
Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

A survey and evaluation of browser fingerprinting techniques

Ward Segers
Scriptie ingediend tot het behalen van de graad van master in de informatica

2020
2021

PROMOTOR :

Prof. dr. Peter QUAX

COPROMOTOR :

Prof. dr. Wim LAMOTTE

BEGELEIDER :

De heer Mariano DI MARTINO

De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee
universiteiten in twee landen: de Universiteit Hasselt en Maastricht University.

Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

A survey and evaluation of browser fingerprinting techniques

Ward Segers
Scriptie ingediend tot het behalen van de graad van master in de informatica

PROMOTOR :

Prof. dr. Peter QUAX

COPROMOTOR :

Prof. dr. Wim LAMOTTE

BEGELEIDER :

De heer Mariano DI MARTINO

Hasselt University
Transnational University Limburg

Master Thesis

A survey and evaluation of browser
fingerprinting techniques

Author:
Ward Segers

Assistant:
Mariano Di Martino

Department
School for Information
Technology

Promotors:
Prof. Dr. Peter Quax

Prof. Dr. Wim Lamotte

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

June 2021

https://wardsegers.be

iii

“The Internet, my fickle friend, my two-faced enemy, what would life be like without
you? Where else can I be anonymously anyone and yet, have no anonymity at all?”

Susan Schussler

v

Acknowledgements
First and foremost, my gratitude goes towards Mariano Di Martino, the assistant of
my promoters, who was my supervisor. He spent hours on guiding me towards this
thesis, keeping track of the progress, steeringme in the correct direction, and proof-
reading the thesis. This thesis wouldn’t have been possible without him.

Next, I want to thank my promoters, prof. Peter Quax and prof. Wim Lamotte for
their support and guidance. From the first conversation we had about my thesis
proposal, the enthusiasm they had about the subject made me confident and moti-
vated that it would be possible.

I would like all other education staff of Hasselt University for the five years in which
I’ve learned basically everything I know about Computer Science. Without all of the
knowledge that was passed onto me, it wouldn’t be possible to write this thesis.
Off course, all supporting staff of the university, who made this education possible,
deserves an acknowledgement as well.

An acknowledgement goes to my fellow student Jeroen Bollen, who told me about
the concept of browser fingerprinting near the beginning ofmy student career. From
that moment onwards, the topic stayed in the back of my head as a possible subject
for my thesis.

Finally, my go to all themembers of my family and friends who supportedme during
thewriting of this thesis. It should be said thatwritingmost of the thesis fully remote
with little interaction hasn’t always been easy. It was nice to have people to fall back
to.

vii

Contents

Acknowledgements v

1 Background 1
1.1 Keeping state in the stateless . 1
1.2 Transition to interactivity . 2
1.3 Device fingerprinting . 3
1.4 Incentives to fingerprint . 4

1.4.1 Alternative to third Party Cookies 4
1.4.2 Captcha and bot detection . 5
1.4.3 Fraud prevention . 6
1.4.4 Discovering outdated software 7

1.5 Classification of fingerprinting techniques 7
1.5.1 Based on execution: Active↔ Passive 7
1.5.2 Based on component . 8

1.6 Fingerprinting other components . 8
1.6.1 Server fingerprinting . 8
1.6.2 Website fingerprinting . 10

2 Experiment setup 13
2.1 Assessment criteria for fingerprinting vectors 13
2.2 Experiments: Fingerprint Lab . 16

2.2.1 Global structure . 17
2.2.2 Fingerprint library . 17
2.2.3 Interface between Vue and the fingerprint library 18
2.2.4 Backend . 18
2.2.5 Privacy concerns . 19
2.2.6 Further improvements . 19
2.2.7 Deployment . 19

3 Fingerprinting the browser 21
3.1 Cache . 21

3.1.1 Favicons . 22
3.1.2 Cache Control . 24
3.1.3 Alt-Svc . 25
3.1.4 Mitigation . 25
3.1.5 Conclusion . 26

3.2 HTTP stack . 26
3.2.1 HTTP versions . 26
3.2.2 HTTP Headers . 27
3.2.3 HTTP/2 . 27
3.2.4 HTTP/3 . 27

Transport-layer fingerprinting 28

viii

0-RTT . 28
Congestion control . 29
Available drafts . 29

3.2.5 Extensions . 29
3.2.6 Plugins . 30

3.3 NPAPI . 31
3.4 Font probing . 31
3.5 Conclusion . 32

4 Exploits using Web APIs 35
4.1 Introduction . 35

4.1.1 W3C Web Standards . 35
4.1.2 Environment . 35
4.1.3 GPU . 36

4.2 HTML5 Canvas 2D font rendering . 36
4.2.1 Experiment . 37

4.3 Canvas 2D drawing without fonts . 37
4.4 WebGL . 38

4.4.1 Experiment . 38
4.4.2 Mitigation . 38
4.4.3 Conclusion . 39
4.4.4 WebGL Debug Shaders . 39
4.4.5 Experiment . 40
4.4.6 Mitigation . 40
4.4.7 Conclusion . 40

4.5 WebGL Pixel buffers . 40
4.5.1 Experiment . 41
4.5.2 Mitigation . 41

4.6 WebGPU . 42
4.7 Web Audio API . 43
4.8 Performance API . 44
4.9 Battery . 44
4.10 Screen . 45
4.11 VR . 45
4.12 WebXR . 46

4.12.1 Experiment . 46
4.12.2 Mitigation . 46
4.12.3 Conclusion . 46

4.13 Gamepad API . 47
4.13.1 Experiment . 47
4.13.2 Mitigation . 48
4.13.3 Conclusion . 48

4.14 Media Capabilities API . 49
4.14.1 Experiment . 49
4.14.2 Mitigation . 50
4.14.3 Conclusion . 50

4.15 WebRTC . 50
4.16 Other components . 51

4.16.1 Main memory . 51
4.17 Conclusion . 51

ix

5 Fingerprinting the Network 53
5.1 IP address . 53
5.2 Autonomous Systems . 54
5.3 IP headers . 55
5.4 IPv6-specific . 55
5.5 TCP . 56
5.6 Conclusion . 56

6 Fingerprinting prevention 59
6.1 Incentives to block fingerprinting . 59
6.2 Disabling JavaScript . 60
6.3 Browser Built-in Solutions . 60

6.3.1 Chromium-based . 60
6.3.2 Firefox . 61
6.3.3 Tor Browser . 61
6.3.4 Safari . 61

6.4 Differential Privacy and Privacy Budget 62
6.5 Conclusion . 63

7 Gaming as additional fingerprinting vector 65
7.1 Selection of Techniques . 65
7.2 Analysis . 66
7.3 Further work . 66

8 Conclusion 67

A Dutch summary - Nederlandse samenvatting 69
A.1 Achtergrondkennis . 69
A.2 Opzet van het experiment . 70
A.3 Browser . 71
A.4 Web API’s . 71
A.5 Network . 73
A.6 Mitigatie . 74
A.7 Gaming . 74
A.8 Conclusie . 75

Bibliography 77

xi

Introduction

Browsers keep providing more and more functionality to developers. Functionality
that was previously limited to natively ran applications. While these applications
transform the Web into a platform, rather than a library of HTML files, it raises new
privacy concerns, in the form of (a.o.) browser fingerprinting.

In this thesis, we conduct a domain study of the landscape of browser fingerprinting,
a collection of techniques to uniquely identify clients, without relying on cookies,
local storage or related technologies.

And, as fingerprinting vectors become evermore elaborate, so do protections built
by browsers, extensions and other tools. We explore how browsers mitigate fin-
gerprinting attempts and look at what balance can be found between privacy and
functionality.

Our central questions are the following:

• Which fingerprinting vectors are relevant today?

• Which upcoming technologies provide a new attack surface for future finger-
printing?

• How can these attack vectors be mitigated, preferrably with minimal impact
on developers and end-users?

Also, this thesis aims to provide a theoretical base for game-based fingerprinting.
In this technique, we use a game to strengthen our certainty about a fingerprint.
Some central questions related to this are:

• Can we exploit certain game aspects to gain more data about the system and
pheripherals of a user’s system?

• Canwe use the availablility of a game on awebsite to enablemore fingerprint-
ing? How significant would the potential increase in fingerprinting surface be?

Hence, we have two goals for this thesis. First, we try to provide an exploration of
the existing techniques, ideally those which can be used in a browser fingerprinting
game. Second, we will combine these techniques into a game which could be used
to provide better fingerprinting.

Structure

In the first chapter, we provide a brief history of browser fingerprinting, why it was
developed and how people could protect themselves. We explain the important
concepts and terminology that will be used throughout the thesis.

In the second chapter, a technical introduction is provided to the ‘Fingerprint Lab’, a
framework thatwedeveloped to have a uniformway to implement and test potential

xii

fingerprinting vectors. We discuss its technical setup and possibilities. We also lay
out the parameters that we will use to assess techniques. These parameters allow
us to compare fingerprinting methods better.

In the following chapters, we explore several categories of (potential) fingerprinting
vectors, categorised by the component of a setup that they use. First, we look at
browser fingerprinting. Next, we look at the various Web APIs that are available.
Afterwards, we look at the network layer and the operating system. Network fin-
gerprinting is a whole different research topic, but it can be used to strengthen the
fingerprinting vectors, which is why we included it.

After that, we look at the general ways that users (or user agents) could take to avoid
or combat this fingerprinting. While this will be discussed briefly after every attack
vector, we choose to devote a separate chapter to general tips and approaches to
the fingerprinting problem.

Next, we use this knowledge to discuss the ways at which a game could be used to
fingerprint more effectively, compared to traditional methods.

Finally, we form our conclusion. We assess our work, discuss extensions to Finger-
print Lab, as well as further research that could be done in this regard.

xiii

Dedicated to all family members and friends who supported me
during these challenging times.

1

Chapter 1

Background

To understand the problem of browser fingerprinting, it is important to understand
the concepts that are its foundation. In this first chapter, we discuss what browser
fingerprinting is, how it wasmade possible andwhat incentives exist to use its tech-
niques. Also, we situate it in the bigger research field of fingerprinting.

1.1 Keeping state in the stateless

The original version of the HTTP protocol did not contain any form of state manage-
ment. The original intent of the developerswas to provide an open and collaborative
World Wide Web for internal scientific uses. To that extend, the only state manage-
ment required was authentication of users.

To facilitate authentication, the HTTP protocol contains the error code ‘401 Unau-
thorized’, which will ask user agents to provide credentials in order to continue [14].
In the original standard, these valueswere sent in plaintext [72]. InHTTP/1.1, hash-
ing of the values was added [72].

As websites became more popular and complex, the need to preserve state be-
tween connections grew. RFC 2109 introduced the concept of cookies [43]. We can
see cookies as key-value pairs, stored in the browser. Whenmaking subsequent re-
quests to the website that issued the cookies, browsers should include the cookies
as HTTP headers.

Cookies have several advantages. The first would be its relatively simple implemen-
tation. On client-side, all that is required is a database which links the domain with
cookie keys and values. On server-side, depending on the needs of the cookies, no
implementationmight be required. If e.g. a language setting is given using a cookie,
no server-side storage is required. Another advantage of cookies is their versatility.
Any object that can be serialized into a string, can be stored in a cookie. A final ad-
vantage is the editability by clients, as user agents include debugging tools to allow
modification of those cookies. Also, programmatic modification, such as through
JavaScript, is possible.

Despite these advantages, several shortcomings exist. The first disadvantage is the
fact that a user can control the contents of cookies from their browser. Users can
decide to delete cookies, alter their contents or create them when no server has
given them yet. When using these techniques to e.g. track which account a user is
logged in on and which permission this user has, this can lead to security vulnera-
bilities.

2 Chapter 1. Background

Another disadvantage is the size limit imposed by cookies. As the values have to be
stored in the browser of the user, cookies are limited to 4KB in size [43]. For some
use cases, this will not suffice. While it would be possible to split items that would
overflow this limit intomultiple cookies, this solution could still give problemswhen
browsers limit the amount of cookies that a website can store.

A third disadvantage is the lack of linkage to a particular setup. Criminals could
try to steal cookies, insert them into their own browser and look at the website as
if they were the original user. Attacks exist to extract cookies, such as cross-site
scripting (XSS), malicious extensions and asking users to paste arbitrary code in the
developer console. The original users could have no idea that their data is stolen
and the server would have no idea that the requesting user agent is an imposter.

Some of these shortcomings, such as the editability, can be solved using session
cookies instead of a raw value. These cookies store only an encrypted identifier
in the cookie field, where related values are stored either on the server or in the
cookie field in encrypted form. If a value were changed, the encryption would be
broken (and thus invalidating the cookie). But, in offline-first applications, a server
connection would be required to retrieve or validate the cookie.

A further improvement is the JSON Web Token (JWT), which consists of a JSON
object that contains the relevant information (e.g. signed in user) and a signature to
validate this data. The JSON is readable in the browser and the signature (made by
a server) ensures integrity. However, in the case of linking the cookie to its setup,
we’ve not mitigated the problem.

1.2 Transition to interactivity

As said before, the Web started as a collection of static resources. Since then, the
Web slowly evolved tomore of a platform, for which entire applications can be built.
These applications can access functionality that would traditionally be reserved for
native applications. One example of such application is videocalling. In order to
function, it needs access to peripherals such as a webcam and microphone.

The concept of the web as a platform lead to Google creating a line of new devices,
called Chromebooks. These devices rely on the ChromeOS operating system, which
mainly consists of only the Chrome browser.

The first steps towards this interactivity were takenwith the introduction of the Net-
Scape Plugin API, shortened as NPAPI. Initially, the NPAPI, which was created in
1995 [50], allowed developers to create custom logic in webpages. API allowed
developers to integrate their own frameworks into the browsers. We will discuss
NPAPI more in depth in 3.3.

A popular NPAPI-framework to add interactive elements to static pages was the
Flash framework. While it offered additional functionality (such as graphic acceler-
ation and webcam access), it contained several vulnerabilities [12]. Also, users had
to download extra software (for which they didn’t always have the required admin-
istrator rights) and it was unavailable on Apple platforms due to the aforementioned
security issues [50].

At the end of 2020, Adobe declared Flash End-Of-Life, after all mayor browsers had
dropped support for NPAPI-plugins completely or are in the process of doing it [50].

1.3. Device fingerprinting 3

Besides the security and privacy issues, the main reason for the discontinuation of
NPAPI was the rise of HTML5 and related JavaScript-based APIs. These APIs can
be found directly in the browser, with no additional software or third-party plugins
required. Also, cross-platform compatibility is resolved by the browser, which will
offer a standard set of APIs to the webpage. Also, because all logic remains in the
browser process, security vulnerabilities overall had less impact than the NPAPI-
based ones, where the plugin were to run in its own process.

As newer technologies emerge, new APIs are introduced to facilitate their usage on
the web. A fairly new example can be found with Virtual Reality. As the technology
becamemore popular, web developers wanted to be able to include the technology
in their web pages. To that end, theWebVR proposed standard was developed [88].
While the standard is now deprecated in favor of themore genericWebXR standard,
some browsers (such as Firefox) still support the feature [88].

1.3 Device fingerprinting

As we’ve seen, browsers now offer Web APIs to the webpages. However, not all
browsers implement the same APIs, and some implementations differ, as we’ll see
later in this thesis. But, is it possible to deduct information from this? This is what
the field of device fingerprinting tries to research.

Device fingerprinting is the concept to use information from several sources to iden-
tify a setup (with great probability). The name fingerprint is an analogy to the human
fingerprint, which is unique to each human. As it is unique, the fingerprint could be
used to identify people. But, oppose to e.g. a passport, changing a fingerprint isn’t
as easy. Therefore, using the fingerprint as additional measure of authentication is
possible. A device fingerprint concerns collecting data from different properties to
create a similar kind of fingerprint.

An individual technique to gain information is called a fingerprint attack vector, or
shortened to fingerprinting vectors or attack vectors1. When talking about device
fingerprinting in the context of browsers, the term browser fingerprinting is used.
Browser fingerprinting is the subject of our research.

When done correctly, browser fingerprinting can be used in the same form of a ses-
sion cookie, where it can be used as an identifier for the client, as can a human
fingerprint. The biggest difference between the session cookie and browser finger-
printing is that users cannot delete or modify a fingerprint in the same way they
could change a cookie.

To continue the resemblance with human fingerprints, it is worth noting that it can
be difficult to know whether a party has collected information on a fingerprint. As
somebrowser fingerprinting is done on the network layer, users don’t knowwhether
they are being fingerprinted.

The goal of the research domain is to get algorithmswhich can determinewith great
possibility how much certainty we have that a given connecting user agent is the
same as one we saw before, potentially on a different website.

1Attack vector is often used in the context of ways to hack a system, but for the purposes of this
thesis, we omit this meaning.

4 Chapter 1. Background

1.4 Incentives to fingerprint

Now thatwe have a basic idea about howbrowser fingerprintingworks, we canwon-
der why companies and organizations would be eager to implement such features.
As cookies provide authentication in a way that is easier to implement andmanage,
and offers more stability (fingerprints might differ slightly thanks to changes on the
user’s side), there seems little reason to do so.

In this section, we look into over several popular reasons to fingerprint users.

1.4.1 Alternative to third Party Cookies

In the recent years, massive amounts of data were stolen and subsequently leaked
[66]. Recently, Facebook had data from about half a billion users leaked online.
Consumers get more aware of the importance of their privacy, which puts a strain
on companies that rely on their ability to accumulate this data.

Starting in 2019, Firefox disabled third party cookies as a way to follow users’ surf-
ing behavior among the web [89]. They did this by keeping cookies separated per
domain that was visited, even third party cookies [89]. While this is beneficial for
privacy, it can break previously working applications, such as single-sign-on (SSO),
which relies on one set of credentials for multiple accounts.

While the market share of Firefox is a mere 3.7% [19], a similar decision has re-
cently been announced by Google for their Chrome browser [64]. As this browser
has a 64%market share (excluding all Chromium-based browsers) [19], advertising
companies are now looking for new ways to track users online.

To avoid a situation in which every advertising company will be working on its own
technique, theW3C has recently formed theWeb Advertising group, whichwill work
on a futureWebStandard to improve both the advertising ecosystemand the privacy
controls for users [63]. But, as of now, this standard isn’t even in proper develop-
ment yet. Therefore, a lot of uncertainty about the direction of online advertisement
remains [63].

Another intiative that gained some tension, is the UID 2.0 initiative, which would
simply ask users for an email address or phone number before accessing content
[77] [22]. As this method would directly link data to users by their mobile phone
number, instead of browser clients, themethodwas consideredmore intrusive than
the previously disabled third party cookies. Google decided not to back the initiative
[62] [63].

Google has proposed their own idea that doesn’t use browser fingerprinting, FLoC.
This algorithm would analyze a users’ browser history and place those users into
categories with people who have a similar history. While this would bemore private
than cookies, the overall privacy concerns remain. All other major browser vendors
have said not to support the concept [18].

At the time of writing, no new standard has been formed. Several proposals are on
the table, with some unclearity about which one will be the new standard.

As the goal of browser fingerprinting is to track user agents regardless of cookies,
some companies might consider to implement some fingerprinting vectors to have
some ability of cross-domain tracking.

1.4. Incentives to fingerprint 5

Figure 1.1: An example of an early Captcha

1.4.2 Captcha and bot detection

Not all browsers are actually facing a human. Headless browsers (user agents with-
out actual rendering to a screen) are used in all sorts of applications. Some use
cases are the rendering of a webpage to PDF, being able to process the contents
(as e.g. used by citation generating websites) or to conduct automated tests on a
website in development [29].

However, these browsers can be utilized for less desirable use cases. One such
usecase is to post spam onwebsites or to brute force a signin. More recently, during
the computer chip shortage, bots were built to scalp available components. For
these cases, some form of verification needs to be implemented on websites that
can check whether users are human [35].

Themost widespreadway to identify whether a visitor is an actual human, is the use
of so-called Captchas2. These tests will provide some form of test to see whether
the website is actually being visited by a human [68] [83].

In the initial days of the Internet, these tests were rather simple. Some examples
are ‘4 + 5 =’ or ‘What text is in this image?’ However, as the fields of Computer Vision
and Artificial Intelligence expanded, so did computers’ ability to solve these tests,
meaning that they became unusable to tell computers apart from humans [83] [17].

Over the years, these tests became increasingly difficult. At first, text would get
mangled or had a lot of noise in the image. One such example can be seen in Figure
1.1.

Currently, the most popular Captcha is the Google ReCaptcha system, which uses
a combination of browser fingerprinting and actual tests [17]. To activate it, users
tick a boxwith the text ‘I am not a robot’. After that, the systemdetermineswhether
an additional Turing Test is required. If the system is confident enough using only a
combination of browser fingerprinting vectors, it will not ask for additional verifica-
tion. At the time of writing, the extra test consists of recognizing items on a matrix
of pictures. These items are related to road signals and things that can be seen from
the roadside. This ensures that almost all members of a general audience should
know these items and be able to recognize them. As a benefit to Google, users help
to train Machine Learning models used in Google’s technologies [58] [53].

As Machine Learning models will become better at recognizing items on pictures,
the ReCaptcha system is giving users more noisy images with more difficult chal-
lenges. This ensures that challenges remain difficult for an ‘average botnet’, without
becoming impossible for humans [58].

It should be noted that, while Google is the main provider of Captcha technologies,
it has been their services that were abused to break previous versions of their Re-
Captcha [68].

2Completely Automated Public Turing test to tell Computers and Humans Apart

6 Chapter 1. Background

Other Captcha systems exist. hCaptcha is similar to Google ReCaptcha in work-
ings, but doesn’t use any browser fingerprinting. It only consists of the test ele-
ment. hCaptcha allows customers who need a Machine Learning model trained to
buy ‘captcha space’. For this, hCaptcha gives a small financial reward to the web-
sites using it, as a compensation for their users helping to enhance the machine
learning models [1]. However, recent work shows that its simple structure might
make it easier to bypass [32].

Another popular provider is Arkose Labs. Their tests consist of little games. Some
examples are ‘rotate the image until the correct way is up’, ‘pick the maze that has
an exit’, ‘pick the die on the picture that add up to x’, and so on. As the images are
of little contrast (or changing colors and textures in the maze example), it becomes
more difficult to build automated solvers.

Captchas have had problems in the past with accessibility, as they tend to expect
that users can view their screen. To address theseproblems, an audio option is often
given. However, as audio recognition became better, these sounds had to become
more difficult for users to hear. So, for people who require the accessibility, the
rollout of Captchas often limits their ability to usewebsites [68]. If techniques using
browser fingerprinting can provide adequate certainty about whether a given user
is a human, the need for these Captchas might reduce. Cloudflare uses browser
fingerprinting to reduce the amount of users that need to fill in a Captcha [16].

1.4.3 Fraud prevention

Cookies are a simple to implement scheme for authentication of users. But, it is
possible to steal them from users. When using attack vectors (such as XSS attacks,
deceptive browser plugins or letting users paste code in the browser’s console), it
is possible for attackers to steal session cookies from user agents. When signing in
with these cookies, webservers will assume that the user agent is the one that was
authenticated before. This practice is called session hijacking. The specific practice
is called cookie stealing [67].

As these exploits can arise from outside the website, such as in the case of the con-
sole, cookies cannot be trusted as is onwebsites that have to be sure that the user is
who they claim to be. Banks, for example, would have tomake sure that it is actually
their client who is executing the transaction.

An simple approach to try to ensure that the user agent with the given cookie is the
user agent we authenticated, we can store the IP address (or AS number of that
IP). This way, if the IP changed, the user session would be invalidated. Unfortu-
nately, this approach came with a few drawbacks. As more data is consumed on
mobile networks in a moving environment (such as in cars), so would their IP ad-
dress change rapidly. This gives users a bad experience if they check an account on
both their home and office Internet connection using their phone. Also, if hackers
could abuse a VPN (or e.g. a malificent browser plugin that re-routes their traffic
through the victim’s connection), the detection would not work. Specifically for the
AS-approach, if the hackerwere to be on the samenetwork as our user, no detection
would take place. The final disadvantage of linking IP addresses to cookies would
be IPv6, which can have devices have a multitude of addresses, which can change
more quickly.

1.5. Classification of fingerprinting techniques 7

The use of more advanced options than IP addresses would yield both better de-
tection of fraud and a better user experience. This would require us to distinguish
devices in a more fine-grained manner. This is where browser fingerprinting comes
in handy. By linking other data, such as the user agent properties, to the cookie (and
verify this on server side), we can actually provide more certainty that a particular
cookie is in fact used in the browser it originated in.

When in doubt, websites can choose to either completely invalidate the cookies.
Thiswould be effective against hackers, but can leave somehonest users in the dust
(as some configurations might change fingerprints often or just work against finger-
printing). Therefore, a better approach would be to ask for an additional factor of
authentication. This factor could be a token sent by SMS or TOTP-based applica-
tion. This concept is knownmore widely as Risk-Based Authentication (RBA), where
multiple factors of authenticastion can be asked when the operation is deemed of
higher risk [60]. While this can be in connection with fingerprinting mismatches, it
can be in function of the type of action performed (e.g. sending small amounts of
money to known recipients or a large amount to an account thatwasn’t usedbefore).

Protection against session hijacking can be executed on the client-side aswell. Ses-
sionShield is a browser plugin that will checkwhether a script is accessing the cook-
ies [48].

1.4.4 Discovering outdated software

Lots of web applications these days are of great importance and require the entire
environment to be safe. Banking applications allow for the transfer of big amounts
of data. While financial institutions might spend time and effort into securing their
servers, these are only one half of a transaction. Are clients keeping their systems
secure?

A survey shows that, to this date, 21.66% of users browse on an unsupported ver-
sion ofWindows [19]. Microsoft doesn’t provide fixes for security vulnerabilities and
other updates. This means that they’re more vulnerable to attacks.

Financial institutions could use browser fingerprinting to determine whether users
runoutdated software. If theydid, they could use this data to inform their customers
to upgrade software. They could even restrict the use of applications for outdated
software versions to ensure that transactions remain secure.

1.5 Classification of fingerprinting techniques

There exist several ways to classify different fingerprinting techniques, depending
on the criteria on which the division is made. We will discuss a few in this section.

1.5.1 Based on execution: Active↔ Passive

A first classification would be into active and passive techniques.

Active attacks are attacks that actively query the system to some data [42].

As active attacks have to query the system, they can be detected by the system.

8 Chapter 1. Background

In our thesis, the WebGL vendor information (4.4) is an example of a fingerprinting
vector that is considered active, as it relies on the outcome of the WebGL API call.

On the opposite, passive attacks are attacks that don’t involve a query to the system
[42]. They solely rely on thebehaviorwithwhich the system interactswith the server
[42].

Pleasenote that this behavior by the systemcanbe instructedby thewebsite,mean-
ing that it can still be detectable in some cases. Some fingerprinting vectors, such
as network based ones, don’t involve any extra interaction with the user agent. All
fingerprinting is done on the server.

Cookies themselves can be considered a passive fingerprinting vector [42], as they
require no additional query step to retrieve. Besides that, we can also use a variety
of headers provided by the browser (see 3.2.2) as example of a passive fingerprint-
ing approach.

Passive attacks are more difficult to detect and mitigate, as it cannot have certainty
whether fingerprinting is taking place.

1.5.2 Based on component

The classification in 1.5.1 focuses on the way the attack vector is executed. We can
also take a different classification and look at which component is being abused. In
this section, we give an introduction to this classification, whichwewill use through-
out the thesis.

The first category is the browser-specific components. Within this category, we in-
clude the application layer networking, as the application-layer networking is part
of the browser from which it originates.

The second category is the available Web APIs. The third category is attack vectors
based on lower-level networking, such as the transport layer (i.e. TCP) and the IP
layer.

While we could consider the operating system as another category, we don’t do that
for the purpose of this thesis and include these techniques in the browser aspect.

Another category can be found in the networking. Here, all other layers of the net-
working stack (transport to physical) can be considered. Not all layers can be fin-
gerprinted by a website (e.g. the physical layer isn’t, to our knowledge, impractical
for websites to fingerprint).

1.6 Fingerprinting other components

Device fingerprinting isn’t the only concept of fingerprinting. Many components of
the Internet are fingerprintable. In this section, we show a brief summary of the
‘fingerprinting landscape’. A visual representation can be seen in Figure 1.2.

1.6.1 Server fingerprinting

Server fingerprinting is a concept that uses techniques similar to device fingerprint-
ing, but uses them to try and identify the server. It tries to uniquely identify which
software is running on the server to which a user connects. This concept allows an

1.6. Fingerprinting other components 9

network fingerprinting
from network, try to identify user

website fingerprinting
from network, try to identify website

device fingerprinting
from server, try to identify user

server fingerprinting
from user, try to identify server

application fingerprinting
from network, try to identify applications

Figure 1.2: A visualization of the different elements of a connection
to fingerprint. Browser fingerprinting, the subject of this thesis, is a

subcategory of device fingerprinting

attacker to find outdated software, which can subsequently be used to find potential
exploits.

The main difference is that websites can run arbitrary JavaScript code when the
webpage is loaded. The concept of running code doesn’t apply on webservers. This
means that server fingerprinting is mostly related to either application layer or net-
work layer data, using a passive approach.

An important component to fingerprint is the software serving clients on ports 80
and 443, the webserver. Fingerprinting these webservers is called web server fin-
gerprinting. The most commonly used webservers are Nginx and Apache HTTPD
[79].

As we want to provide a general overview of server fingerprinting, we will provide
some examples as to how to fingerprint a web server.

A first technique is to look at server-specific settings that can be seen as a vis-
itor of the website. Among these values are the Server-header (similar to the
User-Agent header on HTTP requests) and the default index and error pages [26].
To avoid exploitation of these vectors, website administrators can omit the header,
delete the version number or replace its content with a custom value, e.g. a web-
site specific value. Error pages can be replacedwith website-specific pages as well.
The practice of extracting the headers from a protocol to gain information about the
system is called banner grabbing [6].

An example as to determine the operating system on which the webserver runs,
is the use of TCP scanning. By using this technique, an application looks at TCP
parameters and congestion control algorithms used. As it contains a database with
which operating system versions default to which parameters, a guess can bemade
as to which operating system is running [26].

Automatic tools to exploit these techniques exist in tools such as nmap. As a small

10 Chapter 1. Background

Figure 1.3: Using nmap, we can identify our own laptop as a Linux
machine, but the version number is incorrect. Other devices that we

tested had similar or worse results.

experiment, we used it to try and identify our NAS, local DNS server and laptop (Fig-
ure 1.3). While it was able to correctly identify the laptop, it failed to identify a Syn-
ology NAS and Pi-Hole DNS server.

1.6.2 Website fingerprinting

Another fingerprinting component is website fingerprinting. Where browser finger-
printing tries to identify users from the perspective of a server, website fingerprint-
ing is used to describe the process of identifying whichwebsite is being visited. This
website fingerprinting is seen from the perspective of a network administrator, who
has no control over either thewebserver or client device [91]. Sometimes, the terms
Website traffic fingerprinting or traffic fingerprinting are used to indicate that anal-
ysis has to happen on traffic.

As website fingerprinting is done per definition at the network layer, the techniques
that are usable are a small subset of what client or server can do to fingerprint each
other. As no code can be executed, special requests can be made or properties can
be seen, no more . Also, as the attacker has (likely3) no knowledge over the con-
tents of HTTPS traffic and cannot read which requests are made, although it is still
possible to distinguish individual pages to a certain degree [23]. DNS analysis is an-
other possibility, but newer standards such as DNS-over-TLS and DNS-over-HTTPS
can make this approach more difficult in the future, as it would be more difficult to
distinguish DNS queries from other HTTPS traffic.

An important incentive to identify individual websites being visited, is censorship.
This can be because of government legislation requiring it, or because a network
administrator doesn’t want users to visit certain website from their network. One
example would be the Great Firewall of China, a big ‘filter’ which blocks several
western websites and content about subjects that the Chinese government doesn’t
want being talked about [21].

While not directly related, if website fingerprinting is done accurately and repeat-
edly on a network, individual user’s browsing patterns could be derived from this
technique, leading to the same ideas browser fingerprinting tries to achieve. How-
ever, it would be limited to individual IP addresses on the network onwhich the user
is requesting the data.

3In the context of business networks, it is possible for network administrators to install a custom
CA and subsequently read the encrypted traffic. For this explanation, we omit this exception.

1.6. Fingerprinting other components 11

Wewon’t discusswebsite fingerprinting any further in this thesis, butwill get back to
it when discussing techniques that have similar ways of exploitation in the website
fingerprinting field.

13

Chapter 2

Experiment setup

In this chapter, we explain the setup required to fulfill the experiment. First, we
determine what parameters will be used to differentiate the different fingerprinting
vector.

In the secondpart of this chapter, we elaborate on the framework thatwedeveloped
to compare fingerprinting vectors.

2.1 Assessment criteria for fingerprinting vectors

Not all fingerprinting vectors are created equal. Some provide data can be used
to identify a user on its own, while others only provide a very small detail of data.
Therefore, we need criteria to assess the impact of different vectors to be able to
compare them.

During this thesis, we will assess fingerprinting vectors using the following criteria:

• Degree of entropy: Some attack vectors will generate the same output for the
majority of users, with only a very select amount of users yielding other results.
While this means that we can fingerprint the users in the latter category with
a bigger certainty, it does leave a big group without fingerprinting surface.

For this thesis, we refer to entropy as the degree of spread of fingerprinting
results in the answer universe. When referring to the amount of data we can
gain from a vector, we’ll use the term amount of data.

Ideally, wewould like every attack vectorwith n possible outcomes to have the
same probability 1

n to be selected, giving a maximal entropy. But, the combi-
nation of low entropy valueswith a select amount of high entropy valuesmight
be useful to identify individual users better.

Given a fingerprinting vector V with n possible outcomes, the entropy H(V)
can be written as

H(V) = −
n

∑
v=i−1

P(vi)− log2 P(vi) (2.1)

with vi being the probability of the ith element being retrieved as a result.

We understand that several fingerprinting vectors are related, but didn’t ac-
count for this when calculating their entropy. For example, the appearance of
the Safari browser is closely related to the appearance of theMacOS or iOS op-
erating system, as these are the only operating systems where this browser is

14 Chapter 2. Experiment setup

available. We didn’t take these into account, becausewe analyzed fingerprint-
ing vectors in isolation, as the amount of combinations of rules that we should
account for would become to big for our research. Also, we could (wrongly)
assume two rules to be related or unrelated.

As we don’t have a big userbase to test our experiments on, we will limit our-
selves to analysis of statistical data that is available from various reputable
sources.

• Amount of extracted data: Some attack vectors provide a binary value (e.g.
the availability of a specific browser feature), while others can extract an entire
image as entropy. We count the amount of extracted data in bits.

One problemweencounteredwith this counting technique, is that bits can rely
on each others’ value. One such example would be the WebGL attack vector,
discussed in 4.5. As theWebGLAPIwould be available, it wouldn’t be possible
to calculate a hash, meaning that the bits dedicated to the hash don’t have to
be accounted for. We allude to the amount of extracted data in the maximum
amount of useful bits that we can extract, assuming all available features are
exploited.

• Stability of the result: Fingerprint vectorsmight not always produce the same
result, as the component on which the vector relies might be changed. We
define the notion of stability as the amount of change required to a system to
make the fingerprint vector produce another outcome, apart from a compo-
nent providing actual mitigation.

The last part of our definition is important. To avoid having to account for ‘the
user installs a tool that actively blocks this vector’ in every test where it is
feasible, we don’t count these forms of mitigation.

As the notion of stability is rather vague and we cannot find an easy formula
for it, we create the following possible groups in which a vector can land.

1. Change in system state. We use this category to catch cases in which we
cannot completely predict when the state of the fingerprint will change.
Some examples are battery discharge and plugging out USB devices. It
should be noted that changes in the internal hardware of the device aren’t
contained in this category, as are changes to the system settings.

2. Change in network. This indicates a change of network (e.g. a device that
moved from one LAN to another). Changes in the version of the Internet
Protocol also fall under this category.

3. Change in browser. This category includes changes to browser settings,
clearing browser data, adding or removing add-ons etc. We exclude add-
ons or settings that block the specific fingerprinting vector (for example,
the Firefox setting ‘resistfingerprinting’ doesn’t count).

4. Change of browser. This category indicates the change from one browser
to another. Some fingerprinting vectors will work across browser en-
gines, as e.g. Microsoft Edge, Google Chrome and Opera all use the Blink
engine. So, if a change between these browsers doesn’t give a differ-
ence in outcome, wewill verify whether a browser with a different engine

2.1. Assessment criteria for fingerprinting vectors 15

(such as Mozilla Firefox or GNOMEWeb) does give another fingerprinting
outcome.

5. Change inOS. This includes changes to the fonts that are installed, drivers
that are available for different hardware devices, system settings etc.

6. Change in hardware. If the fingerprint relies on the actual properties of
the hardware, the only way to stop the attack vector (apart from software
solutions to block the access to the property) would be to physically re-
place hardware.

We don’t include changes in the state of connected devices in this cate-
gory. Those are contained in the first category. The reasoning behind this
is that a change in hardware is rather uncommon (such as a desktop PC
that gets a new CPU). Therefore, this category is more severe to mitigate.

If an outcome can be changed by multiple (e.g. both a browser and operating
system change), we place it in the first one in which it appears, as we tried to
order them to their likelihood of happening.

• Impact of complete mitigation: Some attack vectors are closely related to
the core functionality of the component they exploit, where others provide
specific functionality for a small userbase. In this category, we look at the
impact of a complete mitigation of the vector.

To determine the impact, we created the following categories:

– Loss in performance. Some attacks rely on specific hardware to be avail-
able to accelerate calculations. Some hardware, such as GPUs, suffer
from floating point errors, which can lead to stable fingerprints (see 4.5).
These could bemitigated by computing those values on the CPU instead,
where those can be avoided.

Running such computations on the CPU would yield significant perfor-
mance loss, which would hurt the user experience if the website or ap-
plication relies on performance.

– Loss in functionality. Certain vectors use elements of APIs which are
closely related to the main functionality of that API. One such example
is the availability of caching in browsers. The simplest and completemit-
igation for this vector is to omit the cache entirely and re-download re-
sources if a website is visited again. Bandwidth usage would drastically
increase, hurting the functionality that was available in browsers.

– Loss in convenience. One way to block certain functionality from being
exploited, is to ask users permissions for every component of the browser
that the website tries to use. As asking permission to often leads to users
clicking ‘Yes’ on all questions,

Multiple categories can co-exist for a certain vector, as multiple mitigations
might exist that protect against the fingerprinting.

In some cases, such as the cache exploits discussed before, browsers change
implementations of components to limit the usability of the attack inways that

16 Chapter 2. Experiment setup

don’t completely mitigate the fingerprinting vector, but e.g. make them unus-
able for tracking users cross-sites. Therefore, the impact of complete mit-
igation doesn’t directly reflect the actual impact mitigations would have on
average users.

• Speed of execution: Some fingerprinting vectors can produce a result imme-
diately. Others require more time to return a value.

As exact measurements for this parameter are highly dependant on the hard-
ware on which it runs, we use magnitudes of speed.

– Instant. The fingerprinting vector doesn’t require any significant calcula-
tions to be done, or these calculations can be done on a server.

– Fast. Some calculations have to be done. A small number of requests has
to be made. Those requests can be done parallel.

– Slow. A big number of calculations has to be done. A bigger number of
requests have to be done.

• Impact of execution: Whereas the Impact ofmitigation focuses onwhatwere
to happen if the fingerprint vector became unfeasible, the impact of execution
focuses more on what the user would notice if this vector is executed.

This criterion is closely related to the speed of execution, as slow vectors
would lead to users waiting longer for their website to load. Nevertheless,
there are cases in which a fast execution has a big impact, and cases in which
a slow execution has no impact.

An example for fast executed fingerprints with a big impact to users would be
scripts that e.g. ask users to activate their webcam.

An example for a slow vector with no impact would be those vectors who use
asynchronous calculations. These calculations (e.g. benchmarking) could be
done in the background with little impact for the user.

• Percentage of users vulnerable: Some fingerprinting vectors only work on
some configurations.

Here, we try to make an assessment of how many users would be impacted
by this fingerprinting vector. As with degree of entropy, we only use statistics
(and no field tests) to assess the severity of different attacks.

2.2 Experiments: Fingerprint Lab

When implementing proof-of-concepts for several fingerprinting vectors, we found
that making several separate prototypes was inefficient. We were creating a very
similar prototyping setupmultiple times, with no easy option to compare the results
that were obtained. It would give better opportunities to integrate these prototypes
into a framework, where they could be used together. To this end, we developed a
framework called ‘Fingerprint Lab’.

2.2. Experiments: Fingerprint Lab 17

The working of Fingerprint Lab is similar to the working of metasploit framework1.
We allow users to pick which fingerprint vector(s) to use and execute them. For our
research purposes, we also check whether we encountered a

In the future, we could expand the framework into supporting more fingerprinting
vectors.

2.2.1 Global structure

cloudflare workers
hash check backend

Browser

Vue

axios

fingerprint
library

DOM
State

Query using interface Value of vector

Submit hash of value Uniqueness of the hash

Figure 2.1: The structure of Fingerprint Lab. In italics we see the
data that is exchanged between components. Requests on the left

are made, responses to them are on the right.

A global summary of the project can be seen in Figure 2.1. We will explain the dif-
ferent components and their communication in the following sections.

The project consist of a progressivewebapplication and aRESTful API. The frontend
uses the Vue frontend framework with the Vuetify components to quickly create a
web application using Material Design. The backend consist of a TypeScript-written
backend on Cloudflare Workers.

2.2.2 Fingerprint library

Thefingerprint library is a collectionof the implementationof different fingerprinting
vectors. Besides the implementations, it also contains a short description of the
fingerprinting vector and the values for the criteria discussed in 2.1.

Each fingerprinting vector has a unique identifier in the form of a string, to be able
to include them into the URL of the pages that are being viewed. To subdivide the
vectors, we put the vectors in categories.

1Metasploit is a framework with implementations for exploits. It allows all these exploits to be
configured and run trough a uniform framework.

18 Chapter 2. Experiment setup

2.2.3 Interface between Vue and the fingerprint library

By using TypeScript, we created an interface2 that wewere able to implement for all
fingerprinting vectors. Each fingerprinting vector in the fingerprint library adheres
to the interface.

While we will not discuss every aspect of the interface, the main member is the
actual handle to execute every fingerprint vector.

function execute(node: HTMLElement): Promise<T>
While some fingerprint vectors require access to the document and/or the window,
this is no problem, as these are available as global variables. We did have a param-
eter node, as access to one particular element of the DOMmight be preferred. The
parameter was chosen to provide the possibility of several fingerprinting vectors to
be ran simultaneously. If we e.g. used one id for the DOM element that the vector
would require, we would not be able to run multiple vectors in parallel.

This approach makes our Fingerprint lab codebase ready to use in other environ-
ments (e.g. a production environment), wheremultiple fingerprinting vectors would
be used at the same time.

The data collected changes per fingerprinting vector. To account for this, we made
out interface return a generic type T, which is an object that can be shown in JSON
format to the user. Tomake the data universally usable, each fingerprint vector con-
tains a way to hash this value into a SHA512 sum.

The shortcoming with this is that some fingerprinting vectors don’t require a node
to be made. Our framework has currently no indicator to show this and will sim-
ply ignore the parameter if not required. Also, it might be better to allow multiple
elements to be given to the function, instead of e.g. relying on the availability of a
global document or navigator element.

2.2.4 Backend

The backend uses the Cloudflare Workers. The main reasons for this are its cheap
offering and the availability of a Key-Value-Store. This KV-store gives us the possi-
bility to keep track of fingerprints, without relying on a database. We store the fin-
gerprinted data for 24 hours in the KV-store and delete it if no other client matched
this value, which makes the framework more privacy-friendly.

As said in 2.2.3, supported fingerprint vectors could use the backend by sending the
hash, generated out of output data of the fingerprint value. The backend will then
search on the key for this combination of hash and vector. If it finds a hash collision,
its value (the nicknames of configurations that gave identical results) is returned.
Otherwise, the backend indicates that it is unique.

We used the KV-store’s expiration feature to delete KV-pairs that weren’t queried
for over 24 hours.

2Interfaces in TypeScript work like in Java, where they provide a list of function signatures.

2.2. Experiments: Fingerprint Lab 19

2.2.5 Privacy concerns

Aswe store fingerprinted values from the devices onwhich we run the experiments,
some privacy issues arise.

Themost prominent problem is thatwe essentially collect fingerprinting data. While
we only send hashes, this doesn’t mean that the data isn’t recoverable. Despite our
hash function being irreversible, it could still be possible to know which results for
a given fingerprinting vector are ‘possible’. In the case of e.g. the WebGL Vendor
information, we knowwhichmodels of GPUs exist. If we hash all these possibilities,
we know in which buckets these would fall.

As this technique could lead to us knowing the hashes that are likely used by our
clients, it is also possible for external parties to get and combine multiple hashes
into one fingerprint and linking them together as mentioned above.

Tomake sure the privacy risk for users is kept to aminimum, we try to fulfill asmuch
aspossible on the client side andminimizeour server implementation. If users don’t
want to rely on the backend, they can still use the implementations. The framework
can operate without the online component, meaning users can choose not to send
their hashes to the server and use the application completely independent of the
server.

2.2.6 Further improvements

As the main use of Fingerprint Lab is quick prototyping and looking for fingerprint
collisions, several things were not looked into further.

One disadvantage is the lack of proper database support (the KV-store is intended
for caching). If we chose a platform that could support proper database support
(such as Amazon Web Services), we could have had more data about the finger-
prints. But, as our focus was to preserve users’ privacy and not collect more data
than necessary to verify uniqueness, we did not continue with this.

Also, there is no check onwhether the given hash values of clients are actually valid.
Clients can send any (valid) hash to our server.

These shortcomings, alongside the fact that no spam prevention was implemented,
shouldmake it clear that no statistical relevant data can be derived from this exper-
iment.

Another shortcoming is that the hash function used is SHA512. It is a general-
purpose hash function, which means that values that are similar don’t hash to a
value close to each other. It might be better to change this to a fuzzy hashing
scheme, such as ssdeep.

Also, it now only allows for individual vectors to be executed at one time. It would
be a useful if multiple vectors could be executed at the same time.

2.2.7 Deployment

To deploy our application for use on mobile devices, it would be convenient to have
a live version working.

20 Chapter 2. Experiment setup

The frontend and backend use different git repositories, which makes it easier to
setup different CI pipelines for them to automatically deploy.

The frontend is served to users using Netlify.

A live version can be found on https://fplab.wardsegers.be. Although not
accessible for humans (only PUT-requests are allowed), the accompanying back-
end is located at https://fplab_backend.editicalu.workers.dev. Source
code is provided as attachment to this thesis or available on request.

https://fplab.wardsegers.be
https://fplab_backend.editicalu.workers.dev

21

Chapter 3

Fingerprinting the browser

The main objective for browser fingerprinting is to gain information about the envi-
ronment in which the website is shown. The software component that interacts di-
rectly with the website, the browser, would be a logical place to start exploring pos-
sible vulnerabilities. Which exposedcomponents are unique to individual browsers?

In this chapter, we will go through current and historical fingerprinting vectors that
exploit browser functionality. To do this in a structured manner, we subdivide every
attack vector as follows. We first give an introduction to the subject and its fin-
gerprint potential. We have a section for every element that can be fingerprinted.
Next, we introduce our experiment (if we conducted one). We describe its setup and
findings. Next, we examine the potential mitigations, their advantages and possible
disadvantages. We try not to simply omit all the functionality, as this would hurt the
user experience. Finally, we form a conclusion about the severity of the fingerprint-
ing vector.

While we try to provide a comprehensive list of fingerprinting vectors, the field of
browser fingerprinting is vast and still expanding. New technologies also lead to
new vulnerabilities. As our focus is more towards the Web APIs in Chapter 4, this
list is a selection of the most prominent (or historical) fingerprinting vectors.

This chapter mainly focuses on existing fingerprinting vectors. No new techniques
were discovered in this chapter, but we do try to implement several known vectors
into our Fingerprint Lab.

3.1 Cache

Browsers often include several forms of caching. The main reason to have a cache
is to reduce bandwidth usage and provide users with a better experience. As users
often visit the samesites, those resources canbe retrieved from the server only once
and kept in the cache. Since users ‘browse’ theweb less often, andmore often use a
fixed set of websites [81], caching of a select set of often visited websites becomes
more impactful.

HTTP has built-in mechanisms to assist the correct caching of website. On the first
visit of awebsite (or the first one after a cleared cache), thewebserver can choose to
add the Cache-Control header, which indicates how long a file can be safely kept
in cache. When revisiting the website, browsers can add a If-Modified-Since
header to theirHTTP request. In such case, the server can answer that thefile hasn’t
changed (rather than retransmitting the page). In such cases, status code 304 Not
Modified should be used.

22 Chapter 3. Fingerprinting the browser

On visit,
did

browser
request
favicon?

no

yes

Returning
user

New
user

START

Redirect over all pages,
track requests of favicons

Generate binary
identifier

Redirect over pages having value
1. Put these favicons in cache.

Rebuild identifier using:
requested favicons were 0,

cached favicons were 1

END

ENDAssign each
index in
binary

identifier to
a page

Figure 3.1: A visualization the pipeline to assign an identifier to a
viewer, or how to read the identifier of a returning visitor using the

favicon fingerprinting exploit.

However, as this concept keeps data from sites visited before, it contains a lot of
vulnerabilities around fingerprinting.

While we discuss the concept of ‘the cache’ in the following subsections, we need to
point out thatwhen talking about ‘the cache’, wemean thedifferent caches available
in browsers.

In the following subsection, we examine several known attack vectors considering
the cache.

3.1.1 Favicons

During the writing of this thesis, several new exploits were found. One of these
included the use of favicons [71].

Favicons have historically been cached in a separate cache from the main browser
cache. As their appearance is required for a correct display in the favorites bar.
Before cache control existed for other elements of the browser, favicons had to be
cached to accomodate this behavior.

The mechanism works as described in the following sections. The same principle
can be seen visualized in Figure 3.1.

To find out whether a user visited thewebsite before, we begin by checking whether
the user requested the actual favicon of our website. If he did, the icon did not
appear in the cache of the user and has thus not visited the website. When getting
a request for a favicon, the server continues to ‘write’ the identifier. It does so by
letting the client pass through a number of subpaths (using redirects), making the
browser cache the accompanying favicons [71].

When the user didn’t request the original favicon, we can assume that it was in their
cache, indicating that the user has visited our website before this day. Now, we
send a request to every subdomain (in a redirect loop). Normally, all the favicons of
subdomains that did were a 0-bit in our identifier would actually have to request the
favicon, with the 1-bits not sending any such request. To avoid the problem that the
0-bits actually get stored in the cache, the server returns a 404HTTP code,meaning
that no value gets stored in the cache and the browser will try to request this icon
again upon the next visit. This way, the attack vector can be used the next time [71].

The reason favicons specifically can be attacked, is twofold. On the one hand, it is
a request that is traditionally done with any GET-request. The other reason is that
favicons are historically cached separately from other resources, which lead to the
problem that this separate cache wouldn’t be flushed if a user asked the browser to
delete caches [71].

3.1. Cache 23

Figure 3.2: The fingerprint using the ‘Favicons’ exploit, explained
in 3.1.1, retains its value over multiple runs (seen here as multiple
tabs). The same fingerprinting doesn’t succeed outside of the incog-

nito context.

As this vulnerability has been exposed recently, many browsers remain fingerprint-
able. We can’t create a proof-of-concept of this attack vector using our Fingerprint
Lab framework, as it doesn’t support page redirects (because it would break the
ProgressiveWeb App). To conduct tests, we resided to an external implementation.

Our tests indicate that the latest release of Firefox (version 88) is patched and gives
a new identifier every time we run the test. However, we see that the incognito win-
dow retains its fingerprint while opened, as can be seen in Figure 3.2. This is likely
due to a different cache implementation for the incognito window, as its content will
be removed as soon as the user closes the window. The same continues after we
close the browser and open a new incognito window.

Chrome (version 90) is susceptible to the fingerprinting. Even worse here is that
the fingerprint that Chrome generated, is persistent across the incognito window
and the standard browser window, meaning that it could be used to track incognito
sessions. This can be seen in Figure 3.3.

For a Webkit-based browser, we used GNOME Web. The browser is vulnerable to
the same fingerprinting vector.

Another remarkable observation is that even the Tor Browser suffers from this fin-
gerprinting method in some form. We conduct a test, using an existing proof of con-
cept, and find that the most recent version of the Tor Browser (version 10.0.16)
returns the same result in consecutive runs in a session. It is worth noting that, as
this cache is cleared when the browser is closed, that this fingerprint cannot per-
sist across sessions. Thus, the fingerprint vector cannot be used to track Tor users
longtime, but it can be used to track their session.

The publication of the paper gave some controversy, as it wasn’t disclosed to devel-
opers who could create fixes for these fingerprinting vectors before publication and
thus left users vulnerable [71]. We can see this in our testing, where every major
browser engine is vulnerable in some form.

24 Chapter 3. Fingerprinting the browser

Figure 3.3: The fingerprint using the ‘Favicons’ exploit, explained in
3.1.1, retains its value in Chrome. The same fingerprint is generated

inside the incognito window and in a normal browser window.

3.1.2 Cache Control

Relating to 3.1.1, we get a decent understanding howany fingerprinting vector using
regular resources works.

As said before, the Cache Control header tells browsers (and other agents, such as
proxies) how to cache the given resource. Aswebsite owners often control their own
servers, they can tell them what to put in these headers.

We abuse the cache principle by putting resources in cache, or to tell the browsers
explicitly not to cache them. To avoid cache collisions, we instruct the header that
proxies (and anything other than our user agent) that the resource should always be
fetched from the origin.

To prepare, we create several resources. These could be either CSS, JS, HTML or
images. They might even be the ones already deployed to the website. We then
assign one resource to be our new visitor resource. This resource will always be
cached by the browser. The other resources will be our identifier resources

When the server receives a request for our website, we return the HTML as we nor-
mally would. We instruct it to not be cached, as it ensures that thewebserver knows
when a user is visiting. We then wait which other resources are requested.

We don’t reply to any identifier resources that are requested before we either re-
ceive a request for the new visitor resource, or a timeout occurs and we’re relatively
sure that the user has the resource cached.

In case the user requested the new visitor resource, we know that they didn’t visit
ourwebsite before. The reply to it with the resource and the instruction to cache this
value. We then generate a binary identifier and assign the other resources either to
cache or not to cache the resource, according to whether the identifier bit is 1 or 0.

Corresponding to the favicon fingerprinting vector, when the main page was re-
quested, but the new visitor resource wasn’t, we can safely assume that this isn’t
the first visit. We then listen which requests to our fingerprinting resources arrive.
Those will be the 0-bits in our identifier. By filling in the non-requested fingerprint-
ing resources with 1-bits, we can retrieve our identifier.

The big advantage of this approach is that it wouldn’t require any redirection, aswas
the case with our favicons. Also, it uses just core HTML functionality (i.e. linking),

3.1. Cache 25

which has a more essential functionality than the favicons (favicons could be just
ignored to fix the previous attack).

It is unfortunate that such an attack would be easier to mitigate, as these resources
would be flushed as soon as the browser is instructed to do so. But, by making a
slight adjustment we could even detect when the browser had its cache cleared: by
making the favicon our new visitor resource, making use of the favicon vector.

3.1.3 Alt-Svc

While the previously discussedmethods work as expected, other vulnerabilities ex-
ist. One of these is the HTTP Alternative Services header. This header indicates to
browsers that the provided website is available by other means [49].

The header plays an important role in the roll-out of newer protocols, for example
the new HTTP/3. By using this header, servers can provide (possible experimen-
tal) HTTP/3 implementations ondifferent port numbers than other implementations
[76].

The fingerprinting potential is twofold. On one side, the header provides a times-
tamp for how long the alternative source should be available [76]. This can be used
to put clients in individual buckets and thus assign them a fingerprint. As browser
will subsequently connect to the alternative service (if available).

On the other hand, this header could be used to perform a port-scan and detect
which firewall rules might be applied on a host device [76]. This could be done by
having a subdomain for every port number that we want to scan. While it is im-
practical to scan all 216 available ports, ports can be selected to focus on common
application ports and several arbitrary ports to check whether the firewall were to
block such outgoing connections.

3.1.4 Mitigation

A first and best mitigation would be to eliminate the cache completely. If websites
cannot deduce anything from the cache, its fingerprinting potential vanishes.

The Tor browser doesn’t keep any cache, for the same reason no history is stored.
As this cache could be used to reverse-engineer which websites were visited on
a given installation. Therefore, vulnerabilities concerning the cache don’t seem to
affect this browser.

But, this would drastically increase bandwidth use and, following that, page load
times. Websites rely heavily on the browser cache to optimise the experience for
users. Also, bandwidth towards data centers worldwide would increase if every re-
quest would require every resource to be reloaded.

A balance between performance and privacy could be to keep a cache per domain.
While this wouldn’t eliminate the possibility of fingerprinting, it would limit the fin-
gerprinting to the website itself. One disadvantage is that a lot of websites use
JavaScript and CSS libraries, which are hosted on a CDN. If these had to be down-
loaded by every website a user visits, it would still provide a big overhead. Also,
storing these separate on disk would yield more disk space. However, that disk
space could be reduced by sharing the files thatmultiplewebsites have cached (and

26 Chapter 3. Fingerprinting the browser

storing only one copy). This approach is what Firefox recently shipped in their 85th
version [24].

Another compromise would be to often clear the caches and delete all their con-
tents. This would give the advantages of a cache in the short-term, and eliminate
the long-term identification. However, it would still allow for some cross-domain
fingerprinting to be conducted. Therefore, in our opinion, the previous approach
would yield better results.

One thing that isn’t considered, is the use of metered connections. As bandwidth
is very expensive in some developing countries, the cost of this extra bandwidth
should be considered as a disadvantage to this cache protection.

3.1.5 Conclusion

The cache is a big browser fingerprinting vector. By its very function, it keeps device-
specific data.

Mitigation seems rather difficult, without either impacting bandwidth, disk space or
loading times. Otherwise, programmatic access to elements from the cache should
be disallowed, which has historically proven difficult.

3.2 HTTP stack

Many versions of the HyperText Transfer Protocol exist. While the original 1.0 is still
supported, many clients use version 1.1 as their default.

While HTTP can be considered a network element, we put it in the browser-based
fingerprinting vectors. The reasoning behind this is that the HTTP stack is imple-
mented in the browser, as oppose to e.g. the TCP/IP stack, which is often imple-
mented in the operating system.

In this section, we explore the different versions of HTTP and the fingerprinting that
the particular versions of the protocol enable.

3.2.1 HTTP versions

Thefirst andmost obvious fingerprinting vectorwould be availability of different ver-
sions in browsers. All major browsers support HTTP/1.1 andHTTP/2. While HTTP/3
is still in active development, an increasing number is supporting HTTP/3 as well.
About 19% of websites support HTTP/3 in some form [79].

While we could not find any statistics about howmany connections are served over
each HTTP version, we assume that the data is closely related to other data in the
browser fingerprint, such as the browser and its version number. Therefore, it could
be not that interesting to fingerprint.

HTTP/1.1 was the first version of HTTP to be standardized in a RFC. As most web-
servers and webbrowsers support it, initial requests to websites are often made
using this version of the protocol.

3.2. HTTP stack 27

3.2.2 HTTP Headers

The main differences between user agents in their approach to HTTP, is the use of
different headers.

The most obvious header is the User-Agent header, which gives an indication for
the browser and version to a server. It was introduced to allow website administra-
tors to have better versions of their website for different browsers.

User-Agent isn’t the only header used for fingerprinting purposes. Another one is
the Accept-Language, which indicates to a website which languages the user of
the browser can understand. This header helps in cases where a website supports
a variety of languages. Without this header, some sort of language selection page
could be shown.

Ironically, the ‘DoNot Track’-header is used tofingerprint aswell. Asmostly privacy-
concerned people enable the header (all major browser disable the option by de-
fault), having the header present can be a fingerprinting disadvantage.

Cover Your Tracks, the successor to Panopticlick, generates statistics about how
seldom certain values are seen. The DNT header appears in one out of every 2.06
browsers [2]. However, this number shouldn’t be considered representative, as the
visitors of thewebsite aremostly aware of fingerprinting practices andare thusmore
likely to have protection against web tracking installed.

Numbers from Gizmodo Media Group indicate that somewhere between 6.7% and
10.9% of their visitors had DNT enabled in 2018 [31]. While still being a niche audi-
encewith relative older numbers, it gives a better indication as towhich degree DNT
can help to fingerprint more clearly. We weren’t able to find numbers for websites
with a higher and more heterogeneous audience.

3.2.3 HTTP/2

Being the first major revision of the HTTP protocol, HTTP/2 gave major improve-
ments to efficiency and speed. Headers are compressed, multiple streams can ex-
ist at the same time and without using multiple sockets. To promote the use of
encryption, major browsers only support it on HTTPS traffic (except for loopback
connections).

Several elements of the HTTP/2 protocol are fingerprintable. Besides the headers
fromHTTP/1.1, HTTP/2 introduced streams. These streams can have different win-
dow sizes. As the values differ per browser, these values are fingerprintable [65].

3.2.4 HTTP/3

At the time of writing, HTTP/3 is still in active development. Many browsers and
websites have implemented experimental implementations to be able to provide
better insights to the continuing development of the standard. Chrome and Firefox
both have implementations, but only chrome enables the functionality by default.

The HTTP/3 development began after Google submitted their in-house developed
competing standard ‘QUIC’ for standardization to the IETF.

gQUIC1, QUIC and HTTP/3 are terms that are often used interchangeably, but are
1Google QUIC

28 Chapter 3. Fingerprinting the browser

not exactly the same. QUIC is the name for the underlying transport protocol used
by HTTP/3. It was chosen to develop QUIC on top of UDP rather than develop a new
protocol, as routers and firewalls historically only had TCP and UDP to be available
and might block a new protocol [57]. Nevertheless, QUIC implements almost all of
the TCP features itself. gQUIC is the name of Google’s implementation of the QUIC
protocol and the HTTP that runs on top of it. While becoming mostly compliant to
standard, some minor differences exist to this day. The biggest difference between
QUIC and gQUIC is in its cryptography support. Google deployed their own encryp-
tion, whereas the IETF-approved QUIC uses TLS 1.3 [57].

Transport-layer fingerprinting

One problem the QUIC protocol was designed to solve, was so-called Head-of-line
blocking. This problem manifests when we miss one TCP fragment of a stream.
While we might be able to get Recent research claims to be able to be able to con-
duct website fingerprinting. By applying machine learning models to guess which
traffic a website is coming from, it should be possible to deduct the exact website a
user tried to visit [91].

While [91] doesn’t directly address browser fingerprinting (the authors focus on im-
plications for censorship), when combining which websites are being visited, we
might be able to get which user we have. Although, such fingerprinting would re-
quire a massive amount of websites to have been trained in the model. Also, since
lots of people browse to the same subset of Alexa 100 websites, it might not be
feasible to use this vector to fingerprint individual clients.

0-RTT

A major improvement of QUIC (as oppose to HTTP/3) is the ability to serve exist-
ing clients without handshakes. Here, encryption parameters are negotiated on the
first visit. Subsequently, the browser remembers these parameters for use in future
session. This concept is called 0-RTT, or zero roundtrip time. It alludes to the lack
of additional roundtrips that would be necessary in other HTTP versions.

While 0-RTT reduces the time to load a (well-optimized) page significantly, it also
provides a new fingerprinting vector. As security requires each client’s key to be
unique, it can basically be used as a unique identifier [73].

The additional problem this imposes is that the parameters are server-dependant,
meaning that the vector could be used in third-party cross-domain tracking [73].

As configuration can decide how long 0-RTT tokens can be reused, the usability of
this fingerprinting vector becomes implementation-specific [73]. This is advanta-
geous in the protection provided by clients, as these can keep the values low to
protect them from long-time fingerprinting.

As the parameters for 0-RTT fingerprinting are stored inside the user agents, mitiga-
tion’s for the 0-RTT fingerprinting vector are similar to those of caching, discussed
in 3.1.4. Mainly, the issue is the fact that the browser stores unique identifiers that
are used later on. As with the caches, the potential for third party fingerprinting can
be resolved by storing these values per website.

3.2. HTTP stack 29

Congestion control

AsHTTP/3 is basedon theUDPprotocol, which only adds port numbers and a check-
sum to the network layer’s Internet Protocol, elements such as congestion control,
handshakes and acknowledgements had to be re-introduced.

One of these things, congestion control, has had several big developments in the
past years. Several TCP versions gave new congestion control algorithms, as can be
seen in 5.5.

The reason we discuss QUIC congestion control here and not in chapter 5, is that
QUIC is implemented in user space (i.e. the browser), whereas TCP is implemented
on OS-level (e.g. the Linux kernel). Changing the congestion algorithm requires
kernel parameters to be changed, whereas every browser using HTTP/3 can decide
how their implementation handles it. Several developers have stated that this was a
deliberate action to be able to be able to keep pushing newer revisions, without be-
ing blocked by an older OS-level implementation. Thiswould allowQUIC to respond
to newer and better congestion control algorithms in a quicker way.

Available drafts

As HTTP/3 is still in development, new drafts are often released. These new drafts
introduce changes to the protocol and are incompatible. Both client and server have
to understand the same draft version to ensure compatibility.

To increase the likelihood of a compatible draft version with different clients, web
servers understand several drafts and can thus pick their HTTP/3 implementation
to match one that the client supports.

This conceptmight seem similar to the HTTP upgrade header, which allows connec-
tions of HTTP/1.1 to be upgraded to HTTP/2, and the similar concept in TLS, where
servers can indicatewhichHTTP-versions are supported, even before the first HTTP
request. A big difference with the HTTP/2 upgrades, is that there is a greater variety
of available drafts to choose from, increasing the fingerprinting potential.

Over time, as HTTP/3 stabilizes and the drafts become a formal specification, this
fingerprinting vector will become less useful (and more in line with the HTTP/2 up-
grades). Browsers will drop support for drafts of the specification and only support
the one published in an RFC. Drafts have expiration dates as well, meaning that they
shouldn’t be used after a small period of time.

3.2.5 Extensions

Most mainstream browsers allow the installation of extensions (or add-ons) to be
installed by their users. These extensions make browsers behave differently, add
new functionality or allow certain hardware to communicate better with web appli-
cations.

As these extensions are browser-specific, potential to fingerprint them is available.

Extensions need to be able to show users options as to how to configure them, login
to their service or to add code to existingwebpages. To solve theseproblems, exten-
sions are able to create their ownwebpages, which can be shown in the browser as a
normal tab or a pop-up style view. As thesewebpages behave as normal webpages,

30 Chapter 3. Fingerprinting the browser

there is a need for a URI to access these resources. Accessing these resources is
often done using a special extension-protocol (e.g. moz-extension://). If aweb-
site were to make a request to a url and recieved a 2xx-code, it could be sure that
the extension is installed.

Websites can no longer see which extensions are enabled with absolute certainty
(at least using the previously discussed method). However, this doesn’t mean that
no fingerprinting is possible.

The most popular category of extensions consist of content blocking [3]. As this
category contains so-called adblockers, its main goal is to block content that users
don’t want to load, mainly advertisements. While applications exist to avoid ad-
vertisements on network layer (in the form of a DNS server), having the option in
the browser allows for better results. As websites can include ad-related code on
the same domain as the main content of the website (e.g. YouTube), meaning that
a DNS-level blockage would not work. As these extensions are able to check and
block each individual request, the amount of ads that can be blocked is significantly
higher.

Content blockers have other uses aswell. Privacy Badger, for example, tries to block
third parties that seem to track users across the World Wide Web. Not relying on a
hardcoded list (as is the case with many adblockers), it uses heuristics in terms of
when it sees a given domain. This makes it more difficult from a fingerprinting per-
spective to find out whether the plugin is installed. But, on the other side, the fact
that not all domains are treated equal on each client could be used as a fingerprint-
ing vector itself. But, these values should not be considered stable, as it could be
blocked if the extension decides that toomuch external websites are calling it. Also,
when it isn’t sure yet, it can only block cookies. Therefore, we do not see Privacy
Badger fingerprinting as stable.

Schemes exist to detect whether content has been blocked. A website can e.g. de-
tect whether a scripts was loaded and then show a popup.

Other forms of extensions exist. According to Mozilla Firefox Add-ons2, the most
popular ones include passwordmanagers, additional functionality for specific web-
sites and download managers [3]. The tendency towards privacy-enhancing exten-
sions might not be entirely representative for all browsing users, as Firefox pro-
motes itself heavily as a privacy-enhancing browser.

Fingerprinting of these other categories of extensions is fingerprintable by different
means. JavaScript code can e.g. check which DOM nodes were added (e.g. pass-
wordmanagers showing abutton to autofill credentials) or evenuser-agent spoofers
(by detecting inconsistencies in reported values) [10].

3.2.6 Plugins

Another element that works similar to browser extensions, is browser plugins. The
difference is that these plugins are able to provide completely new functionality, as
oppose to altering existing browser components and technologies.

The difference between plugins and extensions is in their implementation. Exten-
sions aremainly programmed using traditional web standards (HTML, CSS, JS). Plu-
gins are written in natively compiled languages, such as C or C++.

2Google Chrome Webstore doesn’t have a list of most popular extensions

3.3. NPAPI 31

Historically, NPAPI plugins were dominant on the web. Recently, however, the main
focus for these plugins went to DRM3-solutions, such as Google’s Widevine. To de-
tect the availability of DRM solutions or other plugins, we can try to initiate their
functionality. In the case of DRM, we can try to play a media file using the DRM. If
this were successful, we know that a working setup exists with the DRM solution
enabled [47].

3.3 NPAPI

In the past, lots of interactive applications relied on the use of NPAPI plugins. The
most popular pluginswere Adobe Flash, Java and Silverlight. These plugins allowed
for more native applications to run in a browser, providing functionality previously
not available to websites. Because these APIs gave more native access, they could
openupaccess to native components, such as theGPU, thefile systemandwebcam.

The two main vectors for Flash-based fingerprinting were font probing (similar to
3.4) and system information querying (which was built-in into a Flash API call) [36].

While HTML5 provides similar functionality to Flash, the latter gave slightly different
resultswhenused in a fingerprinting context. One suchexample is thePlatformvari-
able on Linux. Where a browser would usually expose just ”Linux_x86_64”, Flash
would give websites the exact kernel version [78].

Most browsers at the time of writing have dropped support for NPAPI, making it im-
possible to run them at all. The main reason for the deprecation is the amount of
high-risk vulnerabilities that have come with the API. As the API was introduced in
the 1990s, with fewer security concerns compared to today. While outdated ver-
sions of these browsers (or versions with long-term support) will remain functional
for now, continuing to use these will become more and more discouraged.

While NPAPIs provide a variety of possibilities from a fingerprinting perspective,
their deprecation makes it infeasible to ever use them again on large scale finger-
printing in the future. The amount of browsers still offering support for it will only
decrease, and those versions that do support it, will lose market share. However,
it will likely remain a distinguishing factor between newer browsers and older ones
(or browsers that won’t drop support for the API).

While NPAPI is getting deprecated, the fingerprint potential remains. Where Flash
and Java could probe to fonts and webcams using their native access, the avail-
ability of webfonts and HTML5 Webcam access respectively. The only aspect that
will remain as a fingerprinting vector, is whether NPAPI applications can be run in a
given setup.

3.4 Font probing

Different systems can have a different set of fonts installed on them. Certain appli-
cations, such as Microsoft Office, install extra fonts when they’re installed. Some
business require special fonts for their branding. Therefore, a variety of fonts can
be installed on a single system.

3Digital Rights Management. Technology to prohibit unauthorized use of digital media.

32 Chapter 3. Fingerprinting the browser

One element that can be different between systems, is the list of installed fonts.
While we get this information immediately using an API, we can get a list of fonts of
which we are certain that they are installed [74].

To check whether font x is installed on our system, we include the following rule in
CSS:

font-family: x, y;
We then provide font y as webfont. If we see the browser make a request for font y,
we can safely assume that font x wasn’t available on the system.

A mitigation for this attack vector would be for browser to not use system installed
fonts, or to only use a fixed subset of them, which would then be a universal set of
available fonts on the web.

As mobile devices are having the biggest market share, it should be noted that the
effectiveness of this vector is diminishing. Android smartphones in our testing often
only have the Roboto font at their disposal.

3.5 Conclusion

In this chapter, we saw that a lot of fingerprinting is possible using just the browser
and the elements that it exposes. Mitigation for these attack vectors can be difficult,
or have unwanted effects. A summary of the techniques seen in this chapter can be
found in Table 3.1. Here, we also examine the values for our criteria.

3.5. Conclusion 33

M
et
ric

/V
ec
to
r

Br
ow

se
rC
ac
he

Fa
vi
co
ns

Us
er
-A
ge
nt

DN
T

De
gr
ee

of
en
tr
op
y

N
/A

N
/A

M
ed
iu
m

Lo
w

Am
ou
nt
of
ex
tr
ac
te
d
da
ta

N
/A

N
/A

8
bi
ts
a

2b
St
ab
ili
ty
of
th
e
re
su
lt

In
-B
ro
w
se
r

In
-B
ro
w
se
r

In
-B
ro
w
se
r

In
-B
ro
w
se
r

Im
pa
ct
of
co
m
pl
et
e
M
iti
ga
tio
n

Fu
nc
tio
na
lit
y

N
on
e

N
on
e

Fu
nc
tio
na
lit
y

Sp
ee
d
of
ex
ec
ut
io
n

In
st
an
t

Sl
ow

In
st
an
t

In
st
an
t

Im
pa
ct
of
ex
ec
ut
io
n

N
on
e

Re
di
re
ct
io
ns

N
on
e

N
on
e

Pe
rc
en
ta
ge

of
us
er
s
vu
ln
er
ab
le

>9
9%

M
in
.8
4.
5%

c
>9
9%

>9
9%

M
et
ric

/V
ec
to
r

Ac
ce
pt
-L
an
g

Al
t-
Sv
c

H
TT
P2

st
re
am

de
fa
ul
ts

Q
UI
C
0-
RT
T

De
gr
ee

of
en
tr
op
y

M
ed
iu
m

N
/A

Lo
w

N
/A

Am
ou
nt
of
ex
tr
ac
te
d
da
ta

N
/A

216
·x

d
N
/A

N
/A

St
ab
ili
ty
of
th
e
re
su
lt

O
Se

In
-B
ro
w
se
r

(I
n-
)B
ro
w
se
r

Br
ow

se
r

Im
pa
ct
of
co
m
pl
et
e
M
iti
ga
tio
n

Fu
nc
tio
na
lit
y

Fu
nc
tio
na
lit
y

Pe
rf
or
m
an
ce

Pe
rf
or
m
an
ce

Sp
ee
d
of
ex
ec
ut
io
n

In
st
an
t

Fa
st
f

Sl
ow

In
st
an
t

Im
pa
ct
of
ex
ec
ut
io
n

N
on
e

N
on
e

N
on
e

N
on
e

Pe
rc
en
ta
ge

of
us
er
s
vu
ln
er
ab
le

49
.6
%

g
>4
8.
9%

45
.5
%

h
M
ax
.8
0.
3%

i

Ta
bl
e
3.
1:

Co
m
pa
ris
on

of
di
ffe
re
nt
br
ow

se
r-
ba
se
d
fin
ge
rp
rin
tin
g
ve
ct
or
s

a e
st
im
at
io
n:
br
ow

se
r(
4
bi
ts
)+

ve
rs
io
n
of
br
ow

se
r(
4
bi
ts
)

b C
an

be
gi
ve
n
or
no
t,
ca
n
be

en
ab
le
d
or
no
t

c N
o
ex
ac
tn
um

be
rc
ou
ld
be

fo
un
d
of
br
ow

se
rs
th
at
su
pp
or
ta
ll
fa
vi
co
ns
.T
hi
s
nu
m
be
ri
s
on
ly
th
e
am

ou
nt
of
cl
ie
nt
s
th
at
su
pp
or
tP
N
G
fa
vi
co
ns
.

d E
ac
h
bi
tc
an

be
a
po
rt
th
at
ca
n
be

co
m
m
un
ic
at
ed

w
ith
.x

is
th
e
am

ou
nt
of
av
ai
la
bl
e
IP

ad
dr
es
se
s

e L
an
gu
ag
e
sh
ou
ld
be

ch
an
ge
d

f D
ep
en
di
ng

on
be
ha
vi
or
of
br
ow

se
rs
w
he
n
a
po
rt
is
bl
oc
ke
d

g N
um

be
rs
fr
om

ca
ni
us
e.
co
m

h A
ll
m
aj
or
br
ow

se
rc
lie
nt
s
su
pp
or
tH

TT
P/
2.
O
nl
y
45
,5
%
of
w
eb
si
te
s
su
pp
or
ti
t[
79
].

i A
m
ou
nt
of
cl
ie
nt
s
w
ith

H
TT
P3

su
pp
or
t.

35

Chapter 4

Exploits using Web APIs

4.1 Introduction

In the previous chapter we saw how we could exploit vulnerabilities that are linked
to the browser. In this chapter, we explore the differentWeb APIs that are available.

We explore some APIs that seem relevant for our practical application later on,
where we try to use fingerprinting in a game environment.

4.1.1 W3CWeb Standards

The W3C consortium, which is the body responsible for the development of these
standards, has decided to add a Self-Review Questionnaire for developers of stan-
dards to fill in and attach as integral part of the standard. This questionnaire lets
the developers themselves think about the possible fingerprinting vectors of their
new standards, it gives a more uniform way to identify issues. Also, by letting the
authors of standard think about fingerprinting, awareness of the topic is raised, al-
lowing authors to think about the subject when continuing to write standards. It
is recommended to fill the questionnaire early on in the development process, as
some problems might be found after the standard has been shipped in browsers.
When catching potential problems early on, it is easier to change the design of a
particular API [7].

Off course, filling in the questionnaire doesn’t mean that problems surrounding fin-
gerprintability are solved. The questionnaire only lists the findings of the authors
and they are not required tomitigate the found vectors. As wewill see shortly, there
are many cases where reducing fingerprintability would do serious harm to the pur-
pose of theAPI. Inmany cases, developers just acknowledge that on privacy-critical
applications, such as in e.g. the Tor Browser, access to certain parts (or the entire)
API should be either omitted or (in cases where hardware access occurs) be soft-
ware emulated [86] [8].

4.1.2 Environment

In the previous chapter, we saw different ways to identify the browser and its con-
figuration. However, one easy way to completely bypass these fingerprinting mech-
anisms would be to download a different browser. Besides that, opening incognito
would be an easy way to change some browser behavior, as browsers tend to dis-
able some extensions and APIs in incognito mode [70].

36 Chapter 4. Exploits using Web APIs

But, even that could not be enough, as browsers which previously had their own
engines have switched to using the Blink engine, made by the Chromium project.
These browsers include Edge and Opera. In a lot of scenarios, they actually get a
similar or identical fingerprint, as can be seen in 4.2 and 4.3.

When looking further than the realm of a browser, lots of newAPIs are available that
offer more direct access to the underlying hardware components of a system. Can
these be exploited to fingerprint certain elements of the operating system, or even
underlying hardware?

In this chapter, we explore the different ways in which we can exploit the available
APIs to fingerprint other components of the user’s system. Because system could
be a vague motion when talking about these components, we define the term envi-
ronment as the combination of the available hardware components in a system, as
well as the accompanying software. Under this software, we consider the operating
system and its closely related components (such as drivers to use the hardware)
and software that have a mere utilitarian role (such as fonts).

Please note that the environment does not include anything related to the network
connection of the device (except for the NIC). These fingerprinting vectors will be
discussed in 5.

Fingerprint vectors that are based on elements from the environment could be con-
sidered more effective, as these vectors require more actions from the user to pro-
tect themselves. Where users could get past browser-based fingerprinting by in-
stalling a newbrowser, some environment vectorsmight require an actual hardware
swap, which makes it more difficult.

4.1.3 GPU

A big part of this chapter will be dedicated to fingerprint attack vectors centered
around the GPU. Traditionally, direct access to the GPU was reserved for native ap-
plications, such as media players1 and videogames. However, within the last 10
years, several new APIs have risen that give web developers more direct access to
the hardware, laying the path for the web as a feature-rich platform. These APIs in-
clude the Gamepad API [28], WebXR [88], Websockets [87] and Vibration API[82].
For GPU use, the most prominent one at the time of writing is WebGL, which brings
an OpenGL-like API to websites.

Nevertheless, a new API (called WebGPU) is in development. Whilst WebGL was a
standard by the Khronos Group, WebGPU is a web standard by theW3C. It is set out
to be backend-agnostic, with support for i.e. WebGL, OpenGL ES, Vulkan, Metal and
Direct3D [85]. As this API is still in active development, not a lot of research is done
around this.

4.2 HTML5 Canvas 2D font rendering

The HTML5 specification introduced the canvas element. According to its specifi-
cation, it provides a general purpose graphics element. When using the element,
developers can opt for several drawing contexts, which correspond with different
implementations in browsers to use the <canvas>.

1A lot of GPUs also offer video hardware acceleration.

4.3. Canvas 2D drawing without fonts 37

In 2012, researchers found that the HTML5 canvas could be used as fingerprinting
vector [44]. The experiment in [44] focused on font rendering on the canvas. The
reasons that this gets some entropy are twofold. One aspect is that aliasing is set
differently in different browsers, which introduces some variants among browsers.
Another aspect is that fonts could be available or not on a given system, meaning
that we could get a fallback font if the desired font is unavailable (increasing en-
tropy).

4.2.1 Experiment

When we tried to replicate this work, we were able to conclude that this fingerprint-
ing technique is still able differentiate clients. By simply drawing several fonts in
different colors below each other, we could get a fingerprint.

However, we noticed that we got the same fingerprint on two Linux-based devices
running the same version of Firefox. On Chromium, we got unique fingerprints for
both devices. This could be due to the GPU compositioning that Chrome uses; Fire-
fox uses a software-based alternative [30].

We enhanced our experiment with an extra call to a default font (sans). We do this
because systems could have a variety of default fonts, especially on Linux.

On Windows and Linux, we got better results by not following the paper and having
some fonts not available for drawing. This increased the amount of potential unique
outcomes, as users can have different default font entries.

One problemwedetectedwas that running the experiment on two identical Android
smartphones (same model and same browser), we got the exact fingerprint. The
reason for this seems to be that both phones have the exact same GPU and font
(only Roboto2 is available), as installing fonts on a smartphone ismore cumbersome
than installing fonts on a desktop operating system.

So, while the experiment still holds up, with the rise in popularity of smartphones,
with their limited amount of available fonts, using the rendering as a fingerprinting
vector, does not give a unique fingerprint.

One way to address these concerns would be to use webfonts to fill the missing
fonts. But, as the smartphones already give unique results, and input to both de-
vices would remain equal, we do not expect this to make a difference. Besides, the
webfonts would take away entropy caused by the different availability of fonts on
the system.

4.3 Canvas 2D drawing without fonts

The authors of [44] could not identify an approach to fingerprint using a technique
other than fonts, We do a small attempt at it. By drawing a shape with a gradient
as background and another gradient as its contour, we were able to extract some
entropy out of the canvas 2d, but as with the fonts, we were not able to distinguish
between two Firefox instances on Linux. So, we do not see this as a viable option.

2Font developed by Google mainly for its use on Android.

38 Chapter 4. Exploits using Web APIs

(a) Blink engine (b) Firefox
(c) Difference between 4.1a

and 4.1b

Figure 4.1: Our experiment as rendered on Windows.

4.4 WebGL

While the canvas fingerprinting vectors of 4.2 can distinguish users, we can getmore
variation between users by gaining closer access to the actual GPU hardware.

WebGL, asmentioned in the introduction, has several ways to extract entropy out of
it. In this section, we follow the use of the vendor information, found in the WebGL
Debugging extension. This data contains both the model number of the GPU that is
used for rendering and the manufacturer of this GPU.

4.4.1 Experiment

We created an experiment that tried to extract the name of our GPU and its ven-
dor. We were successfully able to identify the dedicated NVIDIA GPU in a desktop
computer, as well as the integrated GPUs in laptops and the mobile GPUs in smart-
phones.

OnWindows, we noticed both Firefox and Google Chrome reported the ANGLE ven-
dor. This appears to be due to the usage of Direct3D to draw the graphics. Both
browsers use ANGLE, a backend by Google that translates the WebGL calls into Di-
rect3D calls. In the renderer field, we could still see the model of our GPU. The two
browsers use ANGLE by default on Windows [13].

On Linux, we see that Firefox used OpenGL calls directly to the drivers, whereas
Blink-based browsers (Google Chrome, Chromium and Microsoft Edge) used the
ANGLE backend on this platform as well. ANGLE can use different backends, mak-
ing it the perfect cross-platform cross-API layer for WebGL. This doesmean that we
have a fingerprint collision on these browsers [13].

4.4.2 Mitigation

Several mitigations can be found [44].

One could be to have a large number of clients return the same value (masking real
values). While this could make the fingerprints less unique, it could make differ-
ences between browsers more noticeable.

But, when doing this, we might as well just omit the entire extension. As this is a
WebGL extension, browsers can choose not to support it and, when applying best

4.4. WebGL 39

practices, developers should have always assumed that these extensionsmight not
be available. However, it would be inevitable that some applications were not built
according to this principle andmight break, as disabling the APIwould be a breaking
change.

Firefox will not enable the WebGL debugging extensions when using its ‘resist fin-
gerprinting’ option, making the vector unusable. As the Tor Browser enables this
option by default, the vector does not affect these clients. However, as with many
vectors, the absence of data could be used to fingerprint.

4.4.3 Conclusion

Extracting vendor information is easy to implement, making it useful as a quick and
dirty way to extract some entropy out of a WebGL client. Furthermore, as the ven-
dor information is probably closely related to other extracted data from WebGL, it
might not be a very interesting to use. It could still be interesting to find out whether
vendor information can be linked to render artefacts, which could allow the vendor
to be predicted from the canvas. Especially with the rise in machine learning capa-
bilities and research, this could mean that hiding the debugging headers could not
serve as enough protection.

The vector has nearly no impact on system performance. It does require the avail-
ability of a canvas element, but could reuse anyone that was on the page before.
Also, it can be integrated in e.g. the WebGL Pixel Buffers (see 4.5) vector. Or, if the
page doesn’t have a canvas element, the element doesn’t even have to be added to
the DOM.

The available range of values is rather low. As there are only a relative small amount
of available vendors and models of GPUs. Moreover, when used to e.g. distinguish
devices that are e.g. behind a business’ NAT, it might not be feasible to use just the
vendor information, as these devices could be bought in bulk and have very similar
configurations.

Using the vendor information could be considered stable, as changes to the config-
uration would have to happen before a change in fingerprint can be detected. This
configuration could be either a making modifications to the driver, booting into an-
other operating system or changing out hardware.

But, mostly due to the lack of entropy, we don’t see the vendor information field on
its own as a big fingerprinting vector.

4.4.4 WebGL Debug Shaders

Another small fingerprint vector in the WebGL Debugging extensions could be the
debug shaders. Thiswill return the source for the shaders as compiled by the graph-
ics driver [84]. This could be a viable option, as we just saw discrepancies in back-
ends used by the two main browsers.

Because several browsers use different WebGL backends (as discussed before),
their compiled shaders differ slightly. We could find that differences could be seen
between Firefox and Chrome on the same machine. Maybe this principle can be
extended to the other part of the WebGL debug extension?

40 Chapter 4. Exploits using Web APIs

4.4.5 Experiment

According to MDN, Firefox should require an about:config-setting change in or-
der for this function to work [84]. However, we were able to exploit this without any
changes to the configuration. We even tried this on a clean Firefox installation and
were still able to extract a value.

There’s no support in IE. All other mayor browsers do not require any configura-
tion for this feature to work, meaning about 90% of all browser support this feature
without further user interaction.

4.4.6 Mitigation

Whereas mitigations for the other values in the debugging extensions could be mit-
igated by giving out uniform values, this principle cannot be used for the debug
shaders. These values depend a lot on the particular shaders that are given as in-
puts.

The most convenient ways to mitigate these fingerprint vectors, would be to simply
disable the debugging extensions by default and require changes to the configura-
tion of the browser in order to use them.

Another way to mitigate the vector would be to

4.4.7 Conclusion

Our experiments show that the vector can be exploited without user permission in
any browser that supports the WebGL Debugging Extensions.

It was possible to extract entropy from the debugging shaders. However, we as-
sume that the gathered entropy will be rather limited and closely related to other
WebGL techniques. These other techniques, such as 4.5, will be more effective.

Also, the vector is not practical as additional vector in an existing and ‘legitimate’
WebGL project, as it depends on the shaders not being changed, which puts limits
on the abilities of projects.

We’re unsure about the stability of the vector, but assume that these can change in
between browser versions, as the ANGLE-layer will most likely receive an update as
well.

4.5 WebGL Pixel buffers

Themost commonway to exploit WebGL as a fingerprinting vector, analogous to the
2d context, is the use of data in the pixel buffer. While the workflow is similar to the
2d context, it gives more entropy, as we’re working closer to GPU hardware, which
involves more floating point operations.

In 2012, it was found to be possible to fingerprint using WebGL [44] Where the pre-
vious canvas methodsmostly relied on font rendering, WebGL fingerprinting mostly
relies on the aliasing of rendering textures or noisy shapes on top of each other [11].

4.5. WebGL Pixel buffers 41

Figure 4.2: The texture used to create some entropy.

Figure 4.3: The texture of 4.2 projected onto ‘Suzanne’, the monkey
shape in Blender [15]

.

4.5.1 Experiment

Wewrote our own experiment, based on [44] and [11]. Where [44] uses a lens test-
ing image, we thought it might give better results when using a completely random
image as a texture, which we subsequently created. This texture can be seen in Fig-
ure 4.2. We projected it on the monkey shape baked in into Blender, the result of
which can be seen in Figure 4.3.

4.5.2 Mitigation

Several resolutions to this fingerprinting vector exist. One would be to add noise
to the output of ReadPixelBuf. While this could help, fingerprinters could run the
test multiple times and try to find the normal distribution of the noise, which would
require browsers to add more noise, which in turn could start to hurt performance
and even usability of WebGL applications.

Another mitigation consists of completely disable any way to read the pixel buffer, a
techniquewhich is usedby Firefoxwhenenablingresist_fingerprinting. This
will ask userswhether a script is allowed to read the buffers, indicating the potential
dangers. The question remains whether people will be tempted to press ‘Allow’
when they see that the animation, game or other potential WebGL component has
suddenly stopped working.

Third mitigation would be to simply disable WebGL or render everything on a soft-
ware level. This is the current approach of the Tor Browser. It doesn’t allow calls to
the two methods that are able to extract pixel data.

A fourth way to mitigate the problem would be to find the root of discrepancies be-
tween renderers. Researchers have been able to do this successfully. It consist of
moving all floating point operations to the JavaScript level instead of in a shader.
It does come at a price in terms of CPU usage, but it actually reduces load on the

42 Chapter 4. Exploits using Web APIs

GPU, as the shaders are more straightforward [90]. However, as this solution al-
lows arbitrary shaders to be used, it is possible for shaders to exploit other potential
weaknesses in the WebGL API.

Finally, a software implementation could be used to calculate the pixels only when a
call toReadPixelBufortoDataURLwasdone. While this approachwould indicate
a huge performance loss whenever one of these functions are called, it would only
have an impact when these are called [44].

4.6 WebGPU

As mentioned before, WebGPU should be seen as an abstraction on top of APIs like
WebGL. It uses multiple backend APIs in order to be a more universal API.

Because it uses several backend APIs, calls to a specific API (such as the OpenGL
backend) will not be guaranteed to be working. Therefore, existing fingerprinting
vectors such as those found in WebGL, might not be applicable.

However, we can still try to fingerprint using a pixel buffer. But, what could be the
influence of the multiple backend APIs? After all, a driver could offer multiple APIs,
e.g. both OpenGL and Vulkan on a Linux system. Which one the browser chooses,
might depend on multiple factors and could not be predictable.

The authors of the standard did consider some fingerprinting vectors while making
the standard [86].

Machine-specific limits The current draft of the standard has several limits as
to what usage of the GPU is allowed. Not only does this withhold exhaustive use
of resources (as to e.g. detect the amount of VRAM), it also sets limits as to what
performance can be expected from aWebGPU implementation, as all implementors
should support them. These limits include things such as the maximum amount of
vertex buffers, the maximal size of textures, etc [86].

However, powerful systems could choose to put these limits higher, as the limits are
just recommendations [86]. While developers should assume the worst case set-
tings (being the limits set in the standard), they could e.g. try to load bigger textures
to see whether a crash occurs.

As the standard is yet in development and

Machine-specific artifacts This attack vector is similar to the WebGL pixel buffer
attack vector, as discussed in 4.5. While they do acknowledge it, their response is:

Privacy-critical applications and user agents should utilize software im-
plementations to eliminate such artifacts [86].

This is roughly the equivalent of the third discussed mitigation in 4.5.2.

Machine-specific performance This is benchmarking. The development team in-
dicates that it would be possible to measure performance based on the speed at
which workloads are executed, even if the values could be seen as low-precision.

4.7. Web Audio API 43

The gpuweb workgroup, which makes the standard, proposes that browsers should
eliminate the link between GPU calls and actual compute units, making the speeds
impossible to determine. While this approach seems feasible, there could poten-
tially be more ways to find out what performance was received.

4.7 Web Audio API

The Web Audio API is developed with low-level audio creation in mind. While this
functionality could’ve been implemented in JavaScript, there are some advantages
to having the functionality available in a web standard. The main advantage is that
latency can be much lower, as the calls to functions could be translated into calls
to an API written in a faster language, such as C. This would create less latency
between the sound being requested and the sound being played back to the user.
In time-critical applications, this could yield a significantly better user experience.

The authors of the standard itself state several attack vectors.

The first attack vector is the processing latency. As the API is meant to be used in
latency-critical applications, API calls exist to retrieve the delay between the func-
tion call and the sound playing.

Another attack vector that the authors recognise is the fact that hearing tests could
be deducted from this API. While this could be reliable way to identify a person, the
available bits of entropy (being frequencies that the user is able to hear) is rather
low. Also, this vector would require active user participation, which would make it
impractical in a deploymentwhere users don’t have time. But, it might be of interest
in our gamecontext, wherewewould be able to add a gaming elementwhen a sound
is heard.

The third and most audiophile attack vector comes from the actual sound software
(and even hardware). Also, their sample rate can be fingerprinted.

But, the software component isn’t immune to fingerprinting either. These (mostly)
software aspects can give small discrepancies in sound, due to the use of different
compilers with various compilation optimization flags.

Mitigation

The standard discusses different means to reduce the fingerprinting surface.

Similarly to the WebGPU standard, attempts are made to reduce the fingerprinting
surface by making not all native functionality available, but only the most common
use cases. One such example is the proposed limitation to stereo sound. Another
such example is the reduction in available frequencies for browsers to allow. Where
sound devices can work on a big amount of sample rate frequencies, theWeb Audio
API advises to only use two main ones. While this is a valid approach for a lot of
use cases, it could introduce aliasing artifacts. For these approaches, the standard
recommends to have a ‘setting’ in browsers, where users who need the setting can
change it. However, if a user enables it, it would be a fingerprinting element once
again.

Finally, browsers are encouraged to findmeans to protect users against fingerprint-
ing.

44 Chapter 4. Exploits using Web APIs

4.8 Performance API

The Performance API allows websites to gain information about the strength of
a computer in terms of computing power [54]. This API allows them to perform
benchmarks or get an indication as to the user experience on a given website.

As the API is meant for benchmarking purposes, it can be used to get an idea of
the clock skew [61]. Using other APIs related to cryptography, native code can be
run and its execution time can be measured. By comparing the execution time and
delay of these functions, a fingerprint value can be derived.

4.9 Battery

Batteries are most commonly found in laptops and other mobile devices, such as
smartphones. While their use is only to provide power to the devices they’re built
in, some data is exchanged with the computer (such as its percentage, lifespan and
health).

W3C introduced the Battery Status API to be able to read the current status of the
battery. This can be very useful in situations where a better UX can be had when
a developer knows they can use more compute power. E.g. an image editing ap-
plication might want to show more or better previews on actions when the user is
connected to a power source or has a battery that is adequately charged.

The Battery Status API can be used for fingerprinting, as shown in [52]. Firefox had
an issue comparable to the Performance API issue (see 4.8), where they showed
results with a high accuracy on GNU/Linux. Chrome uses another API, making the
results non-fingerprintable [52].

Chrome did not have the same issue as Firefox, because of a different implementa-
tion [51]. They did however ensure that the result would always be rounded before
giving it to the client JS code.

There is another known attack vector of the Battery API. When batteries are near
the end of their lifecycle, they tend to be unable to report adequate values. There-
fore, earlier implementations of the API gave an error when the battery was at this
stage and thus opened a fingerprint attack vector. The current editor’s draft explic-
itly states that the API should emulate a fully charged and plugged in battery when
errors occur [45].

Both of these vulnerabilities are solved in the current editor’s draft of the API spec-
ification. It explicitly states that no high-precision values can be used, which ad-
dresses the Firefox vulnerability. When an error occurs, it should emulate a fully
charged and connected battery [37]. Browsers generally don’t allow usage of the
API (or they spoof results) in incognito mode.

While this does leave room to distinguish laptops from desktop computers, the fin-
gerprinting potential of these values have become rather low. With Firefox and sub-
sequently Safari disabling the API3, it technically doesn’t even meet requirements
forW3CRecommendation, which states that twomajor browsers should implement
it. This makes the future of the API rather uncertain.

3The API was disabled for websites. It is still used internally in Firefox.

4.10. Screen 45

However, studies have shown that a lot of third party websites use the API, presum-
ably for fingerprinting purposes [51].

4.10 Screen

A lot of websites use so-called responsive design, which allows different users to
be able to see a slightly different version of a web page. Therefore, the Screen API
allows a browser to read out the screen resolution, color depth etc. The API also al-
lows for access to the resolution of the portion of the screen available for rendering.

Of course, a lot of people use their browser maximized, which makes this approach
less interesting. However, as soonaspeople e.g. addabookmarkbar, use adifferent
desktop environment or do not have their browser maximized, we can extort this to
detect small anomalies in browsers. Also, browsers often remember the previously
set size of not-maximized windows, and people often do not resize their windows,
which could make it a viable fingerprinting vector if the browser is not maximized.

This actually gives the strange behavior that it is actually better for your privacy
to use your browser in fullscreen or maximized mode, because a lot of people will
have the same resolution. According to the Steam Hardware Survey4, at this time,
1920x1080 is the most common resolution.

While this vector could be easy to solve (by not allowing access to this data), it would
harm the UX.

The Tor browser prevents this fingerprinting by asking users not to resize browser
windows.

4.11 VR

Over the past years, Virtual Reality (VR) and Augmented Reality (AR) have seen a
surge in popularity. These applications require specialized hardware, such as head-
sets, motion tracking devices and controllers to be installed. And as with most new
technology, developers wanted it to work in the browser.

Mozilla recently launched the WebVR API. While it was more of a proof-of-concept
than a formal web standard.

The availability ofWebVR andWebXR are fingerprinting vectors on their own, as only
a few browsers support it. But when they support it, they will prompt the user for
permission. This leads to a lot of websites asking for VR permissions, even though
there are no obvious use cases on these pages. We could find an example on the
Belgianwebsite 2dehands.be, awebsite to buy and sell items. Thewebsite is owned
by Ebay and doesn’t consist of any VR element.

Wedid not conduct any experiments, as theWebVR standard is deprecated in favour
of the WebXR standard.

4Steam is an online store for gaming. It might not provide a scientific measurement of screen
resolutions, it gives a general idea about screen sizes.

46 Chapter 4. Exploits using Web APIs

4.12 WebXR

Recent years have seen a surge in availability of VR equipment and content. As its
popularity rose, so did the need for a Web Standard.

An initial iteration of this web standard was the WebVR standard. This proposed
standard fell short. The main shortcoming was the lack of support for AR5, as its
focus had been VR in the traditional form.

The WebXR standard exposes two function calls. One is to probe whether XR in
different modes would be available on this system, the second is to start a session
using the method that was probed using the first function.

The obvious fingerprint here is the lack of permission requests, which could be hard
to mitigate once the standard is set

While the standard acknowledges that the API could be a fingerprinting vector, they
don’t provide a resolution. It does however cover the

We could alleviate the attack surface of the vector by requesting permission before
getting access to any methods of the XR system.

4.12.1 Experiment

We try to find out whether an XR device is available and which sessions would be
available. Becausewe don’t have any XR-devices available to us, we use theWebXR
device emulator add-on to simulate their presence.

When emulating an attached XR device, we can see that the website is able to read
out details about the connected device.

4.12.2 Mitigation

To mitigate, a user can try to disconnect the XR-devices when they’re not in active
use. This way, a browser is unable to detect them. But, this is a hardware solution
to a software problem; A better solution would be to ask the user before attempting
to give a list of available devices to the visited website.

4.12.3 Conclusion

While XR devices are not commonly available, the presence of a device can be de-
tected. This makes users of headsets that are always connected vulnerable to fin-
gerprinting of their device.

The authors of the API did spend a good amount of time on making sure that the
API contains as little fingerprintable data as possible. However, it would’ve been
better if the API used an explicit user permission (as given by the Permission API).
As the standard allows browsers to implement consents, the full fingerprint poten-
tial would be reduced to something close to zero. However, it might be possible to
measure the delay between the call to navigator.xr and the response (which could
check whether a permission was asked or if the browser just doesn’t implement the
API).

5Augmented Reality: add VR elements to a real world (either a picture or see-through glasses).

4.13. Gamepad API 47

4.13 Gamepad API

Traditionally, games often used some form of controller. Game consoles used their
own controllers, often included with the system. These were often connected using
some form of proprietary connector or wireless connector protocol.

Recently, the main console brands (XBox and PlayStation) have both switched to
a USB-connector. Both have support for Bluetooth connectivity. This makes them
usable on a desktop platform without the need for strange connections. Both XBox
and PlayStation controllers can be connected to both Linux and Windows without
issues.

To make these controllers available to the web, the Gamepad API is provided [8].

The fingerprinting potential of an API that exposes access to hardware, such as the
WebXR API, is mostly in discrepancies between hardware. However, as oppose
to the WebXR API, the Gamepad API only allows access to the hardware after a
gamepad is touched (e.g. pushing a button or slightly moving a joystick). This fea-
ture greatly reduces the fingerprinting potential for an arbitrary site, as those sites
would have to trick users into touching their gamepads.

There isn’t a lot of research around fingerprinting the Gamepad API. It is recorded
that the calls to navigator.getGampads() are actually used to fingerprint users, but
not in great detail to what extend [38]. We think this might be to detect a controller
that is recently touched ‘by accident’, or when a small change to acceleration sen-
sors create such a small change and thus expose the controller.

We were able to find two fingerprinting vectors. One is the mere presence of one
or more controllers and their types. The API allows easy access to the type of con-
troller.

A lot of controllers suffer from drifting issues. This means that the thumbsticks of
the controllers aren’t centered correctly when not being touched. The sensors get
inaccurate aftermild use. It could therefore be safe to assume thatmost controllers
that are regularly used suffer from some form of controller drift. This is where our
second vector originates from.

4.13.1 Experiment

Wecreate two experiments. Onewill read out the data about the controllers that are
connected to the system and used in a configuration. This way, we can gain entropy
from the amount of controllers and their types. Our second experiment will involve
trying to identify controllers based on their amount of thumbstick drift.

On Firefox/Linux, we observe that every controller exposes a string of both themar-
keting name of the product (e.g. ‘Microsoft X-Box One S pad’), prepended by the
unique vendor and product IDs (e.g. 045e-02ea). On Chrome/Linux, this string is
formatted differently. Firefox on Windows used just “xinput” as string for the type
of controller, meaning it uses a DirectX API. Chrome on Windows gave “Xbox 360
Controller (XInput STANDARD GAMEPAD)”. This is remarkable, as the controller in-
serted was a different XBox Controller. So, both browsers use a default value for
the gamepad data they received from DirectX.

48 Chapter 4. Exploits using Web APIs

We start by trying to find out whether there’s a consistency in the amount drift that
we can observe. We do this by performing a repetitive motion on one of the thumb-
sticks. Upon observing the first results, we saw that these values weren’t consis-
tent, meaning that we cannot measure its absolute drift.

To find out whether there’s a normal distribution in the amount of drift we measure,
we repeat the samemotion several times (i.e. moving the left thumbstick to the far-
left-most position and letting it go, whichmakes it bump back to themiddle). As we
have two controllers of the same type, we can see if both of them give stable results
(and if those differ).

After taking 100 samples of both controllers, we can see an incredibly small differ-
ence. We do observe a difference in average values. To ensure that these values
persist, we do the same test on another system.

4.13.2 Mitigation

As with a lot of fingerprinting methods, the best mitigation would be to completely
disable the fingerprinting vector.

Drift issues might be difficult to solve, as they originate from a hardware defect.
However, a lot of games have some form of drift compensation built-in, as it would
otherwise register as if the user touches the controller. Browsers could filter results
below a threshold and replace them by a value as if they were on the origin of the
axis. So, values of 0.001 should be rounded to 0.000. Despite that, it could hurt the
experience when there’s a need for slow or subtle movements. A balance could be
found here.

One hurdle that this mitigation introduces, is the different kind of controllers avail-
able and their different axis, as some axis might not need to be modified. One such
axis is a trigger axis (for the trigger buttons). As APIs often just give the axes, it
would be up to the browser to determine which values to round and which not.

4.13.3 Conclusion

We conclude that the Gamepad API maintains a good balance between privacy and
functionality. It allows developers to read out the type of controller, which can be
useful to debug or optimize an application, while not giving any data to websites
that don’t explicitly need it. This makes fingerprinting only accessible to websites
with a valid reason for users to touch a gamepad (such as online games). And, as
there’s no other way to read this data without users prompting to touch a gamepad,
websites cannot circumvent the restriction by asking for a permission.

The websites that do have a valid reason to prompt for a controller, do get some
information. While there’s not much data, the name of the controller is the most
obvious data for fingerprinting. However, Windows is the most popular gaming OS,
and we’ve just seen that all controllers on that platform return the same value for
this field (in themost popular browsers). Thismakes this fingerprint potential rather
low.

Something less intuitive is the drift issue. If we can require users to move the sticks
in different directions, we can measure the differences between measurements af-
ter letting go the sticks. However, we were did not get a big difference between
controllers’ amount of drift.

4.14. Media Capabilities API 49

We do take this in consideration when creating our practical fingerprint. This will
require a sequence where the user is required to leave the thumbsticks as is after
moving them in a particular direction.

4.14 Media Capabilities API

The Media Capabilities API is an experimental Web API that gives applications an
indication as to which combinations of codecs, bitrates and formats would be sup-
ported on a given system [41]. It is meant for web applications that offer media
streaming in different formats, and want to make sure that the user will get the op-
timal format for its system.

Themain function call in this API isdecodingInfo. It canbe seenas a continuation
and extension of the canPlayType function call that existed before. Whereas the
latter only repliedwhethermediawas able to play, the new function call extends this
information to the smoothness and power efficiency of the playback [41]. Also, the
API provides calls to check the availability of HDR and related properties (such as
color gamut). While no browsers currently implement these function calls, they are
included in the latest version of the standard [40]. This would imply that a website
can check whether a user has an HDR-capable screen and GPU.

Mediaplaybackdependson several factors. Besides theamount of processing cores
and their speed, availability of hardware acceleration is taken into consideration
[41]. But, it could depend on other system factors, such as the availability of exter-
nal frameworks and libraries [4].

The main fingerprinting potential of this vector is to find the maximum allowed val-
ues for certain codecs. While we could not find any research, the bugtrackers of
both Mozilla Firefox and Google Chrome indicated concerns about this fingerprint-
ing vector. We can even extend this to make informed guesses to the hardware that
is available in the system.

Of course, this means that repeated calls to these functions could expose which
hardware is present in a given system. We can find out whether certain hardware
acceleration would be available and which compile flags were enabled when com-
piling the browsers.

4.14.1 Experiment

We take the most popular video codecs, resolutions and framerates. For each com-
bination, we probe to find the maximal bitrates to be allowed to play at all and to
play ‘smoothly’.

Our formats include x264, HEVC/x265, VP8, VP9 and AV1. We use the Matroska
container format for x264 and HEVC/x265 video. For VP8 and VP9, we used the
WebM container format. While AV1 is a relative new standard, it is quickly gaining
attention as Google adopts it on their YouTube platform. Themain advantage from a
fingerprinting perspective is that there isn’t a lot of hardware accelerated decoding
hardware available. As of writing, only the latest generation of graphics cards from
Intel, NVIDIA and AMD support hardware accelerated playback for AV1 video.

Topickour resolution,wepick several common16:9 resolutions: 480p, 720p, 1080p,
1440p, 2160p and 4320p. As times goes on, these would have to be adjusted. We

50 Chapter 4. Exploits using Web APIs

look for video bitrates specifically, as video is more computationally expensive than
audio to playback.

As video if often shot in different framerates, we do take themost popular ones into
account as well. These are 15Hz, 23Hz, 24Hz, 25Hz, 30H, 50 and 60Hz.

For every combination of the previously mentioned values, we get a 3-tuple, con-
taining the maximal bitrates that return playable, smooth and efficient playback.
We use null if no such value could be found.

Our experiment found that our devices would say that the media was able to play-
back, no matter the bitrate. We initially tried to keep increasing the bitrate until a
non-perfect result was returned. But, as this kept increasing, we capped the bitrate
at a rate at which a raw video representation would be more efficient.

Enabling resist fingerprinting did Firefox not disable the API, which isn’t in line with
expectations (as resist fingerprinting should disable any API giving access to under-
lying hardware).

4.14.2 Mitigation

Firefox thought about this fingerprinting potential in 2018. While the easy solution
would have been to standardize return values, this would hurt user experience and
make the entire API useless. A middle-ground was found in that Firefox now ac-
curately returns whether media can be played back, but (if it can play) Firefox will
always report that the playback should be smooth and power efficient [4].

As ofwriting, Chromiumdid not (yet)mitigate any potential fingerprinting. In August
2020, the developers launched telemetry collection to determine the entropy of the
API between their user base [27]. After these results come in, theymight decide on
potential changes to the browser.

4.14.3 Conclusion

While the Media Capabilities API exposes some information about the environment
of the user, possibly its available hardware accelerated video playback and available
configuration, the data that is exposed by this API doesn’t harm the user. All data
that we could extract from this vector, was already available using other APIs, such
as the WebGL API.

This doesn’t mean that the fingerprinting is harmless. In applications where it is
vital to be anonymous, such as the Tor Browser, this API should be disabled. This is
especially important when the browser would disable all these other APIs.

4.15 WebRTC

WebRTC is a protocol to allow real-time communication between hosts. The main
protocolworks as follows. First, both hosts have to discover how they are connected
to the Internet. This is done using Interactive Connectivity Establishment (ICE).
Here, browsers send all the IP addresses associated with this device to the server.
This is done to discover hosts that might be on the same sublet and thus don’t need
any additional configuration.

4.16. Other components 51

The fingerprinting surface of this API comes in the form of IP addresses. While it is
possible to identify IP addresses (see Chapter 5), an additional element here is that
we can also have a list of all private IP4 addresses that a host has [59]. Additional
information that can be gained, is in the form.

As this vector is from 2011, many browsers have fixed the issue and now only send
public facing IP addresses [59].

4.16 Other components

Other components in a system, such as DRAM memory and a power supply, might
have a more generic use. They do not have a (major) influence on performance.

4.16.1 Main memory

Takemainmemory (DRAM) for example. Its purpose is rather straightforward. They
only talk with thememory controller. But, different memory speeds exist. Does this
mean that fingerprinting is possible?

Especially with newer standards such as WebAssembly6 on the rise, which will be
less dependent on browser-specific implementations, we might see viable finger-
printing techniques in the near future.

That doesn’t mean that this will remain the case. For example, a fingerprint reader
(or any biometric sensor), might be exposed in the future using an API. And the
current trajectory of the web implies that this will only be a matter of time.

4.17 Conclusion

As seen in this chapter, a lot of fingerprinting vectors are available on the API level.
A tablewith an assessment for our criteria can be seen in Table 4.1. While individual
vectors might not be problematic (with respect to privacy), combining them could
easily make computers uniquely identifiable, in a way that would make it difficult to
change the fingerprint of a configuration.

The main issue with APIs is their ease of use. Whereas traditional native applica-
tions would have to be downloaded and ran by a user before getting access to the
hardware, these APIs provide the fingerprintable information to every website that
a user visits. With traditional applications, users would probably know all the pro-
grams that they run - not to mention that there would probably be a AV solution to
detect and stop the execution of potential malware.

Mitigations for many of these vectors could yield significant reductions in the avail-
able interactivity on the Web.

6WebAssembly, abbreviated as Wasm, is a new binary format alternative to JavaScript. It allows
code written in system-programming and compiled languages such as Rust and C++ to be compiled
into a format that is recognized by browsers.

52 Chapter 4. Exploits using Web APIs

M
etric

/Vector
Canvas2D

font
W
ebG

L
Vendor

W
ebG

L
Shader

W
ebG

L
pixels

W
ebG

PU
Degree

ofentropy
M
edium

a
M
edium

Low
H
igh

Low
b

Am
ountofextracted

data
am

ount
M
edium

Low
H
igh

Low
Im

pactofcom
plete

M
itigation

Functionality
N
one

c
N
one

d
Functionality e

Functionality/Perform
ance

f

Speed
ofexecution

Fast
Instant

Instant
Fast

Instant
Im

pactofexecution
N
one

N
one

N
one

N
one

N
one

Percentage
ofusers

vulnerable
M
ax.96%

g
M
ax.97.6%

g
M
ax.97.6%

g
M
ax.97.6%

g
<1%

h

M
etric

/Vector
W
ebAudio

Perf.API
Batt.API

Screen
VR/XR

G
am

epad
M
edia

cap.
Degree

ofentropy
Low

H
igh

H
igh

M
edium

Low
Low

Unknow
n[27]

Am
ountofextracted

data
Low

Low
Low

M
edium

Low
Low

Low
Stability

ofthe
result

Brow
ser

H
ardw

are
H
ardw

are
H
ardw

are
H
ardw

are
H
ardw

are
H
ardw

are
Im

pactofcom
plete

M
itigation

Functionality
Perform

ance
Functionality

Functionality
Functionality

N
one

i
Functionality

Speed
ofexecution

Fast
Slow

Slow
Instant

Instant
Slow

j
Fast

Im
pactofexecution

N
one

Big
N
one

N
one

N
one

N
one

Som
e

Percentage
ofusers

vulnerable
81.21%

95.9%
75%

96.8%
70.9%

95.7%
91.4%

Table
4.1:Com

parison
ofdifferentfingerprinting

vectors
related

to
W
eb

APIs

aH
igh

on
desktop,Low

on
m
obile

devices
bConsidering

vectors
thatw

ere
new

ly
introduced

by
W
ebG

PU.H
igh

in
othercases.

cN
orm

ally,as
W
ebG

L
is
a
standard,itshould

be
vendoragnostic.Thatsaid,itcould

be
thatperform

ance
orresults

differbetw
een

vendors
and

optim
ization

can
be

m
ade.

dDebugging
shaders

could
stillbe

enabled
through

settings
fordevelopers.

eSeverallegitim
ate

use
cases

existto
getthe

fram
e
buffer.

fIflim
its

w
ere

to
be

seton
w
hatW

ebG
PU

can
do,and

those
lim

its
cannotbe

changed,there’s
an

upperlim
itto

the
am

ountofgraphics
thatcan

be
draw

n.
gIt’s

unclearhow
m
any

users
have

som
e
form

offingerprinting
resistance

turned
on.Ifthey

did,allcanvas
fingerprinting

vectors
w
ould

notw
ork.W

e
give

the
m
axim

um
,

w
hich

w
ould

be
true

ifno-one
is
using

resisting
technologies.

hW
ebG

PU
is
stillin

active
developm

entand
notyetm

ature
iIfthe

gam
epad

isn’ttouched,no
data

is
leaked.O

therw
ise

’Functionality’
jExtracting

the
gam

epad
availability

is
instant,butdriftfingerprinting

is
slow

.

53

Chapter 5

Fingerprinting the Network

Up to this point, most of our focus has been on data that could be extracted from
either the browser (and accompanying system) or the application layer of the net-
working stack. In this chapter, we look at techniques that use properties found in
lower layers of the networking stack. As most servers the user connects to aren’t
connected directly on the same network as the user, the main fingerprinting poten-
tial can be acheived on the networking layer.

A lot these techniques are also applicable in network fingerprinting and user finger-
printing, as discussed in 1.6. In this thesis, we will examing them only briefly, as it
isn’t the main topic of our research. But, the main difference with a more general
network fingerprinting, is that we are at one end of the connection. This allows a
website to have more control over the connection than someone outside trying to
determine which website is being viewed by the user (or which user is connecting
to a particular website).

5.1 IP address

When a user browses to a website, their IP address is sent to that website as part of
the Internet Protocol. This is required for the website to be able to respond to the
request. Depending on the type of network to which a user is connected, the type
of IP address can be different. The device can have a global address, which means
it’s uniquely routable from the Internet.

While global addressess are decreasingly common in IPv4, they are common in
IPv6. As the address space allows for 264 addressess on a single network (of which
there are a maximum of 264, routers will be able to provide a unique global address
to each user, as long as fewer than 264 devices are connected at each given time.
Also, ISPs are more likely to give static IPv6 prefixes than static IPv4 addresses,
which increases the fingerprinting effectiveness.

Another scenario is that the user is browsing from behind a NAT1. In this case, de-
pending on the NAT, there might be multiple users behind one IP address. In Bel-
gium broadband connections, a NAT is generally used at customer-level, meaning
one IPv4 address corresponds to one customer. In other countries, NAT deploy-
ments can includehundreds of clients in so-calledCGNAT (Carrier-gradeNATs). Mo-
bile networks tend to use CGNAT as well.

1Network Address Translation, which allows users to have one global IP address and all have their
own private IP address

54 Chapter 5. Fingerprinting the Network

In the case of a NAT, the IP address might still be feasible as a fingerprinting vector.
The effectiveness depends on the amount of traffic and the diversity of the traffic,
as websites targeting population in a certain country will have the IPs of ISPs in
that country. If, however, a website targets a global audience, the entropy could
grow to the entire address space (which is up to 232 in the case of IPv4). Another
fingerprinting vector related to NATs, is obtaining the private IP address used by the
client [75]. This can be done using the vector described in 4.15.

Mitigation of IP address tracking can be both easy and difficult. Public VPN compa-
nies offer to reroute traffic through their servers, using one IP for many clients. This
mitigation comes with certain disadvantages. First, if only one user of a particular
VPN server is accessing a website, it might still be possible to bring this information
back. Also, these companies tend not to offer IPv6, which makes reaching IPv6
websites impossible. To introduce IPv6 without the increased risk of fingerprinting,
would require an IPv6 NAT. Finally, the quality of the connection for users might
be degraded. Besides the latency added by rerouting traffic through an external
provider, companies such as Cloudflare practice more fingerprinting techniques on
traffic from VPN servers, as attacks often originate from here [16].

Another approach is the The Onion Router, known as TOR. It provides a decen-
tralized network to browse the Internet by relaying requests and responses over a
global and decentralized network of Tor nodes. Each node adds encryption, so that
only the last node in the chain can decrypt the request. During 2020, the Tor Project
has implemented IPv6 support in the latest versions of their clients [9]. Disadvan-
tages to using the Tor network exist. As traffic is routed through multiple nodes
before a request is made, the added latency is bigger than a public VPN approach.
A second disadvantage is that, due to the anonymity of the network, a lot of mali-
cious traffic is routed through it [55]. This traffic will result in the IP addressess of
exit nodes to receive captchas, much like VPNs [55].

5.2 Autonomous Systems

Tracking a user solely on IP address can infer many disadvantages, such as the
change in IP address that can happenwhen a connection doesn’t have a static IP ad-
dress, a user might change ISP or go to another network (e.g. a smartphone chang-
ing from home broadband to mobile broadband). An improvement would be to use
a broader description of information of this IP address, such as the block of IPs that
were assigned to the ISP or the number of the autonomous system on which the IP
address resides. Users are less likely to change their ISP than they are to receive a
new IP address.

ICANN allows 216 = 65536 different autonomous systems. To the best of our knowl-
edge, no numbers exist that examine the distribution of users across these ASes, so
we cannot tell how distrbuted requests will be. We can however say that websites
that mainly target one specific region will have less benefits when using this as fin-
gerprinting technique, as they’ll only see the limited number of ASes that the ISPs
of their target region make out.

We could extract this information more broadly to use the WHOIS information re-
lated to the IP address. This would give a general idea as to where the user is lo-
cated. It would solve the problem with different networks, as we only use the pro-
vided information to gain a broad idea of the physical location of the user.

5.3. IP headers 55

In Belgium, the granularity of this data doesn’t seem to specific. In our tests, we
found that theWHOIS data associated with our IP addresses was often significantly
different from our actual location. The data seems to be set to the nearest province
capital, which provides a compromise between the users’ privacy and the function-
ality of the WHOIS database.

Mitigations against this fingerprinting vector are similar to the IP fingerprinting, with
the added difficulty that public VPNs also have to provideWHOIS information to the
database in order to use their IPs.

5.3 IP headers

Our focus has been solely on the IP address and the related information thereof.
But, other headers exist in the Internet Protocol.

While a lot of headers are also readable in network fingerprinting [80], some extra
headers can be used in the context of browser fingerprinting, as a website adminis-
trator is at the end of the communication.

The main header is the TTL header. The TTL (Time-To-Live) ensures that packets
don’t remain in the network in an infinite loop. This could happen if devices have
incorrect routing tables or a circle structure exists in the network. Another finger-
printable value about the TTL is that, unlike the Hop Limit value in IPv6, the initial
TTL value of routers are vendor-specific and mostly a power of 2 [80]. This means
that it is possible to fingerprint the type of router used by the client and how many
hops away the user is located [80].

In our experiment, we recorded the TTL IPv4 and theHop Limit in IPv6. We saw that
these values remained stable over the course of the experiment, indicating that the
network between our connection didn’t change in the two weeks between runs of
our experiment.

5.4 IPv6-specific

As IPv6 is still being integrated into existing networks, the availability of IPv6 it-
self can be a valid fingerprinting vector. If IPv6 is available, we can try to see which
deployment of the new IP stack is available. One implementation is by natively sup-
porting it, often in a dual-stack cconfiguration with support for IPv4 as well. Others
include an IPv6 tunnel, where traffic is sent over a IPv4 network to an IPv6-capable
router that then makes the request on the IPv6 network. Finally, we can try to see
which stack is preferred by the browser.

Recent Google statistics show that between 30% and 35% of their users request
the search engine over IPv6 [34]. Most of the IPv6 deployments use a native con-
nection, with the amount of tunneling decreasing [34].

To practically use these vectors, we can access both a resource on a domain which
only has a IPv4 address and another domain that only resolves to an IPv6. By doing
this, we can extract the two extra bits of data: the availability of IPv6 and whether
it is preferred by the browser. Also, we are able to link the IPv6 address to an IPv4
if the user is in a dual-stack network. This can increase the fingerprinting potential
in a case where the other stack is used or one wouldn’t be available at a given time.

56 Chapter 5. Fingerprinting the Network

Another fingerprinting vector regarding IPv6 can be found in the SLAAC extension.
This extension on the IPv6 standard allows devices to setup their own IP address
on a new network, with the need for services such as DHCP [33]. It uses the router’s
IP address to determine the subnet of the network. It then generates an IP address
based on its MAC address. As the MAC address of a device is unique, the entropy
becomes as high that each device connected to a network generates a unique value.
As such, any router that processes our packets can determine our MAC address and
link it to the network onwhich the device is operating. Servers can use this to deter-
mine which device travelled from one network to another, even if the network prefix
changes. As this is a privacy concern, a newer RFC resolves this by suggesting to use
randomly generated addressess that aren’t renewed [46].

Mitigation against this is possible by network admins (by disabling SLAAC). But,
users of networks with SLAAC enabled will still require an IP address. To mitigate
the vector from a user’s perspective, MAC spoofing2 can be applied.

5.5 TCP

Up to now, our focus on the network has been on the actual network layer. However,
we’ve seen several exploits that were available on higher levels. While application
layer vectorswere discussed in Chapter 3, we didn’t search for exploits on the trans-
port layer.

In 3.1.3we saw that the HTTP protocol allows to find out which port numberswould
be available on a given network, which could lead to a portscan and find out possible
firewall rules.

This, however, isn’t the only fingerprintable component of the transport layer, and
TCP mainly in the context of HTTP3.

Themain fingerprintable element thatwecouldfind,was the congestion control that
was used by TCP connections. Different operating systems (or versions thereof) can
have different default configurations for the operating system.

5.6 Conclusion

While we only briefly explored the network layer browser fingerprinting, we could
find some possible fingerprinting vectors. As changing the public IP address of a
connection can have disadvantages, such as increased latency, the vector is rather
difficult to mitigate without hurting user experiences.

A summary can be seen in Table 5.1.

2Randomizing the announced MAC address, not using the hardware provided address
3As HTTP/3 is in active development and uses userspace congestion control, we omit it for this

comparison

5.6. Conclusion 57

M
et
ric

/V
ec
to
r

IP
v4

ad
dr
es
s

TT
L

IP
v6

ad
dr
es
s

IP
v6

SL
AA

C
Pr
ef
er
re
d
ve
rs
io
n

of
IP

AS
TC
P
co
ng
es
tio
n

De
gr
ee

of
en
tr
op
y

H
ig
h

Lo
w

H
ig
h

H
ig
h

Lo
w

Lo
w

Lo
w

Am
ou
nt
of
ex
tr
ac
te
d
da
ta

232
bi
ts

6
bi
ts

up
to

26 4
up

to
248

1
216

5
bi
ts

St
ab
ili
ty
of
th
e
re
su
lt

N
et
w
or
k

N
et
w
or
k

N
et
w
or
k

De
vi
ce

N
et
w
or
k

De
vi
ce

N
et
w
or
k

N
et
w
or
k

De
vi
ce

N
et
w
or
k

Im
pa
ct
of
co
m
pl
et
e
M
iti
ga
tio
n

Pe
rf
or
m
an
ce

Co
nv
en
ie
nc
e

N
/A

N
/A

N
on
e

N
/A

N
/A

Pe
rf
or
m
an
ce

a

Sp
ee
d
of
ex
ec
ut
io
n

In
st
an
t

In
st
an
t

In
st
an
t

In
st
an
t

In
st
an
t

Fa
st

Sl
ow

b

Im
pa
ct
of
ex
ec
ut
io
n

N
on
e

N
on
e

N
on
e

N
on
e

N
on
e

N
on
e

Pe
rf
or
m
an
ce

Pe
rc
en
ta
ge

of
us
er
s
vu
ln
er
ab
le

10
0%

10
0%

36
%
[3
4]

M
ax
.3
6%

c
M
ax

36
%

d
10
0%

10
0%

Ta
bl
e
5.
1:

Co
m
pa
ris
on

of
di
ffe
re
nt
ne
tw
or
k-
ba
se
d
fin
ge
rp
rin
tin
g
ve
ct
or
s

a I
fa
ll
op
er
at
in
g
sy
st
em

s
w
er
e
to
us
e
th
e
sa
m
e
co
ng
es
tio
n
co
nt
ro
la
lg
or
ith
m
,f
ut
ur
e
pe
rf
or
m
an
ce

an
d
in
no
va
tio
n
w
ill
be

im
po
ss
ib
le
an
d
th
us

hu
rt
pe
rf
or
m
an
ce
.A

s
a
lo
t

of
de
vi
ce
s
do
n’
ts
up
po
rt
EC
N
,i
ti
s
lik
el
y
to
be

di
sa
bl
ed

if
al
lT
CP

ha
d
to
be

th
e
sa
m
e

b R
eq
ui
re
s
a
fil
e
tr
an
sf
er
.

c W
e
co
ul
d
no
tfi
nd

an
y
nu
m
be
rs
fr
om

a
re
lia
bl
e
so
ur
ce

ab
ou
tt
he

sp
ec
ifi
c
ex
te
ns
io
ns
.W

e
lim

it
th
e
am

ou
nt
of
us
er
s
by

th
e
av
ai
la
bl
e
IP
v6
,b
as
ed

on
[3
4]
.

d A
ss
um

in
g
al
lu
se
rs
w
ith

IP
v6

ca
n
ha
ve

a
du
al
-s
ta
ck

se
tu
p.

59

Chapter 6

Fingerprinting prevention

Up to now, we’ve discussed a variety of fingerprinting vectors that can be utilized
to create a fingerprint. For each method, we’ve evaluated which mitigations tech-
niques were possible to omit or reduce the effectiveness of the fingerprinting. New
ways to gain more new data are discovered frequently, especially with the increas-
ing amounts of new functionalities and added complexity in browsers. Therefore,
for the foreseeable future, there will be an arms race between parties who discover
new fingerprinting techniques and those who try to defeat it.

We’ve seen several mitigations that work on the same principles, such as asking for
permissions and disabling some functionality. Can we find more broad approaches
to mitigate fingerprinting, which could also work for fingerprinting vectors that are
yet unknown?

In this section, we look at some general principles on mitigating fingerprinting and
the reasons why these methods aren’t applied more broadly.

6.1 Incentives to block fingerprinting

While there are definitely legitimate use cases for fingerprinting (as discussed in
1.4), there are reasons to resist against the practices.

A first reason to resist against fingerprinting, would be the privacy implications and
lack of control in the process. Cookies can be removed, a hardware based finger-
print cannot. Users might prefer not to be followed around the web, or face (legal)
consequences if they were to be followed or identified. In some countries, such as
China, these legal consequences can result in human rights violations.

As said before (in 1.4), an incentive to commit to browser fingerprinting is to ensure
session cookies aren’t stolen. People with malicious intent are aware of this and
try to steal more than just the cookie of their targeted users, but some aspects of a
fingerprint [20]. Recent research shows that websites exist to trade in fingerprinted
data of users [20]. This fingerprint data is collected by various means, e.g. pay
users a small reward to install a given program or pay website owners to collect
these values [20]. When a user were to resist fingerprinting, less data of this kind
would be available.

60 Chapter 6. Fingerprinting prevention

6.2 Disabling JavaScript

A popular solution to reduce the amount of fingerprinting that can be done on the
web, would be to disable the execution of JavaScript code. A lot of the browser
fingerprinting vectors we’ve discussed rely on client-side scripting to work.

While this would reduce the fingerprinting surface, it would give several disadvan-
tages.

The first disadvantage is that JavaScript is ubiquitous. Progressive web apps, which
are becoming more popular, rely on client-side scripting. If users were to disable
JavaScript entirely, they’d not be able to use those services. One solution would
be to allow JavaScript on a per-site basis, which would require third-party plugins
such as NoScript. As this wouldn’t eliminate the fingerprinting potential for these
websites.

The second one is that the lack of JavaScript support is a fingerprintable fact. Web-
sites can add a reference to an image in the <noscript>-tags of browsers and then
analyze. Or, they can do the opposite and make a particular request in JavaScript.
If scripts were to blocked only partially, we can apply the same techniques as are
used to detect adblockers and extensions.

Finally, we’ve shown several approaches that don’t require JavaScript to fingerprint
a setup.

6.3 Browser Built-in Solutions

Whilewecouldput all responsibility tomitigatefingerprinting at theenduser, browsers
themselves can offer features to ensure that users are more difficult to fingerprint.

6.3.1 Chromium-based

To the best of our knowledge, Chromiumdoesn’t provide any additional settings that
can be configured to enhance protection against fingerprinting, in theway that other
browsers do. The developers have stated their intentions to mitigate fingerprint-
ing vectors with a new Privacy Sandbox initiative, which tries to mitigate cross-site
trackingwithout hurting legitimate use cases [56]. Besides this, Chromedevelopers
are working onmore advanced fingerprinting protection to include in the browser in
the future. An example thereof can be seen in 6.4.

Microsoft Edge, also based on Chromium, offers more tracking protection. Users
can choose between three levels, where the default value is ‘Balanced’. According
to Microsoft, all levels provide protection against fingerprinters. However, we found
a lot of vectors to be still working (such as theWebGL pixel buffer in 4.5), regardless
of the level of protection we chose.

TheBraveBrowser is another Chromium-basedbrowser. It advertiseswith included
privacy protection and ad blocking. The included privacy protection mainly orig-
inates from the inclusion of the Privacy Badger extension as part of the browser.
When using the strict option, APIs known to be used in fingerprinting, are given ran-
dom values [69].

6.3. Browser Built-in Solutions 61

6.3.2 Firefox

Firefox advertises with the slogan of being ‘the privacy browser’. In recent updates,
several generalmitigationswere introduced to further resolve the fingerprinting sur-
face [24]. As discussed in 3.1.4, it now stores the cache on a per-site basis.

The browser offers different kinds of protection against fingerprinting. By default,
the enhanced tracking protection is enabled. This will block known fingerprinting
scripts [5]. These settings can be disabled on a per-domain basis, as somewebsites
rely on third-party cookies for functionality. The lowest level. To completely disable
the tracking protection, the user has to choose for the custom option and uncheck
all options.

Besides enhanced tracking protection, Firefox offers more thorough tracking pre-
vention as well. This setting is located in the about:config page, where settings that
are oriented more towards advanced users can be changed. Among others, this
setting disables the option to extract pixel data from WebGL, access to the Media
Devices and specific fonts from the PC aren’t available [5].

‘resistfingerprint’ isn’t enabled by default (or taken into the main settings interface)
because it will break APIs and other functionality. Users who don’t understand the
setting or its implications will think the browser is broken.

6.3.3 Tor Browser

The Tor Browser is a browser used by people whowish to remain anonymous on the
Internet. Among its users are whistleblowers and decedents of oppressive regimes
who could face human rights violations if their identity were compromised. As there
is a possibility for browser fingerprinting to be used to link a user to a connection,
the browser tries to eliminate all fingerprinting options.

As the goal of the Tor Browser is absolute anonymity, many compromises are made
in terms of user experience. The browser has the most aggressive form of finger-
printing protection among the browserswe’ve tested. By default, the previously dis-
cussed flag ‘resistfingerprinting’ (used in Firefox) has been enabled in this browser.
Also, the NoScript extension is installed and enabled by default, which allows for
individual scripts to be whitelisted and only on particular websites.

In vectors were such mitigations aren’t possible, the Tor Browser tries to be as
generic as possible. To mitigate the header-based fingerprinting, it will e.g. use the
most popular browser’s browser name and version, in combination with the most
popular Accept-Language values.

The Onion network, on which the browser resides, has been configured to regularly
change the exit node. This approach makes it that the network based fingerprint-
ing methods are infeasible, as the exit node used will change over time. Network
fingerprinting could still be possible if the attacker controls a network close to the
user by checking connections to known Tor entry nodes.

6.3.4 Safari

The Safari Browser, which is made by Apple, is the default browser of MacOS and
iOS. It is based on the Webkit browser engine, which is where the Blink codebase
(used in Chromium) is forked from. Webkit has a more conservative vision on API

62 Chapter 6. Fingerprinting prevention

implementation. For the few vectors that we discussed, we saw that Safari often
lacked an implementation, because developers didn’t see an advantage in imple-
menting it. Instead of offering their users all possible APIs. This means that these
fingerprint vectors, such as the Battery API (4.9), isn’t available in Safari.

Another method used by Apple is the stricter control they keep over the available
plugins. On other platforms, developers are free to create plugins. Apple manually
approves every plugin that is available for the Safari browser. This does make the
browser more vulnerable to extension fingerprinting.

6.4 Differential Privacy and Privacy Budget

Another pattern that was alluded in mitigations of multiple APIs (e.g. 4.5 and 4.9)
was tomake the information gained from theseAPIs less accurate and include some
form of noise to the output of the high-entropy API calls.

When looking at tracking protection, we can see a similar pattern. Privacy Badger is
a browser extension that tries tomitigate third party cookie tracking, without block-
ing all cookies and without any block list. It relies on heuristic approaches, where it
looks atwhich cookies are recurring and could thus have the potential to track users.
If the extension sees that a website is used as third party by several other websites,
cookies won’t be stored. When a website gains more traction, connections to the
(sub)domain are blocked. If a users experience a website is not working, they can
re-enable each website individually (or disable the extension for this domain).

A similar technique to find out whether fingerprinting has taken place, was effective
[25]. But, we now search for a technique where wewouldn’t have to block the APIs.

One concept that can be applied in this context, is the notion of differential privacy.
Here, repeated calls to identifiable information should include some entropy. As we
said before, it could be possible to retrieve the distribution of this entropy bymaking
multiple calls to the given attack vector. To mitigate this, differential privacy states
that more noise should be added, based on the previously given noise, and this for
every subsequent call.

Google introduced the concept of a Privacy Budget [39]. The concept is to count
calls to known-fingerprintable functionality and see whether they exceed a given
threshold. After this threshold is exceeded, the client will answer to requests with
data that is less fingerprintable. This can be either by using differential privacy,
making sure subsequent calls give the same output or indicating to a website that
it’s budget is consumed.

Some applications, such as online applications that rely on fingerprintable APIs,
might needmore calls than allowed by the Privacy Budget [39]. The concept should
thus involve away for users to allow awebsite to exceed the given budget. An exam-
ple of such application would be an online photo editor that uses WebGL for hard-
ware accelerated calculations, which would need canvas data to export the picture.

As of themoment of writing, the project is still in the concept phase. The developers
wait for the results of entropy studies conducted by Google Chrome, where they
collect data on howfingerprintable different APIs are [27]. This information is useful
to find out which weights should be allocated to different fingerprinting APIs.

6.5. Conclusion 63

6.5 Conclusion

While it is possible for users to reduce the amount of fingerprinting that a website
cando, it seems impossible to guarantee complete security. Even if all fingerprinting
vectors in the browser and operating systems were to be resolved, website owners
can still exploit thefingerprinting vectors on the lower levels of thenetworking stack.

Also, trying to mitigate fingerprinting often leads to an increase in the fingerprint-
ing potential, as only a small amount of users will take the extra steps required to
mitigate fingerprinting.

We saw several browsers take different approaches tomitigate themost prominent
fingerprinting vectors. With the exception of the Tor browser, all major browsers
seem to make some trade-off between privacy and usability, with some offering
users choices.

So, mitigating fingerprinting is only effective if a significant amount of users of the
fingerprinting website were to enable it. Otherwise, users who actively mitigate fin-
gerprinting will be more fingerprintable. If Chromium-based browsers were to use
the Privacy Budget, mitigation might be more feasible.

65

Chapter 7

Gaming as additional
fingerprinting vector

Now that we have a broad view on the landscape of browser fingerprinting in the
browser, we can see which techniques would be useful to utilize in a game context.

While including a game for fingerprinting purposes might give the impression of be-
ing a far-fetched idea, we are able to provide some reasons where the idea might
have benefits.

First of all, many corporate website already include graphical intensive animations
(and sometimes little games). Adding a game here wouldn’t be considered suspi-
cious in general.

Moreover, if we can prove that a reliable way exists to fingerprint using a game ele-
ment, new Captcha-like technologies could be made more enjoyable for users.

Coming back to our mitigations, we saw the new Privacy Budget initiative by Google
(6.4). If browsers were to put limits on the amount of resources allowed to finger-
print, a game is a valid reason to ask for an exception to exceed the budget.

7.1 Selection of Techniques

While a lot of techniques can be used, we will focus our attention on the techniques
that are of direct relevance in a game.

To show a tutorial for our game, we can use the Media Capabilities API to find out
which codecs can work on our given machine. This gives us a legitimate reason
to use the API and utilize its fingerprinting surface. We can even use the screen
dimensions to serve a better video.

As most prominent fingerprinting vector that we could find, we use our new tech-
niques concerning the Gamepad API. We can use it to fingerprint the amount of drift
in both axes. We can use AI to detect whether a user made the movement that we
asked for. Mobile devices, such as smartphones,might not have a gamepad at hand.
To compensate for the loss in data, we can use the accelerometer and gyrosensor
to fingerprint the likelihood of the user being a legitimate user. If done correctly, we
could try to measure the differences in orientation when a user touches the device
(e.g. to make a keypress) to ensure that the event isn’t virtually created.

We include the WebXR standard to detect whether any virtual or extended reality
devices are connected. We don’t use them actively, as using a virtual headset uses

66 Chapter 7. Gaming as additional fingerprinting vector

different controllers that don’t have the same analog sticks. It wouldn’t be strange
for a game to check the availability of XR devices.

The Performance API can be used to benchmark the CPU of the device. While this
doesn’t immediately add anything to the game, people are less suspicious of a sud-
den surge in CPU usage when a game is running. The length of the game can be
correlated to the length required for the benchmark to run.

We don’t consider benchmarking the GPU in a similar way to the CPU. The reasons
are that we can know the manufacturer and model by calling the WebGL debugging
shaders. We can use those values to compare to a database. This would not only
yield better performance, it could shorten the fingerprinting period. We do want
to say that this kind of benchmarking would be possible, e.g. by showing a scene
and then increasing its complexity until the framerate of our game is below a given
threshold.

The exclusion of GPU benchmarking doesn’t mean that we cannot use the GPU at
all. We will still perform the better-knownWebGL Canvas Fingerprinting. At a given
page, we will ask for frame data. If we introduce a purpose for the fingerprinting,
we can even try to work around the resist fingerprinting settings.

Finally, resources made available by the game can be stored in the browser cache,
depending on the identifier that we give them. To extend our identifier, we need to
split the code for our game into more separate files.

7.2 Analysis

As the techniques discussed concerning the Media Capabilities API are depending
on the amount of entropy between devices, we lack real world numbers. We do
expect to see similar results between devices.

Whenusing the twosticks that are typically foundonagamepad, eachwith twoaxes,
we can gain 4 new fingerprintable datapoints. Considering that we subdivide them
into groups (giving 2 bits of data), we gain 8 bits of fingerprinting data with this vec-
tor. While no numbers exist (to our knowledge) about the availability of gamepads
(as browsers hide them), we consider it safe to assume that only a minority of the
users will have a controller at hand. As we only have a fallback for mobile devices
(or devices with accelerometer), further work should focus on other techniques to
gain more entropy.

7.3 Further work

Due to time constraints, we were not able to actually implement a proof of concept
of this fingerprinting game. Further research could be done to show whether the
techniques explained are effective in collectingmore fingerprinting data in practice.

67

Chapter 8

Conclusion

The domain of browser fingerprinting is vaster than anticipated when starting the
thesis. While trying too provide a survey, we found that the domain was to broad for
a complete and in-depth analysis. To pick our fingerprinting vectors for analysis, we
chose the available vectors in respect to their use in a game.

While it is well-documented how fingerprinting can be done in a multitude of vec-
tors, little is known about the distribution of these values among Internet users.
Numbers in this regard are often collected by privacyactivists, whose audience can-
not be seen as a representation for all users.

As thepractice of fingerprinting iswell-integrated, it canbedifficult tomitigateprop-
erly without having a negative impact on the experience of users. Browsers are tak-
ing steps to reduce fingerprinting, and with initiatives such as Google’s Privacy Bud-
get, practices can become less obvious and intrusive. At the current state of the
Internet full mitigation is impossible. Users cannot know with certainty that a vis-
ited website doesn’t store their IP address or performs any fingerprinting on the
network layer.

In regard to our game, we were able to find a combination of techniques that would
allow to generate a reliable and difficult to mitigate fingerprint. While we were able
to find new fingerprinting data using a game, this data wouldn’t impact a typical
user. The data requires special hardware to be available and used in order to use it
for fingerprinting. Therefore, we don’t deem the increase in fingerprinting surface
significant.

However, in the course of our research, we foundother reasons for the a gameobject
as fingerprinting method to exist. As browsers try to restrict a website’s ability to
fingerprint, e.g. by measuring the amount of fingerprint-likely calls that are made, a
game can be a valid reason to require an exception to this rule.

As these mitigation techniques are mostly conceptual at the time of writing, further
research should be conducted when it materializes.

69

Appendix A

Dutch summary - Nederlandse
samenvatting

Due to university requirements, a Dutch summary is included as appendix to this the-
sis.

Het doel van deze thesis is tweeledig. Enerzijds proberenweeenoplijsting temaken
van veelgebruikte en historisch belangrijke fingerprinting vectors. Anderzijds kijken
we naar hoe we nieuwe technieken kunnen aanwenden om van een game gebruik
te maken om een meer volwaardige fingerprinting vector te maken.

A.1 Achtergrondkennis

Het HTTP protocol biedt weinig statemanagement. Doordat het oorspronkelijk doel
enkel intern wetenschappelijk gebruik was, was er geen nood aan. Om state toe te
voegen, is het concept van cookies geïntroduceerd. In essentie is een cookie een
key-value pair dat een browser als HTTP header meestuurt bij elk verzoek aan een
website.

Een groot voordeel is hun relatief eenvoudige setup. Een client moet enkel een
string bijhouden per domein en servers kunnen de HTTP header uitlezen. Cookies
bieden echter enkele nadelen. Zo zijn ze eenvoudig door gebruikers te veranderen,
wat maakt dat ze steeds geverifieerd moeten worden. Ook bestaan verschillende
aanvallen om cookies te stelen van gebruikers, zoals diverse cross-site scriptin-
gaanvallen. Één van de oplossingen hiervoor kan gevonden worden in browser fin-
gerprinting.

Browser fingerprinting is het onderzoeksdomein dat zoekt naar verschillen tussen
bezoekers van websites. Deze verschillen kunnen dan gecombineerd worden om
een soort vingerafdruk te maken. Net als een menselijke vingerafdruk, laat een
browser hem vaak ongewild achter bij bezoek en is het moeilijk te detecteren of
een website er gebruik vanmaakt. Ook is het niet eenvoudig om bepaalde aspecten
aan te passen.

Vanuit het perspectief van een website beheerder, zijn er verschillende redenen
voor websites om aan fignerprinting te doen. Zoals eerder gezegd, kan het als vei-
ligheid dienen voor cookies. Daarnaast is het een nuttig element voor browsers om
mensen te onderscheiden van bots. Het zoeken van bots, een verzamelnaam voor
geautomatiseerde bezoekers, kan helpen bij spampreventie.

70 Appendix A. Dutch summary - Nederlandse samenvatting

Naast spampreventie, is fraudebestrijding eenandere redenvoor fingerprinting. Zoals
eerder gezegd is het mogelijk voor cookies om gestolen te worden (bv. door gebruik
te maken van XSS zwakheden). Wanneer we cookies linken aan elementen van de
fingerprint, is hetmogelijksmoeilijker voor aanvallers omgebruik temaken vandeze
cookies. In het geval dat dan een cookie niet overeenkomtmet de fingerprint die we
verwachtten, kunnen we een extra manier van authenticatie vragen (bv. een SMS
bericht). Dit concept staat ook bekend als RBA (Risk-based Authentication).

A.2 Opzet van het experiment

Fingerprinting vectoren zijn op verschillende manieren van elkaar te onderschei-
den. We maken gebruik van verschillende criteria om de vectoren met elkaar te
vergelijken. Deze criteria omvatten:

• Graad van entropie: hoe verdeeld zijn de uitkomsten?

• Hoeveelheid data: hoeveel nieuwe informatie kunnen we hieruit verkrijgen?
We proberen dit te ratificeren in bits.

• Stabiliteit: welke wijzigingen zijn nodig om een andere uitkomst te verkrijgen?

• Impact van volledigemitigatie: indienwe de vector onbruikbaarmaken, welke
impact zou dit hebben op de gebruikers?

• Snelheid van uitvoering: hoe lang duurt het om de vector uit te voeren?

• Impact van uitvoering: wat merkt de gebruiker van de uitvoering van de vec-
tor?

• Percentage van gebruikers dat kwetsbaar is

Om de experimenten uit te voeren in een eenvormige omgeving, hebben we een
framework gemaakt dat ons toelaat om in een gestructureerde manier verschil-
lende vectoren te vergelijken. Dit framework, genaamd ‘Fingerprint Lab’, maakt
gebruik van een progressive Web App, in combinatie met een minimale backend
om uitkomsten van vectoren te vergelijken met andere systemen waarop dezelfde
testen gedaan werden.

De frontendmaakt gebruik van Vue, Vuetify en TypeScript om een algemeen frame-
work te hebben om onze experimenten parallel uit te kunnen voeren. Om verschil-
lende vectoren te implementeren, maken we gebruik van een TypeScript interface,
die gelijkaardig aan Java interfaces werken. De backend maakt gebruik van Cloud-
flare Workers en slaat gehashte waardes van de effectieve fingerprinting data uit
ons framework op.

Het framework heeft ook enkele tekortkomingen. Zo houdt het op ditmoment enkel
hashwaardes bij van de fingerprinting vectoren, waarbij er geen correlatie is tussen
de gelijkaardigewaardes. Ook is hetmogelijk ombij shallowwaardes te achterhalen
welke clients welke waarde hebben geproduceerd, wat dus de exacte configuratie
van een systeem alsnog kan tonen.

A.3. Browser 71

A.3 Browser

In de volgende hoofdstukken focussen we op verschillende fingerprinting vectoren
op verschillende plaatsen in de omgeving waar het mogelijk is om fingerprinting
gegevens te verkrijgen. In de eerste instantie kijken we naar de browser zelf en
welke vectoren hier mogelijk zijn.

Een eerste en duidelijke manier om fingerprinting te doen, is door gebruik te maken
van de HTTP headers voor User-Agent, Accept-Language en DNT (Do Not Track).
Deze headers geven een eerste manier om een browser te fingerprinten. De ho-
eveelheid entropie is echter onvoldoende om een unieke waarde te verkrijgen (veel
gebruikers blijven over per bucket).

Dit is niet de enige attack die in het HTTP protocol aanwezig is vanaf versie 1.1. De
Alt-Svc header geeft aan op welke poorten een website nog geserved wordt. Door
hiervan gebruik te maken, is het mogelijk om clients in te delen per poortnummer
en IP-adres dat ze gebruiken. Ook kan veelvuldig gebruik hiervan leiden tot een
poortscan op de firewall van het netwerk waarop de computer is aangesloten.

Wanneer we dit uitbreiden naar nieuwere iteraties van het HTTP/2 protocol, zien
we onder andere dat ook de introductie van streams leidt tot een aantal standaard-
waardes die fingerprintable zijn.

De nieuwste iteratie, HTTP/3, heeft als belangrijkste nieuwigheid op het gebied van
fingerprinting een 0-RTT connection setup, waardoor deze de encryptieparameters
in de browser kan laten opslaan. Doordat elke gebruiker een unieke encryptiekey
heeft, is het zeerwaarschijnlijk dat dit gebruikt kanworden voor fingerprinting. Deze
fingerprinting aanpakken kan door geen gebruik te maken van de 0-RTT infrastruc-
tuur, wat tot een kleine extra latency leidt bij het opzetten van verbindingen.

Naast het HTTP protocol zijn andere elementen van een browser aan te vallen. We
bekijken grondiger hoe de cache bijvoorbeeld kwetsbaar is. Aanvallen omtrent de
cache zijn ook nuttig in correlatie met een game, omdat een game verschillende as-
sets heeft die in de cache kunnen belanden. We bekijken recente ontdekkingen op
het gebied van favicon caching, die tot op hetmoment van schrijven in verschillende
configuraties nog mogelijk is. Alhoewel de favicon exploit niet heel nuttig is voor de
game, is het wel nuttig om de techniek te extrapoleren naar andere attacks in de
browser cache.

Verdere aanvallen, zoals browser extensionprobing, NPAPIextensionsen font prob-
ing, bekijken we kort.

A.4 Web API’s

Naast elementen vandebrowser, omvat eenbrowser ookAPIs omwebsites toegang
te geven tot lower-level functionaliteit. Omdat we uiteindelijk willen werken naar
een game, ligt de meeste focus van ons werk op dit stuk. De meeste functionaliteit
van een dergelijke game zou zich baseren op de beschikbare fingerprintbaarheid
van de APIs.

Hierbij bekijken we eerst verschillende attacks in het HTML5 Canvas, een element
dat general-purpose graphics aanbiedt. Per canvas kan een website gebruikmaken
van verschillende backends om graphics te tonen op dit element.

72 Appendix A. Dutch summary - Nederlandse samenvatting

Een eerstemogelijkheid is de 2D graphics context. Hiervan is reeds aangetoond dat
het fingerprintbaar is. In onze testen bleek hier echter een groot verschil te zijn, om-
dat verschillende combinaties van browsers met operating systems dit niet bereke-
nen met hardware acceleratie. Andere gebruiken dan weer een implementatie die
gelijkaardig is aan diegene die ze gebruiken voor WebGL.

De andere mogelijkheid is WebGL, een standaard door de Khronos Group om met
OpenGL accellerated graphics toe te laten op websites. Onze eerste gedachte was
dat browsers deze WebGL calls aan de GPU driver geven, die ze m.b.v. de OpenGL
API kan uitvoeren, maar dit bleek niet waar te zijn. Op veel platformen wordt ge-
bruik gemaakt van de ANGLE-library om de calls om te zetten naar een andere API
(op Windows zetten zowel Chrome als Firefox de calls om naar Direct3D, op Linux
maakt Chrome nog steeds gebruik van ANGLE, maar de calls zijn wel degelijk nog
in OpenGL). Naast het feit dat de WebGL rendererer (cf: de GPU) kan worden uit-
gelezen, is het ook mogelijk om gebruik te maken van floating point rounding errors
omeenuniekefingerprint te krijgen. Ookkunnengecompileerde shaders opgevraagd
worden, waarin kleine verschillen zitten.

Tot slot is er WebGPU, die ook op een canvas kan tekenen. Deze standaard is nog in
ontwikkeling, maar zal dezelfde floating point rounding-problemen hebben als We-
bGL vandaag de dag. Ook zijn er voor deze API limieten vastgelegd voor bv. mem-
ory use, maar browsers kunnen ervoor kiezen deze limieten anders te leggen. Wij
kregenWebGPU enkel werkend op Chrome opWindows, waardoor we nog geen ex-
perimenten met deze standaard konden doen.

Naast grafische elementen, vindenwe ook fingerprinting terug in deWebAudio API.
We zien dat verschillen er tussen browsers bestaan omtrent reproductie van gelu-
idsgolven, waaruit vectoren ontstaan, analoog met de pixel buffers van het HTML5
Canvas.

Ook de batterij is mogelijks te fingerprinten, al vraagt dit een grotere duur en is dit
in alle grote browsers verholpen. Het wasmogelijk om, door een te grote precisie in
de API output, een idee te krijgen over de staat van een ontladende (of opladende)
batterij.

In de context van de game, hebben we ook gekeken naar de WebXR API, waar we
vooral zien dat het detecteren van een XR-apparaat (zowel een VR- als een AR-bril,
als bijhorende controllers)mogelijk is, zonder dat de gebruiker eenbevestiging dient
te geven. Een vorige standaard, de WebVR standaard, liet dit echter niet toe.

Het verkrijgen van een scherm-resolutie en kleurenruimte is mogelijk. Behalve dat
hierdoor websites een hardware element kunnen fingerprinten, is het ook mogelijk
omhieruit af te leidenwelke balken er open staan in een browser. Een game zou zou
hier ongemerkt gebruik van kunnenmaken, omdat die bv. moet weten hoe groot de
applicatie is op een volledig scherm.

Meer aansluitend bij onze game, komen we eerst bij de Gamepad API. In verschil-
lende werken wordt deze vector ’gewoon’ uitgelezen en toegevoegd aan het finger-
printing surface, maar hierbij wordt relatief weinig uitleg gegeven over hoe dit con-
creet zou ingevuld worden, wellicht om enkel de beschikbaarheid van een gamepad
te detecteren. Dit is echter vrij beperkt, aangezien we zien dat gamepads standaard
niet beschikbaar gemaakt worden voor webpagina’s (tenzij een gebruiker een knop
indrukt of een as verplaatst). Als we echter in de context van onze game kijken naar
de beschikbaarheid van een gamepad, kunnen we meer data verkrijgen. Naast het

A.5. Network 73

type van controller, is het mogelijk om een idee te krijgen van het operating sys-
tem en de browser (al is deze data reeds uit andere vectoren te verkrijgen). Wat
we echter ook merkten, is dat verschillende browsers een andere implementatie
hebben wat betreft het verkrijgen van de input. Doordat sommige browsers de ex-
acte waardes doorsturen, is het mogelijk om de drift van controllers te weten te
komen. Enkel Firefox opWindows bleek hiertegen bescherming te bieden (door het
gebruik van de DirectX APIs die Windows beschikbaar stelt).

Ook is de Media Capabilities API beschikbaar. Deze API stelt ons in staat om te ki-
jkenwelkemedia vlot, niet ofmogelijks afgespeeld kunnenworden op een systeem,
en of deze playback power-efficient is. Over de fingerprintbaarheid van deze API
bestaat nog enige onzekerheid. In theorie zal deze API op verschillende systemen
andere waardes aangeven, maar veel systemen hebben bv. hardware-accellerated
playback van populaire cdecs, watmaakt dat veel output hetzelfde zou zijn. Chrome
is op het moment van schrijven bezig met te verzamelen hoe groot de entropie is op
deze API om te kijken of mitigaties nodig zijn.

Tot slot keken we kort naar de WebRTC standaard. Deze standaard laat verbindin-
gen toe tussen hosts, eventueel via P2P (afhankelijk van het netwerk van de twee
clients). Om te detecteren of zo’n verbinding nodig is, moet bekeken worden op
welke manieren een host te bereiken is. Voorheen kon de setup-server (STUN-
server) dan ook private IP-adressen van een host te weten komen. We zien dat
de meest-gebruikte browsers hebben dit probleem inmiddels verholpen.

Voor de overige componenten van een systeem (zoals geheugen) zagen we niet on-
middellijk methodes om aan fingerprinting te doen.

A.5 Network

Op lagere lagen van de stack is het ook mogelijk aan fingerprinting te doen. We
beperken ons hier tot de basis omdat dit geen al te directe invloed heeft op onze
game.

Een eerste element is het gebruik van het IP-adres. Al geeft dit een goede algemene
indruk, door de verschillen in implementaties (NATofCGNAT) is hetmogelijksmoeilijk
om unieke verbindingen eruit af te leiden. Ook is het mogelijk om publieke VPNs te
gebruiken om deze vectoren te mitigaten.

Naast dat IPv6 meer IP-adressen heeft, is er ook een bepaalde configuratie waarin
de clients hun MAC-adres moeten gebruiken om stateless een IP-adres te config-
ureren. Hoewel de IP-adressen dan verschillen, is het toch nog mogelijk om ze te
linken doordat ze eindigen op het MAC-adres van het apparaat.

Omdat het mogelijk is om IPv6-adressen te veranderen, kan naar hogere niveaus
gekeken worden. Zo kan het netwerk (bijvoorbeeld op /64-niveau) of het AS waarin
het adres zich bevindt. Omdat ditmeer hosts bevat, zal de entropie licht dalen,maar
de stabiliteit verhogen. De kans is vrij klein dat een gebruiker van ISP verandert.

Uit al deze vectoren is het ook mogelijk om metadata te verkrijgen die hoort bij het
IP- of AS-adres. Dit kan gebruikt worden om bijvoorbeeld het land of een schatting
van de woonplaats te verkrijgen.

De transport layer is mogelijks ook fingerprintbaar. TCP-stacks kunnen verschillen
in de manier waarop aan congestion control gedaan wordt. Zo kan een TCP-stack

74 Appendix A. Dutch summary - Nederlandse samenvatting

ECN ondersteunen en een veelvoud aan beschikbare congestion control algoritmes
gebruiken. Veel van deze gegevens zijn echter gelinkt aan het operating system dat
gebruikt wordt, wat een fingerprinter al kan verkrijgen door de User-Agent string te
bekijken.

A.6 Mitigatie

Per techniek zagen we ook hoe we de specifieke technieken kunnen verhelpen. We
zien hier echter een aantal patronen terugkeren. Het is daarom ook nuttig om te
zoeken naar algemenere manieren om aan mitigatie te doen. Hierbij kijken we naar
browser-specifieke technieken omfingerprinting tegen te gaan,maar evenzeer naar
dingen waar makers van APIs rekening mee dienen te houden om de mogelijke fin-
gerprinting te verminderen.

De W3C, die de meeste Web APIs maakt en standaardiseert, vraagt auteurs van
nieuwe standaarden om te kijken welke fingerprinting mogelijk is. Dit maakt dat er
bij nieuwe standaarden goed zicht is op de zwakheden en hoe browsers ermee om
kunnen gaan om de impact te minimaliseren.

Een groot probleem met Web APIs specifiek is dat ze vaak een grote hoeveelheid
data vrijgevenaanelke arbitrairewebsitedie eengebruiker bezoekt. Nochtans vertrouwt
een gebruiker niet elke website evenveel. Beter is om meer permissies te vragen
per pagina die de gebruiker bezoekt. Dit zou echter een groot nadeel geven voor
gebruikers, aangezien veel websites niet gebouwd zijn hiervoor en dus code zou
niet meer werken (door bv. excepties te geven zonder dat ze opgevangen worden)
als gebruikers geen toestemming geven. Hierdoor gaan gebruikers mogelijks in de
toekomst sneller en meer toestemmingen geven, wat het opzet ondermijnt.

Browsers bouwen ook andere beschermingen in. Zo heeft Firefox een ingebouwde
bescherming tegengekende trackingscripts enfingerprinters, die in eenaantal gevallen
ook al standaard aan staat (en anders eenvoudig te activeren is). Mocht hierdoor
een website niet meer functioneren, dan is het mogelijk deze per site uit te zetten.
Daarnaast kan met de optie ‘resist fingerprinting’ nog meer bescherming aangezet
worden, weliswaar ten koste van functionaliteit.

Chrome heeft minder bescherming ingebouwd, maar is aan het werken aan een
nieuw concept hieromtrent. Dit concept is het Privacy Budget, waarbij een browser
zou bijhouden welke fingerprint-gevoelige acties een website uitvoert. Indien een
tresholdoverschredenwordt, zal debrowser zichdanharder verzetten tegenverdere
fingerprinting.

DeTorbrowser is hetmeest resistent tegenfingerprinting vanalle populaire browsers.
Door de categorie van gebruikers kiest de browser ervoor om de privacy als belan-
grijkste factor te nemen, terwijl andere browsers eerder een afwegingmaken van de
impact op gebruikers t.o.v. het beoogde doel. Ook bevat de browser alle bescher-
mingen van Firefox.

A.7 Gaming

We gebruiken tot slot de technieken die we in de voorgaande hoofdstukken bespro-
ken hebben voor een game. Het gebruik hiervan heeft meerdere voordelen. En-
erzijds willen we meer fingerprintbare data halen uit APIs en technieken die door

A.8. Conclusie 75

games specifiek gebruikt worden. Anderzijds is deze techniek al toekomstzekerder
(het Privacy Budget zal een uitzondering moeten aanbieden voor games, aangezien
die moeten pollen naar controller status).

In deze game vragen we aan gebruikers om bepaalde bewegingen te maken met
de analoge sticks van een controller. Door de gradatie van drift te lezen, kunnen
meer fingerprintbare gegevens krijgen. Verder kunnen we de assets van onze game
in de browser cache steken, waarbij we fingerprinting vectors uit de cache kunnen
gebruiken.

A.8 Conclusie

Door de breedte van het domein van browser fingerprinting, is het niet gelukt een
volledig overzicht te verkrijgen van het domein en alle beschikbare vectoren te ge-
bruiken en/of testen.

We toonden aan dat een game eenmeerwaarde kan bieden in het fingerprinten van
gebruikers. Deze extra data komt niet ten koste van de privacy van gebruikers, om-
dat het vereist dat gebruikers een controller moeten gebruiken, of de data is reeds
beschikbaar voor fingerprinting door manieren die hier geen gebruik van maken.

Doordat nieuwebeschermingen tegen fingerprinting op komst zijn, kan de gameeen
uitweg bieden voor websites die nog steeds aan fingerprinting wensen te doen. Het
biedt een rechtmatige uitzondering op het relatief nieuwe concept van het Privacy
Budget.

77

Bibliography

[1] url: https://www.hcaptcha.com/.
[2] url: https://coveryourtracks.eff.org/.
[3] url: https : / / addons . mozilla . org / en - US / firefox / search /

?promoted=recommended&sort=users&type=extension.
[4] url: https://bugzilla.mozilla.org/show_bug.cgi?id=1461454.
[5] In: Firefox Support (). url: https://support.mozilla.org/en-US/kb/

enhanced-tracking-protection-firefox-desktop.
[6] 2021. url: https://en.wikipedia.org/wiki/Banner_grabbing.
[7] 2021. url: https://w3ctag.github.io/security-questionnaire/.
[8] 2021. url: https://www.w3.org/TR/gamepad/.
[9] gaba 14. The State of IPv6 support on the Tor network. 2021. url: https:

//blog.torproject.org/state-of-ipv6-support-tor-network.
[10] Gunes Acar et al. “FPDetective: Dusting the Web for Fingerprinters”. In: Pro-

ceedings of the 2013 ACM SIGSAC Conference on Computer I& Communica-
tions Security. CCS ’13. Berlin, Germany: Association for Computing Machin-
ery, 2013, pp. 1129–1140. isbn: 9781450324779. doi:10.1145/2508859.
2516674. url: https://doi.org/10.1145/2508859.2516674.

[11] Gunes Acar et al. “The web never forgets: Persistent tracking mechanisms in
the wild”. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security. 2014, pp. 674–689.

[12] AdobeFlashPlayer : Security Vulnerabilities. url:https://www.cvedetails.
com/vulnerability-list.php?vendor_id=53&product_id=
6761&version_id=&page=1&hasexp=0&opdos=
0&opec=0&opov=0&opcsrf=0&opgpriv=0&
amp;opsqli=0&opxss=0&opdirt=0&opmemc=0&
ophttprs=0&opbyp=0&opfileinc=0&opginf=0&
amp;cvssscoremin=0&cvssscoremax=0&year=0&
month=0&cweid=0&order=3&trc=1078&sha=
ac2a72f983d2b7488412b74b424af6da7078c21a.

[13] ANGLE (software). 2020. url:https://en.wikipedia.org/wiki/ANGLE_
(software).

[14] TimBerners-Leeet al.RFC2616:Hypertext Transfer Protocol –HTTP/1.1. 1999.
url: https://datatracker.ietf.org/doc/html/rfc2616.

[15] Blender (software). 2021. url: https : / / en . wikipedia . org / wiki /
Blender_(software)#Suzanne.

[16] AlexBocharov.CloudflareBotManagement:machine learningandmore. 2020.
url:https://blog.cloudflare.com/cloudflare-bot-management-
machine-learning-and-more/.

[17] KevinBocket al. “unCaptcha: a low-resourcedefeat of recaptcha’s audio chal-
lenge”. In: 11th {USENIX}Workshop on Offensive Technologies ({WOOT} 17).
2017.

https://www.hcaptcha.com/
https://coveryourtracks.eff.org/
https://addons.mozilla.org/en-US/firefox/search/?promoted=recommended&sort=users&type=extension
https://addons.mozilla.org/en-US/firefox/search/?promoted=recommended&sort=users&type=extension
https://bugzilla.mozilla.org/show_bug.cgi?id=1461454
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://en.wikipedia.org/wiki/Banner_grabbing
https://w3ctag.github.io/security-questionnaire/
https://www.w3.org/TR/gamepad/
https://blog.torproject.org/state-of-ipv6-support-tor-network
https://blog.torproject.org/state-of-ipv6-support-tor-network
https://doi.org/10.1145/2508859.2516674
https://doi.org/10.1145/2508859.2516674
https://doi.org/10.1145/2508859.2516674
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=6761&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=1078&sha=ac2a72f983d2b7488412b74b424af6da7078c21a
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=6761&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=1078&sha=ac2a72f983d2b7488412b74b424af6da7078c21a
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=6761&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=1078&sha=ac2a72f983d2b7488412b74b424af6da7078c21a
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=6761&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=1078&sha=ac2a72f983d2b7488412b74b424af6da7078c21a
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=6761&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=1078&sha=ac2a72f983d2b7488412b74b424af6da7078c21a
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=6761&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=1078&sha=ac2a72f983d2b7488412b74b424af6da7078c21a
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=6761&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=1078&sha=ac2a72f983d2b7488412b74b424af6da7078c21a
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=6761&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=1078&sha=ac2a72f983d2b7488412b74b424af6da7078c21a
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=6761&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=1078&sha=ac2a72f983d2b7488412b74b424af6da7078c21a
https://en.wikipedia.org/wiki/ANGLE_(software)
https://en.wikipedia.org/wiki/ANGLE_(software)
https://datatracker.ietf.org/doc/html/rfc2616
https://en.wikipedia.org/wiki/Blender_(software)#Suzanne
https://en.wikipedia.org/wiki/Blender_(software)#Suzanne
https://blog.cloudflare.com/cloudflare-bot-management-machine-learning-and-more/
https://blog.cloudflare.com/cloudflare-bot-management-machine-learning-and-more/

78 Bibliography

[18] Dieter Bohn. Nobody is flying to join Google’s FLoC. 2021. url: https : / /
www.theverge.com/2021/4/16/22387492/google- floc- ad-
tech-privacy-browsers-brave-vivaldi-edge-mozilla-chrome-
safari.

[19] Browser Market Share Worldwide. 2021. url: https://gs.statcounter.
com/browser-market-share.

[20] Michele Campobasso and Luca Allodi. “Impersonation-as-a-Service: Charac-
terizing theEmergingCriminal Infrastructure forUser Impersonation at Scale”.
In: Proceedings of the 2020 ACM SIGSAC Conference on Computer I& Com-
munications Security. CCS ’20. Virtual Event, USA: Association for Computing
Machinery, 2020, pp. 1665–1680. isbn: 9781450370899. doi: 10.1145/
3372297.3417892. url:https://doi.org/10.1145/3372297.3417892.

[21] Richard Clayton, Steven J Murdoch, and Robert NM Watson. “Ignoring the
great firewall of china”. In: International workshop on privacy enhancing tech-
nologies. Springer. 2006, pp. 20–35.

[22] TheTradeDesk.UnifiedID2/uid2docs. url:https://github.com/UnifiedID2/
uid2docs.

[23] Mariano Di Martino, Peter Quax, and Wim Lamotte. “Realistically Fingerprint-
ing Social Media Webpages in HTTPS Traffic”. In: Proceedings of the 14th In-
ternational Conference on Availability, Reliability and Security. ARES ’19. Can-
terbury, CA, United Kingdom: Association for Computing Machinery, 2019.
isbn: 9781450371643. doi: 10.1145/3339252.3341478. url: https:
//doi.org/10.1145/3339252.3341478.

[24] Steven Englehardt and Arthur Edelstein. Firefox 85 Cracks Down on Super-
cookies. 2021. url: https://blog.mozilla.org/security/2021/01/
26/supercookie-protections/.

[25] Amin FaizKhademi, Mohammad Zulkernine, and Komminist Weldemariam.
“FPGuard: Detection and prevention of browser fingerprinting”. In: IFIP An-
nual ConferenceonDataandApplicationsSecurity andPrivacy. Springer. 2015,
pp. 293–308.

[26] Fingerprint Web Server. url: https://owasp.org/www-project-web-
security-testing-guide/latest/4-Web_Application_Security_
Testing/01-Information_Gathering/02-Fingerprint_Web_Server.

[27] Chris Fredrickson. Issue1122019: Entropy exposedbyHTMLMediaElement.canPlayType
is unmeasured. 2020. url: https://bugs.chromium.org/p/chromium/
issues/detail?id=1122019.

[28] Gamepad API. url: https://developer.mozilla.org/en-US/docs/
Web/API/Gamepad_API.

[29] Getting Started with Headless Chrome, Google Developers. url: https : / /
developers.google.com/web/updates/2017/04/headless-chrome.

[30] GPU Accelerated Compositing in Chrome - The Chromium Projects. 2014. url:
https://sites.google.com/a/chromium.org/dev/developers/
design-documents/gpu-accelerated-compositing-in-chrome.

[31] KashmirHill. ’Do not track’ privacy tool doesn’t do anything. 2018. url:https:
//gizmodo.com/do-not-track-the-privacy-tool-used-by-
millions-of-peop-1828868324.

[32] Md ImranHossen andXiali Hei. “A Low-Cost Attack against the hCaptcha Sys-
tem”. In: arXiv preprint arXiv:2104.04683 (2021).

[33] IPv6. 2021. url: https://en.wikipedia.org/wiki/IPv6.

https://www.theverge.com/2021/4/16/22387492/google-floc-ad-tech-privacy-browsers-brave-vivaldi-edge-mozilla-chrome-safari
https://www.theverge.com/2021/4/16/22387492/google-floc-ad-tech-privacy-browsers-brave-vivaldi-edge-mozilla-chrome-safari
https://www.theverge.com/2021/4/16/22387492/google-floc-ad-tech-privacy-browsers-brave-vivaldi-edge-mozilla-chrome-safari
https://www.theverge.com/2021/4/16/22387492/google-floc-ad-tech-privacy-browsers-brave-vivaldi-edge-mozilla-chrome-safari
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share
https://doi.org/10.1145/3372297.3417892
https://doi.org/10.1145/3372297.3417892
https://doi.org/10.1145/3372297.3417892
https://github.com/UnifiedID2/uid2docs
https://github.com/UnifiedID2/uid2docs
https://doi.org/10.1145/3339252.3341478
https://doi.org/10.1145/3339252.3341478
https://doi.org/10.1145/3339252.3341478
https://blog.mozilla.org/security/2021/01/26/supercookie-protections/
https://blog.mozilla.org/security/2021/01/26/supercookie-protections/
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/01-Information_Gathering/02-Fingerprint_Web_Server
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/01-Information_Gathering/02-Fingerprint_Web_Server
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/01-Information_Gathering/02-Fingerprint_Web_Server
https://bugs.chromium.org/p/chromium/issues/detail?id=1122019
https://bugs.chromium.org/p/chromium/issues/detail?id=1122019
https://developer.mozilla.org/en-US/docs/Web/API/Gamepad_API
https://developer.mozilla.org/en-US/docs/Web/API/Gamepad_API
https://developers.google.com/web/updates/2017/04/headless-chrome
https://developers.google.com/web/updates/2017/04/headless-chrome
https://sites.google.com/a/chromium.org/dev/developers/design-documents/gpu-accelerated-compositing-in-chrome
https://sites.google.com/a/chromium.org/dev/developers/design-documents/gpu-accelerated-compositing-in-chrome
https://gizmodo.com/do-not-track-the-privacy-tool-used-by-millions-of-peop-1828868324
https://gizmodo.com/do-not-track-the-privacy-tool-used-by-millions-of-peop-1828868324
https://gizmodo.com/do-not-track-the-privacy-tool-used-by-millions-of-peop-1828868324
https://en.wikipedia.org/wiki/IPv6

Bibliography 79

[34] IPv6Statistics. url:https://www.google.com/intl/en/ipv6/statistics.
html.

[35] Michael Kan. Inside the Pandemic’s Biggest Cash Cow: Scalper Bot Networks
Hawking Hot Products. 2020. url: https : / / www . pcmag . com / news /
inside-the-pandemics-biggest-cash-cow-scalper-bot-networks-
hawking-hot.

[36] Amin Faiz Khademi, Mohammad Zulkernine, and Komminist Weldemariam.
“An empirical evaluation of web-based fingerprinting”. In: Ieee Software 32.4
(2015), pp. 46–52.

[37] Anssi Kostiainen et al. Battery Status API: W3C Editor’s Draft 25 September
2019. url: https://w3c.github.io/battery/.

[38] Pierre Laperdrix et al. Browser Fingerprinting: A survey. 2019. arXiv: 1905.
01051 [cs.CR].

[39] Brad Lassey.Combating FingerprintingwithaPrivacyBudget. 2019. url:https:
//github.com/bslassey/privacy-budget.

[40] MediaCapabilities. 2021. url:https://www.w3.org/TR/media-capabilities/.
[41] Media Capabilities API. url: https://developer.mozilla.org/en-

US/docs/Web/API/Media_Capabilities_API.
[42] Mitigating Browser Fingerprinting in Web Specifications. 2019. url: https:

//www.w3.org/TR/fingerprinting-guidance/.
[43] Lou Montulli and David M. Kristol. HTTP State Management Mechanism. RFC

2109. Feb. 1997. doi: 10.17487/RFC2109. url: https://rfc-editor.
org/rfc/rfc2109.txt.

[44] Keaton Mowery and Hovav Shacham. “Pixel Perfect: Fingerprinting Canvas in
HTML5”. In: Proceedings of W2SP 2012. Ed. by Matt Fredrikson. IEEE Com-
puter Society. May 2012.

[45] Gabi Nakibly, Gilad Shelef, and Shiran Yudilevich.Hardware Fingerprinting Us-
ing HTML5. 2015. arXiv: 1503.01408 [cs.CR].

[46] Dr. Thomas Narten, Richard P. Draves, and Suresh Krishnan. Privacy Exten-
sions for Stateless Address Autoconfiguration in IPv6. RFC 4941. Sept. 2007.
doi:10.17487/RFC4941. url:https://rfc-editor.org/rfc/rfc4941.
txt.

[47] Nick Nikiforakis et al. “Cookieless monster: Exploring the ecosystem of web-
based device fingerprinting”. In: 2013 IEEE Symposium on Security and Pri-
vacy. IEEE. 2013, pp. 541–555.

[48] Nick Nikiforakis et al. “SessionShield: Lightweight Protection against Session
Hijacking”. In: Engineering Secure Software and Systems. Ed. by Úlfar Erlings-
son, Roel Wieringa, and Nicola Zannone. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 87–100. isbn: 978-3-642-19125-1.

[49] M Nottingham, P McManus, and J Reschke. HTTP alternative services. url:
https://tools.ietf.org/html/rfc7838.

[50] NPAPI. 2021. url: https://en.wikipedia.org/wiki/NPAPI.
[51] LukaszOlejnik, StevenEnglehardt, andArvindNarayanan. “Battery StatusNot

Included: Assessing Privacy inWeb Standards.” In: IWPE@SP. 2017, pp. 17–
24.

[52] Lukasz Olejnik et al. The leaking battery: A privacy analysis of the HTML5 Bat-
tery StatusAPI. Cryptology ePrintArchive, Report 2015/616.https://eprint.
iacr.org/2015/616. 2015.

[53] James O’Malley. Captcha if you can: How you’ve been training AI for years
without realising it. 2018. url: https://www.techradar.com/news/

https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
https://www.pcmag.com/news/inside-the-pandemics-biggest-cash-cow-scalper-bot-networks-hawking-hot
https://www.pcmag.com/news/inside-the-pandemics-biggest-cash-cow-scalper-bot-networks-hawking-hot
https://www.pcmag.com/news/inside-the-pandemics-biggest-cash-cow-scalper-bot-networks-hawking-hot
https://w3c.github.io/battery/
https://arxiv.org/abs/1905.01051
https://arxiv.org/abs/1905.01051
https://github.com/bslassey/privacy-budget
https://github.com/bslassey/privacy-budget
https://www.w3.org/TR/media-capabilities/
https://developer.mozilla.org/en-US/docs/Web/API/Media_Capabilities_API
https://developer.mozilla.org/en-US/docs/Web/API/Media_Capabilities_API
https://www.w3.org/TR/fingerprinting-guidance/
https://www.w3.org/TR/fingerprinting-guidance/
https://doi.org/10.17487/RFC2109
https://rfc-editor.org/rfc/rfc2109.txt
https://rfc-editor.org/rfc/rfc2109.txt
https://arxiv.org/abs/1503.01408
https://doi.org/10.17487/RFC4941
https://rfc-editor.org/rfc/rfc4941.txt
https://rfc-editor.org/rfc/rfc4941.txt
https://tools.ietf.org/html/rfc7838
https://en.wikipedia.org/wiki/NPAPI
https://eprint.iacr.org/2015/616
https://eprint.iacr.org/2015/616
https://www.techradar.com/news/captcha-if-you-can-how-youve-been-training-ai-for-years-without-realising-it

80 Bibliography

captcha - if - you - can - how - youve - been - training - ai - for -
years-without-realising-it.

[54] Performance API - Web APIs: MDN. url: https://developer.mozilla.
org/en-US/docs/Web/API/Performance_API.

[55] MatthewPrince.TheTroublewith Tor. 2020. url:https://blog.cloudflare.
com/the-trouble-with-tor/.

[56] Protecting users on a thriving web (Chrome Dev Summit 2019). ChromeDevel-
opers, 2019. url: https://www.youtube.com/watch?v=WnCKlNE52tc.

[57] QUIC - gQUIC. 2021. url: https://en.wikipedia.org/wiki/QUIC.
[58] reCAPTCHA. url: https://www.google.com/recaptcha/about/.
[59] Eric Rescorla. WebRTC IP Address Privacy. 2011. url: https://www.w3.

org/2011/04/webrtc/wiki/images/d/da/WebRTC_IP_Address_
Privacy.pdf.

[60] Risk-Based Authentication. url: https://www.okta.com/identity-
101/risk-based-authentication/.

[61] Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti. “Clock Around
the Clock: Time-Based Device Fingerprinting”. In: Proceedings of the 2018
ACMSIGSAC Conference on Computer and Communications Security. CCS ’18.
Toronto, Canada:Association forComputingMachinery, 2018, pp. 1502–1514.
isbn: 9781450356930. doi: 10.1145/3243734.3243796. url: https://
doi.org/10.1145/3243734.3243796.

[62] Allison Schiff. Google’s Message To The Ad Industry: We Won’t Build Our Own
Third-Party Cookie Alternatives (And We Don’t Want You To Either). 2021. url:
https://www.adexchanger.com/online-advertising/googles-
message-to-the-ad-industry-we-wont-build-our-own-third-
party-cookie-alternatives-and-we-dont-want-you-to-either/.

[63] Allison Schiff. Unified ID 2.0 Is Facing Roadblocks (And Not Just To Do With
Google). 2021. url:https://www.adexchanger.com/online-advertising/
unified-id-2-0-is-facing-roadblocks-and-not-just-to-do-
with-google/.

[64] Justin Schuh. Building a more private web: A path towards making third party
cookies obsolete. 2020. url: https://blog.chromium.org/2020/01/
building-more-private-web-path-towards.html.

[65] Ory Segal, Aharon Fridman, and Elad Shuster. In: EU-17. BlackHat, 2017. url:
https://www.blackhat.com/docs/eu-17/materials/eu-17-
Shuster-Passive-Fingerprinting-Of-HTTP2-Clients-wp.pdf.

[66] A. H. Seh et al. “Healthcare Data Breaches: Insights and Implications”. In:
Healthcare (Basel) 8.2 (2020).

[67] Sessionhijacking. 2021. url:https://en.wikipedia.org/wiki/Session_
hijacking.

[68] Suphannee Sivakorn, Jason Polakis, and Angelos D Keromytis. “I’m not a hu-
man: Breaking the Google reCAPTCHA”. In: Black Hat (2016), pp. 1–12.

[69] Peter Snyder.Brave Fingerprinting Protections. 2020. url:https://github.
com/brave/brave-browser/wiki/Fingerprinting-Protections.

[70] Brave Software. How to Use Extensions in Incognito Mode. 2020. url: https:
//brave.com/learn/enable-extensions-in-incognito/.

[71] Konstantinos Solomos et al. “Tales of favicons And caches: Persistent track-
ing in modern browsers”. In: Proceedings 2021 Network and Distributed Sys-
tem Security Symposium (2021). doi: 10.14722/ndss.2021.24202.

https://www.techradar.com/news/captcha-if-you-can-how-youve-been-training-ai-for-years-without-realising-it
https://www.techradar.com/news/captcha-if-you-can-how-youve-been-training-ai-for-years-without-realising-it
https://www.techradar.com/news/captcha-if-you-can-how-youve-been-training-ai-for-years-without-realising-it
https://developer.mozilla.org/en-US/docs/Web/API/Performance_API
https://developer.mozilla.org/en-US/docs/Web/API/Performance_API
https://blog.cloudflare.com/the-trouble-with-tor/
https://blog.cloudflare.com/the-trouble-with-tor/
https://www.youtube.com/watch?v=WnCKlNE52tc
https://en.wikipedia.org/wiki/QUIC
https://www.google.com/recaptcha/about/
https://www.w3.org/2011/04/webrtc/wiki/images/d/da/WebRTC_IP_Address_Privacy.pdf
https://www.w3.org/2011/04/webrtc/wiki/images/d/da/WebRTC_IP_Address_Privacy.pdf
https://www.w3.org/2011/04/webrtc/wiki/images/d/da/WebRTC_IP_Address_Privacy.pdf
https://www.okta.com/identity-101/risk-based-authentication/
https://www.okta.com/identity-101/risk-based-authentication/
https://doi.org/10.1145/3243734.3243796
https://doi.org/10.1145/3243734.3243796
https://doi.org/10.1145/3243734.3243796
https://www.adexchanger.com/online-advertising/googles-message-to-the-ad-industry-we-wont-build-our-own-third-party-cookie-alternatives-and-we-dont-want-you-to-either/
https://www.adexchanger.com/online-advertising/googles-message-to-the-ad-industry-we-wont-build-our-own-third-party-cookie-alternatives-and-we-dont-want-you-to-either/
https://www.adexchanger.com/online-advertising/googles-message-to-the-ad-industry-we-wont-build-our-own-third-party-cookie-alternatives-and-we-dont-want-you-to-either/
https://www.adexchanger.com/online-advertising/unified-id-2-0-is-facing-roadblocks-and-not-just-to-do-with-google/
https://www.adexchanger.com/online-advertising/unified-id-2-0-is-facing-roadblocks-and-not-just-to-do-with-google/
https://www.adexchanger.com/online-advertising/unified-id-2-0-is-facing-roadblocks-and-not-just-to-do-with-google/
https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://www.blackhat.com/docs/eu-17/materials/eu-17-Shuster-Passive-Fingerprinting-Of-HTTP2-Clients-wp.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Shuster-Passive-Fingerprinting-Of-HTTP2-Clients-wp.pdf
https://en.wikipedia.org/wiki/Session_hijacking
https://en.wikipedia.org/wiki/Session_hijacking
https://github.com/brave/brave-browser/wiki/Fingerprinting-Protections
https://github.com/brave/brave-browser/wiki/Fingerprinting-Protections
https://brave.com/learn/enable-extensions-in-incognito/
https://brave.com/learn/enable-extensions-in-incognito/
https://doi.org/10.14722/ndss.2021.24202

Bibliography 81

[72] L. Stewart et al. RFC 2617 - HTTP Authentication: Basic and Digest Access Au-
thentication. 1999. url: https://datatracker.ietf.org/doc/html/
rfc2617#section-3.

[73] Erik Sy et al. “A QUIC Look at Web Tracking”. In: Proceedings on Privacy En-
hancingTechnologies2019 (July2019), pp. 255–266. doi:10.2478/popets-
2019-0046.

[74] Naoki Takei et al. “Web Browser Fingerprinting Using Only Cascading Style
Sheets”. In: 2015 10th International Conference on Broadband and Wireless
Computing, Communication and Applications (BWCCA). 2015, pp. 57–63. doi:
10.1109/BWCCA.2015.105.

[75] Kazuhisa Tanabe, Ryohei Hosoya, and Takamichi Saito. “Combining Features
in Browser Fingerprinting”. In: Advances on Broadband and Wireless Com-
puting, Communication and Applications. Ed. by Leonard Barolli et al. Cham:
Springer International Publishing, 2019, pp. 671–681. isbn: 978-3-030-02613-
4.

[76] Trishita Tiwari and Ari Trachtenberg. “Alternative (ab)uses for HTTP Alterna-
tive Services”. In: 13th USENIX Workshop on Offensive Technologies (WOOT
19). Santa Clara, CA: USENIX Association, Aug. 2019. url: https://www.
usenix.org/conference/woot19/presentation/tiwari.

[77] Unified ID Solution 2.0: The TradeDesk. url:https://www.thetradedesk.
com/us/about-us/industry-initiatives/unified-id-solution-
2-0.

[78] Randika Upathilake, Yingkun Li, and Ashraf Matrawy. “A classification of web
browser fingerprinting techniques”. In: 2015 7th International Conference on
New Technologies, Mobility and Security (NTMS). IEEE. 2015, pp. 1–5.

[79] Usage statistics ofweb servers. url:https://w3techs.com/technologies/
overview/web_server.

[80] Yves Vanaubel et al. “Network Fingerprinting: TTL-Based Router Signatures”.
In: Proceedings of the 2013 Conference on Internet Measurement Conference.
IMC ’13.Barcelona, Spain: Association forComputingMachinery, 2013, pp. 369–
376. isbn: 9781450319539. doi:10.1145/2504730.2504761. url:https:
//doi.org/10.1145/2504730.2504761.

[81] Karel Vandendriessche et al. Imec.Digimeter 2020. 2021, pp. 37–40.
[82] Vibration API. url: https://developer.mozilla.org/en-US/docs/

Web/API/Vibration_API.
[83] Luis Von Ahn et al. “recaptcha: Human-based character recognition via web

security measures”. In: Science 321.5895 (2008), pp. 1465–1468.
[84] Web technology for developers. url: https://developer.mozilla.org/

en-US/docs/Web/API/WEBGL_debug_shaders.
[85] WebGPU. 2020. url: https://en.wikipedia.org/wiki/WebGPU.
[86] WebGPU API. 2021. url: https://gpuweb.github.io/gpuweb/.
[87] Websockets API. url: https://developer.mozilla.org/en-US/docs/

Web/API/WebSockets_API.
[88] WebXR. url: https://developer.mozilla.org/en-US/docs/Web/

API/WebXR_Device_API.
[89] Marissa Wood. Today’s Firefox Blocks Third-Party Tracking Cookies and Cryp-

tomining by Default. 2019. url: https://blog.mozilla.org/blog/
2019/09/03/todays-firefox-blocks-third-party-tracking-
cookies-and-cryptomining-by-default/.

https://datatracker.ietf.org/doc/html/rfc2617#section-3
https://datatracker.ietf.org/doc/html/rfc2617#section-3
https://doi.org/10.2478/popets-2019-0046
https://doi.org/10.2478/popets-2019-0046
https://doi.org/10.1109/BWCCA.2015.105
https://www.usenix.org/conference/woot19/presentation/tiwari
https://www.usenix.org/conference/woot19/presentation/tiwari
https://www.thetradedesk.com/us/about-us/industry-initiatives/unified-id-solution-2-0
https://www.thetradedesk.com/us/about-us/industry-initiatives/unified-id-solution-2-0
https://www.thetradedesk.com/us/about-us/industry-initiatives/unified-id-solution-2-0
https://w3techs.com/technologies/overview/web_server
https://w3techs.com/technologies/overview/web_server
https://doi.org/10.1145/2504730.2504761
https://doi.org/10.1145/2504730.2504761
https://doi.org/10.1145/2504730.2504761
https://developer.mozilla.org/en-US/docs/Web/API/Vibration_API
https://developer.mozilla.org/en-US/docs/Web/API/Vibration_API
https://developer.mozilla.org/en-US/docs/Web/API/WEBGL_debug_shaders
https://developer.mozilla.org/en-US/docs/Web/API/WEBGL_debug_shaders
https://en.wikipedia.org/wiki/WebGPU
https://gpuweb.github.io/gpuweb/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API
https://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API
https://blog.mozilla.org/blog/2019/09/03/todays-firefox-blocks-third-party-tracking-cookies-and-cryptomining-by-default/
https://blog.mozilla.org/blog/2019/09/03/todays-firefox-blocks-third-party-tracking-cookies-and-cryptomining-by-default/
https://blog.mozilla.org/blog/2019/09/03/todays-firefox-blocks-third-party-tracking-cookies-and-cryptomining-by-default/

82 Bibliography

[90] ShujiangWu et al. “Rendered Private: Making GLSL Execution Uniform to Pre-
ventWebGL-basedBrowser Fingerprinting”. In:28thUSENIXSecurity Sympo-
sium (USENIX Security 19). Santa Clara, CA: USENIX Association, Aug. 2019,
pp. 1645–1660. isbn: 978-1-939133-06-9. url: https://www.usenix.
org/conference/usenixsecurity19/presentation/wu.

[91] Pengwei Zhan, LimingWang, andYi Tang.Website Fingerprinting onEarlyQUIC
Traffic. 2021. arXiv: 2101.11871 [cs.CR].

https://www.usenix.org/conference/usenixsecurity19/presentation/wu
https://www.usenix.org/conference/usenixsecurity19/presentation/wu
https://arxiv.org/abs/2101.11871

	Acknowledgements
	Background
	Keeping state in the stateless
	Transition to interactivity
	Device fingerprinting
	Incentives to fingerprint
	Alternative to third Party Cookies
	Captcha and bot detection
	Fraud prevention
	Discovering outdated software

	Classification of fingerprinting techniques
	Based on execution: Active Passive
	Based on component

	Fingerprinting other components
	Server fingerprinting
	Website fingerprinting

	Experiment setup
	Assessment criteria for fingerprinting vectors
	Experiments: Fingerprint Lab
	Global structure
	Fingerprint library
	Interface between Vue and the fingerprint library
	Backend
	Privacy concerns
	Further improvements
	Deployment

	Fingerprinting the browser
	Cache
	Favicons
	Cache Control
	Alt-Svc
	Mitigation
	Conclusion

	HTTP stack
	HTTP versions
	HTTP Headers
	HTTP/2
	HTTP/3
	Transport-layer fingerprinting
	0-RTT
	Congestion control
	Available drafts

	Extensions
	Plugins

	NPAPI
	Font probing
	Conclusion

	Exploits using Web APIs
	Introduction
	W3C Web Standards
	Environment
	GPU

	HTML5 Canvas 2D font rendering
	Experiment

	Canvas 2D drawing without fonts
	WebGL
	Experiment
	Mitigation
	Conclusion
	WebGL Debug Shaders
	Experiment
	Mitigation
	Conclusion

	WebGL Pixel buffers
	Experiment
	Mitigation

	WebGPU
	Web Audio API
	Performance API
	Battery
	Screen
	VR
	WebXR
	Experiment
	Mitigation
	Conclusion

	Gamepad API
	Experiment
	Mitigation
	Conclusion

	Media Capabilities API
	Experiment
	Mitigation
	Conclusion

	WebRTC
	Other components
	Main memory

	Conclusion

	Fingerprinting the Network
	IP address
	Autonomous Systems
	IP headers
	IPv6-specific
	TCP
	Conclusion

	Fingerprinting prevention
	Incentives to block fingerprinting
	Disabling JavaScript
	Browser Built-in Solutions
	Chromium-based
	Firefox
	Tor Browser
	Safari

	Differential Privacy and Privacy Budget
	Conclusion

	Gaming as additional fingerprinting vector
	Selection of Techniques
	Analysis
	Further work

	Conclusion
	Dutch summary - Nederlandse samenvatting
	Achtergrondkennis
	Opzet van het experiment
	Browser
	Web API's
	Network
	Mitigatie
	Gaming
	Conclusie

	Bibliography

