastly, households with good drinking sources negatively

impact dengue disease in the low and middle quantiles while having a positive impact

in the high quantiles.

Table 3: Decomposition estimates of the total, direct, and indirect effects of Quantile Spatial
Durbin Model (SDM) on τ = 0.2, 0.5, 0.7

Variable Direct Effect Indirect Effect Total Effect

τ = 0.2
Population density per sq km -0.000003 -0.00006 -0.00006
Household well sanitation pctg -0.0309 0.0063 -0.0246
Household well drinking source pctg -0.0254 -0.0306 -0.0561
Poor pctg -0.2261 -0.0687 -0.2948
No of Flood -0.0011 0.0118 0.0108
Submerged households 0.0002 0.00002 0.0002

τ = 0.5
Population density per sq km -0.0002 -0.0012 -0.0014
Household well sanitation pctg -0.0099 0.0226 0.0127
Household well drinking source pctg -0.0079 -0.0379 -0.0458
Poor pctg -0.1585 -0.1815 -0.3401
No of Flood -0.0187 -0.1447 -0.1635
Submerged households 0.0001 0.00173 0.0019

τ = 0.7
Population density per sq km -0.0007 -0.0077 -0.0084
Household well sanitation pctg 0.0156 0.2883 0.3039
Household well drinking source pctg 0.0179 0.2137 0.2317
Poor pctg -0.1684 -0.4433 -0.6117
No of Flood -0.0864 -1.0697 -1.1562
Submerged households 0.0003 0.0043 0.0046

Figure 12 shows the predictions from QSDM model based on three chosen quantiles

(τ = 0.2, 0.5, 0.7). Since the response was modeled by a logarithm function for every

100,000 individuals, exponentiating the prediction of the model is required to compute

the incidence rate for each region. For τ = 0.2, the map of predictions shows there is one
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district at southwest part of the map with the lightest (white) color. This suggests that,

this district (Kebumen) predicts the lowest log incidence rate of dengue. This can be

interpreted as, 20 out of 100 individuals have a risk of dengue fever of e2.679/100000 =

0.0004983%. From the medium percentile i.e. 50th percentile, the map of predictions

from the QSDM shows almost similar log incidence rate of dengue across Central Java.

Lastly, for τ = 0.7, the map of predictions shows that the districts located at the eastern

part of Central Java have a higher log incidence rate of dengue fever, with the top 3

highest predictions are located in Blora, Pati, and Rembang with the the predictions of

incidence rate are 4.3%, 2.9%, and 2.63%, respectively.

Figure 12: Map of the predictions from QSDM model on τ = 0.2, 0.5, 0.7 (left to right),
respectively, with lower value of the prediction when the color is lighter (white) and darker color
when the value is higher (red).
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4 Discussion

The Quantile Spatial Durbin Model (QSDM) is used to answer the research question

in the study, that is, to model both a spatially lagged dependent variable and spatially

lagged explanatory variables in various quantiles for dengue fever across Central Java.

The case study provided here is about the danger of dengue fever in Central Java, Indone-

sia. Residential areas, the availability of water storage vessels, environmental sanitation

systems, low-income populations, and flooding events are all variables that contribute to

the spread of dengue fever. In Central Java, some districts do not have well sanitation

and drinking water supplies for their residents. Economy inequality also raises the risk

of dengue transmission by increasing exposure to risk variables associated with dengue

transmission, as the vector prefers urban construction, human agglomeration, and a con-

siderable increase in population density. Moreover, floods can also raise the danger of

diseases spread by vectors or carriers, such as dengue fever. Although the flight range

of Aedes is limited, it can be transmitted from one region to another or from infected

humans’ mobility. This implies the spread of dengue fever between surrounding districts

may have an impact on one another. To better identify the risk of dengue disease across

the locations with high and low risk of dengue fever, the QSDM is utilized for the analysis.

In the setting of examining the dengue’s incidence rate in one area and its relation

to neighboring areas’ characteristics, Spatial Durbin Model (SDM) is commonly used.

However, this model regresses the predictors to the conditional mean of the response,

which cannot characterize the entire distribution of dengue fever risk. We are interested

in evaluating the dengue fever risk on various portions of the distribution in this study

so that some recommendations may be made to the government for places with high

dengue fever risk, emphasizing the upper quantile of dengue fever risk. This aim can be

accomplished by utilizing QSDM to allow for the computation of conditional quantiles,

allowing the researcher to have a deeper understanding of the predictor-response rela-
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tionship across districts and percentiles of the response. Furthermore, unlike the SDM

model, QSDM has the benefit of not having distribution assumptions on the error term.

The findings suggest that the eastern areas of Central Java have a greater dengue fever

incidence rate for higher quantiles. This is unsurprising, given that Blora has had one

of the highest incidence rates in recent years (Ginandra, 2015). Looking at the total

effect as a combined result from direct and indirect effects, dengue fever incidence risk

in lower, middle and upper quantile is constantly inversely proportional to population

density and low-income percentages, whereas the number of submerged households due

to floods has a positive association. An unexpected discovery was discovered for well

sanitation percentages, meaning that it raises the risk of dengue fever in the middle

and higher quantiles, as well as the percentages of well drinking sources in the higher

quantiles. The frequency of floods also has a surprising finding for the middle and higher

quantiles, indicating a negative association for dengue fever incidence risk.

Schmidt et al (2011) stated that dengue transmission may be more suited in sparsely

populated areas than in densely populated places. In high-density areas, the vector/host

ratio may be less conducive to intense transmission, but absolute case numbers can still

be substantial. Dengue spreads in waves through regions, amplifying sites with high

vector/host ratios, such as low-density areas. The water quality can affect the laying

of eggs by the mosquito Aedes aegypti (Marques et al , 2013). Mosquito eggs will grow

successfully under suitable water characteristics. In Indonesia, including Central Java,

tiled tub (bak mandi), built in the corner, which always filled with water for bathing

and drinking purposes are widely used. Many immature mosquitoes were found in or

around houses with these tiled water tub, producing more pupae per house than all other

outdoor containers combined (Nelson et al , 1976). These good quality of stagnant water

in tiled tubs might explain why the incidence of dengue fever is higher in areas with

good sanitation and drinking water. Apart from lower water quality, locations with a

significant low-income population are more likely to have unprotected drinking sources,

30



such as unprotected dug wells, ponds, and spring waters, which provide a natural habitat

for Aedes larvae predators. The survival rate of Aedes’ larva was found to be drastically

reduced when these natural predators were present (Couret et al , 2020). Furthermore,

our findings for the amount of flood and submerged households confirm Few et al (2004)

arguments, stating that dengue fever is unlikely to be a major issue caused by flood

since many Aedes breeding sites are likely to be overwhelmed by floodwaters. Recessing

floodwaters, on the other hand, may provide perfect breeding environments in the post-

onset phase.
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5 Conclusion

The application of QSDM on the dengue fever dataset in Central Java allows us to iden-

tify the incidence rate of the disease by taking into account spatially lagged response and

explanatory variables in various quantiles. The results reveal that predictor effects varied

depending on quantile. This information is crucial because it will help the government

tackle the dengue problem precisely by determining which predictor has a significant

influence, especially at higher quantile levels. Based on the estimation of QSDM, the

districts that are at high risk for dengue are located in the eastern areas of Central Java

(e.g., Pati, Rembang, and Blora). The government can use this information to focus

more on these areas to reduce dengue fever cases. To summarize, a low-density area

with a stable economy, good water infrastructure, and poor flood management will be

at higher risk of dengue disease. For further studies, it is suggested that other risk fac-

tors for dengue disease, such as the larva-free and healthy-clean practices in households

indexes, can be considered. Additionally, expanding the model into a spatio-temporal

model by utilizing data for periods of time may result in a better outcome since more

data is being used for the study.
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Appendix

Table 4: Parameter estimate of Quantile Spatial Durbin Model (QSDM) for τ = 0.2, 0.5, 0.7
with nboot = 10, 000.

Variable Estimate Std. Error z-value Pr(>|z|)
τ = 0.2

Population density per sq km (β1) -0.0000006 0.00008 -0.0071 0.9943
Household well sanitation pctg (β2) -0.0312 0.01024 -3.0507 0.0022
Household well drinking source pctg (β3) -0.0238 0.02251 -1.0554 0.2912
Poor pctg (β4) 0.2224 0.05918 -3.7571 0.0002
No of Flood (β5) -0.0017 0.01577 -0.1052 0.9161
Submerged households (β6) 0.0019 0.00015 1.1784 0.2686
Lag Poulation density per sq km (γ1) -0.00005 0.0002 -0.2136 0.8308
Lag Household well sanitation pctg (γ2) 0.01353 0.0181 0.7479 0.4544
Lag Household well drinking source pctg (γ3) -0.0166 0.0579 -0.2866 0.7744
Lag Poor pctg (γ4) 0.01009 0.1568 0.0643 0.9486
Lag No of Flood (γ5) 0.0094 0.0438 0.2153 0.8295
Lag Submerged households (γ6) -0.00004 0.0004 -0.08651 0.9311
ρ 0.2800 0.2079 1.3463 0.1781

τ = 0.5
Population density per sq km (β1) -0.000092 0.0001 -0.8132 0.4161
Household well sanitation pctg (β2) -0.0120 0.0137 -0.8705 0.3841
Household well drinking source pctg (β3) -0.0043 0.0338 -0.1288 0.8975
Poor pctg (β4) -0.1416 0.0808 -1.7514 0.0798
No of Flood (β5) -0.0053 0.0161 -0.3304 0.7411
Submerged households (β6) -0.00003 0.0002 -0.1647 0.8692
Lag Poulation density per sq km (γ1) -0.0003 0.0003 -0.9431 0.3456
Lag Household well sanitation pctg (γ2) 0.0156 0.0245 0.6368 0.5243
Lag Household well drinking source pctg (γ3) -0.0088 0.0881 -0.1001 0.9201
Lag Poor pctg (γ4) 0.0437 0.2084 0.2096 0.8339
Lag No of Flood (γ5) -0.0417 0.0672 -0.6216 0.5334
Lag Submerged households (γ6) 0.0006 0.0005 1.0114 0.3118
ρ 0.712 0.3617 1.9686 0.0490

τ = 0.7
Population density per sq km (β1) -0.0002 0.0002 -0.8018 0.4226
Household well sanitation pctg (β2) -0.0041 0.0259 -0.1585 0.8741
Household well drinking source pctg (β3) 0.0033 0.0625 0.0527 0.9579
Poor pctg (β4) -0.1381 0.1515 -0.9107 0.3624
No of Flood (β5) -0.0132 0.0303 -0.4356 0.6631
Submerged households (β6) 0.0003 0.0004 0.0786 0.9373
Lag Poulation density per sq km (γ1) -0.00043 0.0005 -0.8134 0.4159
Lag Household well sanitation pctg (γ2) 0.02631 0.0465 0.5652 0.5718
Lag Household well drinking source pctg (γ3) 0.01361 0.1599 0.0851 0.9321
Lag Poor pctg (γ4) 0.09341 0.3875 0.2411 0.8095
Lag No of Flood (γ5) -0.07118 0.1303 -0.5459 0.5851
Lag Submerged households (γ6) 0.00031 0.0011 0.2761 0.7824
ρ 0.9270 0.1874 4.9456 < .0001
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R Code

#-- Define neighborhood based on sharing boundaries--#

belqnb <- poly2nb(shape,queen=T)

# Plot of neighborhood structure

plot(shape,border="black")

plot(belqnb,coord,add=TRUE,col="red")

# create neighbours list with row-standardized weigths

q.W <- nb2listw(belqnb, style = "W")

# Calculate Moran’s I statistics

moran(x = plotvar, listw = q.W,

n = narea, S0 = Szero(q.W))

# Spatial Durbin Model

#-------------------------

durbin <- lagsarlm(log(risk) ~ Population_density_per_sq_km +

Household_well_sanitation_pctg + Household_well_drinking_source_pctg +

poor_pctg + No_of_Flood + submerged_households, Durbin = T,

data = data.final, list = q.W, tol.solve = 1.0e-20)

summary(durbin)

impacts(durbin, listw = q.W)

# SDM Quantile Reg

#-----------------------

data.durbin <- data.final %>% dplyr::mutate(log.risk = log(risk)) %>%

dplyr::select(-c(risk, dengue, Population))

form <- log.risk ~ Population_density_per_sq_km + Household_well_sanitation_pctg +

Household_well_drinking_source_pctg + poor_pctg +
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No_of_Flood + submerged_households

mt <- terms(form, data = data.durbin)

mf <- lm(form, data = data.durbin, method = "model.frame")

x <- model.matrix(mt,mf)

lag <- create_WX(x, listw = q.W)

form <- update(form, log.risk ~ .+ lag)

qdurbin.u <- function(form, wy = NULL, wmat = NULL, inst = NULL, winst = NULL,

shpfile = NULL, tau = 0.5,

rhomat = NULL, data = NULL, silent = F, q.W = NULL){

mt <- terms(form, data = data)

mf <- lm(form, data = data, method = "model.frame")

x <- model.matrix(mt,mf)

lags <- create_WX(x, listw = q.W)

qdata <- model.frame(form, data = data)

y <- qdata[, 1]

q.W <- q.W

dontneedw <- !identical(wy, NULL) & !identical(inst, NULL) &

identical(inst, NULL)

if (identical(wmat, NULL) & dontneedw == FALSE) {

if (identical(shpfile, NULL)) {

stop("Shape file needed")

}

library(spdep)

neighbors <- poly2nb(shpfile, queen = TRUE)

wmat <- nb2mat(neighbors, zero.policy = TRUE)

q.W <- nb2listw(neighbors, style = "W")

}

n <- nrow(wmat)

if (identical(wy, NULL)) {
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wy <- as.numeric(wmat %*% as.matrix(y))

}

qdata <- data.frame(qdata, wy)

newform <- as.formula(form, env = qdata)

xmat <- model.matrix(form, data = data)

if (identical(inst, NULL) & identical(winst, NULL)) {

zmat <- cbind(xmat, wmat %*% xmat[,-1])

}

zmat <- zmat[, -1]

nk = ncol(xmat) + 1

wyboot <- wy

zboot <- zmat

bootdata <- qdata

nrho = length(rhomat)

rhohat <- NULL

if (nrho > 1) {

rhohat <- rhomat

fit <- lm(wy ~ zmat)

qdata$wyhat <- fitted(fit)

newform <- as.formula(form, env = qdata)

newform <- update(newform, newy ~ . + wyhat)

for (i in seq(1:nrho)) {

qdata$newy <- y - rhomat[i] * qdata$wy

fit <- rq(newform, tau = tau, data = qdata)

rhohat[i] = fit$coef[length(fit$coef)]

}

j = which(abs(rhohat) == min(abs(rhohat)))

if (j == 1 | j == nrho) {

cat("Warning: rho is at an endpoint of rhomat",

"\n")

}

minrho = rhomat[j]
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if (silent == FALSE) {

cat("Coefficients on instrumental variable for WY:",

"\n")

print(cbind(rhomat, rhohat))

}

qdata$newy <- y - minrho * qdata$wy

qdata.lag <- cbind(qdata, lags)

newform <- update(newform, . ~ . - wyhat + lags)

xmat.lags <- model.matrix(newform, data = qdata.lag)

nk <- ncol(xmat.lags) +1

fit <- rq(newform, tau = tau, data = qdata.lag)

bmat <- c(fit$coef, minrho)

semat <- c(rep(NA,ncol(xmat.lags)))

summat <- array(0, dim = c(nk, 4))

summat[, 1] <- bmat

summat[, 2] <- semat

summat[, 3] <- bmat/semat

summat[, 4] <- 2 * (1 - pnorm(abs(bmat/semat)))

rownames(summat) <- c(colnames(xmat.lags), "WY")

colnames(summat) <- c("Coef.", "Std. Err.",

"Z-Values", "Pr(>|z|)")

if (silent == FALSE) {

cat("Chernozhukov and Hansen IV Quantile Regression Results",

"\n")

}

}

return(summat)

}

# rho = 0.1

# same code for every rho

#----------------

# simulation
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set.seed(123)

alpha <- as.vector(runif(1, min = 0, max = 5))

beta <- as.vector(runif(1, min = 0, max = 5))

I <- diag(nrow(wmat))

gamma <- as.vector(runif(1, min = -1, max = 1))

for(i in 1:100){

set.seed(123*i)

error <- rnorm(n, mean = 0, sd = 1)

alpha.cov <- replicate(n,1)

covariates <- matrix(rnorm(1*n, mean = 10, sd = 1),nrow=n)

# intercept

y.durbin <- as.matrix(solve(I - rho*wmat)) %*%

as.matrix(alpha * alpha.cov + covariates %*% beta +

wmat %*% covariates %*% gamma + error)

sdm.sim <- data.frame(cbind(y.durbin, covariates))

colnames(sdm.sim) <- c("risk", "X1")

mt <- terms(risk ~ X1, data = sdm.sim)

mf <- lm(risk ~ X1, data = sdm.sim, method = "model.frame")

x <- model.matrix(mt,mf)

lags <- create_WX(x, listw = q.W)

form <- risk ~ X1

for(j in 1:9){

quant.sdm <- qdurbin.u(form,

wmat = wmat,

data = sdm.sim,

tau = j/10,

rhomat = seq(0,0.99,0.05),

silent = T,

q.W = q.W)
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intercept.sdm.q[i,j] <- quant.sdm[1]

intercept.sdm.q.e[i,j] <- quant.sdm[1] - quantile(error, probs = j/10)

beta1.sdm.q[i,j] <- quant.sdm[2]

beta1.lag.sdm.q[i,j] <- quant.sdm[3]

rho.for.q[i,j] <- quant.sdm[4]

se.x1[i,j] <- quant.sdm[2,2]

se.rho[i,j] <- quant.sdm[4,2]

y.fit <- as.matrix(solve(I - rho.for.q[i,j]*wmat)) %*%

(intercept.sdm.q[i,j] + beta1.sdm.q[i,j] * covariates[,1] +

beta1.lag.sdm.q[i,j] * wmat %*% covariates[,1])

}

}

# dengue data

#----------------

#----------------------------

data.durbin <- data.final %>% dplyr::mutate(log.risk = log(risk)) %>%

dplyr::select(-c(risk, dengue, Population))

form <- log.risk ~ Population_density_per_sq_km + Household_well_sanitation_pctg +

Household_well_drinking_source_pctg + poor_pctg +

No_of_Flood + submerged_households

res.1 <- qdurbin.u(form,

wmat = wmat,

data = data.durbin,

tau = 0.1,

rhomat = seq(0,1,0.001),

q.W = q.W,

silent = F)
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# bootstrap residuals for tau = 0.2

# same code for every tau

#---------------------

for(k in 1:B){

e.boot <- sample(res, size = n, replace = T)

y.boot <- as.matrix(

solve(I - res.2[14] * wmat) %*%

(res.2[1] + res.2[2] * x[,2] + res.2[3] * x[,3] +

res.2[4] * x[,4] + res.2[5] * x[,5] +

res.2[6] * x[,6] + res.5[7] * x[,7] +

res.2[8] * wmat %*% x[,2] + res.2[9] * wmat %*% x[,3] +

res.2[10] * wmat %*% x[,4] + res.2[11] * wmat %*% x[,5] +

res.2[12] * wmat %*% x[,6] + res.2[13] * wmat %*% x[,7])) + e.boot

x.boot <- data.durbin[,-1]

dat.boot <- cbind(y.boot, x.boot) %>% as.data.frame()

form.boot <- y.boot ~ Population_density_per_sq_km + Household_well_sanitation_pctg +

Household_well_drinking_source_pctg + poor_pctg +

No_of_Flood + submerged_households

fit.boot <- qdurbin.u(form.boot,

wmat = wmatrix$wmat,

data = dat.boot,

tau = 0.2,

rhomat = seq(0,1,0.001),

q.W = q.W,

silent = T)

beta0.boot[k] <- fit.boot[1]

beta1.boot[k] <- fit.boot[2]

beta2.boot[k] <- fit.boot[3]

beta3.boot[k] <- fit.boot[4]

beta4.boot[k] <- fit.boot[5]

beta5.boot[k] <- fit.boot[6]

beta6.boot[k] <- fit.boot[7]
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lag.beta1.boot[k] <- fit.boot[8]

lag.beta2.boot[k] <- fit.boot[9]

lag.beta3.boot[k] <- fit.boot[10]

lag.beta4.boot[k] <- fit.boot[11]

lag.beta5.boot[k] <- fit.boot[12]

lag.beta6.boot[k] <- fit.boot[13]

rho.boot[k] <- fit.boot[14]

}

for(i in 1:9){

SE.beta0.boot <- sd(beta0.boot)

SE.beta1.boot <- sd(beta1.boot)

SE.beta2.boot <- sd(beta2.boot)

SE.beta3.boot <- sd(beta3.boot)

SE.beta4.boot <- sd(beta4.boot)

SE.beta5.boot <- sd(beta5.boot)

SE.beta6.boot <- sd(beta6.boot)

SE.lag.beta1.boot <- sd(lag.beta1.boot)

SE.lag.beta2.boot <- sd(lag.beta2.boot)

SE.lag.beta3.boot<- sd(lag.beta3.boot)

SE.lag.beta4.boot <- sd(lag.beta4.boot)

SE.lag.beta5.boot <- sd(lag.beta5.boot)

SE.lag.beta6.boot <- sd(lag.beta6.boot)

SE.rho.boot <- sd(rho.boot)

}

summat.2 <- array(0, dim = c(nrow(res.5), 4))

summat.2[, 1] <- res.2[,1]

summat.2[, 2] <- rbind(SE.beta0.boot, SE.beta1.boot, SE.beta2.boot,

SE.beta3.boot, SE.beta4.boot,

SE.beta5.boot, SE.beta6.boot,

SE.lag.beta1.boot, SE.lag.beta2.boot,

SE.lag.beta3.boot, SE.lag.beta4.boot,
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SE.lag.beta5.boot, SE.lag.beta6.boot,

SE.rho.boot)

summat.2[, 3] <- summat.2[,1]/summat.2[,2]

summat.2[, 4] <- 2 * (1 - pnorm(abs(summat.2[,1]/summat.2[,2])))

rownames(summat.2) <- c(rownames(res.2))

colnames(summat.2) <- c("Coef.", "Std. Err.",

"Z-Values", "Pr(>|z|)")

# impact matrix

#------------------

DE <- NULL

IE <- NULL

TE <- NULL

vec <- as.vector(rep(1, nrow(data.durbin)))

i <- 1

for(i in 1:n.beta){

IqW.inv <- as.matrix(solve(diag(nrow(data.durbin)) - res.2[nrow(res.2)]*wmat.du))

sec.eq <- as.matrix(res.2)[i+1] * diag(nrow(data.durbin)) + wmat.du *

as.matrix(res.2)[(n.beta+i+1)]

SkW <- IqW.inv %*% sec.eq

DE[i] <- 1/nrow(data.durbin) * sum(diag(SkW))

TE[i] <- 1/nrow(data.durbin) * sum(rowSums((SkW)))

IE[i] <- TE[i] - DE[i]

summat[i,1] <- DE[i]

summat[i,2] <- IE[i]

summat[i,3] <- TE[i]

rownames(summat) <- c(as.matrix(row.names(res.2[2:(n.beta+1),])))

colnames(summat) <- c("Direct", "Indirect", "Total")

}
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