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Abstract

Many companies nowadays make use of data to optimize their processes. How-
ever, the collected data can contain various inconsistencies due to typing er-
rors, for example. This forces the company to clean the data before deducing
insights. One possible solution to discover erroneous information is finding
columns that determine other columns, also called Functional Dependencies
(FDs). For example, two people that live in the same city have to live in the
same country. However, as FDs do not allow errors, we have to find a method
to find dependencies that approximately hold in the relation, referred to as
Approximate Functional Dependencies (AFDs). This thesis aims to design a
relevance-focused tool for domain experts to discover AFDs.

We review the existing measures to determine the degree of approximation
of an AFD by testing them on various theoretical examples. Based on the
findings of these tests, we decide on a combination of measures that focuses
on discovering relevant AFDs. Then, we integrate those measures and other
AFD metadata into c-metric, a score representing the confidence in a partic-
ular AFD. Our extensive experimental evaluation of the c-metric shows that
the metric is significantly more suitable for relevant AFD discovery than the
existing approximation measures.

Finally, to assist domain experts in discovering relevant AFDs, we implement a
tool that visualizes our c-metric and other AFD metadata, such as probability
distributions. Comprehensive testing of the tool on various datasets shows that
using the tool can be the decisive factor in whether or not an AFD is relevant.
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Chapter 1

Introduction

The use of (big) data has become an essential factor for businesses to make
better decisions and make processes efficient. However, the acquired data is
not always correct, primarily when generated by humans. For example, a
person might write a typo or fill out data in the wrong input fields. Before
gaining insight from the information, data cleaning needs to be done to modify
or remove the potentially erroneous data. Data cleaning happens in two stages:
error detection and error correction. Unfortunately, data cleaning can be a
very tedious task. Anaconda1, one of the most frequently used data science
platforms, wrote in a report of 2020 [2] that data scientists spend 26% of their
time on data cleaning. Hence, designing solutions to efficiently and effectively
clean data can be a significant improvement, not only to the data science
sector but to all businesses in general.

Ilyas et al. [14] have gathered research and summarized a broad range of
approaches to detect anomalies. A possible type of error is a logic error that
can exist in many forms. For example, the fact that a person lives in California
(state) and Canada (country) is contradictory, so one of these two values is
likely to be wrong. One of the approaches to detect logic errors is discovering
data quality rules or, more specifically, integrity constraints (ICs) [14]. Four
types of well-known ICs are listed below, illustrated with an example.

1. A Functional Dependency (FD): Every two people that live in the
same city must live in the same country.

2. A Conditional Functional Dependency (CFD): Every person born
in France has been vaccinated against the flu.

3. A Denial Constraint (DC): Every two students with a different num-
ber of college credits pay differing yearly fees.

4. An Inclusion Dependency (ID) is not restricted to one relation. Let
there be two tables: students and grades. If the students table contains
a row with a student ID and a course ID, the student must appear in
the grades table with a grade for that course.

1https://www.anaconda.com
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Some are more expressive and inevitably more computationally expensive than
others. Usually, discovering these ICs is done by hand, which makes it a
tiresome task for domain experts and a high cost for the hiring company [14].
Besides that, the data likely contains correlations that are hard for humans to
discover. Ilyas et al. [14] reviewed several algorithms to find ICs automatically.
For example, TANE [13] for FDs, FASTDC [8] for DCs and CFDMiner [10]
for CFDs. After discovery, domain experts can use these ICs to clean records
that do not satisfy them and preserve the integrity of the data.

In this thesis, we focus on Functional Dependencies (FDs) and Approximate
Functional Dependencies (AFDs), a relaxed variant of FDs. FD discovery
algorithms are designed to work on clean data. In practice, this can be done
by manually cleaning a small sample first and then running the discovery
algorithms. Again, this approach relies on the availability of domain experts,
which might not always be the case. In this situation, AFDs can be very
valuable. Approximate means that the FD is less strict and tolerates errors in
the data. Even if the dataset contains anomalies, it is still possible to discover
FDs.

To classify a combination of columns as an AFD, we first need to define when
an FD holds approximately. In other words, we need a score that determines
the degree to which the FD holds approximately on the dataset. We can then
discover AFDs by only returning AFDs of which the score is higher than a user-
set threshold. Several research papers have proposed various scoring methods
for AFDs specifically, such as the well-established g3 [11] and τ(Tau) [23].
However, developing an algorithm that returns relevant results is challenging
without being aware of the theoretical and practical differences between the
scoring measures. In this thesis, we will analyse existing measures thoroughly
to gain insight into those differences.

1.1 Contributions

During our literature study, we found numerous research papers concerning
AFD discovery algorithms. However, the main focus of these papers was
finding an efficient approach for AFD discovery, not finding the most relevant
results. Most of the designed methods applied the same AFD measure without
reflecting on its strengths and weaknesses. In this thesis, we aim to research
which measure or combination of measures returns the most relevant results.
Based on our analysis, an algorithm focused both on efficiency and relevance
can be developed.

Additionally, only one paper analyzed the differences between three measures.
It did not include all possible appropriate measures. In this work, we compare
five different measures and two refinements. We performed these on diverse
theoretical examples, which emphasizes every measure’s strengths and weak-
nesses. This way, future work related to discovery algorithms can use our
extensive analysis to decide on a suitable measure.

8



Finally, we did not find research integrating a discovery algorithm in a tool
specifically with domain experts in mind. As mentioned before, it is difficult for
an algorithm to find the exact set of interesting AFDs. Our study shows how
a combination of measures and visualization techniques can offer a valuable
tool for a domain expert to distinguish relevant AFDs from other AFDs.

1.2 Research Aims

We will try to achieve three goals in this thesis. The first goal is to get a clear
overview of the measures described in the literature. We will try to determine
their strengths and shortcomings by performing them on various theoretical
examples. We can determine why a measure is high or low on a specific
theoretical example through the measure’s formulas. For our second goal,
we aim to find one or a combination of suitable measures to discover interesting
AFDs. Interesting means not too many. If there are too many it is difficult for
a domain expert to decide which ICs they can use for data cleaning. And not
too few, which means that the measures have missed possible interesting ICs.
Concerning our third goal, we will design a tool based on the measure(s)
from the previous goal. The tool allows discovering AFDs with parameters
and visualizes the results and metadata about the AFDs, such as distributions
and possible errors. These visualizations will make the final decision process
much easier for the domain expert.

However, we want to be clear that it is not our goal to design an algorithm that
discovers the exact set of interesting AFDs. Our approach applies the con-
cept of human-in-the-loop, which originated in research about mixed-initiative
user interfaces [1, 12]. Finding the exact set of interesting AFDs from vari-
ous datasets is currently too complicated for an algorithm due to the expert
knowledge needed to understand them. Besides that, we do not aim to discover
AFDs more efficiently than other algorithms in the existing literature.

1.3 Ethics

To support our theoretical findings, we test the tool on real datasets. These
datasets can contain factual information about people, but it does not include
information that can identify a person. Besides that, if needed, we asked
permission from the owner to use their data in our analysis. In some cases,
the owner imposed restrictions in the sense of not storing the data locally.
For this reason, we have deployed our tool on their platform or integrated
functionality to fetch the data from their repository. Finally, every example
we use to illustrate definitions or findings is fictional.

1.4 Outline

We started this chapter by highlighting the importance and the difficulties of
data cleaning in practice. Moreover, we illustrated how Approximate Func-
tional Dependencies could offer a solution to detect logic errors automatically
from dirty data. Chapter 2 will formally clarify notation and definitions of
FDs and AFDs illustrated by detailed examples. In Chapter 3, we explain
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the measurement of AFDs in great detail. We specify which requirements an
AFD measure should meet and review a handful of measures defined in the
literature. After that, we thoroughly compare the AFD measures and clarify
why some measures differ and why some are more suitable for data cleaning
than others. Chapter 4 presents c-metric, an approximation measure we de-
veloped based on our findings in prior chapters. Besides that, we describe a
tool we designed for domain experts to explore found AFDs. We discuss the
technology and visualization techniques we applied to design the application.
In Chapter 5, we analyze the results of c-metric and our tool on various real
datasets. This way, we can form a clearer idea of their strengths, shortcomings
and accuracy. Finally, we conclude with a summary of our findings and future
work in Chapter 6.
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Chapter 2

Functional Dependencies

Before moving on to the measurement of Approximate Functional Dependen-
cies (AFDs), it is essential to clarify concepts, notation and definitions. This
chapter starts by formally defining exact functional dependencies (FDs). Af-
ter that, we go more into detail concerning AFDs. The definitions used in the
following sections are based on research by Ilyas et al. [14], Liu et al. [18] and
Caruccio et al. [6]. Notation amongst these definitions has been adapted for
consistency.

To explain and define different types of rules, we need to review some general
notation first. An italic capital letter (e.g. A) represents a single random
variable or attribute, whereas a non-italic capital letter (e.g. X) denotes a
set of random variables. The domain of A, dom(A), describes the possible
unique assignments of variable A. Similarly, dom(X) is the cross product of
the domains of each variable in X, dom(A1)×dom(A2)× ...×dom(Am). Here,
X = {A1, A2, ..., Am} and m is |X|. An italic lower case letter (e.g. a) indicates
a value in dom(A). For simplicity, XY represents X∪Y and XA equals X∪{A},
where X and Y are attribute sets and A is an attribute.

2.1 Exact Functional Dependencies

Let R be a relational schema with attributes A = {A1, ..., Am}. An instance
r of R consists of tuples or rows t1, ..., tn. Moreover, ti[A1] is the projection
of tuple ti on attribute A1.

Definition 2.1. An exact functional dependency (FD) is a statement X →
Y where XY ⊆ A. So that, for every tuple ti, tj in r where ti[X] = tj [X],
ti[Y] = tj [Y].

Definition 2.2. Equivalent to Definition 2.1. Let ΠX(r) be the projection of
X on r and ΠY(rX=x) the projection of Y on r where X = x. X → Y is an FD
if for every x in ΠX(r), |ΠY(rX=x)| = 1.

In X → Y, X is denoted as the left-hand side (LHS) and Y as the right-hand
side (RHS), which will be used frequently throughout this thesis. The FD
mentioned above is also called an exact FD because it is not satisfied by an
instance r if there is one pair of tuples where ti[X] = tj [X], but ti[Y] 6= tj [Y].

11



id lastname age city state country

p1 Walker 30 San Diego California US

p2 Jones 56 Sacramento California US

p3 Petersen 22 Fresno California US

p4 Walker 67 Fresno California US

p5 Ellis 19 Los Angeles California US

p6 Peetersen 88 Los Angeles California US

p7 Johnson 90 Los Angeles California US

p8 Bales 41 San Diego California US

p9 Brooke 48 Sacramento California Canada

p10 Cooper 33 Oakland California US

Table 2.1: A demographical example.

Definition 2.3. A minimal FD is an FD where deleting an attribute of the
LHS would turn it invalid.

Definition 2.4. A trivial FD is an FD where RHS ⊆ LHS.

For simplicity and performance reasons, this research only focuses on minimal
nontrivial FDs with only one attribute in the RHS, because Armstrong’s FD
implication rules [18] prove that FDs of the form X → A1A2 can be disassem-
bled into X → A1 and X → A2. Additionally, we will mostly illustrate our
findings in this paper with FDs of arity 1, which corresponds to the number
of variables in the LHS.

Example 2.1. Consider Table 2.1. A row in the relation represents demo-
graphical information about a person with an id, last name, age, city, state
and country of residence. Semantically, every two persons that live in the same
city should live in the same state. This means there should be an exact FD
between city and state, denoted as city → state. It is clear that this FD holds
in the relation in Table 2.1. Contrarily, state→ country does not hold in the
relation because tuple p9 violates the FD. The statement name, city → state
is also an FD that holds in the relation. However, as we can eliminate name
without making it invalid, it is not a minimal FD.

2.2 Approximate Functional Dependencies

To clean data using exact FDs, we have to know them beforehand. It is im-
possible to discover exact FDs from a relation with erroneous tuples as the
definition of an exact FD is too strict [20]. Approximate Functional Depen-
dencies (AFDs) try to solve this issue by requiring most, but not all, of the
tuples to satisfy the condition in Definition 2.1. Discovered AFDs can then be
considered as exact FDs to clean data and prevent future erroneous tuples.

Definition 2.5. An Approximate Functional Dependency (AFD) is an FD
where a satisfaction measure s is no less than a threshold ε. Let S(X→ Y, r)
be a function that maps an FD X → Y and a relation r to s, where 0 ≤ s ≤ 1.

12



Consider X → Y, if s equals 0, X and Y are functionally independent. If
s equals 1, X → Y is an exact FD. However, the decision if X → Y is an
AFD strongly depends on the calculation of s. Extensive research has been
done by Kivinen et al. [16], Mandros et al. [20] and Piatetsky-Shapiro et
al. [23] to design a method where AFDs with s ≥ ε are semantically interesting
FDs. Chapter 3 thoroughly compares different scoring methods to solve this
problem.

Example 2.2. Assume that we use a simple scoring method to calculate s.
Let S(X→ Y, r) be the maximum number of tuples that have equal values in Y
where ti[X] = tj [X], relative to the total number of tuples where ti[X] = tj [X].
If s ≥ 0.9, we consider it as an AFD. Now reconsider Table 2.1. Where
state→ country was no candidate for an exact FD, it can be seen as an AFD
because it “approximately” holds according to scoring method S. Score s is
equal to 9 (Y = US) out of 10 (total tuples in Y), which passes the threshold,
so we consider it as an AFD. The AFD state → country can now be used
to correct errors where two tuples with the same state are different in the
country attribute.

13





Chapter 3

Measuring Approximate
Functional Dependencies

In the previous chapter, we learned that we need a scoring measure S to de-
termine to which degree the AFD holds approximately in the relation. We will
discuss this concept thoroughly in this chapter by starting with concretizing
which requirements a measure should meet. After that, we review six existing
measures from the literature. To gain insight into the behaviour of those mea-
sures, we perform extensive testing on theoretical examples. Based on those
tests, we summarize the measures’ strengths and weaknesses. Furthermore,
we discuss a study explaining what the ideal approximation measure should
include. And finally, we will review two proposed refinements of one measure,
designed to reduce bias.

3.1 Concepts

We first define very broadly what we expect from a measure. The degree to
which X → Y is approximate in relation r is equal to the extent to which
ΠX(r) to ΠY(r) is a function in r. Giannella et al. [11] illustrated this with an
intuitive example.

Example 3.1. Let us analyze the two tables in Figure 3.1. Tables 1 and 2
contain 10 and 2 tuples, respectively. The approximation degree of X→ Y is
equal to the extent to which a function from A to B holds on that relation.
There are two functions to choose from, the function that maps 1 to 1 and
the function that maps 1 to 2. Suppose we have to select a random tuple
from Table 2. The probability that we select (1, 1) is equal to that of selecting
(1, 2). Now suppose we have to choose a random tuple from Table 1. We select
(1, 1) with a probability of 90%, in contrast to (1, 2) with a chance of 10%.
So, Table 1 significantly reduces the uncertainty of choosing a function.

15



A B

1 1

...

1
1
1
1
1
1
1
1

1 2

A B

1 1
1 2

Figure 3.1: An intuitive example. Tables 1 (left) and 2 (right), modified from
Giannella et al. [11].

Besides that, Giannella et al. [11] also noted that any permutation of the
tuples in a relation r should be mapped to the same approximation score.
Consequently, we only need the marginal value counts of X (cx) and Y (cy),
the joint value counts of XY (cxy) and the total number of tuples in the relation
(|r|), to calculate the approximation score. Where x, y and xy are values in
dom(X), dom(Y) and dom(XY), respectively. Based on these counts, we can
define the probability of such x, y and xy as

px =
cx
|r|

py =
cy
|r|

pxy =
cxy
|r|

Finally, to compare the measures from the literature, we require a measure
to map an AFD X → Y to a value between 0 and 1, indicating statistical
independence and functional dependence, respectively.

3.2 AFD Measures

Now we will review the intuition and formal definitions of several measures
from the literature. To clarify these measures, we calculate them on a simple
example shown in Table 3.1. Intuitively, A → B seems an AFD as there are
two blocks (A = 1 and A = 2) that have one erroneous tuple each (t10 and
t15).

3.2.1 g-measures (g1, g2 and g3)

Kivinen et al. [16] proposed the first three measures we will discuss: g1, g2
and g3. Recall that a pair of tuples (ti, tj) violates an FD if ti[X] = tj [X],
but ti[Y] 6= tj [Y]. Additionally, a tuple is violating if contained in a violating
pair. If there are no violating tuples in a relation instance r, the FD holds in r.
All three g-measures are based on the number of violating tuples or violating
pairs of tuples.

Before defining g1, we denote G1 as

G1(X→ Y, r) = |{(u, v) | u, v ∈ r, u[X] = v[X], u[Y] 6= v[Y]}|
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tuple A B

t1 1 1

t2 1 1

t3 1 1

t4 1 1

t5 1 1

t6 1 1

t7 1 1

t8 1 1

t9 1 1

t10 1 2

t11 2 3

t12 2 3

t13 2 3

t14 2 3

t15 2 2

Table 3.1: Example data to illustrate the calculation of the measures.

The G1 measure corresponds to the number of violating pairs in the relation.
For all the combinations (ti, tj) in r, G1 checks if they are equal in X and Y.
If equal in X but not in Y, (ti, tj) is counted as a violating pair. To obtain a
score between 0 and 1, we need to normalize G1 into

g′1(X→ Y, r) = G1(X→ Y, r)/(|r|2 − |r|)

At first, Kivinen et al. [16] normalized G1 by dividing by |r|2. However, a
paper by Kruse and Naumann [17] noted that the numerator of g′1 is bounded
above by |r|2 − |r| because a tuple can not be in a violating pair with itself.
To comply with the requirements set in Section 3.1, we define g1 as 1− g′1 to
obtain 1 if X → Y is an exact FD.

Example 3.2. Consider Table 3.1. The number of violating pairs of tuples
where A = 1 equals 18 ((t1−9, t10) and vice versa). Where A = 2, there are 8
violating pairs of tuples ((t11−14,t15) and vice versa). The score of g′1 is equal

to (18+8)
(225−15) = 0.123 and thus is g1 equal to 1− 0.123 = 0.877, which indicates

that A→ B probably is an AFD.

Similarly, G2 determines the number of violating tuples in the relation, as

G2(X→ Y, r) = |{u | u ∈ r, ∃v ∈ r : u[X] = v[X], u[Y] 6= v[Y]}|

For every tuple ti in r, G2 checks if a another tuple tj exists where ti[X] = tj [X]
and ti[Y] 6= tj [Y]. If so, we count ti as a violating tuple. Again, we normalize
G2 into

g′2(X→ Y, r) = G2(X→ Y, r)/|r|

to get a score between 0 and 1 and define g2 as 1−g′2 to comply with our AFD
requirements.
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Example 3.3. Reconsider Table 3.1. For every tuple with the same value in
A, one tuple exists with a different value in B (t10 if A = 1 and t15 if A = 2).
Hence, g′2 equals 15

15 = 1 and consequently g2 = 0. Which would mean that A
and B are functionally independent.

Finally, G3 expresses the number of violating tuples that need to be deleted
from r for the FD to hold in r as

G3(X→ Y, r) = |r| −max{|d| | d ⊆ r,X→ Y holds in d}

To calculate G3, we use the following approach. We add up the maximum
number of y values for every x in the domain of X. Then, we obtain the
number of tuples to be deleted by taking the difference between the total
number of tuples and that sum, as

|r| −
∑

x∈dom(X)

max(cxy : y ∈ dom(Y))

Using the same methodology as for g′1 and g′2, we acquire g′3. However, Gi-
annella et al. [11] noted that the numerator has |r| − |dom(X)| as an upper
limit, so the result of g′3 can never reach 1. The corrected measure for g′3 is
described as

g′3(X→ Y, r) = G3(X→ Y, r)/(|r| − |dom(X)|)

Example 3.4. Review the example relation in Table 3.1. For the FD to hold in
the relation we need to remove two tuples (t10 and t15). So g′3 = 2

15−2 = 0.154
and hence, g3 is equal to 1 − 0.154 = 0.846, which indicates that A → B
probably is an AFD.

All three measures should reach 1 when X → Y holds on r and is close to
0 when X and Y are functionally independent. Because of the monotonic
properties of all three measures, several papers used them for efficient AFD
discovery algorithms. Kruse et al. [17] use g1 in Pyro. And g3 is being used
in an approach by King et al. [15], in the AFDMCEC algorithm by Atoum et
al. [4] and in TANE, an algorithm by Huhtala et al. [13].

3.2.2 Tau (τ)

The following measure, Tau (τ), was initially proposed by Piatetsky-Shapiro
et al. [23] and reviewed by Giannella et al. [11]. It is based on the idea that a
person needs to guess a value in Y, by only knowing the empirical counts cx,
cy and cxy, in two scenarios. In the first scenario, the person has no additional
information. In the second scenario, the person knows the associated x of the
y that he/she needs to guess. The τ measure represents the relative difference
between the probabilities that the person can correctly predict y in scenario
one and two, respectively. If the probability in scenario two is significantly
higher, X → Y is an AFD.

Let us formalize this. Let GY be the person’s guess. In situation one, GY = y
with probability cy/|r|. The average probability that y is a correct guess is
equal to the probability that y occurs × the probability that y is guessed. Also
denoted as
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P1 =
∑

y∈dom(Y)

p(r[Y ]=y) p(GY =y)

=
∑

y∈dom(Y)

c2y
|r|2

In situation two, GY = y with probability cxy/cx given a certain x. Now, the
average probability that y is a correct guess given x is equal to the probability
that (x, y) occurs × the probability that y is guessed given that x. Or more
formally,

P2 =
∑

x∈dom(X)

∑
y∈dom(Y)

p(r[X]=x,r[Y ]=y) p(GY =y given x)

=
∑

x∈dom(X)

∑
y∈dom(Y)

c2xy
|r|cx

We can now define τ as

τ(X→ Y, r) =

{
0 if |dom(Y)| = 1
P2−P1
1−P1

otherwise

which is the normalized difference between P2 and P1. As P2 can be at most
1, we normalize τ with the term 1− P1. The τ measure indicates the amount
of doubt x reduces when an individual needs to guess y.

Now, P1 is equal to 1 exactly when |dom(Y)| = 1. To avoid division by zero in
τ , Giannella et al. [11] proposed to return 1 whenever |dom(Y)| = 1. Indeed,
in this case, X → Y is an exact FD. However, we will return 0 because we
believe this is not a relevant FD for the end-user. We will substantiate this
more in Section 3.2.5.

From the formula, it is clear that when X → Y is an exact FD, the person
can pick the correct y by knowing the associated x. Thus, τ is equal to 1.
Contrarily, when X and Y are statistically independent, τ reaches 0.

Example 3.5. Consider Table 3.1. The score of P1 equals (81+4+16)
225 = 0.45.

Intuitively, this makes sense because we are about 50% sure to guess B = 1.
Besides that, P2 = ( 82

150 + 17
75) = 0.77. If we enter these terms into τ , we get

(0.77−0.45)
(1−0.45) = 0.55. The score of τ is average because the person already has

a reasonable chance of guessing a value in B without knowing the associated
value in A.

To the best of our knowledge, τ has not been used in any AFD discovery
algorithms so far.

3.2.3 Fraction of Information (FI )

The following measure was first introduced by [24, 9, 7] and later thoroughly
discussed by Mandros et al. [20]. Fraction of Information, later in this the-
sis denoted as FI, was developed using information theory by Claude Shan-
non [26]. Before we define FI, we will review some essential concepts. First,
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entropy or uncertainty H(Y) is the amount of information a random variable
contains. Intuitively, if an event has a relatively high chance of occurring,
it is not surprising if it actually happens, so the event does not carry much
information. Contrarily, if a rare event happens, it is much more surprising
and thus carries more information. For example, tossing a coin contains less
information (is less surprising) than rolling a dice, because each outcome of a
dice roll is less probable to occur.

We illustrate the coin tossing example, as shown in Figure 3.2.H(Toss) denotes
the entropy of a coin toss and p(Toss=1) is the probability that the outcome is
heads. If the coin is fair, heads and tails have equal probability of occurring.
Because guessing the outcome of the next toss is most difficult in this situation,
the amount of surprise is maximum. At this point, the curve in Figure 3.2
(purple dot) peaks and a coin toss gives us the maximum 1 bit of information.
Now, assume that heads and tails occur with a probability of 0.7 and 0.3,
respectively. The amount of surprise is lower than in the previous situation
and each coin toss would give us 0.88 bits of information, as indicated by the
green dot in Figure 3.2.

Figure 3.2: Entropy when tossing a coin, modified from [31].

More formally, we denote the entropy of Y as

H(Y) = −
∑

y∈dom(Y)

py log py

As mentioned above, entropy is expressed in bits and is maximum when cy =
|r|/dom(Y) for every y in dom(Y). Similarly, conditional entropy H(Y|X) is
the uncertainty in Y given X,

H(Y | X) = −
∑

xy∈dom(XY)

pxy log
pxy
px

To measure how much the uncertainty in Y has decreased after observing X,
we consider mutual information I(X; Y) as

I(X; Y) = H(Y)−H(Y | X)

Figure 3.3 illustrates entropy of Y (blue + violet), conditional entropy of Y
given X (blue) and mutual information of Y and X (violet).
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Figure 3.3: Entropy, conditional entropy and mutual information [28].

To obtain the fraction of uncertainty that X reduces, we define FI as

FI(X→ Y, r) =

{
0 if |dom(Y)| = 1
H(Y)−H(Y|X)

H(Y) otherwise

If X eliminates the uncertainty of Y, H(Y|X) will be equal to 0. In this case,
mutual information I(X; Y) matches H(Y) itself. So, FI is maximum and, X
→ Y is an exact FD. Contrarily, when X does not lessen the uncertainty of Y,
FI reaches 0, which means that X and Y are independent.

As with τ , we need to avoid division by zero when H(Y) = 0. X → Y should
be an exact FD when |dom(Y)| = 1 because there is no uncertainty in Y.
Again, we believe that this is not a relevant AFD, so we return 0 in this case.
We will verify this with an example in Section 3.2.5.

Example 3.6. Let us illustrate these concepts by using the example in Ta-
ble 3.1 again. The entropy of Y (H(Y)) = 1.34 bits and the conditional entropy
of Y given X (H(Y|X)) = 0.55 bits. Now, FI is equal to 1.34−0.55

1.34 = 0.57. Thus,
X reduces about half of the uncertainty in Y.

Note that τ and FI have similar scores since they are established on the same
concepts.

3.2.4 IFD

Based on the intuitions in Section 3.1, Giannella et al. [11] proposed the IFD
measure, which is defined as

IFD(X→ Y, r) =

{
1 if |dom(Y)| = 1
H(Y|X)
H(Y) otherwise

This measure uses the same concepts (entropy and conditional entropy) as FI
to obtain the degree of dependency. In fact, IFD is the inverse of FI, which is
also illustrated by Figure 3.3. When X → Y is an exact FD, IFD is equal to
0 and vice versa. Therefore, we will not consider IFD in our further analysis.
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3.2.5 Theoretical Examples

The varying scores of the measures on the simple example in Table 3.1 show
that they have distinct characteristics. For instance, g2 reached 0, where g3 and
g1 passed 0.8, even though they are based on similar underlying concepts. In
this section, we will go into more detail concerning the fundamental differences
between the measures by performing them on theoretical examples. That way,
it will become more apparent which scoring methods are more suitable for AFD
discovery than others.

The theoretical examples will be structured as follows: each example contains
a relation of two columns A and B, containing the example data, and a column
N, to clarify the number of tuples for the corresponding situation. The scores
are always calculated on A→ B, so with A as the LHS and B as the RHS. For
convenience, each example only shows the relevant measures, and we placed
similar tables next to each other. In the following section, we use the term
block to simplify our explanations, which is defined as the maximal subset of
relation instance r where the LHS takes on a particular value.

Differences Between g-measures

As mentioned earlier, g2 has a deviant score compared to g1 and g3. Consider
the example in Figure 3.4. The relation shows two blocks (A = 1 and A = 2)
with each 1 out of 10 possibly erroneous tuples. So, we would consider this
as an AFD. Measures g1 and g3 reflect this in their scores, but g2 indicates A
and B are statistically independent. This is the case because every tuple is
violating according to the definition of g2. Since A→ B is relevant, we believe
g2 is not suitable for AFD discovery.

A B N

1 1

10...

...
1

1 2

2 3

10...

...
3

2 4

Measure Score

g1 0.905

g2 0

g3 0.889

Figure 3.4: Theoretical example 1 and its scores.

The differences between g1 and g3 are less apparent, as shown by examples
2 and 3 in Figure 3.5. Each relation has one block (A = 1), and each block
has 5 correct and 5 possibly erroneous tuples. However, example 2 has 1
unique error (B = 2) whereas example 3 has 5 unique errors (B = 2,3,4,5,6).
The number of unique errors does not affect g3 because it only considers the
number of tuples that need to be deleted for the FD to hold. But it does affect
g1, which can be seen in example 3 where g3 is double the score of g1. Hence,
we believe that g1 is too strict for AFD discovery.
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A B N

1 1
5

...

...
1
2

5...
1 2

A B N

1 1
5

...

...
1
2

5
3
4
5

1 6

Example Measure Score

2
g1 0.444
g3 0.444

3
g1 0.222
g3 0.444

Figure 3.5: Theoretical examples 2 (left) and 3 (right) and their scores.

The scores in Figure 3.6 shows a summary of our motivation that g3 is most
suitable. The relation consists of one block (A = 1) and two errors (B = 2,3).
Measures g1 and g2 do not seem to indicate the degree of approximation of A
→ B well, in contrast to g3.

A B N

1 1

8
...

...

1
2 2

1 3

Measure Score

g1 0.622

g2 0

g3 0.778

Figure 3.6: Theoretical example 4 and its scores.

Differences Between g3, and FI and τ

As described in Section 3.2, τ and FI share the same fundamentals. The main
difference between g3, and τ and FI is that g3 does not take into account
the probability distribution of Y. However, this distribution can determine
whether an AFD is relevant or not. Consider example 5 in Figure 3.7. The
relation consists of 10 blocks (A = 1-10) with 1000 tuples each. Every block
contains one erroneous tuple (B = 2). However, the distribution of B has a
predominant value (B = 1). This means that we can replace A with any other
variable with a random distribution, and the AFD would still hold according
to g3. Contrarily, τ and FI are more robust by taking into account the dis-
tribution of the RHS and yield less confidence in the AFD in a situation like
this. The scores in Figure 3.7 indicate this. The scores of τ and FI are 0,
whereas g3 is close to 1.
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A B N

1 1

1000
...

...
1 1
1 2

2 1

1000
...

...
2 1
2 2
...

...
...

...

10 1

1000
...

...
10 1
10 2

A B N

1 1
1000...

...
1 1

2 1
1000...

...
2 1
...

...
...

...

10 1
1000...

...
10 1

Example Measure Score

5
g3 0.999
τ 0
FI 0

6
g3 1
τ 0
FI 0

Figure 3.7: Theoretical examples 5 (left) and 6 (right) and their scores.

In Section 3.1, we discussed the scores of FI and τ when |dom(Y)| = 1. Gi-
annella et al. [11] proposed to return 1 to avoid division by zero for both τ
and FI. Now consider example 6 in Figure 3.7, which does not differ much
from example 5. Where example 5 has 1 error in each block, example 6 has
0. According to the solution by Giannella et al. [11], the scores of FI and τ
would be 1 for example 6 and 0 for example 5. This is inexplicable because
both examples are irrelevant AFDs. Hence, we decided to return 0 for FI and
τ whenever |dom(Y)| = 1.

Differences Between τ and FI

Consider example 7 in Figure 3.8. The relation contains 1000 blocks (A = 1-
1000) with two different B values each, and no blocks share a value in dom(B).
The two values are uniformly distributed within each block, making A → B
no candidate for data cleaning. Intuitively, τ has a correct score of 0.5 because
we are 50% sure of guessing a value in B, on average. Contrarily, FI seems
to overestimate the dependence of B on A with a score of 0.909. Mandros
et al. [20] also described this situation and remarked that FI is sensitive to
a relatively large LHS domain. Recall the formula of FI. The uncertainty of
B decreases significantly after observing A because the domain of B has 2000
values that are uniformly distributed, but only 2 in a particular block. We will
discuss this phenomenon in detail in Section 3.4, together with an analysis of
two possible solutions.
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A B N

1 1
5

...

...
1
2

5...
1 2
...

...
...

...

1000 1999 5

...

...
1999
2000 5
...

1000 2000

Measure Score

τ 0.5

FI 0.909

Figure 3.8: Theoretical example 7 and its scores.

A second difference between τ and FI is illustrated in Figure 3.9. Both exam-
ples consist of 2 blocks of size 5000. The block where A = 1 is correct, but
in the block where A = 2, we have introduced 500 errors (10%). In example
8, the errors are unique (B = 3-502), and in example 9, they are the same
(B = 3). The τ measure focuses on the probability that we guess B given a
particular A, causing it to score similar among the two relations. Contrarily,
the uncertainty of B given A (H(B|A)) is lower in example 8 than in example
9 because there is more diversity in the errors, which makes the score of FI
lower in example 8.

A B N

1 1
5000...

...
1 1

2 2
4500

...

...
2
3

500
4
5
...

2 502

A B N

1 1
5000...

...
1 1

2 2
4500

...

...
2
3

500...
2 3

Example Measure Score

8 τ 0.827

FI 0.594

9 τ 0.835

FI 0.81

Figure 3.9: Theoretical Examples 8 (left) and 9 (right) and their scores.
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Scores in Case of an Exact FD

We started this chapter by requiring that a measure should have a score of no
less than 1 if an AFD is an exact FD. Figure 3.10 shows a relation with 10
blocks of size 1000. Each block has only one value for B, which implies that
A→ B is an exact FD. As we required, all three scores are equal to 1.

A B N

1 1
1000...

...
1 1

2 2
1000...

...
2 2
...

...
...

...

9 4
1000...

...
9 4

10 5
1000...

...
10 5

Measure Score

τ 1

FI 1

g3 1

Figure 3.10: Theoretical example 10 and its scores.

3.3 Approximation Measure Axioms

Giannella et al. [11] compared IFD (FI ), τ , and g3 by means of several aspects
an ideal approximation measure should comply with, also called axioms. They
proposed five axioms:

• Zero: An approximation measure should always be one if |dom(Y)| = 1.
However, through the example in Figure 3.7, we showed that this is not
desirable concerning τ and FI.

• Symmetry: The order in which the tuples appear in the data should
not affect the measure’s score.

• Monotonicity: Consider two relations where the RHSs have a uniform
distribution, but relation 1 has three mapping choices, and relation 2 has
four. Hence, relation 1 is closer to an FD than relation 2. Consequently,
the approximation measure should map relation 1 to a score no less than
that of relation 2.

• Grouping: Assume the domain of the LHS contains more than three
values. If we group two values in that domain into a group G, we consider
two steps when making a mapping choice:

1. Choose between the values not in G, and G.
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2. If G is chosen, choose between the values in G.

Now, an approximation measure should be equal to the sum of the un-
certainty of the first step and the probability that group G occurs times
the uncertainty in G.

• Weighted Sum: An approximation measure should be the weighted
sum of the degree of approximation in each block. Hence, a larger block
should contribute more to the approximation measure’s score than a
small block.

Giannella et al. [11] concluded that IFD (and FI ) is the only approximation
measure satisfying every axiom. Hence, using a different approximation mea-
sure would mean that at least one axiom is violated.

3.4 Refinements of FI

In Section 3.2.5, we informally explained that FI is sensitive to a relatively
large LHS domain. Figure 3.8 shows a relation that contains 1000 blocks where
B has a uniform distribution, so A→ B is no candidate for data cleaning. We
will now describe why FI has this behaviour in a situation like this.

Because we do not know the actual distribution of X and Y, we have to es-
timate px, py and pxy through r to calculate H(Y) and H(Y|X). Mandros et
al. [20] remarked that using these empirical estimators causes FI to overesti-
mate the degree of dependence, especially if data is sparse. This phenomenon
is also called dependency-by-chance, initially discussed by Romano et al. [25].

Recall the formula of FI. Its result is maximum when H(Y|X) reaches 0.
This is the case when pxy is equal to px for every x, y in r because then
log(pxy/px) = log(1) = 0. The situation above is more likely to happen if
relation r is small compared to the size of the X domain (data sparsity). Even
if X and Y are actually independent.

Let us analyze the most extreme case. If |dom(X)| = |r|, then cx = 1 and
cxy = 1 for every x, y in r. Consequently, px = pxy for every x, y in r and FI =
1. It should be clear that this is not desirable, as we do not know the actual
distribution of X and Y. So, X and Y might be statistically independent.
Additionally, if we would replace the attributes in Y with other attributes of
r, X→ Y would still hold, only because of the domain size of X. In practice,
this situation could occur if a domain expert uses a sample of the data to
speed up the AFD discovery process or if the arity of the AFD is high.

Figure 3.11 illustrates this behaviour. X has a varying domain size between
4 and 2048, and Y has domain size 4. X and Y are independent, so FI has
to be equal to 0. The FI measure was calculated using a sample of 1000
tuples. This is done by taking 1000 random tuples (with replacement) from
dom(X)× dom(Y), which causes X and Y to be independent. As the domain
size of X increases to 2048, empirical FI reaches 1, even though X and Y were
independent.
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0
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0.4

0.6
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Domain size of X

S
co

re

Empirical FI
True FI

Figure 3.11: Effect of large LHS domain size on FI, modified from [21].

To reduce the bias of empirical FI, Mandros et al. [20] and Pennerath et
al. [22] proposed two solutions: Reliable FI and Smoothed FI, further denoted
as RFI and SFI, respectively. We will discuss these approaches in the following
sections, and we will compare their behaviour on theoretical examples. In the
following sections, F̂I corresponds to the biased empirical FI we defined in
Section 3.2.

3.4.1 Reliable FI

Determining the amount of bias is impossible since we do not know the actual
distribution of X and Y. But we do know that the highest possible bias occurs
when FI = 0 (independence), which also provides a simple reference point.
So, if we try to simulate independence (FI = 0) and calculate FI, we know
the result should be 0. If not, the bias corresponds exactly to that score. This
bias under independence [20] is defined as the expected F̂I given that the true
FI = 0,

b0(X→ Y, r) = E|r|[F̂ I(X→ Y, r) | FI(X→ Y, r) = 0]

Again, we have to estimate b0 as we do not know the actual distributions.
Assume b̂0 is the estimator of b0, then we define RFI as

RFI(X→ Y, r) = F̂ I(X→ Y, r)− b̂0(X→ Y, r)

To find estimator b̂0, we first need to estimate mutual information I(X; Y)
under independence, denoted as

m̂o(X→ Y, r) =
1

n

∑
σ∈Gn

I (X; Yσ)

28



where n is the number of tuples in r (|r|). To simulate independence, Gn is
generated by permuting the values in Y with the associated X values in r, which
results in the set of every possible permutation of Y. In other words, Gn is the
set of all n! bijections σ: 1, ..., n→ 1, ..., n and Yσi is the variable corresponding
to bijection σi. Intuitively, m̂o is the average mutual information of all the
permutations in Gn. Given m̂o, we can now calculate estimator b̂0 as

b̂0(X→ Y, r) = m̂0(X→ Y, r)/Ĥ(Y)

Computing b̂0 is infeasible due to the size of Gn. Mandros et al. [20] proposed
a computationally efficient approach to simulate permuting Y using contin-
gency tables. We will discuss this further in Section 4.2.2, together with other
optimization techniques.

3.4.2 Smoothed FI

The second approach by Pennerath et al. [22] uses Laplace smoothing to re-
duce bias in FI. Laplace smoothing is a frequently used method to lessen
variance when estimating probabilities from a sample. Informally, the empir-
ical probability px is smoothed by adding a particular number of tuples to
relation r for every x in dom(X). This way, the size of dom(X) gets relatively
smaller than the number of tuples in r, reducing data sparsity.

Let x be a value in dom(X). The smoothed probability of x is defined as

p̃(α)x =
cx + α

|r|+ |dom(X)| × α

where α is the smoothing parameter. If α = 0, p̃
(α)
x is equal to the maximum

likelihood estimator, as used in the calculation of FI. If α > 0, α samples
are added to relation r for every x in dom(X). And, if α → ∞, the probabil-
ity distribution becomes a uniform distribution. Consequently, we define the

smoothed joint probability p̃
(α)
xy as

p̃(α)xy =
cxy + α

|r|+ |dom(X)| × |dom(Y)| × α

For every possible combination (x, y) in dom(X)× dom(Y), (x, y) is added α
times to relation r, even if this combination did not exist in r. We can plug

the smoothed probabilities p̃
(α)
xy and p̃

(α)
x into H(Y|X) and H(Y) to obtain

smoothed FI with hypothetically less bias.

3.4.3 Theoretical Examples

Theoretically, SFI and RFI should reduce the bias introduced by a large LHS
domain. However, AFD measures can behave oddly, as illustrated in Sec-
tion 3.2.5. This section will compare the two reliable measures to FI on theo-
retical examples to gain insight in their behaviour. First, we discuss examples
where SFI and RFI correct FI well, and then several examples where SFI and
RFI behave oddly. Based on those findings, we can decide if we can replace FI
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with one of its refinements. We structured the examples the same way as in
Section 3.2.5. Again, we will only show the scores for the relevant measures:
FI, RFI and SFI. Concerning SFI, we used α = 1 for all following examples
as advised by Pennerath et al. [22].

Reconsider example 7 in Figure 3.8. This example perfectly illustrates the case
that FI is biased. The relation contains 1000 blocks (|dom(A)| = 1000) with
10 tuples each. Each block has two distinct values for B that are uniformly
distributed, and no two blocks have the same values. So |dom(B)| = 2000.
The uncertainty in B (H(B)) is high due to its domain size. Since blocks
are small and the possible B values in a block are limited to 10 out of 2000,
H(B|A) is very low, and FI is wrongly high. The additional scores of RFI and
SFI for example 7 are shown in Figure 3.12. The improvements RFI and SFI
seem to correct FI well.

The score of RFI is calculated by permuting the 2000 B values with the asso-
ciated A values. The average H(B|A) of all possible permutations is still very
low because the number of possible B values in a block is at most 10 (out of
2000). Consequently, the bias of FI is high, and RFI (FI - bias) will be low.

To calculate SFI, we need to smooth the distributions of A and B. We add
1 sample (α = 1) for every possible combination in dom(A) × dom(B). 2000
samples will be added to each block, which means that the uncertainty of B
given A will not be lower than the uncertainty of B itself. As a result, SFI
will be close to 0.

Measure Score

FI 0.909

RFI 0.211

SFI 0.001

Figure 3.12: FI refinement scores for example 7 in Figure 3.8.

Let us analyze an example with fewer values in dom(B). Example 11 in Fig-
ure 3.13 shows a relation with relatively small A and B domains. According
to the definitions of SFI and RFI, their scores should not be much lower than
RFI because the data is not as sparse as in previous examples. The relation
consists of 10 blocks of size 1000. Each block has 2 possible values with a
frequency of 990 and 10, respectively. So, A → B is a great candidate for an
AFD. The scores of FI, RFI and SFI are all higher than 0.95.

Consider RFI. Since dom(A) and dom(B) are relatively small, the average
H(B|A) of all permutations will be high because most permutations will create
blocks that contain all possible tuples in dom(B). So, the bias will be low, and
RFI will be very close to FI.

The smoothing used in SFI adds only 10 tuples to each block. This amount
is negligible compared to the 990 correct tuples in these blocks. Hence, SFI is
very close to FI.
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Measure Score

FI 0.976

RFI 0.974

SFI 0.947

Figure 3.13: Theoretical example 11 and its scores.
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Up until now, SFI and RFI seem to do a good job at correcting FI. Now,
we consider the relation in Figure 3.14. It consists of 1000 blocks, but there
are only 10 possible values in dom(B). Each block is entirely correct, and two
distinct blocks can contain the same B values. So, A → B is an exact FD.
In this situation, we required that a measure should always have a score of
1. This is the case for FI, but not for RFI and SFI. The low score of SFI is
caused by small blocks. Due to the relatively small B domain, only 10 samples
are added to each block. Consequently, SFI’s score is low. Since dom(B) only
contains 10 values, H(B|A) will still be high for most permutations. Hence,
the bias is ±0.23. The RFI measure is not being strongly corrected but is
undoubtedly too low.

A B N

1 1
10...

...
1 1

2 2
10...

...
2 2
...

...
...

...

999 9
10...

...
999 9

1000 10
10...

...
1000 10

Measure Score

FI 1

RFI 0.769

SFI 0.272

Figure 3.14: Theoretical example 12 and its scores.

Let us consider a similar example shown in Figure 3.15. Instead of 1000 blocks
of size 10 being entirely correct, we introduced 1 erroneous tuple in each block.
Again, |dom(B)| = 10 and two distinct blocks can contain the same B values.
The AFD A → B is a good candidate for data cleaning, so we expect the
scores to be high. Because dom(B) only contains 10 values, the uncertainty
of B given A is larger than if dom(B) would have been 1000. So, FI is above
average, which is an acceptable score for this situation. Again, SFI and RFI
are unacceptably low for the same reasons as in example 12.

Example 14 in Figure 3.16 illustrates a relation with 1000 blocks that each
have 1 erroneous tuple (e.g. B = 2, for A = 1) and 9 correct tuples (e.g. B
= 1, for A = 1).B contains 1001 possible values in total. The AFD A →
B is a perfect candidate for data cleaning. This is reflected in the score of
FI but not in the scores of RFI and SFI. Concerning SFI, this is a similar
case as example 7 in Figure 3.12. Laplace smoothing adds 1001 samples to
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Measure Score

FI 0.859

RFI 0.627

SFI 0.229

Figure 3.15: Theoretical example 13 and its scores.

each block. Therefore, the errors in a block are increased by 1000, and SFI
is low. The score of RFI is also low for the same reason as the example in
Figure 3.12. The bias is large since the average conditional entropy (H(B|A))
of the permutations is low due to small blocks and a large B domain.
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1000 1001

Measure Score

FI 0.953

RFI 0.285

SFI 0.002

Figure 3.16: Theoretical example 14 and its scores.

The final example in Figure 3.17 illustrates a relation with a predominant
value (B = 1) to highlight the difference between SFI and RFI. The relation
consists of 10 blocks of 1000 tuples each. The predominant value in dom(B)
has a frequency of 96%, and the remaining 4 values in dom(B) have a frequency
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of 1% each. The predominant value in dom(B) causes the blocks not to change
much when samples are added (SFI), or B values are permuted (RFI). Hence,
SFI is similar to FI, and RFI is close to zero. So, in this case, RFI does a
better job at representing the degree of approximation.

A B N

1 1
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1 1
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1
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10 5 100

Measure Score

FI 0.451

RFI 0

SFI 0.37

Figure 3.17: Theoretical example 15 and its scores.

3.5 Discussion

In this chapter, we reviewed several measures from the literature to determine
the degree to which an AFD X → Y holds in a relation r. The defined
measures were based on various fundamental concepts, and some seemed more
suitable than others. In this discussion, we will summarize the strengths and
weaknesses of each measure and the refinements of FI. And based on those
characteristics, we make a decision on a combination of measures to implement
in our tool.

3.5.1 g-measures (g1, g2 and g3)

The main difference between the g-measures and the entropy-based measures
(τ and FI) is not taking into account the distribution of the RHS. This becomes
apparent concerning an AFD that contains a predominant value in the domain
of its RHS. However, such an AFD can be relevant as well, as we will show
in Chapter 4. To avoid missing those relevant AFDs, we have to use one of
the g-measures in our tool. In Section 3.2.5, we illustrated the weaknesses
of g1 and g2. The g1 measure can be too strict if the possibly erroneous
tuples contain multiple distinct values. The g2 measure indicates statistical
independence as soon as each block has only 1 erroneous tuple, eliminating
many relevant AFDs. Comparing g3 to g1 and g2, we found g3 to be the most
robust. Consequently, we will use g3 as the first measure in our tool.
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3.5.2 Fraction of Information (FI )

The FI measure is more robust than the g-measures because it takes into
account the probability distribution of the RHS. However, we also found that
FI is biased when the LHS and RHS have a large domain relative to the
number of tuples in r. Mandros et al. [20] and Pennerath et al. [22] proposed
two refinements to reduce this bias, Reliable FI (RFI) and Smoothed FI (SFI),
respectively. We agree that we can be less confident of an AFD if data is
sparse (caused by large domains). But, the bias correction by SFI and RFI
can not happen at the expense of possible relevant AFDs. Both RFI and SFI
strongly underestimate the dependence of Y on X in some cases, making them
unsuitable for AFD discovery. But, RFI seems to do a better job. We can not
solely use RFI, but we can use RFI to indicate that FI is possibly biased and
take this into account in the evaluation of FI’s score. We do this as follows.
If FI ≥ 0.9, it indicates a strong dependency between the LHS and RHS. In
this case, we also check if RFI is ≥ 0.75, which is a strengthening sign for
FI. Contrarily, if RFI does not pass 0.75, FI is likely to be biased and we
reduce our confidence in that AFD. This process is thoroughly described in
Chapter 4.

3.5.3 Tau (τ)

The τ measure performed very similarly to FI. On the plus side, we found
that τ is not affected by large X and Y domains. However, FI provides two
refinements and it satisfies all the axioms discussed in Section 3.3. Hence, we
believe that FI is the better choice for our tool.

3.5.4 Conclusion

As mentioned in this section, we believe that a combination of g3, FI and
RFI provides the fundamentals for a tool able to accurately discover the set
of relevant FDs, which we will describe in great detail in Chapter 4.
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Chapter 4

An AFD Discovery Tool

This chapter will present a tool we developed for domain experts to discover
relevant AFDs in a dataset. First, we describe the process to decide if an
AFD is relevant. This is done using a combination of the measures reviewed
in Chapter 3 and additional metadata from each AFD, such as distributions
and the number of NULL values. Next, we discuss the data flow and the
performance of the implementation of our discovery algorithm. Finally, we
describe how we integrated our algorithm into a visual tool for domain experts.
We will motivate the use of different visualization techniques and show the
tool’s functionalities through screenshots.

4.1 Relevant AFD Decision Process

This section covers the process from an AFD X→ Y to a score representing the
confidence we have in that AFD. First, FI and g3 calculate the approximation
degree of X → Y using the formulas reviewed in Chapter 3. If both scores
of the AFD are low, we know that the AFD is not relevant. Therefore, our
approach filters out possibly irrelevant AFDs with a score less than 0.9, as
shown in stage 0 of Figure 4.1. This way, only the AFDs that are strongly
dependent remain. This threshold can be changed by the end-user if, for
example, few results are returned by the algorithm. Those filtered results are
then plugged into a decision tree with the metadata of each AFD to determine
a confidence score and an understandable rationale for the domain expert. The
confidence is a rating from 0 to 5, further referred to as c-metric. We found
this to be an intelligible range that leaves enough room for different levels
of confidence. Before starting this section, we want to clarify that all the
decisions are not based on exact science but were formed by extensive trial-
and-error over various datasets and theoretical examples. However, we believe
that our approach is widely applicable due to testing a wide range of data
and evaluating the results with domain experts of Ziekenhuis Oost-Limburg1

(ZOL) and the MSBase2 research group. A discussion of these results can be
found in Chapter 5.

1https://www.zol.be
2https://www.msbase.org
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4.1.1 Decision Tree

Consider the decision tree shown in Figure 4.1. It takes the approximation
scores and several user-modifiable thresholds as input, which we will discuss
throughout the following paragraphs. These thresholds are written in bold-
italic in the diagram.

Confidence Score (c-metric )

Whether both g3 and FI are very high or one of them is very low is a positive
or a negative sign which must be reflected in c-metric. Therefore, we initialize
the score of c-metric with the weighted sum of FI and g3.

In the second and third stage, we check which score is high (≥ 0.75, by default).
Because of the filtering, we know that at least one of the scores must pass 0.9.
But the other score also being higher than 0.75 is a very positive sign of
dependency. Contrarily, if only one score is high, the score may be affected by
a confounding factor. We acknowledge three cases:

1. g3 is high, and FI is not. Our findings in Chapter 3 illustrate that the
RHS might contain a predominant value if FI is not similar to g3. We
consider a value to be predominant if it occurs in more than 85% of
the tuples. If so, we decrease the score of c-metric by 1. Otherwise, we
increase the score by 1 since g3 indicates that X and Y might be strongly
dependent.

2. FI is high, and g3 is not. In this case, FI might be biased due to a large
domain. However, we found a large domain challenging to quantify. We
discussed in Chapter 3 that RFI is not suitable to score an AFD as it
tends to punish large domains blindly. For this reason, we can utilize
the score of RFI, instead of the domain size, to check if FI is biased.
If RFI < 0.75, the confidence is decreased by 1 because FI is possibly
biased. Contrarily, RFI passing 0.75 is a powerful sign that X and Y are
dependent. Consequently, we increase the score of c-metric by 1.

3. Both scores are high. With both scores being high, the probability of
a confounding factor is minimal, and we have rarely observed this is
in practice. But, since it is possible, we have to distinguish this case.
However, we only decrease the score of c-metric in the presence of both
a dominant RHS value and an RFI score of less than 0.75. If only one
of the two factors is present, either g3 or FI should have been affected
by this. In this case, we decrease the score of c-metric by 2.

Before calculating an approximation score on a dataset, the tool’s default
behaviour eliminates rows that contain a NULL value in either the RHS or
the LHS. Note that the end-user can disable this. In our experiments with
real datasets, we found more cases where a NULL value did not provide any
useful information than the other way around.

Besides that, we provide the option to eliminate small blocks (< 5 tuples) as
these do not contribute to the confidence of an AFD in most cases. How-
ever, this is not the default behaviour and can be enabled by the end-user
for performance reasons. These two elimination steps can cause the number
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Figure 4.1: The c-metric decision tree with an example in orange.
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of remaining rows to be inadequate, which reduces the credibility of a found
AFD. In stage four of the decision tree, we check if the number of used rows
is ≤ 5% of the total number of rows before preprocessing. Then, we consider
two cases:

1. The inadequate number of rows is caused by small blocks (rows in small
blocks > NULL rows). We decrease the c-metric score by 1.

2. The inadequate number of rows is caused by NULL values (NULL rows
≥ rows in small blocks). First, we recalculate the approximation score,
including NULL values. Given the new score, we consider two more
cases:

(a) The approximation scores, including NULL values, indicate that
it is still an AFD. This means that the NULL values might have
a semantic value. So, there is no reason to decrease the c-metric
score.

(b) The approximation scores, including the NULL values, indicate no
AFD. This implies that NULL values have no semantic meaning,
and thus, we decrease the score of c-metric by 1.

In the fifth and final stage, we check the number of AFDs that share the RHS,
further denoted as an RHS group. A large RHS group (5% of the total number
of columns, by default) can signify that the RHS contains a confounding factor
(e.g. a predominant value) which causes almost all AFDs with that RHS to
score high. This is not a credible sign of dependency. Hence, we reduce
the c-metric score by 2×(number of AFDs in the group/the total number of
columns).

Rationale

The score of c-metric is helpful to get a quick insight into the quality of a
discovered AFD. However, a domain expert might need more information on
why the algorithm made a particular decision. Based on the path followed
in the decision tree, we form a textual rationale of the motivation behind the
determinations. Different parts added to the explanation are quoted in italic.

The algorithm starts by categorizing the score of c-metric as follows:

1. c-metric ≤ 1: “The algorithm has very little confidence in this AFD.”

2. c-metric ≤ 2: “The algorithm has little confidence in this AFD.”

3. c-metric ≤ 3: “The algorithm is moderately confident of this AFD.”

4. c-metric ≤ 4: “The algorithm is very confident of this AFD.”

5. c-metric ≤ 5: “The algorithm is almost certain this is an AFD.”

In the second stage, we build a sentence like, “Fraction of information is high
and g3 is average.” by labelling the scores of FI and g3 as follows. Note that
the end-user can set these thresholds.

1. Approximation score ≥ 0.9: Very high

2. Approximation score ≥ 0.75: High
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3. Approximation score ≥ 0.5: Average

4. Approximation score < 0.5: Low

The third stage checks which approximation scores are categorized as high or
very high. As with the calculation of c-metric, we consider three cases:

1. The score of g3 is high or very high. If the RHS contains a predominant
value, we add “However, there is a predominant value in the distribution
of the RHS, which means that g3 is possibly biased.” to the rationale. If
not, we append “Additionally, there are no confounding factors.”

2. The score of FI is high or very high. If RFI < 0.75, we know that FI is
possible biased, so we add, “However, reliable fraction of information is
not, which means that fraction of information is possibly biased.”. Oth-
erwise, we add, “Additionally, reliable fraction of information is high.
Which is a very strong sign of dependency.”.

3. Both scores are high or very high. In this case, we explained that both
of the confounding factors are needed to reduce c-metric. This is also
reflected in the rationale. If there is both a predominant value in the
RHS and RFI < 0.75, we add, “However, reliable fraction of information
is lower. Besides that, there is a predominant RHS value. Which means
that fraction of information and g3 are possibly biased.” Contrarily, we
still check if RFI< 0.75 to obtain a more fine-grained explanation. If RFI
< 0.75, we add, “However, reliable fraction of information is not high.
But as g3 is high, this is no confounding factor.” and “Additionally,
reliable fraction of information is high. Which is a very strong sign of
dependency.” if not.

In the fourth stage, the algorithm checks whether the number of used rows is
inadequate. If so, we add, “Note: the amount of rows used to calculate the
scores is less than 5% of the total amount of rows.”. However, it is possible
that the AFD still holds including NULL values. In that case, we append,
“The main cause is the occurence of NULL values. However, the algorithm
found that the AFD still holds including NULL values.” Otherwise, we append
“So, the algorithm is less certain of this AFD.”

In the fifth stage, we looked for the presence of a large RHS group. In this case,
we add, “Besides that, this group contains a lot of AFDs, which is a sign that
the RHS and the LHS might actually be independent.”, to our explanation.

Example 4.1. Consider the example relation and its scores in Figure 4.2. The
relation consists of 10 blocks of size 1000. Each block has 2 possible values
with a frequency of 990 and 10, respectively. So, A→ B is a great candidate
for an FD. The steps followed by our decision tree are illustrated in Figure 4.1
by the bold orange line. The decision tree generates a score of 4.915 and the
following rationale:

“The algorithm is almost certain this is an FD. Fraction of information is
very high and g3 is very high. Additionally, reliable fraction of information is
high. Which is a very strong sign of dependency.”
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Figure 4.2: Decision tree example, the same as theoretical example 3.13.

4.2 Discovery Algorithm Implementation

The previous section illustrated how an AFD is turned into a human-readable
confidence score (c-metric) and explanation. However, we need an efficient
algorithm to do this for each possible AFD in a dataset. As mentioned before,
Mandros et al. [20], King et al. [15] and Huhtala et al. [13] have made several
efforts to develop an efficient discovery algorithm, but only using one of the
approximation measures. As this thesis is focused on relevant AFDs rather
than efficient discovery, we implemented a basic discovery algorithm without
significant performance improvements.

We start this section by discussing the data flow from raw data to an output
format that contains the relevant AFDs and all the necessary metadata for
the domain expert. Next, we review some minor performance optimizations,
such as parallelization and pruning.

4.2.1 Data Flow

A domain expert can start the discovery process by loading a .csv-file or the
ID of a .csv-file on Google Drive3 if the data is not allowed to be stored locally.
After that, the data is preprocessed. This includes two steps:

3https://www.google.be/drive/about.html

42



1. Sampling: Given a sample size q, only q rows are kept in the data. This
is usually done to improve performance. Note that this is not the default
behaviour and can be enabled by the end-user.

2. Binning: Currently, the approximation measures in our algorithm are
unable to process continuous variables such as dates and floating points.
The domain sizes of continuous data are so large that most values occur
only once, which would result in many false positives. One solution
is discretizing a variable into multiple bins. However, we found that
different binning strategies greatly affected the results. While an analysis
of these strategies is outside the scope of this thesis, we turned off binning
by default, but allow the end-user to enable this option. If binning is
turned off, every date or float column is not considered in the discovery.

After preprocessing, all possible AFDs are generated by combining every col-
umn with every other column. Let w be the number of columns and k, the
desired AFD arity. The total number of AFDs is equal to

(
w

k

)
=

w!

(w − (k + 1))! (k + 1)!

For every possible AFD, we create a subtable, which serves as a data structure
to store the following metadata about an AFD:

• The empirical counts: cx, cy and cxy

• The domains of X, Y and XY, with their sizes

• The number of rows that contain a NULL value in either X or Y

• The number of small blocks (< 5 rows)

• The total number of rows in small blocks

But first, the following preprocessing steps are done:

1. Eliminating NULL values: we have to do this for every subtable to avoid
eliminating too many rows. As mentioned before, a row is removed if
either X or Y contains a NULL value. The end-user can disable this step
if desired.

2. Eliminating small blocks: this option is disabled by default, as the ap-
proximation measures already consider the size of blocks. However, it
can be helpful to improve the performance if domains are large.

Before calculating the approximation scores for every AFD, we can already
prune some AFDs based on their metadata. We eliminate those that have one
of the following characteristics:

1. X is a key (|dom(X)| = |r|).

2. The subtable contains no rows (|r| = 0). This can be caused by elimi-
nating NULL values and small blocks.

3. The domain of Y contains only 1 value (|dom(Y)| = 1).
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Next, we calculate the approximation scores for every AFD at every arity level.
In other words, we first process AFDs of the form A1 → Y, then A1A2 → Y,
and so on. After finishing a level, we can prune additional AFDs in the next
level. If A1 → Y holds, the probability of A1A2 → Y to hold is high, making it
less relevant. To reduce the number of results presented to the domain expert,
we prune such AFDs.

Finally, c-metric and the rationale are computed for every AFD with an ap-
proximation score higher than the user-set threshold. The results are returned
in a .json-file, of which an example is shown in Appendix B. The tool discussed
in Section 4.3 uses this file to generate its dashboard. Figure 4.3 shows the
data flow pipeline for AFD discovery of arity 1.

Figure 4.3: The AFD discovery data flow.

4.2.2 Performance Improvements

We have already discussed that our approach focuses on relevance rather than
the efficiency of AFD discovery, in contrast to existing literature. But we
found that efficiency could be optimized significantly with several minor im-
provements. Some of the optimization techniques were shortly mentioned in
the previous section. This section goes into more detail concerning the efficient
calculation of RFI and our parallelization and pruning strategy.

Calculation of RFI

Recall the formula of RFI from Section 3.4. To calculate the bias, we need
to simulate independence by permuting the values in Y with the associated
X values. The bias of FI is equal to the average FI of all permutations. Of
course, computing this is highly infeasible. To drastically reduce complexity,
Mandros et al. [19, 20, 21] proposed a solution using contingency tables. A
contingency table t is an l×m matrix, where l = |dom(X)| and m = |dom(Y)|.
A cel tij corresponds to the empirical count cxy of values xi and yj . Every
permutation can be rewritten as a contingency table. So, the empirical mutual
information can be calculated using a contingency table as
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Î(X; Y) = Î(t) =

l∑
i=1

m∑
j=1

tij
|r|

log
tij |r|
cxicyj

Note that the marginal counts cx and cy for each x in dom(X) and y in dom(Y)
are unchanged among permutations. With this in mind, Vinh et al. [27] pro-
posed the following efficient way of calculating reliable mutual information.

m̂0(X→ Y, r) =
∑
tσ∈T

p̂0 (tσ)

l∑
i=1

m∑
j=1

tσij
|r|

log
tσij |r|
cxicyj

Here, p̂0 is the probability that a contingency table tσ occurs, which enables
us to reform the formula of m̂0 as shown below.

m̂0(X→ Y, r) =
l∑

i=1

m∑
j=1

|r|∑
k=0

p̂0
(
tσij = k

) k
|r|

log
k |r|
cxicyj

Now, m̂0 is calculated per cell instead of per contingency table. And because
a contingency table is hypergeometrically distributed, we can calculate p̂0 for
the first k as follows.

p̂0
(
tσij = k

)
=

(
cyj
k

)(
|r| − cyj
cxi − k

)
/

(
|r|
cxi

)
Then, we use the hypergeometric properties to calculate every next k as shown
below.

p̂0(k + 1) = p̂0(k)
(cxi − k)

(
cyj − k

)
(k + 1)

(
|r| − cxi − cyj + k + 1

)
The value of p̂0 is only different from 0 if k lies between max(0, cxi + cyj − |r|)
and min(cxi , cyj ), allowing us to reduce complexity even further. Besides that,
we use RFI to check if FI is biased. Hence, we only need to calculate RFI
when FI passes the threshold set by the end-user, which is 0.9 by default.

Parallelization

As shown in the data flow pipeline in Figure 4.3, we create a separate subtable
for every possible AFD before processing them. Since the calculation of one
AFD does not rely on data of another AFD, we can easily parallelize this
process, often called embarrassingly parallel [30].

To accomplish this, we used process-based parallelization because thread-
based parallelization does not run on multiple cores due to Python’s Global
Interpreter Lock (GIL), which will not improve the performance of our imple-
mentation. This approach distributes the collection of AFDs to the available
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CPU cores (workers) that run one process each. The distribution process re-
quires the sent data to be serialized first. If data is large (e.g. millions of rows),
serialization can cause significant overhead. For this reason, the end-user can
choose the number of workers or disable parallelization entirely.

Figure 4.4 shows the execution times for serial execution and parallel execu-
tion with 2, 4, 6 and 8 workers. We used Fars4, a dataset from the KEEL
repository, consisting of 30 columns and 100968 rows. After preprocessing,
scores for 870 AFDs of arity 1 need to be calculated. The execution time
drops significantly as the number of workers increases, until 8 workers, where
the overhead becomes more prominent than with 6 workers.
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Figure 4.4: Execution times for 1, 2, 4, 6 and 8 workers.

Pruning

We can avoid calculating trivially irrelevant AFDs, based on their metadata,
such as the domain of X. In Section 4.2.1, we already mentioned our pruning
strategy without going into much detail. Currently, we always prune an AFD
if it satisfies one of the following statements:

1. X is a key (|dom(X)| = |r|).

2. The subtable contains no rows (|r| = 0).

3. The domain of X contains only 1 value (|dom(Y)| = 1).

Additionally, Armstrong [3] developed the FD implication axioms below, which
are frequently used to prune FDs [18]:

1. If Y ⊆ X, then X→ Y.

2. If X→ Z, then XY → Z.

3. If X→ Z and Z→W, then X→W.

4https://sci2s.ugr.es/keel/dataset.php?cod=191
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However, these are defined for exact FD implication and are not guaranteed to
work for AFD implication. Remember, we eliminate NULLs and small blocks
for every subtable (AFD) separately. The rules mentioned above only work if
the relation stays the same, which is not the case if we eliminate rows. For
example, assume A1 → B holds in r. We add attribute A2 to the LHS, but it
contains 50% NULLs. Due to eliminating those NULLs, the relation does not
consist of the same rows like the one of A1 → B. Hence we can not guarantee
implication rule 2 to hold.

Nevertheless, we do use implication rule 2 to prune AFDs. Assume AFDs
A1 → B and A1A2 → B both hold in r. We believe that A1 → B is more
informative than A1A2 → B, and hence we do not show it to the domain
expert. This way, we also avoid an overload of AFDs that are possibly less
relevant, which lets the domain expert focus on those that matter most.

4.3 Interactive Tool

This section describes how we integrated the AFD discovery algorithm into
an interactive web-based tool for domain experts. The tool gives an overview
of the found AFDs and visualizes their c-metric scores and other metadata.
We will discuss all functionalities and visualization techniques the tool pro-
vides. Our web application is built upon a data cleaning tool developed by
Liese Bekkers for her bachelor’s thesis [5]. Some of the data cleaning tool’s
functionalities include outlier detection, column clustering and foreign key
discovery.

To illustrate our features, we used the Patients dataset, made available to us
by MSBase. Note that this section only discusses the features of the tool. The
relevance of the results will be analyzed in Chapter 5.

4.3.1 Overview

An overview of the user interface is shown in Figure 4.5. Spot 1 explains the
AFD discovery process. While a domain expert does not need to know the
specifics of the underlying algorithm, it might be helpful to have a broad idea
of the process. The full explanation is shown in Figure 4.6.

The button in spot 2 enables the domain expert to set the parameters we
mentioned before, illustrated in Figures 4.7 and 4.8. Every parameter shows
an input box and a comprehensible explanation of the parameter’s effect. The
discovery parameters affect the flow of the algorithm and the number of results
to be returned. The confidence thresholds do not influence the number of
results but change the confidence calculation and reasoning process and thus
the ranking of the AFDs. By testing extensively, we found that the default
parameters work well. The only parameters that need to be changed are the
AFD arity and the number of workers.
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Figure 4.5: An overview of the tool’s user-interface.

Figure 4.6: An informal explanation of the discovery algorithm, displayed in
the tool.

A domain expert can pass a file name or a Google Drive ID to the data
cleaning tool, which immediately runs all the features such as outlier detection
and clustering. However, we do not start AFD discovery right away because
the loading time would increase significantly, while the user might not be
interested in discovering AFDs. The expert can trigger the discovery with the
Start Discovery button in spot 3.
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Figure 4.7: The discovery parameters. Figure 4.8: The confidence thresholds.

Sometimes, data is stored on a remote platform such as Databricks5 on which
the tool can not be run. The domain expert can execute our algorithm on that
platform to generate the .json-file mentioned before and click the Visualize
External Results button in spot 4 to load the .json-file. Additionally, we
provide the option to export the results to a .html-file by clicking Download
Report in spot 5.

Every AFD is grouped by their RHS, as shown in spot 8. Besides that, we
colour encoded each RHS group. Spot 7 shows the legend for each colour.
Orange corresponds to a score of 0 and green to a score of 5. The colour
of an RHS group is based on the average c-metric scores of its AFDs. This
way, a domain expert can get a quick idea of which RHS groups or AFDs are
most interesting. The slider in spot 6 enables the user to filter AFDs by their
c-metric score.

Clicking an RHS group expands it and shows the AFDs it contains, as shown
in Figure 4.9. The badge on the right of a group denotes the number of AFDs
inside that group.

Figure 4.9: An expanded RHS group.

Figure 4.10: An expanded AFD.

5https://databricks.com
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4.3.2 Rationale, Scores and Metadata of an AFD

An expanded AFD shows six items: the rationale, scores, and more informa-
tion about used rows, the distribution of the LHS and RHS, erroneous blocks
and correct blocks, shown in Figure 4.10.

Scores

The scores section in Figure 4.11 consists of two parts: the approximation
scores of FI, RFI, and g3, and the c-metric score. The approximation scores
presumably have little meaning for the domain expert, but we included them
to support the rationale.

Figure 4.11: Scores of the AFD.

Used Rows

Figure 4.12 shows the visualization we utilized to illustrate the rows used
to calculate the approximation scores. Even though the number of rows is
incorporated in the c-metric score, seeing the number of small blocks and
NULL values can be very helpful for a domain expert. The bar visualization
consists of three parts:

• The number of used rows (blue).

• The number of rows that contain a NULL in either the LHS or the RHS
(plain red).

• The number of rows that are included in a small block (striped red).

We chose this visualization because it gives an immediate sense of the fraction
of used rows compared to the eliminated rows. Hovering each part clarifies
the colour encodings, as illustrated by the black tooltip in Figure 4.12.
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Figure 4.12: Used rows in an AFD.

Distributions

Metadata related to value distributions are shown in Figure 4.13. These distri-
butions can be beneficial in the case of a large LHS domain or a predominant
RHS value. They can constitute a significant part of the decision on the
relevance of an AFD. The LHS and RHS distributions are visualized in two
separate pie charts with the number values in the domain. The end-user can
hover each slice to see the relative occurrence of a value. This way, it is easy
to gain quick insight into large blocks or predominant RHS values.

Figure 4.13: Distributions of the LHS and RHS.
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Potential Erroneous Examples

The expandable in Figure 4.14 visualizes the 50 largest blocks (if present) that
likely contain erroneous tuples. For each value in the LHS, we generate two
bars. The first bar (black) represents the relative size of a block. The second
bar (green and red) illustrates two aspects. The green part represents the rel-
ative occurrence of the most frequent value in the RHS, which we think is the
correct value in that block, shown when hovered. The red part represents the
possible number of errors and shows an example of an error if hovered. Con-
sider the first example in Figure 4.14, the block where BIRTH CITY equals
“Trabzon” contains 348 tuples. The value “Trabzon” is a city in Turkey, so
the associated value in country should be “tur”. The second bar indicates that
two tuples are possibly erroneous. The black tooltip shows that one or more
of the errors have the value “de”, and the text below the bar indicates that
the two errors are distinct values.

Figure 4.14: Potential erroneous examples of an AFD.

Correct Examples

Listing the blocks in which the LHS fully determines the RHS can be very
insightful as well. These correct examples are shown in Figure 4.15. Each
example consists of a bar that indicates the block’s size and the expected
value. For example, the correct country of “isfahan” is indeed Iran (“ir”).

4.4 Implementation

This section gives a brief overview of the technologies used to acquire the
tool we described in previous sections. As mentioned before, we built the
application upon the data cleaning tool by Liese Bekkers [5]. The backend
runs on a Flask server, and the frontend is developed using Bootstrap. Our
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Figure 4.15: Correct examples of an AFD.

algorithm uses Python due to its ease of use in a data science context. We
integrated the algorithm into the tool by means of a library, which is called
by the server. The following list summarizes all the libraries used for both the
web application and our algorithm.

• Chart.js6 for rendering the pie charts for the LHS and RHS distributions
in Figure 4.13.

• Joblib7 for parallelization.

• Pandas8 for efficient data processing.

• PyDrive2 9 for loading Google Drive files in Python.

• Flask10 for the backend server.

• Bootstrap11 for the frontend UI and bar visualizations in Figures 4.12, 4.14
and 4.15.

6https://www.chartjs.org
7https://joblib.readthedocs.io
8https://pandas.pydata.org
9https://iterative.github.io/PyDrive2/docs/build/html/index.html

10https://palletsprojects.com/p/flask/
11https://getbootstrap.com
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Chapter 5

Experiments on Datasets

This chapter analyses the results of extensively testing the developed tool
from Chapter 4 on various datasets. We run our tool on six datasets, with
the number of columns ranging from 7 to 125. Two of those datasets were
provided by Ziekenhuis Oost-Limburg (ZOL) and MSBase, respectively. This
enabled us to discuss the relevance of AFDs with domain experts and finetune
our application based on their findings. We selected the other four datasets
based on the interpretability of columns to analyze the relevance of the results
ourselves. For each dataset, we explain why various example AFDs or a group
of AFDs are relevant or not. Relevant AFDs do not only include cleaning
candidates, but also AFDs that can provide us valuable insights. For example,
an AFD birth country→ residence country holds because many people stay in
the same country as their birth country, which is no cleaning candidate, but
can be useful for a domain expert.

Besides that, we give an overview of the meaning of the discussed columns,
the number of rows, the execution time, the number of found AFDs and the
distribution of the AFDs’ c-metric scores. A list of all the columns and their
semantics can be found in Appendix C.

Furthermore, we compare the results of our c-metric to those of FI, RFI and
g3 to gain insight in the performance of the c-metric. For that comparison, we
considered results where c-metric ≥ 3, and where FI, RFI and g3 ≥ 0.9. On
the one hand, we discuss the difference in number of results. On the other, we
use three metrics: precision, recall and the F-score, which are frequently used
to validate machine learning models [32]. The three metrics are based on true
or false positives and negatives, shown in Table 5.1.

Predicted

Actual Positive Negative

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Table 5.1: True or false positives and negatives, modified from [29].
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We can now define precision as the number of relevant found AFDs divided
by the number of found AFDs:

precision =
TP

TP + FP

Recall is the number of relevant found AFDs divided the total number of
relevant AFDs, as defined below. Since we do not know the true total number
of relevant AFDs, we use the size of the union of the relevant AFDs deduced
by FI and g3.

recall =
TP

TP + FN

Now, we define the the F-score as the harmonic mean of precision and recall
to obtain one metric that indicates the performance of the approximation
measures and our c-metric.

F-score = 2 ∗ precision ∗ recall

precision + recall

The algorithm is executed with the following discovery parameters, unless
mentioned otherwise:

• Approximation score threshold: 0.9

• AFD arity: 1

• Sampling: no

• Include NULL values: no

• Eliminate small blocks: no

• Number of parallel workers: 6

• Binning date and decimal columns: no

Concerning the parameters of c-metric, we used the default values as shown
in Figure 4.8.

5.1 MSBase

This section discusses the results of the MSBase dataset. MSBase Registry
collects data about 55409 patients that have Multiple Sclerosis (MS). The
dataset consists of five tables:

• Patients contains demographical information such as gender, birth coun-
try and the current state of the disease of a patient.

• MRI contains the specifics and results of an MRI scan.

• Treatment contains every treatment a patient has got in the past.

• Relapses contains various medical parameters when a patient relapsed,
such as visual and sensory functioning.

• Visits includes parameters of the state of the patient at a visit to a
medical expert.
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5.1.1 Patients

The specifics of the execution on the Patients dataset are shown in Figure 5.1,
together with the distribution of the AFDs per c-metric score interval. Ini-
tially, Patients contained 24 columns, but after dropping the date and decimal
columns, 18 columns remained. The columns we discuss in the coming para-
graphs have the following meaning, as described by MSBase:

• dead : Whether the patient is currently dead.

• MC DONALD CLASIFF : The classification of the MS type based on
the McDonald criteria.

• PROGRESSION FROM ONSET : Whether a patient is a primary pro-
gressive MS patient.

• BIRTH CITY : The city of birth of a patient.

• BIRTH COUNTRY : The country of birth of a patient.

• country : The country of residence of a patient.

• ETHNIC ORIGIN : The ethnic origin of a patient.

• education: The level of education of a patient.

0 1 2 3 4 5

0

10

20

30

40

50

Scores of c-metric

N
u

m
b

er
of

A
F

D
s

(a) The distribution of the scores of
c-metric

# rows 55409

# columns 18

# possible AFDs 289

# found AFDs 52

Execution time (s) 16.02

(b) The execution specifics

Figure 5.1: Characteristics of the Patients dataset.

Results

46 of the 52 AFDs have a score for c-metric of less than 1, which means they
are probably irrelevant. The 47 AFDs with a score less than 2 are all contained
in the following three RHS groups:

1. → dead (16 AFDs)

2. → MC DONALD CLASIFF (15 AFDs)

3. → PROGRESSION FROM ONSET (16 AFDs)
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The main reason for this is that dead, MC DONALD CLASIFF and PRO-
GRESSION FROM ONSET contain a predominant RHS value, which causes
g3 to score high, no matter what the LHS is. This is a negative side effect
of using g3, but our tool handles this very well by ranking all these AFDs
at the bottom and colouring them in orange. This enables the domain ex-
pert to ignore them instantly. Additionally, the AFDs in those groups do not
make much sense. For example, it is improbable that BIRTH CITY deter-
mines whether a patient is dead or that MC DONALD CLASIFF functionally
depends on the patients’ education.

The algorithm is very confident of the 5 remaining AFDs, which all pass a
c-metric score of 4. These include:

1. BIRTH CITY→ country

2. BIRTH COUNTRY→ country

3. BIRTH CITY→ BIRTH COUNTRY

4. country→ BIRTH COUNTRY

5. BIRTH CITY→ ETHNIC ORIGIN

Semantically, these are very interesting dependencies. But it is true that AFDs
1, 2, 4 and 5 are no cleaning candidates because a patient born in Sweden can
live in Germany. However, a patient probably stays in their birth country. So,
our tool made a logical decision. Finally, the domain experts from MSBase
marked the same AFDs to be relevant.

Comparison

Table 5.2 shows that g3 found significantly more AFDs than the other approx-
imations measures, including all the strongly irrelevant AFDs discussed above.
This is caused by the large RHS groups mentioned in the previous section.

Our c-metric found two additional AFDs compared to FI:

1. country→ BIRTH COUNTRY

2. BIRTH CITY→ ETHNIC ORIGIN

These are interesting dependencies, even though they are no cleaning candi-
dates. So, the fact that FI did not discover them is no problem. Besides that,
RFI only found 1 AFD: BIRTH COUNTRY→ country. Note that this is not
the actual cleaning candidate (BIRTH CITY → BIRTH COUNTRY), which
is included in the results of FI and our c-metric.

The F-score in Table 5.2 shows that the c-metric performs best on this dataset,
followed closely by FI. Besides that, g3 found too many AFDs, and RFI is too
strict.
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c-metric g3 FI RFI

#AFDs 5 52 3 1

Precision 0.8 0.077 1.0 1.0

Recall 1.0 1.0 0.75 0.25

F-score 0.89 0.14 0.86 0.4

Table 5.2: Number of AFDs per measure for the Patients dataset.

5.1.2 MRI

The execution specifics are shown in Figure 5.2, together with the distribution
of the AFDs per c-metric score interval. Initially, MRI contained 8 columns,
but after dropping a date column, 7 columns remained. The columns we
discuss in the coming paragraphs have the following meaning as described by
MSBase:

• T1 : A T1 weighted image is one of the basic pulse sequences in MRI
and demonstrates differences in the T1 relaxation times of tissues. True
means that the MRI sequence was measured.

• T1 GADOLINIUM : A T1 weighted image while infusing Gadolinium (a
contrast enhancement agent). True means that the MRI sequence was
measured.

• T1 LESION : The number of lesions using the T1 MRI sequence.

• T1 RESULT : The result of the T1 MRI sequence.

• T1 GADOLINIUM RESULT : The result of the T1 Gadolinium MRI
sequence.
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c-metric

# rows 259150

# columns 7

# possible AFDs 42

# found AFDs 4

Execution time (s) 7.98

(b) The execution specifics

Figure 5.2: Characteristics of the MRI dataset.

Results

The histogram in Figure 5.2 shows that our algorithm is highly confident of
only one AFD, namely T1 LESION→ T1 RESULT. The remaining 3 AFDs
are:
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1. T1 LESION→ T1

2. T1 RESULT→ T1

3. T1 GADOLINIUM RESULT→ T1 GADOLINIUM

The AFDs above have a low score for c-metric because of a predominant RHS
value. However, the MSBase experts classified all AFDs above to be relevant.
The structure of those LHS attributes induces the low scores. Attributes T1
LESION, T1 RESULT and T1 GADOLINIUM RESULT contain a NULL if
there is no result of that particular MRI scan. Consequently, T1 and T1
GADOLINIUM are false whenever no test was taken. So, by eliminating
these NULLs, we also remove the rows where T1 and T1 GADOLINIUM are
false, which causes true to be predominant. This is a weakness of our tool but
difficult to prevent because NULLs are not informative in most cases. Our tool
solves this well by showing these AFDs, making it easy for a domain expert
to decide that they are relevant. The potential erroneous examples section in
our tool confirms our findings. Every AFD contains several blocks with only
a few errors.

Comparison

The previous section discussed that all four AFDs are relevant but that three
AFDs contain a predominant RHS value, causing FI (and RFI) to score very
low. This is reflected in Table 5.3. Only g3 found four AFDs, the c-metric
found only one, and FI and RFI found none. So, FI, RFI and c-metric are too
strict, in contrast to g3, which is also illustrated by the F-scores in Table 5.3.

c-metric g3 FI RFI

#AFDs 1 4 0 0

Precision 1.0 1.0 1.0 1.0

Recall 0.25 1.0 0.0 0.0

F-score 0.4 1.0 0.0 0.0

Table 5.3: Number of AFDs per measure for the MRI dataset.

5.1.3 Treatment

The execution characteristics are shown in Figure 5.3, together with the dis-
tribution of the AFDs per c-metric score interval. The data consists of 10
columns, of which 3 are a date or decimal column. The columns we discuss in
the coming paragraphs have the following meaning as described by MSBase:

• TREATMENT : The name of the treatment.

• VISIT ID : A distinction between MS-specific drugs, symptomatic drugs
and (e.g. anti-depression) and non-pharmacological treatment (e.g. phys-
iotherapy).

• ROUTE OF ADMINISTRATION : The route of administration of a drug.

• POSOLOGY UNIT : The unit of the treatment drug (e.g. grams).
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# rows 201488

# columns 7

# possible AFDs 42

# found AFDs 3

Execution time (s) 12.26

(b) The execution specifics

Figure 5.3: Characteristics of the Treatment dataset.

Results

Our algorithm discovered the following three AFDs with very high confidence:

1. TREATMENT→ VISIT ID

2. TREATMENT→ ROUTE OF ADMINISTRATION

3. TREATMENT→ POSOLOGY UNIT

From the meaning of the columns above, we can derive that the AFDs are
indeed relevant. The first AFD indicates that every patient with a particular
treatment is in a specific treatment category. Additionally, it is logical that
a treatment (drug) is always administered via the same route and in a spe-
cific unit. Additionally, domain experts also indicated that these AFDs are
relevant.

Comparison

All three AFDs are great cleaning candidates, reflected by g3 and our c-metric,
but not by FI and RFI. The latter did not find TREATMENT→ POSOLOGY UNIT.
Table 5.4 confirms this. The F-scores of the c-metric and g3 are both maximum
and those of FI and RFI are slightly lower.

c-metric g3 FI RFI

#AFDs 3 3 2 2

Precision 1.0 1.0 1.0 1.0

Recall 1.0 1.0 0.66 0.66

F-score 1.0 1.0 0.80 0.80

Table 5.4: Number of AFDs per measure for the Treatment dataset.
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5.1.4 Relapses

The execution characteristics are shown in Figure 5.4, together with the dis-
tribution of the AFDs per c-metric score interval. After dropping one date
attribute, 14 attributes remained for the discovery. The columns we discuss in
the coming paragraphs have the following meaning as described by MSBase:

• corticosteroid : Whether a patient has got the corticosteroid drug during
the relapse.

• NEUROPSYCHO FUNCTION : Whether the relapse affects neuropsy-
chological functions.

• cerebellum: Whether the relapse concerns the involvement of the cere-
bellum and brainstem connections.

• BOWEL BLADDER: Whether the relapse concerns difficulties with the
bowel/bladder.
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# rows 167551
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Execution time (s) 20.88

(b) The execution specifics

Figure 5.4: Characteristics of the Relapses dataset.

Results

The histogram in Figure 5.4 shows that all the AFDs seem to be irrelevant,
and the domain experts confirm this. All the AFDs are divided into four RHS
groups as listed below:

1. → corticosteroid (13 AFDs)

2. → NEUROPSYCHO FUNCTION (13 AFDs)

3. → cerebellum (11 AFDs)

4. → BOWEL BLADDER (13 AFDs)

All RHS columns above have a predominant value. So, almost every other
column is contained in the LHS of an AFD in every group. So, the four
groups are large, which is a very negative sign. In this case, the RHS groups
and their colour encoding are beneficial for the domain expert as they can
ignore a large group of AFDs with little cognitive effort.
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The three AFDs that have a score between 1 and 2, have PATIENT ID as
their LHS. Because PATIENT ID has a vast domain (44036 values), FI is
slightly higher, even with a predominant RHS value, causing an increase of
their c-metric scores.

Comparison

As mentioned above, none of the AFDs are relevant. The AFDs are contained
in four large RHS groups with a predominant RHS value. Hence, g3 found 50
AFDs, whereas FI, RFI and c-metric found none. We can conclude that g3 is
too lenient, and the other scoring methods do an excellent job at eliminating
those AFDs, as illustrated by the F-scores in Table 5.5.

c-metric g3 FI RFI

#AFDs 0 50 0 0

Precision 1.0 0.0 1.0 1.0

Recall 1.0 1.0 1.0 1.0

F-score 1.0 0.0 1.0 1.0

Table 5.5: Number of AFDs per measure for the Relapses dataset.

5.1.5 Visit

The execution characteristics are shown in Figure 5.5, together with the dis-
tribution of the AFDs per c-metric score interval. The dataset consists of 3
columns after pruning one date and one decimal attribute. The meanings of
columns we discuss in the coming paragraphs are listed below. Note that each
patient can occur multiple times in the data.

• PATIENT ID : A unique patient identifier.

• MSCOURSE AT VISIT : The type of MS at the time of visit.
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(b) The execution specifics

Figure 5.5: Characteristics of the Visit dataset.
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Results

The tool found one AFD, PATIENT ID→ MSCOURSE AT VISIT. Accord-
ing to the domain experts, the AFD is no cleaning candidate, even though
it has a high c-metric score. They argue that there is no guarantee that a
patient has the same MS course at every visit. The potential erroneous exam-
ples substantiate this explanation. Some patients maintain the same course
over time, while other patients are associated with two distinct courses that
each occur in 50% of the rows in that block. So, the algorithm made a logical
decision.

Comparison

Table 5.6 summarizes the number of AFDs per method. The explanation above
shows that PATIENT ID→ MSCOURSE AT VISIT is no cleaning candidate
but can be insightful to a domain expert. Measures g3 and c-metric found
this AFD, whereas FI and RFI did not. Hence the large difference between
the F-scores for FI and RFI, and g3 and our c-metric.

c-metric g3 FI RFI

#AFDs 1 1 0 0

Precision 1.0 1.0 1.0 1.0

Recall 1.0 1.0 0.0 0.0

F-score 1.0 1.0 0.0 0.0

Table 5.6: Number of AFDs per measure for the Visit dataset.

5.2 Claims

The following dataset we discuss contains data about claims made against the
Transportation Security Administration (TSA) between 2002 and 20061. The
data includes claims made when a passenger’s property screening caused an
injury, loss, or damage. The columns in the AFDs are understandable, which
enables us to decide if an AFD is relevant or not, without needing domain
knowledge.

The execution characteristics are shown in Figure 5.6, together with the dis-
tribution of the AFDs per c-metric score interval. Our tool dropped one date
column, which results in 10 remaining columns and 90 AFDs to process. The
source website does not provide a description of the columns. Hence, we list
intuitive explanations for each relevant column based on their names and do-
mains:

• AirportName: The name of the airport.

• AirportCode: A unique identifier of the airport.

• Disposition: The suggested action to take (settle, approve in full, deny).

• Status: The action that was taken (settled, approved, denied).

1https://www.dhs.gov/tsa-claims-data
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(b) The execution specifics

Figure 5.6: Characteristics of the Claims dataset.

Results

The histogram in Figure 5.6 shows that the algorithm is certain of all the
discovered AFDs. These include:

1. AirportCode→ AiportName

2. AiportName→ AirportCode

3. Status→ Disposition

4. Disposition→ Status

AFDs 1 and 2 have maximum approximation scores, which means that those
AFDs are exact FDs. This is logical since an airport code can match only one
airport and vice versa.

AFDs 3 and 4 are no cleaning candidates because it is possible that the advised
action does not correspond to the executed action, which is also indicated by
the potential erroneous examples. It appears that the status almost always
corresponds to the disposition. Consequently, the tool classified the AFDs as
relevant.

Comparison

There is no difference between the approximation measures and our c-metric
concerning this dataset. In the previous section, we discussed that all four
AFDs in the results are exact FDs, which is also reflected in Table 5.7, show-
ing that every measure found those AFDs. Consequently, every F-score is
maximum.
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c-metric g3 FI RFI

#AFDs 4 4 4 4

Precision 1.0 1.0 1.0 1.0

Recall 1.0 1.0 1.0 1.0

F-score 1.0 1.0 1.0 1.0

Table 5.7: Number of AFDs per measure for the Claims dataset.

5.3 Census Income

The subsequent dataset is provided by the UCI Machine Learning Repository2

and was collected to predict whether a person earns more than 50k salary in a
year. The data, also known as the “Census Income” dataset3, contains demo-
graphical information and income statistics of various United States citizens.

The execution characteristics are shown in Figure 5.7, together with the dis-
tribution of the AFDs per c-metric score interval. The data includes no date
or decimal columns, so all 14 columns were used in the discovery process. The
meanings for the discussed columns are shown below:

• fnlwgt : The number of people the census believes the entry represents.

• capital-loss: Capital loss for an individual.

• capital-gain: Capital gains for an individual.

• education: The highest level of education achieved by an individual.

• education-num: The highest level of education achieved by an individual,
in numerical form.

• sex : An individual’s sex.

• race: An individual’s race.
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Figure 5.7: Characteristics of the Census Income dataset.

2https://archive.ics.uci.edu/ml/index.php
3https://archive.ics.uci.edu/ml/datasets/Adult
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Results

There are two large RHS groups among the discovered AFDs: → cap-loss and
→ cap-gain, which cause 25 AFDs to score below 1. Of course, every AFD

in this group is irrelevant because their RHS column contains a predominant
value.

The column fnlwgt has a domain size of 21648 and appears as an LHS in two
AFDs, fnlwgt → race and fnlwgt → sex, with a mediocre and high c-metric
score, respectively. These AFDs both hold coincidentally on the relation. Ad-
ditionally, the potential erroneous examples and the correct examples indicate
that most blocks are correct, but some blocks also contain many errors. The
AFDs being irrelevant should be noticed immediately by an expert with do-
main knowledge.

Finally, our tool discovered two interesting AFDs ranked at the top,
education-num → education and vice versa. Both AFDs do not contain er-
rors, so they are considered exact FDs and can be very useful for preserving
data integrity in the future.

Comparison

Table 5.8 shows that g3 found significantly more AFDs than FI, RFI and
c-metric. Again, the results of g3 contain two large RHS groups with irrelevant
AFDs.

Furthermore, the only differing AFD between FI and our c-metric is fnlwgt→
race, which involves a large LSH domain, causing FI to score high incorrectly.
Besides that, fnlwgt → sex is found by FI and the c-metric, but not by RFI.
Again, fnlwgt has a large domain, causing RFI to score low. Concerning this
dataset, we can conclude that RFI does the best job, followed by our c-metric,
which is also reflected by the F-scores in Table 5.8.

c-metric g3 FI RFI

#AFDs 3 29 4 2

Precision 0.66 0.069 0.5 1.0

Recall 1.0 1.0 1.0 1.0

F-score 0.8 0.13 0.67 1.0

Table 5.8: Number of AFDs per measure for the Census Income dataset.

5.4 Fatality Analysis Reporting System

The Fatality Analysis Reporting System4 (FARS) dataset contains detailed
information regarding fatal traffic accidents with motor vehicles in the United
States. The dataset is a part of the KEEL5 data repository, which is frequently
used to test the behaviour of machine learning methods.

4https://www.nhtsa.gov/research-data/fatality-analysis-reporting-system-fars
5https://sci2s.ugr.es/keel/datasets.php
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The execution characteristics are shown in Figure 5.8, together with the dis-
tribution of the AFDs per c-metric score interval. The data includes no date
or decimal columns, so all 30 columns were used in the discovery process. The
meanings of discussed columns we list below are based on the information
provided by FARS. An asterisk in a column replaces a number.

• NON MOTORIST LOCATION : The location of the non-motorist with
respect to the roadway at the time of the crash.

• RELATED FACTOR *-PERSON LEVEL: Factors related to the crash
expressed by the investigating officer.

• METHOD OF DRUG DETERMINATION : The method by which the
police made the determination as to whether drugs were involved or not.

• DRUG TEST TYPE * OF 3 : The type of chemical test for the presence
of drugs that was used.

• DRUG TEST RESULTS * OF 3 : The result of a chemical test for the
presence of drugs.

• ALCOHOL TEST RESULT : The alcohol (ethanol) test result.

• ALCOHOL TEST TYPE : The type of the alcohol (ethanol) test that
was used.

• SEATING POSITION : The location in or on the vehicle.

• PERSON TYPE : The role of a person involved in the crash.

• RACE : The race from the death certificate.

• HISPANIC ORIGIN : The Hispanic origin from the death certificate.

• EJECTION : The ejection status and degree of ejection, excluding mo-
torcycle occupants.

• EJECTION PATH : The path by which a person was ejected from the
vehicle.
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Figure 5.8: Characteristics of the FARS dataset.
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Results

The histogram in Figure 5.8 shows that the majority of the AFDs has a very
low c-metric score. They are divided into the following RHS groups:

1. → NON MOTORIST LOCATION (29 AFDs)

2. → RELATED FACTOR 2-PERSON LEVEL (29 AFDs)

3. → RELATED FACTOR 1-PERSON LEVEL (29 AFDs)

4. → RELATED FACTOR 3-PERSON LEVEL (29 AFDs)

5. → METHOD OF DRUG DETERMINATION (29 AFDs)

Every RHS mentioned above has a predominant value. Hence, every other
column appears in an LHS in every group. Consequently, all of these AFDs
are irrelevant.

Next, we consider the following RHS groups:

1. → DRUG TEST RESULTS 2 OF 3

2. → DRUG TEST RESULTS 3 OF 3

3. → DRUG TEST TYPE 2 OF 3

4. → DRUG TEST TYPE 3 OF 3

All these groups have seven AFDs with the same LHS, as listed below (except
those already in the RHS):

1. DRUG TEST TYPE 1 OF 3

2. DRUG TEST TYPE 2 OF 3

3. DRUG TEST TYPE 3 OF 3

4. DRUG TEST RESULTS 3 OF 3

5. DRUG TEST RESULTS 1 OF 3

6. DRUG TEST RESULTS 2 OF 3

7. ALCOHOL TEST RESULT

8. ALCOHOL TEST TYPE

For example, it is improbable that the results of a second drug test are de-
termined by the results of the third drug test or that the type of the drug
tests depends on the type of the alcohol test. The reason for this strange
behaviour is the presence of a large block that has no or almost no errors. For
example, the potential erroneous examples of DRUG TEST TYPE 3 OF 3→
DRUG TEST TYPE 2 OF 3 show a block where the LHS equals “not tested
for drugs” that occurs in 89% of the tuples. The block has only 1.2% erro-
neous values. Since this block has a significant impact on the scores, our tool
denotes the AFD as relevant. The case above shows that a domain expert can
distinguish the cleaning candidates from less relevant AFDs relatively easy by
considering the different metadata our tool provides.

69



The same applies to DRUG TEST TYPE 1 OF 3 → DRUG TEST RESU-
LTS 1 OF 3 and vice versa. The correct examples show a large block that
indicates that if a drug test has not been taken, the result equals zero, and vice
versa. This causes our tool to indicate them as relevant AFDs, even though
they are no candidates for cleaning.

Now, consider ALCOHOL TEST RESULT → ALCOHOL TEST TYPE. In-
tuitively, it seems unlikely that a specific result can only be associated with
a particular test type. For example, if two test types return a score between
0 and 100 to determine the degree of alcohol intoxication. However, we are
no domain experts, and it is hard to decide from the metadata if this AFD is
relevant or not.

The remaining AFDs include:

1. SEATING POSITION→ PERSON TYPE

2. RACE→ HISPANIC ORIGIN

3. HISPANIC ORIGIN→ RACE

4. EJECTION→ EJECTION PATH

5. EJECTION PATH→ EJECTION

These AFDs are no cleaning candidates, but they are discovered due to mul-
tiple large blocks with few errors. The possible erroneous examples show that
various values are allowed in a block. For instance, if a person is a non-
motorist (SEATING POSITION ), the person may be either a pedestrian or
an unknown non-motorist (PERSON TYPE ).

Comparison

Table 5.9 shows the number of AFDs and the accuracy metrics per method.
In the previous section, we discussed that most AFDs are contained in five
RHS groups, which all have an unduly high score for g3. So, g3 performs the
worst, reflected its F-score.

We also explained that there are no cleaning candidates in the results, but
some AFDs hold for specific blocks and provide valuable insights to a domain
expert. Our c-metric found significantly more AFDs than FI and RFI, of which
some of them provide valuable insights (e.g. HISPANIC ORIGIN→ RACE).
And, the scores for FI and RFI in those additional AFDs are high as well, but
only slightly below the threshold of 0.9. In that aspect, our c-metric is more
practical since it represents a weighted sum of g3 and FI. These findings are
shown in Table 5.9, in which the F-score of the c-metric is highest.

c-metric g3 FI RFI

#AFDs 20 181 9 8

Precision 1.0 0.17 1.0 1.0

Recall 0.65 1.0 0.29 0.26

F-score 0.79 0.29 0.45 0.41

Table 5.9: Number of AFDs per measure for the FARS dataset.
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5.5 OPNMUT

The data science department of Ziekenhuis Oost-Limburg (ZOL) provided
their OPNMUT dataset to us, which contains information about mutations of
a patient’s visit to the hospital. Studying this dataset was beneficial for both
parties as they did not have much insight into the data, and we could use a
large real-life dataset to test and improve our tool. However, in some cases, it
was unclear whether an AFD was relevant or not due to their lack of insight.
Generally, the data of companies are confidential. Hence, we were obliged to
deploy our algorithm on their Databricks6 clusters and plug the results into
our tool, as described in Chapter 4.

The execution characteristics are shown in Figure 5.9, together with the dis-
tribution of the AFDs per c-metric interval. Initially, the dataset contained
1349255 rows, but because the algorithm had not finished before 60 minutes,
we used a sample of 50% of all rows. The data includes one date and one
NULL column, which results in 17 columns for AFD discovery. Below, we
review the semantics of discussed columns as specified in the database schema
by ZOL. The semantics of several columns we mention were unclear to the
domain experts, so we left those out.

• BEHANDELAA: The identification number of a health practitioner.

• SPECIALISM : The specialism of a health practitioner.

• OPNTYPE : The type of hospitalisation of a patient (e.g. day admis-
sion).

• AFDELING : The department in the hospital where the patient is stay-
ing.

• KAMER: The room in a department where the patient is staying.
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Figure 5.9: Characteristics of the OPNMUT dataset.

6https://databricks.com
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Results

The results contain reoccurring patterns. Hence, we will not cover every dis-
covered AFD, but only those patterns.

First, we consider BEHANDELAA → SPECIALISM, an interesting depen-
dency with a very high c-metric score (4.91). In most cases, a health practi-
tioner will have one specialism. But the potential erroneous examples indicate
that a practitioner may be specialized in two or more domains. Additionally,
it seems to be a trend that whenever a practitioner has one specialism, they
also have another specific specialism. For example, practitioner 172601 is as-
sociated with kin and neo for 74% and 26%, respectively. And, practitioner
171767 occurs for 61% with kin and 39% with neo.

Another RHS group ranked at the top is → VPTARIEF and contains the
following AFDs, sorted from highest to lowest confidence:

1. OPNTYPE→ VPTARIEF

2. AFDELING→ VPTARIEF

3. KAMER→ VPTARIEF

4. STATUS→ VPTARIEF

5. SUBTYPE→ VPTARIEF

According to the domain experts, only AFD 1 is relevant. So, the hospitaliza-
tion type (e.g. an emergency admission) of a patient is always associated with
a particular pricing category. AFDs 2, 3, 4 and 5 are no cleaning candidates,
which is also confirmed by the potential erroneous examples of those AFDs.
Some blocks have a significant amount of errors. However, it is logical that
our algorithm discovered these as they also contain numerous correct exam-
ples. This is a frequently occurring situation in this dataset, which is hard to
distinguish. However, examining the erroneous and correct examples can be
very helpful for a domain expert.

The RHS group → GENERICTEMPLATE has a low mean c-metric score
and contains eight AFDs. The metadata indicates two weaknesses of the RHS:

• It contains numerous NULL values (±627000)

• It includes a predominant value

This caused eight AFDs to be discovered because g3 is high. However, the
previously mentioned aspects and the metadata strongly indicate that none of
those AFDs is a cleaning candidate.

In general, the results of this dataset were difficult to interpret. The semantics
of some columns were unclear, and some domains contained illogical values.
This shows that it might be helpful to perform other cleaning methods (e.g.
outlier detection) on the dataset first to prevent strange behaviour in our tool.
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Comparison

The number of AFDs and the accuracy metrics are shown in Table 5.10. Con-
cerning this dataset, g3 behaves similarly compared to previous datasets. The
measure found 28 AFDs, of which the majority is irrelevant.

Additionally, some irrelevant AFDs were also included in the results of our
c-metric (e.g. BEHANDELAA → GENERICTEMPLATE) and FI (e.g.
BEHANDELAA→ SUBTYPE). But, our c-metric, FI and RFI contained the
cleaning candidate mentioned in the previous section. None of the F-scores
are high, meaning none of the measures perform well on this dataset. But, our
c-metric offers the most worthy insights, such as a department (AFDELING)
being frequently associated with an admission type (OPNTYPE ), in contrast
to RFI and FI, which is shown in Table 5.10.

Relevant: 6

c-metric g3 FI RFI

#AFDs 12 28 7 5

Precision 0.42 0.21 0.29 0.4

Recall 0.83 1.0 0.33 0.33

F-score 0.56 0.35 0.31 0.36

Table 5.10: Number of AFDs per measure for the OPNMUT dataset.

5.6 Global Terrorism Database

The last dataset we analyze is the open-source Global Terrorism Database7

(GTD) provided by Kaggle for machine learning purposes. The GTD contains
data related to more than 180000 terrorist attacks between 1970 and 2017.
The attacks are either on a domestic or international level.

Figure 5.10 shows the execution characteristics, together with the distribution
of the AFDs per c-metric score interval. The execution time indicates that
our algorithm has difficulties with the large number of AFDs. Several solu-
tions for this include: removing irrelevant columns beforehand, enabling the
elimination of small blocks or increasing the number of workers to parallelize
the workload. Removing ten date and decimal columns results in 125 columns
for AFD discovery. We list the semantics of examined columns as specified in
the provided documentation of the GTD.

• summary : A brief narrative summary of the incident, noting the when,
where, who, what, how, and why.

• scite* : The *-th source that was used to compile information on the
specific incident.

• related : When an attack is part of a coordinated, multi-part incident,
the IDs of the related incidents are listed here, separated by commas.

• location: Additional information about the location of the incident.

7https://www.kaggle.com/START-UMD/gtd
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• claimmode* : One of 10 modes used by *-th claimants to claim respon-
sibility and might be useful to verify authenticity, track trends in be-
haviour, etc.

• claimmode* txt : The textual version of claimmode*.

• weaptype* : The general type of the *-th weapon used in the incident.

• weaptype* txt : The textual form of weaptype*.

• weapsubtype* txt : A more specific value for most of the weapon types
identified immediately above.

• ransomnote: Any information about non-money demands made by per-
petrators, as well as information on conflicting reports of how much
money was demanded and/or paid.
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Figure 5.10: Characteristics of the GTD dataset.

Results

Due to the vast amount of discovered AFDs, we will only discuss frequent
patterns through examples. This way, we can highlight the strengths and
weaknesses of the tool without examining every AFD. Concerning this dataset,
we found that the tool ranked interesting AFDs at the top and other AFDs
more at the bottom. So, even with this amount of AFDs, it should be relatively
easy for a domain expert to process them using our tool.

The domain expert can instantly eliminate 9 irrelevant RHS groups of 987
AFDs as they are ranked below and coloured in orange. Again, each group
contains a predominant RHS, which causes every other column to be in an
AFD in each group.

A frequently reoccurring pattern is AFDs with few rows. As mentioned in
Chapter 4, we distinguish two cases if most rows contain NULL values: the
AFD holds or does not hold, including NULLs. The first case indicates that
NULL values do have a semantic value. For example, claimmode3 txt →
claimmode3 contains only 133 rows after eliminating NULL values, since an
attack is rarely claimed three times. Reducing the score of c-metric would be
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incorrect because the textual form of a third claim has to correspond to its
identifier. Indeed, the tool classified this AFD as very relevant with a c-metric
score of 5. Another example is weapsubtype4 txt → weaptype4 txt. This AFD
is relevant as the subtype of the fourth weapon (e.g. grenade) should always
correspond to the main type of the fourth weapon (e.g. explosives). But, the
use of a fourth weapon is rare, which causes only 61 rows not to contain NULL
values.

Contrarily, our solution for NULL values is not robust. For example,
ransomnote → weaptype3 has a c-metric score of 5, but only six rows con-
tain no NULL values. The algorithm found that the AFD still holds including
NULL values, so the algorithm did not decrease the c-metric score. However,
this is purely coincidental because an attack with a ransom note and an attack
with a third weapon is sporadic. Therefore, most NULL values in ransomnote
correspond to those of weaptype3, which causes a huge block to be correct.

Some columns appear as LHS in numerous AFDs. Some examples include:

• summary

• scite2

• scite3

• scite1

• related

• location

This is logical since they identify one or more attacks with the same charac-
teristics. A domain expert can drop these columns beforehand to prevent the
algorithm from deducing AFDs already known to the expert.

Finally, consider claimmode3 txt→ claim3, an excellent example of a relevant
AFD where FI is low. If a third claim mode has been documented, a third
claim must have been made. So, if claimmode3 txt is not NULL, claim3 should
be true. However, by eliminating NULLs in claimmode3 txt, claim3 contains
a predominant value (true), which causes FI to score low incorrectly.

Comparison

Table 5.11 shows the number of AFDs found by the different scoring methods
and the different accuracy methods. In contrast to previous datasets, the total
number of AFDs is not equal to the number of AFDs found by g3, which means
that FI scores high on some AFDs where g3 is low. This indicates that some
AFDs are biased due to a large LHS domain, as discussed in Chapter 3. For
example, scite2 → city where g3 equals 0.463. The erroneous examples also
show a lot of possible errors in some blocks.

Besides that, g3 discovered numerous irrelevant AFDs divided into nine large
RHS groups, indicating a predominant RHS value, as discussed in the previous
section. Again, this causes g3 to be the worst option of all four.

Our c-metric found 690 AFDs. The results clearly show the advantage of
weighting FI and g3 into one score, eliminating most biased results.
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RFI found 85 AFDs, including the most relevant AFDs, but it misses some
excellent cleaning candidates, such as city→ provstate.

Conclusively, RFI and the c-metric seem to be equally accurate according to
their F-scores shown in Table 5.11. The RFI measure misses a lot of relevant
AFDs, whereas the c-metric deduces too many, which we believe is more fa-
vorable because irrelevant AFDs are should be easily eliminated by using our
tool.

c-metric g3 FI RFI

#AFDs 690 2240 680 85

Precision 0.31 0.12 0.26 0.95

Recall 0.78 0.98 0.65 0.29

F-score 0.44 0.21 0.37 0.44

Table 5.11: Number of AFDs per measure for the GTD dataset.

5.7 Theoretical Findings in Practice

Chapter 2 analyzed the theoretical differences between measures. In this sec-
tion, we will discuss whether the theoretical findings also occur in practice.

The weakness of g3 is that it does not take into account the distribution of the
RHS. Whenever the RHS of an AFD contains a predominant value, g3 tends
to be unduly high. In most cases, this results in a large RHS group where
nearly every column is in the LHS of an AFD where the RHS contains that
predominant value. The results of most datasets contained an RHS group as
such, which highlights the importance of handling this case in practice. Now,
reconsider the Patients dataset in Section 5.1.1. The g3 measure caused all 47
AFDs in the following RHS groups to hold, even though they are all irrelevant:

1. → dead (16 AFDs)

2. → MC DONALD CLASIFF (15 AFDs)

3. → PROGRESSION FROM ONSET (16 AFDs)

Furthermore, we illustrated that g2 is very low if there is only one error in
each block. Consider TREATMENT → ROUTE OF ADMINISTRATION
from the results of the Treatment dataset, which was classified as relevant.
The score of g3 (0.956) indicates this, but g2 is only 0.281 because there are
numerous blocks with a few potential errors. Besides that, the difference
between g3 and g1 was more subtle and occurred when the number of unique
errors is significant. However, we have not found this case in practice because
a block contains few unique errors in most cases.

Moreover, we found that FI tends to overestimate the approximation degree
when the LHS has a large domain. However, only a few such cases exist in
the results described in previous sections. For example, scite2 → city in the
GTD dataset. The score of FI is high (0.905), whereas the scores of g3, RFI
and SFI are low with 0.463, 0.078 and 0, respectively. The domain of the
LHS contains 7747 values, which is a vast amount compared to the 22366
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used rows. The potential erroneous examples confirm the fact that the AFD
is irrelevant. Numerous blocks contain more than 50% of errors. This shows
that it is necessary to distinguish this case, even though it does not frequently
occur in practice.

Besides that, we found that RFI and SFI tend to correct FI too heavily by
blindly punishing large domains, which frequently occurs in practice. For
example, BIRTH CITY → BIRTH COUNTRY is a perfect cleaning candi-
date, as explained in Section 5.1.1. However, BIRTH CITY contains a rela-
tively large domain of 5537 values. Whereas g3 and FI strongly indicate that
BIRTH CITY→ BIRTH COUNTRY is an AFD, RFI and SFI have very low
scores equal to 0.598 and 0.013, respectively. Another example where RFI and
SFI are too strict is city → country txt from the GTD dataset. The city of
an attack should always correspond to the country of the attack, which makes
it a great cleaning candidate. However, the score of RFI (0.688) indicates no
strong dependency, and SFI (0.032) even indicates that city and country txt
are independent.

Finally, the practical differences between τ en FI were negligible. This poses
the question if τ can replace FI. However, due to the time restriction for this
thesis, we could not study this thoroughly. Hence, we consider this as future
work.

In general, we found several cases of our theoretical findings in practice, indi-
cating that c-metric’s motivation is correct.

5.8 Discussion

The experiments in this chapter provided many helpful insights into the be-
haviour of the AFD discovery tool. In general, the results clarified that an
entirely autonomous discovery tool would not be possible. Several AFDs con-
tain semantic nuances that can only be found by domain experts. Our tool
attempts to simplify this process by illustrating metadata through various vi-
sualizations. The results prove that these functionalities can indeed be the
decisive factor for an AFD. However, we have also learned that the discov-
ery algorithm takes on strange behaviour or returns irrelevant results in some
cases.

First, the results of almost all datasets contained large RHS groups due to a
predominant RHS value. In all datasets, these AFDs were irrelevant, posing
the question if we can exclude them from the results entirely. But doing this
can also eliminate relevant AFDs. However, we believe that the ranking and
colour encoding of the AFDs and groups make sure that a domain expert can
distinguish these cases by hand without much cognitive effort.

A side effect of large RHS groups is that the number of results increases
significantly, which can be overwhelming for the domain expert. For example,
there are nine such RHS groups of in total 987 AFDs in the GTD dataset,
which corresponds to 42% of the total number of results. For this reason, we
implemented the score slider, as shown in spot 6 in Figure 4.5. A domain
expert can first examine more promising AFDs by hiding others that score
below a particular value.
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Besides that, the ZOL and GTD datasets show that our algorithm is not scal-
able to datasets with many rows or a vast number of possible AFDs. Although
we stated that our tool focuses on the relevance of results rather than the effi-
ciency of the discovery, it is helpful for future research to highlight this aspect.
The experiments were performed with six parallel workers or CPU cores, which
is the equivalent of a standard desktop computer. However, most companies
in the data science industry have access to high-performance remote clusters
with a significant amount of CPU cores. As shown in Section 4.2.2, using
multiple workers can drastically reduce the computation time, especially if
thousands of AFDs need to be processed.

Furthermore, NULL values seem to be a complex problem. In most cases,
NULL values indicate the absence of data and are not informative. However,
we have shown several examples where a block of NULL values does have
semantic value (e.g. no test was taken, no third weapon used). Contrarily, if
there are many NULL values in both the LHS and RHS, the block of NULL
values can be coincidentally correct. So, including those NULL values can
cause an AFD to score high incorrectly. Our current approach for dealing
with NULLs clearly has its strengths and weaknesses. Hence, this should be
examined thoroughly in the future.

Our comparison of the approximation measures (g3, FI and RFI) and our
c-metric show that g3 is inadequate for AFD discovery. It found numerous
irrelevant AFDs due to predominant values in the RHS. Besides that, RFI
tends to be too strict in some cases and excludes possible interesting AFDs.
The behaviour of FI depends on the dataset, it performed well in some tests,
but it was too strict or returned too many results in other datasets. The latter
is caused by a large LHS domain.

Conclusively, the combination of g3 and FI seems to work well for AFD dis-
covery. We believe it is better to obtain too many results than too few and
let the domain expert decide which AFDs are irrelevant. By weighting g3 and
FI into one score, we can be relatively sure that the results do not miss any
AFDs or valuable insights.

Table 5.12 substantiates our findings. The average F-scores for g3, FI and RFI
are similar. Contrarily, our c-metric has a relatively high F-score, showing that
our c-metric outperforms g3, FI, RFI in general.
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c-metric g3 FI RFI

Patients 0.89 0.14 0.86 0.4

MRI 0.4 1.0 0.0 0.0

Treatment 1.0 1.0 0.80 0.80

Relapses 1.0 0.0 1.0 1.0

Visit 1.0 1.0 0.0 0.0

Claims 1.0 1.0 1.0 1.0

Census Income 0.8 0.13 0.67 1.0

FARS 0.79 0.29 0.45 0.41

OPNMUT 0.56 0.35 0.31 0.36

GTD 0.44 0.21 0.37 0.44

Average F-score 0.79 0.51 0.55 0.54

Table 5.12: A summary of the F-scores per measure for every dataset, and the
average F-score per measure.
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Chapter 6

Conclusion and Future Work

In this thesis, we developed a tool to discover relevant approximate functional
dependencies (AFDs), which are a relaxed version of exact functional depen-
dencies (FDs). This study is valuable since current research only focuses on
the efficiency of AFD discovery rather than the relevance of results. To obtain
this tool, we set three goals: (1) getting a clear overview of existing approx-
imation measures, (2) finding a combination of measures that focus on the
relevance of AFDs, and (3) implementing those measures in a tool for domain
experts.

In Chapter 3, we reviewed five approximation measures to achieve the first
goal: FI, g1, g2, g3 and τ . To highlight their strengths and weaknesses, we
compared them through various theoretical examples. Among the g-measures
g3 turned out to be the best option, and g1 and g2 tend to be too strict.
However, g3 does not consider the RHS distribution, which causes it to score
unduly high in some cases. Entropy-based measures FI and τ attempt to solve
this by considering the distribution of the RHS, as proven by the theoretical
examples. Additionally, we found that the differences between τ and FI were
minor. Except in the case of a relatively large LHS domain, where FI tends
to overestimate the approximation degree. Finally, we reviewed two attempts
to reduce FI’s bias: RFI and SFI. But, our theoretical examples showed that
RFI and SFI tend to correct FI too strongly, which causes their scores to be
relatively low, even when an AFD is a good cleaning candidate.

By studying the measures’ differences, we achieved the second goal. We found
that the combination of g3, FI, and RFI is theoretically most suitable to dis-
cover relevant AFDs without missing interesting AFDs, which was also con-
firmed by the results in Chapter 5. To eliminate the approximation measures’
confounding effects, we developed c-metric, a confidence score based on the
approximation measures and other metadata of an AFD, as described in the
first part of Chapter 4.

The second part of Chapter 4 extensively described our third goal, the AFD
discovery tool for domain experts. We used various visualization techniques to
simplify the decision process whether an AFD is a cleaning candidate or not.
To assess the performance of our tool and the accuracy of c-metric, we anal-
ysed the results of several datasets with distinct characteristics, as described
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in Chapter 5. By comparing precision, recall and the F-score between our
c-metric, FI, RFI and g3, we found that our c-metric was most suitable for
AFD discovery. FI did not find every AFD, g3 was biased due to the factors
mentioned above, resulting in many irrelevant AFDs, and RFI was too strict
in most datasets.

Future Work

Even though we have accomplished the three goals set in Chapter 1, sev-
eral additional aspects can be examined or implemented in the future. As
mentioned before, we focused on the relevance of results rather than the com-
putational performance of AFD discovery. We have reviewed and implemented
two simplistic methods to improve performance. Still, the execution times in
Chapter 5 indicate that performance needs to be reduced drastically to dis-
cover AFDs of higher arities in larger datasets. This can be done by deducing
pruning rules for approximate functional dependencies to reduce the number of
possible AFDs before and during discovery [18]. Additionally, future research
can look into a more efficient discovery algorithm by exploiting the properties
of both FI and g3, as done in [20] for FI and in [15, 13, 4] for g3.

Besides that, the approximation measures currently have difficulties with pro-
cessing continuous data. We believe this can be solved by either finding a
binning strategy that does not influence the approximation scores or by ad-
justing the calculation of each measure for continuous data.

Moreover, our tool can only be used to get an overview of the found AFDs.
However, we did not provide a feature to export AFDs verified by the domain
experts to a database management system (DBMS). This was outside the
scope of this thesis but can be integrated into our tool in the future. And
finally, the tool’s usability needs to be verified with domain experts to gain
insight into the strengths and weaknesses of the tool in terms of navigation
and visualization.
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Appendix A

Dutch Summary

A.1 Introductie

Het gebruik van (big) data is voor bedrijven een essentiële factor geworden
om betere beslissingen te nemen en processen efficiënt te maken. De verkre-
gen gegevens zijn echter niet altijd juist, vooral wanneer deze door mensen zijn
gegenereerd. Alvorens inzicht te krijgen in de informatie, moet er aan data
cleaning worden gedaan om de mogelijk foutieve gegevens te wijzigen of te ver-
wijderen. Helaas kan data cleaning een zeer vervelende taak zijn. Anaconda1,
een van de meest gebruikte data science platformen, schreef in een rapport
uit 2020 [2] dat data scientists 26% van hun tijd besteden aan data cleaning.
Vandaar dat het ontwerpen van oplossingen om data cleaning efficiënt en doel-
gericht uit te voeren een aanzienlijke verbetering kan betekenen, niet alleen
voor de data science sector, maar voor alle bedrijven in het algemeen.

Ilyas et al. [14] hebben onderzoek gebundeld en een breed spectrum van metho-
den samengevat om fouten op te sporen. Een voorbeeld van zo een soort fout is
een logische error. Bijvoorbeeld, het feit dat een persoon in Californië (staat)
en Canada (land) woont, is tegenstrijdig, dus een van deze twee waarden zal
waarschijnlijk fout zijn. Een van de methoden om logische fouten op te sporen
is het ontdekken van integrity constraints (IC’s) [14]. Gewoonlijk gebeurt het
vinden van deze IC’s met de hand, waardoor het een lastige taak is voor
domeinexperts en een hoge kost heeft voor het wervende bedrijf [14]. Daarom
wordt er veel onderzoek gedaan naar algoritmen om zulke IC’s automatisch te
vinden.

In deze thesis richten we ons op Functional Dependencies (FD’s) en Approx-
imate Functional Dependencies (AFD’s), een versoepelde variant van FD’s.
FD discovery algoritmen zijn ontworpen om op clean data te werken, wat in
de praktijk niet altijd het geval is. In dat geval kunnen AFD’s zeer waarde-
vol zijn. Approximate betekent dat de FD minder strikt is en fouten in de
data tolereert. Zelfs als de dataset fouten bevat, is het nog mogelijk FD’s te
ontdekken. Om een combinatie van kolommen als een AFD te classificeren,
moeten we eerst bepalen wanneer een FD bij benadering geldt. Met andere
woorden, we hebben een score nodig die bepaalt in welke mate de FD bij be-

1https://www.anaconda.com
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nadering geldt in de dataset. Het is echter een uitdaging om een algoritme
te ontwikkelen dat relevante resultaten oplevert als men zich niet bewust is
van de theoretische en praktische verschillen tussen de verschillende maten.
In deze thesis zullen we de bestaande maten grondig analyseren om inzicht te
krijgen in die verschillen.

A.1.1 Bijdragen

Tijdens onze literatuurstudie vonden we talrijke onderzoekspapers over AFD
discovery algoritmen die nagenoeg allemaal de nadruk legden op het vinden
van een efficiënte aanpak voor het ontdekken van AFD’s, en niet op het vinden
van de meest relevante resultaten. In deze thesis willen we onderzoeken welke
maten de meest relevante resultaten opleveren. Daarnaast hebben we geen
onderzoek gevonden dat een discovery algoritme integreert in een tool voor
domeinexperts. Onze studie toont aan hoe een combinatie van maten en visu-
alisatietechnieken een waardevol hulpmiddel kan zijn voor een domeinexpert
om relevante AFD’s van andere AFD’s te onderscheiden.

A.1.2 Doelstellingen

We zullen in dit proefschrift drie doelen trachten te bereiken: (1) een duidelijk
overzicht krijgen van alle maten door hun sterke punten en tekortkomingen
vast te stellen, (2) één of een combinatie van geschikte maten vinden om
interessante AFD’s af te leiden, en (3) een visuele tool voor domeinexperts
ontwerpen die gebaseerd is op de maten uit het vorige doel.

A.2 Functional Dependencies

Alvorens over te gaan tot het berekenen van Approximate Functional De-
pendencies (AFD’s), verduidelijken we enkele definities en de nodige notatie.
De definities die in de volgende paragrafen gebruikt worden, zijn gebaseerd
op onderzoek van Ilyas et al. [14], Liu et al. [18] en Caruccio et al. [6].
Een cursieve hoofdletter (bv. A) staat voor één variabele, terwijl een niet-
cursieve hoofdletter (bv. X) een verzameling variabelen aanduidt. Het domein
van A, dom(A), beschrijft de mogelijke unieke waarden van variabele A.
Zo is dom(X) het kruisproduct van de domeinen van elke variabele in X,
dom(A1)× dom(A2)× ...× dom(Am). Hier is X = A1,A2, ...,Am en m is |X|.
Een cursieve kleine letter (b.v. a) geeft een waarde in dom(A) aan. Gemak-
shalve staat XY voor X ∪Y en XA voor X ∪ {A}.

A.2.1 Exacte Functional Dependencies

Zij R een relationeel schema met attributen A = {A1, ..., Am}. Een instantie
r van R bestaat uit tupels t1, ..., tn. We definiëren ti[A1] als de projectie van
tupel ti op attribuut A1.

Definition A.1. Een exacte functional dependency (FD) is een statement
X → Y waar XY ⊆ A. Zodat, voor elk tupel ti, tj in r waar ti[X] = tj [X],
ti[Y] = tj [Y].

In X→ Y wordt X het linkerlid (LHS) genoemd en Y het rechterlid (RHS).
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Definition A.2. Een minimale FD is een FD die niet meer geldt indien we
een attribuut uit de LHS verwijderen.

Definition A.3. Een triviale FD is een FD waar RHS ⊆ LHS.

Met eenvoud en performantie in het achterhoofd, richt dit onderzoek zich
alleen op minimale niet-triviale FD’s met slechts één attribuut in de RHS.
Bovendien zullen we onze bevindingen in dit document vooral illustreren met
FD’s van ariteit 1, wat overeenkomt met het aantal variabelen in de LHS.

A.2.2 Approximate Functional Dependencies

Om data te cleanen met behulp van exacte FD’s, moeten we ze van tevoren
kennen. Het is onmogelijk om exacte FD’s te ontdekken uit een relatie met
foutieve tupels omdat de definitie van een exacte FD te strikt is [20]. Approx-
imate Functional Dependencies (AFD’s) proberen dit probleem op te lossen
door te eisen dat de meeste, maar niet alle, tuples voldoen aan de voorwaarde
in Definitie A.1.

Definition A.4. Een Approximate Functional Dependency (AFD) is een FD
waar een satisfaction maat s niet minder is dan een threshold ε. Bijgevolg is
S(X→ Y, r) een functie die een FD X→ Y en een relatie r op s mapt, waarbij
0 ≤ s ≤ 1.

Beschouw X → Y, als s gelijk is aan 0, zijn X en Y functioneel onafhankelijk.
Indien s gelijk is aan 1, is X → Y een exacte FD. Echter, de beslissing of X
→ Y een AFD is, hangt sterk af van de berekening van s. De volgende sectie
vergelijkt verschillende scoringsmethoden om dit probleem op te lossen.

A.3 Meten van AFD’s

We definiëren eerst wat we van een maat verwachten. De mate waarin X
→ Y approximate is in relatie r is gelijk aan de mate waarin X tot Y een
functie is in r. Daarnaast hebben Giannella et al. [11] ook opgemerkt dat
elke permutatie van de tupels in een relatie r dezelfde score moet bekomen.
Bijgevolg hebben we slechts de marginale aantallen van X (cx) en Y (cy), de
gezamenlijke aantallen van XY (cxy) en het totale aantal tuples in de relatie
(|r|) nodig, om de score te berekenen. Waarbij x, y en xy respectievelijk
waarden in dom(X), dom(Y) en dom(XY) zijn. Nu kunnen we de kans op
zulke x, y en xy definiëren als

px =
cx
|r|

py =
cy
|r|

pxy =
cxy
|r|

Om de maten uit de literatuur te kunnen vergelijken, moet een maat een
AFD X → Y mappen op een waarde tussen 0 en 1, hetgeen respectievelijk
statistische onafhankelijkheid en functionele afhankelijkheid aangeeft.

A.3.1 g-maten

Kivinen et al. [16] stelden de eerste drie maten voor die we zullen bespreken:
g1, g2 en g3. Herinner dat een koppel van tupels (ti, tj) een FD schendt (=
violate) indien ti[X] = tj [X], maar ti[Y] 6= tj [Y]. Bovendien is een tupel
schendend als een schendend paar dit tupel bevat. Als er geen schendende
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tupels in r zijn, geldt de FD in r. Alle drie de g-maten zijn gebaseerd op het
aantal schendende tuples of schendende koppels van tuples. Eerst definiëren
we g′1 als het aantal schendende paren in de relatie ten opzichte van het totaal
aantal mogelijke paren. Om aan de vooropgestelde eisen te voldoen, definiëren
we g1 als 1− g′1 om 1 te bekomen als X → Y een exacte FD is.

g′1(X→ Y, r) = |{(u, v) | u, v ∈ r, u[X] = v[X], u[Y] 6= v[Y]}|/(|r|2 − |r|)

Een gelijkaardige maat definiëren we als het aantal schendende tupels in de
relatie ten opzichte van alle tupels in de relatie, ook wel g′2 genoemd. Om een
score tussen 0 en 1 te bekomen en definiëren we g2 als 1− g′2.

g′2(X→ Y, r) = |{u | u ∈ r, ∃v ∈ r : u[X] = v[X], u[Y] 6= v[Y]}|/|r|

Tenslotte definiëren we g′3 als het aantal schendende tupels dat uit r verwijderd
moet worden om de FD te doen gelden in r, ten opzichte van het totale aantal
tupels in r. Op dezelfde manier als bij de twee vorige maten bekomen we g3
door 1− g′3 dat gelijk is aan 1 indien de AFD een exacte FD is.

g′3(X→ Y, r) = (|r| −max{|d| | d ⊆ r,X→ Y holds in d})/(|r| − |dom(X)|)

A.3.2 Tau (τ)

Tau (τ) [23, 11] is gebaseerd op de idee dat een persoon een waarde in Y
moet raden, door alleen de empirische aantallen cx, cy en cxy te kennen, in
twee scenario’s. In het eerste scenario heeft de persoon geen aanvullende
informatie. In het tweede scenario kent de persoon de bijbehorende x van de
y die hij/zij moet raden. De τ maat staat voor het relatieve verschil tussen
de kans dat de persoon y correct kan voorspellen in de twee scenario’s. Indien
de kans in scenario twee aanzienlijk groter is, is X → Y een AFD.

Formeel kunnen we de kans van de eerste situatie (P1) en de tweede situatie
(P2) definiëren als volgt:

P1 =
∑

y∈dom(Y)

c2y
|r|2

P2 =
∑

x∈dom(X)

∑
y∈dom(Y)

c2xy
|r|cx

We kunnen τ nu definiëren als het genormaliseerde verschil tussen P2 en P1

of de hoeveelheid onzekerheid die X vermindert wanneer iemand een y moet
raden:

τ(X→ Y, r) =

{
0 if |dom(Y)| = 1
P2−P1
1−P1

otherwise

A.3.3 Fraction of Information (FI )

De volgende maat werd voor het eerst gëıntroduceerd in onderzoek van
Reimherr et al. [24], Dalkilic et al. [9] en Cavallo et al. [7], en later bespro-
ken door Mandros et al. [20]. Fraction of Information (FI ) werd ontwikkeld
op basis van de informatietheorie door Claude Shannon [26] en wordt formeel
gedefinieerd als volgt:

FI(X→ Y, r) =

{
0 if |dom(Y)| = 1
H(Y)−H(Y|X)

H(Y) otherwise
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H(Y) is de entropie of de hoeveelheid onzekerheid in Y. En H(Y|X) is de
conditionele entropie van Y waarbij we X gegeven krijgen. Dus, FI is een
maat voor de hoeveelheid onzekerheid die X afneemt van Y ten opzichte van
de totale onzekerheid in Y.

A.3.4 Theoretische Verschillen

In dit deel zullen we dieper ingaan op de fundamentele verschillen tussen de
maten die we gevonden hebben door ze uit te voeren op theoretische voor-
beelden. Alle voorbeelden kunnen in detail teruggevonden worden in Sec-
tie 3.2.5. Om onze uitleg te vereenvoudigen, gebruiken we de term blok, dat
gedefinieerd is als de maximale subset van r waarbij de LHS een bepaalde
waarde aanneemt.

Verschillen Tussen g-maten

De g2 maat wijkt het sterkst af van g1 en g3. De g2 maat geeft aan dat de
LHS en RHS onafhankelijk zijn zodra elk blok slechts 1 foutief tupel heeft,
waardoor veel relevante AFD’s worden geëlimineerd. De verschillen tussen g3
en g1 zijn eerder subtiel. Indien we een geval hebben waarbij het aantal unieke
errors groot is, zal g2 lager zijn dan g3, waardoor g2 soms te streng kan zijn.
Beschouw een relatie die bestaat uit één blok (A = 1). Het blok bevat 8 juiste
tupels (B = 1) en twee fouten (B = 2 en 3). In dit geval is g1 = 0.622, g2 =
0 en g3 = 0.778. De maten g1 en g2 lijken de mate van benadering van A →
B niet goed aan te geven, in tegenstelling tot g3.

Verschillen Tussen g3, en FI en τ

Het belangrijkste verschil tussen g3, τ en FI is dat g3 geen rekening houdt
met de verdeling van Y. Deze verdeling kan echter wel bepalen of een AFD
relevant is of niet. Beschouw een relatie die bestaat uit 10 blokken (A = 1-10)
met elk 1000 tupels. Elk blok bevat één foutief tupel (B = 2). De verdeling
van B heeft echter een overheersende waarde (B = 1). Dit betekent dat we A
kunnen vervangen door elke andere variabele met een willekeurige verdeling,
en de AFD nog steeds zou gelden volgens g3 (0.99). De score van τ en FI
daarentegen zijn gelijk aan 0 door rekening te houden met de verdeling van de
RHS.

Veschillen Tussen τ en FI

Er zijn twee grote verschillen tussen τ en FI. Het eerste verschil doet zich voor
wanneer de LHS een relatief groot domein heeft. Beschouw een relatie met
1000 blokken (A = 1-1000) met elk twee verschillende B waarden, en geen enkel
blok deelt een waarde uit dom(B). De twee waarden zijn uniform verdeeld
binnen elk blok, waardoor A → B geen kandidaat is voor data cleaning. De
maat τ heeft een correcte score van 0.5 omdat we gemiddeld 50% zeker zijn bij
het raden van een waarde in B. Daarentegen overschat FI de afhankelijkheid
van B ten opzichte van A met een score van 0.909.
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Het tweede verschil uit zich bij een relatief hoog aantal unieke foute waarden.
Beschouw twee relaties met elk twee blokken van grootte 5000. Het eerste
blok (A = 1) is correct, maar in het blok waar A = 2, hebben we 500 fouten
gëıntroduceerd (10%). In de eerste relatie zijn de errors uniek (B = 3-502),
en in de tweede relatie zijn de errors hetzelfde (B = 3). De τ maat focust zich
op de kans dat we B raden als we A gegeven hebben, wat ervoor zorgt dat τ
ongeveer hetzelfde scoort bij de twee relaties (0.827 en 0.835). Daarentegen
is H(B|A) in relatie 1 lager dan in relatie 2 omdat er meer diversiteit in de
fouten is, waardoor de score van FI in de eerste relatie lager is (0.594 en 0.81).

A.3.5 Verfijningen van FI

Deze sectie beschrijft waarom FI een vertekende score geeft bij een groot LHS
domein. Omdat we de werkelijke verdeling van X en Y niet kennen, moeten
we px, py en pxy via de relatie r schatten om H(Y) en H(Y|X) te berekenen.
Mandros et al. [20] merkten op dat het gebruik van deze empirische schatters
ertoe leidt dat FI de mate van afhankelijkheid overschat, vooral als de data
sparse (= schaars) zijn. Herinner de formule van FI. De score is maximaal
als H(Y|X) 0 bereikt. Dit is het geval als pxy gelijk is aan px voor elke x, y in
r want dan is log(pxy/px) = log(1) = 0. Bovenstaande situatie doet zich dus
vooral voor als de relatie klein is vergeleken met de grootte van het X domein
(data sparsity). Zelfs als X en Y eigenlijk onafhankelijk zijn. Om de bias van
FI te verminderen, hebben Mandros et al. [20] en Pennerath et al. [22] twee
oplossingen voorgesteld: Reliable FI (RFI ) en Smoothed FI (SFI ).

Reliable FI

Het is onmogelijk de hoeveelheid bias te bepalen omdat we de werkelijke verdel-
ing van X en Y niet kennen. Maar we weten wel dat de hoogst mogelijke bias
optreedt wanneer FI = 0 (onafhankelijkheid), hetgeen ook een eenvoudig ref-
erentiepunt is. Dus als we proberen onafhankelijkheid te simuleren en FI
berekenen, weten we dat het resultaat 0 moet zijn. Zo niet, dan komt de bias
precies overeen met die score. Reliable FI kan nu formeel voorgesteld worden
als volgt:

RFI(X→ Y, r) = F̂ I(X→ Y, r)− b̂0(X→ Y, r)

Waarbij b̂0 de geschatte bias voorstelt en F̂ I overeenkomt met de vertekende
FI. Om de bias te berekenen, simuleren we onafhankelijkheid door alle waar-
den in Y te permuteren en de gemiddelde FI te berekenen van alle mogelijke
permutaties.

Smoothed FI

De tweede aanpak [22] maakt gebruik van Laplace smoothing om de bias van
FI te verminderen. De empirische kans px wordt gesmooth door voor elke x in
dom(X) een bepaald aantal tuples aan r toe te voegen. Op die manier wordt
de grootte van dom(X) kleiner dan het aantal tuples in r, waardoor de data
minder sparse worden. De waarde van SFI wordt berekend door de empirische
kansen aan te passen als volgt, waarbij α de smoothing parameter is. Indien
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α > 0, worden α-samples toegevoegd aan r voor elke x in dom(X).

p̃(α)x =
cx + α

|r|+ |dom(X)| × α
p̃(α)xy =

cxy + α

|r|+ |dom(X)| × |dom(Y)| × α

Theoretische Bevindingen

RFI en SFI verminderen de bias van FI goed in het voorbeeld dat we in de
vorige sectie hebben aangehaald, maar ze onderschatten in sommige gevallen
sterk de mate waarin Y wordt bepaald door X omdat ze blindelings grote
domeinen afstraffen. Hierdoor zijn ze ongeschikt voor het ontdekken van
AFD’s. Toch lijkt RFI het beter te doen dan SFI. Beschouw bijvoorbeeld
een relatie die bestaat uit 1000 blokken (A = 1 − 1000). Het domein van
B bevat slechts 10 waarden. Elk blok is volledig juist, en twee verschillende
blokken kunnen dezelfde B waarden hebben. Dus, A → B is een exacte FD.
In deze situatie hebben we vooropgesteld dat een maat altijd een score van 1
moet hebben. Maar SFI en RFI zijn te laag met scores van 0.272 en 0.769,
respectievelijk.

A.3.6 Conclusie

Aan de hand van de theoretische experimenten op alle maten, kunnen we
concluderen dat een combinatie van g3, FI en RFI goed kan werken in een
tool voor AFD discovery. Hoewel g3 geen rekening houdt met de verdeling
van de RHS, kan deze toch relevante AFD’s vinden. En ondanks dat RFI de
bias van FI niet goed kan wegwerken, kunnen we RFI wel gebruiken om te
weten wanneer FI mogelijks een vertekende score geeft, zodat we een gewogen
belissing kunnen nemen.

A.4 Een Tool voor AFD Discovery

In deze sectie beschrijven we het proces om te beslissen of een AFD relevant
is. Dit gebeurt aan de hand van een combinatie van g3, FI, RFI en metadata
van elke AFD, zoals verdelingen en het aantal NULL waarden. Daarnaast
presenteren we een tool die we hebben ontwikkeld voor domeinexperts om
relevante AFD’s te vinden in een dataset.

A.4.1 Beslissingsproces voor Relevante AFD’s

We geven hier een bondige beschrijving van het proces dat in meer detail
weergegeven wordt in Figuur 4.1. Eerst berekenen FI en g3 de score van X
→ Y met behulp van de eerder besproken formules. Als beide scores van de
AFD laag zijn, weten we dat de AFD niet relevant is. Daarom filtert onze
aanpak mogelijk irrelevante AFD’s met een score van minder dan 0.9. Die
gefilterde resultaten worden dan met de metadata van elke AFD ingevoerd
in een beslissingsboom (Figuur 4.1) om een confidence score (tussen 0 en
5), verder aangeduid als c-metric, te berekenen en een beredenering voor de
domeinexpert te bepalen.
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Of g3 en FI beide zeer hoog zijn of één ervan laag, is een positief of een negatief
teken dat weergegeven moet worden door c-metric. Daarom initialiseren we
de score met de gewogen som van FI en g3 (2.5 × g3 + 2.5 × FI). Hierna
wordt c-metric bestraft indien er bepaalde patronen in de metadata gevonden
worden. Bijvoorbeeld, indien g3 hoog is, maar de RHS een overheersende
waarde bevat, verminderen we c-metric met 1.

Nadien wordt er aan de hand van c-metric en de metadata van de AFD een
beredenering opgesteld. Beschouw een relatie met 10 blokken met grootte
1000. Elk blok heeft 2 mogelijke waardes die respectievelijk 990 en 10 keer
voorkomen. Dus, A→ B is een goede AFD kandidaat. De scores van van g3,
FI en RFI zijn respectievelijk 0.99, 0.976 en 0.974. De score van c-metric is
gelijk aan 4.915 en de volgende beredenering wordt gegenereerd:

“The algorithm is almost certain this is an FD. Fraction of information is
very high and g3 is very high. Additionally, reliable fraction of information is
high. Which is a very strong sign of dependency.”

A.4.2 De Implementatie van het Discovery Algoritme

Aangezien deze thesis eerder gericht is op relevante AFD’s dan op de efficiëntie
van het algoritme, hebben we een eenvoudig discovery algoritme gëımple-
menteerd. Een domeinexpert kan ruwe data inladen, waarna alle mogelijke
AFD’s worden bepaald. Elke AFD wordt nadien in een datastructuur geladen
om het berekenen van de scores te vergemakkelijken. Alvorens de scores voor
elke AFD te berekenen, doen we enkele preprocessing stappen. We elimineren
rijen die een NULL waarde bevatten en blokken van grootte 5 of minder, in-
dien de eindgebruiker dit wenst. Vervolgens kunnen we enkele AFD’s reeds
prunen op basis van hun metadata. We elimineren alle AFD’s die een key zijn,
geen rijen bevatten, of slechts 1 mogelijke RHS waarde bevatten. Tenslotte
wordt c-metric berekend en de beredenering bepaald zoals we in de vorige
sectie beschreven hebben.

We hebben reeds besproken dat onze aanpak meer gericht is op de relevantie
dan op de efficiëntie. Maar we merkten dat de efficiëntie aanzienlijk geop-
timaliseerd kon worden met enkele kleine verbeteringen. Ten eerste kunnen
we de berekening van RFI versnellen door het gebruik van contigency tables,
voorgesteld door Mandros et al. [20, 21, 19]. Daarnaast prunen we een deel
van de mogelijke AFD’s zoals eerder beschreven. En tenslotte kunnen we alle
AFD’s in parallel berekenen aangezien een AFD geen informatie deelt met een
andere AFD.

A.4.3 Een Interactieve Tool

Het bovenvermelde algoritme hebben we gëımplementeerd in een interactieve
tool voor domeinexperts, gebaseerd op een tool die Liese Bekkers voor haar
bachelorthesis ontworpen heeft [5]. De tool geeft een overzicht van de gevonden
AFD’s en visualiseert hun scores voor c-metric en andere metadata. Een
globaal overzicht van de UI wordt weergegeven in Figuur 4.5. Onderstaande
lijst is een verzameling van de belangrijkste functionaliteiten en visualisaties
in onze tool, die uitgebreid getoond worden in Hoofdstuk 4:
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• AFD’s worden per RHS in groepen ingedeeld en geordend op basis van
de score van c-metric en krijgen een kleur (van oranje tot groen).

• Voor elke AFD kunnen de volgende dingen bekeken worden: de verdelin-
gen aan de hand van een piechart, het aantal gebruikte rijen aan de hand
van een barchart, de scores, en mogelijke foute en correcte blokken aan
de hand van een barchart.

• De domeinexpert kan AFD’s met een lagere score voor c-metric verber-
gen met een slider.

A.5 Experimenten op Datasets

In deze sectie worden de resultaten van de ontwikkelde tool geanalyseerd.
We hebben onze tool op de volgende zes datasets getest: MSBase (gegevens
over 55409 MS-patiënten) bestaande uit vijf tabellen, Claims (gegevens over
klachten die tegen de TSA zijn ingediend), Census Income (demografische in-
formatie van verschillende burgers van de VS), FARS (gegevens over dodelijke
verkeersongevallen in de VS), OPNMUT (informatie over veranderingen van
het bezoek van een patiënt aan het ZOL) en GTD (gegevens over meer dan
180000 terroristische aanslagen).

Twee daarvan werden voorzien door Ziekenhuis Oost-Limburg (ZOL) en MS-
Base: Zo konden we de relevantie van AFD’s bespreken met domeinexperts
en onze applicatie finetunen op basis van hun bevindingen.

A.5.1 Bevindingen

Over het algemeen verduidelijkten de resultaten dat een volledig autonome
tool niet mogelijk zou zijn. Verschillende AFD’s bevatten semantische nuances
die alleen door domeinexperts gevonden kunnen worden. De resultaten tonen
aan dat de visualisaties in onze tool de beslissende factor kunnen zijn voor de
beslissing of een AFD al dan niet relevant is.

Ten eerste bevatten de resultaten van bijna alle datasets grote RHS groepen
door een overheersende RHS waarde, omdat g3 hier geen rekening mee houdt.
In de meeste gevallen waren deze AFD’s dan ook irrelevant, zoals aangegeven
door onze tool. Daarnaast waren de AFD’s die bovenaan (in het groen) ston-
den in de meeste gevallen interessante AFD’s. Maar, in sommige gevallen
kan een AFD interessante inzichten bieden, maar is het toch geen cleaning
kandidaat. Bijvoorbeeld, de Patients dataset bevatte een AFD birth country
→ country omdat mensen vaak in hetzelfde land leven als hun geboorte-
land. Bovendien kregen alle exacte FD’s de hoogst mogelijke score en werden
ze bovenaan gerangschikt. Bijvoorbeeld, de Claims dataset bevat een AFD
AirportName → AirportCode die een exacte FD is aangezien de identifier al-
tijd moet overeenkomen met de naam van de luchthaven.

Over het algemeen zijn we de theoretische verschillen tussen de maten ook
tegengekomen in de resultaten van de datasets, wat aangeeft dat c-metric
inderdaad goed opgesteld is. De g3 maat leidt te veel AFD’s af door de verdel-
ing van de RHS niet mee in rekening te nemen. Daarnaast waren g2 en g1 te
strikt en leidden ze verschillende relevante AFD’s niet af. Verder hebben we
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een klein aantal gevallen gevonden waar FI een vertekende score geeft bij een
groot domein. De c-metric score handelde dit goed af door g3 mee in rekening
te nemen en RFI te beschouwen. De maten SFI en RFI waren inderdaad te
strikt waardoor ze niet geschikt waren voor AFD discovery. En tenslotte was
het verschil tussen τ en FI klein doorheen de resultaten.

A.5.2 Vergelijking Tussen de Maten

Tabel A.1 toont de gemiddelde F-scores voor g3, FI, RFI en de c-metric. De
F-score is een veelgebruikte score om aan te geven hoe goed een machine
learning model werkt. Onze c-metric heeft een relatief hoge gemiddelde F-
score, waaruit blijkt dat de c-metric over het algemeen beter presteert dan g3,
FI, RFI.

c-metric g3 FI RFI

Patients 0.89 0.14 0.86 0.4

MRI 0.4 1.0 0.0 0.0

Treatment 1.0 1.0 0.80 0.80

Relapses 1.0 0.0 1.0 1.0

Visit 1.0 1.0 0.0 0.0

Claims 1.0 1.0 1.0 1.0

Census Income 0.8 0.13 0.67 1.0

FARS 0.79 0.29 0.45 0.41

OPNMUT 0.56 0.35 0.31 0.36

GTD 0.44 0.21 0.37 0.44

Gemiddelde F-score 0.79 0.51 0.55 0.54

Table A.1: Een samenvatting van de F-scores per maat voor elke dataset, en
de gemiddelde F-score voor elke maat.

A.6 Conclusie

In deze thesis hebben we verschillende maten vergeleken om te bepalen welke
het meest geschikt zou zijn om relevante AFD’s te vinden. Aan de hand
van theoretische voorbeelden hebben we ondervonden dat g3, FI en RFI een
goede combinatie van maten is om dit te verwezenlijken. Om de vertekende
effecten van de maten te verminderen, hebben we de c-metric ontwikkeld die
een score berekent op basis van de maten en andere metadata van een AFD,
zoals beschreven in het eerste deel van Sectie A.4. Het tweede deel beschreef
hoe we de c-metric hebben gëıntegreerd in een visuele tool voor domeinexperts.
We hebben verschillende visualisatietechnieken gebruikt om de beslissing of
een AFD een cleaning kandidaat is of niet te vereenvoudigen. Om de werking
van onze tool en de nauwkeurigheid van onze c-metric te beoordelen, hebben
we de resultaten van verschillende datasets geanalyseerd. Door precision, recall
en de F-score tussen onze c-metric, FI, RFI en g3 te vergelijken, vonden we dat
de c-metric het meest geschikt was voor het vinden van AFD’s. De maat FI
vond niet elke AFD, g3 was te laks, wat resulteerde in veel irrelevante AFD’s,
en RFI was te streng in de meeste datasets.
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Appendix B

Example output in JSON

1 [
2 {
3 ”B” : {
4 ” fd s ” : [
5 {
6 ” s c o r e s ” : {
7 ”g3” : 0 . 96 ,
8 ” f r a c t i o n o f i n f o r m a t i o n ” : 0 . 451 ,
9 ” r e l i a b l e f r a c t i o n o f i n f o r m a t i o n ” : 0

10 } ,
11 ” f d w i t h n u l l s ” : f a l s e ,
12 ”columns” : [
13 ”A” ,
14 ”B”
15 ] ,
16 ” number of x ” : 10 ,
17 ” number of y ” : 5 ,
18 ” number of xy ” : 14 ,
19 ” most f r equent x ” : {
20 ”0” : 10 . 0 ,
21 ”1” : 10 . 0 ,
22 ”2” : 10 . 0 ,
23 ”3” : 10 . 0 ,
24 ”4” : 10 . 0 ,
25 ”5” : 10 . 0 ,
26 ”6” : 10 . 0 ,
27 ”7” : 10 . 0 ,
28 ”8” : 10 . 0 ,
29 ”9” : 10 .0
30 } ,
31 ” most f r equent y ” : {
32 ”0” : 96 . 0 ,
33 ”1” : 1 . 0 ,
34 ”2” : 1 . 0 ,
35 ”3” : 1 . 0 ,
36 ”4” : 1 . 0
37 } ,
38 ” most f requent xy ” : {
39 ” 0 ,0 ” : 10 . 0 ,
40 ” 1 ,0 ” : 10 . 0 ,
41 ” 2 ,0 ” : 10 . 0 ,
42 ” 3 ,0 ” : 10 . 0 ,
43 ” 4 ,0 ” : 10 . 0 ,
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44 ” 5 ,0 ” : 10 . 0 ,
45 ” 6 ,0 ” : 10 . 0 ,
46 ” 7 ,0 ” : 10 . 0 ,
47 ” 8 ,0 ” : 10 . 0 ,
48 ” 9 ,0 ” : 6 . 0 ,
49 ” 9 ,1 ” : 1 . 0 ,
50 ” 9 ,2 ” : 1 . 0 ,
51 ” 9 ,3 ” : 1 . 0 ,
52 ” 9 ,4 ” : 1 . 0
53 } ,
54 ” used rows ” : 10000 ,
55 ” t o t a l r o w s ” : 10000 ,
56 ” n smal l rows ” : 0 ,
57 ” n s m a l l b l o c k s ” : 0 ,
58 ” n nu l l r ows ” : 0 ,
59 ” d i r t y d a t a ” : [
60 {
61 ” l h s ” : 9 ,
62 ” d e f a u l t ” : 0 ,
63 ” d e f a u l t p e r c e n t a g e ” : 0 . 6 ,
64 ” n b lock rows ” : 1000 ,
65 ” n e r r o r s ” : 400 ,
66 ” erroneous example ” : 1 ,
67 ” n u n i q u e e r r o r s ” : 4
68 }
69 ] ,
70 ” c l ean data ” : [
71 {
72 ” l h s ” : 0 ,
73 ” d e f a u l t ” : 0 ,
74 ” n b lock rows ” : 1000
75 } ,
76 {
77 ” l h s ” : 1 ,
78 ” d e f a u l t ” : 0 ,
79 ” n b lock rows ” : 1000
80 } ,
81 {
82 ” l h s ” : 2 ,
83 ” d e f a u l t ” : 0 ,
84 ” n b lock rows ” : 1000
85 } ,
86 {
87 ” l h s ” : 3 ,
88 ” d e f a u l t ” : 0 ,
89 ” n b lock rows ” : 1000
90 } ,
91 {
92 ” l h s ” : 4 ,
93 ” d e f a u l t ” : 0 ,
94 ” n b lock rows ” : 1000
95 } ,
96 {
97 ” l h s ” : 5 ,
98 ” d e f a u l t ” : 0 ,
99 ” n b lock rows ” : 1000

100 } ,
101 {
102 ” l h s ” : 6 ,
103 ” d e f a u l t ” : 0 ,
104 ” n b lock rows ” : 1000
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105 } ,
106 {
107 ” l h s ” : 7 ,
108 ” d e f a u l t ” : 0 ,
109 ” n b lock rows ” : 1000
110 } ,
111 {
112 ” l h s ” : 8 ,
113 ” d e f a u l t ” : 0 ,
114 ” n b lock rows ” : 1000
115 }
116 ] ,
117 ” reason ing ” : {
118 ” f d w i t h n u l l s ” : f a l s e ,
119 ” low rows ” : f a l s e ,
120 ” con f idence ” : 2 .5275 ,
121 ” reason ” : ”The a lgor i thm i s moderately

con f i d en t o f t h i s FD. Fract ion o f
in fo rmat ion i s low and g3 i s very high .
However , the re i s a predominant value

(0 ) in the d i s t r i b u t i o n o f the RHS.
Which means that g3 i s p o s s i b l y b iased .

The D i s t r i b u t i o n s e c t i o n prov ide s more
in fo rmat ion . ”

122 } ,
123 ” va l id sample ” : t rue
124 }
125 ] ,
126 ” ave rage con f i d ence ” : 2 .5275 ,
127 ” num fds in group ” : 1
128 }
129 }
130 ]
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Appendix C

Column Semantics of the
Used Datasets

C.1 MSBase

C.1.1 MRI

Column Name Meaning

PATIENT ID Unique patient identifier (=linking with other table like
e.g. patient table)

EXAM DATE Date of the MRI examination. Format DD/MM/YYYY

EXAM TYPE MRI of Brain, Whole Spinal Cord, Cervical Cord, Thoracic
Cord

T1 T1 weighted image is one of the basic pulse sequences in
MRI and demonstrates differences in the T1 relaxation
times of tissues. The default is false. True means that
this MRI sequence was measured

T1 RESULT Results of the T1 MRI sequence

T1 LESION Number of lesions using the T1 MRI sequence

T1 GADOLINIUM T1-weighted imaging can also be performed while infusing
Gadolinium (Gad). Gad is a non-toxic paramagnetic con-
trast enhancement agent. When injected during the scan,
Gad changes signal intensities by shortening T1. Thus,
Gad is very bright on T1- weighted images. The default is
false. True means that this MRI sequence was measured

T1
GADOLINIUM
RESULT

Results of the T1 Gadolinium MRI sequence

Table C.1: Semantics of the columns in the MRI dataset.
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C.1.2 Patients

Column Name Meaning

PATIENT ID Unique patient identifier

BIRTH CITY City of birth

BIRTH
COUNTRY

Country of birth

EMPLOYMENT
STATUS

Employment status

country Country of residence

gender Type of Sex

BIRTH DATE Date of birth (DD/MM/YYYY)

education Level of education

MARITAL
STATUS

Marital status

CLINIC ENTRY
DATE

The date of the first registration within the MSBase ini-
tiative. format MM/DD/YYYY

dead Patient is currently dead (=True). False is the default
option

DEATH DATE Date of death. format MM/DD/YYYY

ETHNIC ORIGIN Ethnic Origin

SYMPTOMS
DATE

Date of disease onset (=the day they showed first MS Clin-
ical Symptoms). Format MM/DD/YYYY

START OF
PROGRESSION

Date of conversion to progressive. state of MS (Primary
progressive or secondary progressive). format MM/D-
D/YYYY

PROGRESSION
FROM ONSET

True versus false. True means that this patient is a primary
progressive MS patient. By default it is false

MS DIAGNOSIS
DATE

Date of formal diagnosis (=no longer clinically indefinite
syndrome) (=all diagnostic criteria are met)

CONFIRM
BY CLINICAL
FINDINGS

True versus False. True means that the diagnosis is con-
firmed by clinical findings. By default is is false

CONFIRM BY
CSF

True versus False. True means that the diagnosis is con-
firmed by measuring oligoclonal bands (=MS specific anti-
body test) in the cerebrospinal fluid (=lumbar puncture).
By default it is false

CONFIRM BY
MRI

True versus False. True means that the diagnosis is con-
firmed by MRI. By default it is false

CONFIRM BY
ELECTROPHYS-
IOLOGY

True versus False. True means that the diagnosis is con-
firmed by electrophysiology. By default it is false

MC DONALD
CLASIFF

Classification of MS Type based on McDonaldCriteria

HAS FAMILY
MS HISTORY

Is there a known history of MS in the family (Yes versus
No)

POSER
CLASSIFICATION

Poser Classification is another version of the MCDonald’s
Criteria Classification (=used for diagnosis)

Table C.2: Semantics of the columns in the Patients dataset.
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C.1.3 Relapses

Column Name Meaning

PATIENT ID Unique patient identifier (=linking with other table like
e.g. patient table)

DATE OF ONSET date the relapse started

PYRAMIDAL
TRACT

True versus false. True means that the relapse concerns
difficulties with the “pyramidal tract,” referring to motor
control of the limbs (e.g. difficulty to walk). The default
is false

BOWEL
BLADDER

True versus false. True means that the relapse concerns
difficulties with the “bowel/bladder”. The default is false

duration Duration of the relapse (in days)

cerebellum True versus false. True means that the relapse concerns
involvement of the cerebellum and brainstem connections.
The default is false

VISUAL
FUNCTION

True versus false. True means that the relapse concerns
difficulties with visual function. The default is false

IMPACT ON ADL Yes (Y) versus No (N). Yes means that the relapse affect
activities of daily life (ADL)

brainstem True versus false. True means that the relapse concerns
brainstem deficiencies. The default is false

NEUROPSYCHO
FUNCTION

True versus false. True means that the relapse affects neu-
ropsycho functions. The default is false

recovery States how well the patient recovered after the relapse

SENSORY
FUNCTION

True versus false. True means that the relapse affects sen-
sory functions. The default is false

severity Severity of the relapse (=intuitive neurologist interpreta-
tion)

treatment During the relapse, was the patients hospitalized or treated
ambulatory

corticosteroid Has corticosteroid drug (= lower inflammation in the
body) been given to the patient during the relapse

Table C.3: Semantics of the columns in the Relapses dataset.
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C.1.4 Treatment

Column Name Meaning

PATIENT ID Unique patient identifier (=linking with other table like
e.g. patient table)

VISIT ID Distinction between MS Specific drugs versus symptomatic
(e.g. anti- depression, . . . ) versus non- pharmacological
(e.g. physiotherapy)

TREATMENT Name of the treatment

START DATE Date of start treatment format DD/MM/YYYY

END DATE Date of treatment stop format DD/MM/YYYY

POSOLOGY
NUMBER

dosage

POSOLOGY
UNIT

unit used

POSOLOGY
FREQUENCY

frequency

ROUTE OF
ADMINISTRA-
TION

route of administration

TREATMENT
STOP CAUSE

cause of treatment stop

Table C.4: Semantics of the columns in the Treatment dataset.

C.1.5 Visit

Column Name Meaning

PATIENT ID Unique patient identifier (=linking with other table like
e.g. patient table)

DATE OF VISIT Date of the visit

EDSS The Kurtzke Expanded Disability Status Scale is a method
of quantifying disability in multiple sclerosis

DURATION OF
MS AT VISIT
ROUNDED

The disease duration in years at the time of visit (=time
between date of onset and date of visit)

MSCOURSE AT
VISIT

The type of MS at the time of visit

Table C.5: Semantics of the columns in the Visit dataset.
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C.2 Claims

Column Name Meaning

Claim Number A numerical identifier of the claim

Date Received The date the claim was received by the TSA

Incident Date The date the incident happened

Airport Code A unique identifier of the airport

Airport Name The name of the airport

Airline Name The name of the airline

Claim Type The claim type (e.g. property damage)

Claim Site The place where the incident happened (e.g. checkpoint)

Item The item the claim is about (e.g. sunglasses)

Claim Amount The value of the property involved in the claim

Status The action that was taken (settled, approved, denied)

Close Amount The final value of the property involved

Disposition The suggested action to take (settle, approve in full, deny)

Table C.6: Semantics of the columns in the Claims dataset.

C.3 Census Income

Column Name Meaning

age The age of an individual

workclass A general term to represent the employment status of an
individual

fnlwgt This is the number of people the census believes the entry
represents

education The highest level of education achieved by an individual

education-num The highest level of education achieved in numerical form

marital-status Marital status of an individual. Married-civ-spouse corre-
sponds to a civilian spouse while Married-AF-spouse is a
spouse in the Armed Forces

occupation The general type of occupation of an individual

relationship Represents what this individual is relative to others. For
example an individual could be a Husband. Each entry
only has one relationship attribute and is somewhat re-
dundant with marital status

race Descriptions of an individual’s race

sex The biological sex of the individual

capital-gain Capital gains for an individual

capital-loss Capital loss for an individual

hours-per-week The hours an individual has reported to work per week

native-country Country of origin for an individual

Table C.7: Semantics of the columns in the Census Income dataset.
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C.4 FARS

Column Name Meaning

CASE STATE This element identifies the state in which the crash oc-
curred

AGE This element identifies the person’s age, in years, with re-
spect to the person’s last birthday

SEX This element identifies the sex of the person involved in
the crash.

PERSON TYPE The role of a person involved in the crash

SEATING
POSITION

The location in or on the vehicle

RESTRAINT
SYSTEM

This element records the restraint equipment in use by the
occupant, or the helmet in use by a motorcyclist, at the
time of the crash

AIR BAG
AVAILABILITY

This data element records air bag availability and deploy-
ment for this person as reported in the case materials

EJECTION The ejection status and degree of ejection, excluding mo-
torcycle occupants

EJECTION PATH The path by which a person was ejected from the vehicle

EXTRICATION This element identifies if equipment or other force was used
to remove this person from the vehicle

NON
MOTORIST
LOCATION

The location of the non-motorist with respect to the road-
way at the time of the crash

POLICE
REPORTED
ALCOHOL
INVOLVEMENT

This data element reflects only the judgment of law en-
forcement as to whether alcohol was involved or not for
this person

METHOD
ALCOHOL
DETERMINATION

This element describes the method by which the police
made the determination as to whether alcohol was involved
or not for this person

ALCOHOL TEST
TYPE

The type of the alcohol (ethanol) test that was used

ALCOHOL TEST
RESULT

The alcohol (ethanol) test result

POLICE-
REPORTED
DRUG
INVOLVEMENT

This data element reflects only the judgment of law en-
forcement as to whether drugs were involved or not for
this person

METHOD
OF DRUG
DETERMINATION

The method by which the police made the determination
as to whether drugs were involved or not

DRUG TEST
TYPE (* of 3)

The type of chemical test for the presence of drugs that
was used

DRUG TEST
RESULTS (* of 3)

The result of a chemical test for the presence of drugs
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HISPANIC
ORIGIN

The Hispanic origin from the death certificate

TAKEN TO
HOSPITAL

Whether the person involved was taken to a hospital

RELATED
FACTOR (*)-
PERSON LEVEL

Factors related to the crash expressed by the investigating
officer

RACE The race from the death certificate

INJURY
SEVERITY

This element describes the severity of the injury to this
person in the crash

Table C.8: Semantics of the columns in the FARS dataset.
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C.5 OPNMUT

Column Name Meaning

MUTATIEID A row identification number

PLANNR A grouping identifier for similar rows

MUTPOSITIE An indicator of when the row was modified relative to sim-
ilar rows

BEHANDELAA The identification number of a medical expert

MEDEBEH1 The identification number of the first nurse

MEDEBEH2 The identification number of the second nurse

SPECIALISM The specialism of a medical expert

SPISMMEDE1 The specialism of the first nurse

SPISMMEDE2 The specialism of the second nurse

OPNTYPE The admission type (e.g. day admission)

AFDELING The location of the patient in the hospital

KAMER The room in a department

BEDNR The bed identification number

MUTDAT The latest modification date

MUTTIJD The latest modification time

MUTWIE The person who executed the last modification

INGDAT The date a patient arrived at a department

INGTIJD The time a patient arrived at a department

EINDDAT The date a patient left a department

EINDTIJD The time a patient left a department

WORKFLOW-
STATUS

Admission status (e.g. canceled)

Table C.9: Semantics of the columns in the OPNMUT dataset.
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C.6 GTD

Column Name Meaning

eventid A 12-digit incident identifier

iyear This field contains the year in which the incident occurred

imonth This field contains the number of the month in which the
incident occurred

iday This field contains the numeric day of the month on which
the incident occurred

approxdate Whenever the exact date of the incident is not known or re-
mains unclear, this field is used to record the approximate
date of the incident

extended Whether the duration of an incident extended more than
24 hours

resolution This field only applies if “Extended Incident?” is “Yes”
and records the date in which the incident was resolved
(hostages released by perpetrators; hostages killed; suc-
cessful rescue, etc.)

country This field identifies the country or location where the inci-
dent occurred in numerical form

country txt This field identifies the country or location where the inci-
dent occurred in textual form

region This field identifies the region in which the incident oc-
curred in numerical

region txt This field identifies the region in which the incident oc-
curred in textual form

provstate This variable records the name (at the time of event) of
the 1st order subnational administrative region in which
the event occurs

city This field contains the name of the city, village, or town in
which the incident occurred

latitude This field records the latitude (based on WGS1984 stan-
dards) of the city in which the event occurred

longitude This field records the longitude (based on WGS1984 stan-
dards) of the city in which the event occurred

specificity This field identifies the geospatial resolution of the latitude
and longitude fields

vicinity Whether the incident occurred in the immediate vicinity
of the city in question

location This field is used to specify additional information about
the location of the incident

summary A brief narrative summary of the incident

crit1[2,3] These variables record which of the inclusion criteria (in
addition to the necessary criteria) are met. This allows
users to filter out those incidents whose inclusion was based
on a criterion which they believe does not constitute ter-
rorism proper

doubtterr In certain cases there may be some uncertainty whether an
incident meets all of the criteria for inclusion
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alternative This variable identifies the most likely categorization of the
incident other than terrorism in numerical form

alternative txt This variable identifies the most likely categorization of the
incident other than terrorism in textual form

multiple Indicates whether multiple attacks are connected

success Success of a terrorist strike is defined according to the tan-
gible effects of the attack

suicide This variable is coded “Yes” in those cases where there
is evidence that the perpetrator did not intend to escape
from the attack alive

attacktype* This field captures the *-th general method of attack and
often reflects the broad class of tactics used in numerical
form

attacktype* txt This field captures the *-th general method of attack and
often reflects the broad class of tactics used in textual form

targtype* The target/victim type field captures the general type of
the *-th target/victim in numerical form

targtype* txt The target/victim type field captures the general type of
the *-th target/victim in textual form

targsubtype* The target subtype variable captures the more specific tar-
get category and provides the next level of designation for
each target type in numerical form

targsubtype* txt The target subtype variable captures the more specific tar-
get category and provides the next level of designation for
each target type in numerical form

corp* This is the name of the *-th corporate entity or government
agency that was targeted

target* This is the *-th specific person, building, installation, etc.,
that was targeted and/or victimized and is a part of the
entity named above

natlty* This is the nationality of the *-th target that was attacked
in numerical form

natlty* txt This is the nationality of the *-th target that was attacked
in textual form

gname* This field contains the name of the *-th group that carried
out the attack

gsubname* This field contains any additional qualifiers or details about
the name of the *-th group that carried out the attack

motive When reports explicitly mention a specific motive for the
attack, this motive is recorded in the “Motive” field

guncertain* This variable indicates whether or not the information
reported by sources about the *-th Perpetrator Group
Name(s) is based on speculation or dubious claims of re-
sponsibility

individual This variable indicates whether or not the attack was car-
ried out by an individual or several individuals not known
to be affiliated with a group or organization
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nperps This field indicates the total number of terrorists partici-
pating in the incident

nperpcap This field records the number of perpetrators taken into
custody

claimed This field is used to indicate whether a group or person(s)
claimed responsibility for the attack

claimmode* This records one of 10 modes used by the *-th claimants to
claim responsibility and might be useful to verify authen-
ticity, track trends in behavior, etc. In numerical form.

claimmode* txt This records one of 10 modes used by the *-th claimants to
claim responsibility and might be useful to verify authen-
ticity, track trends in behavior, etc. In textual form.

compclaim This field is used to indicate whether more than one group
claimed separate responsibility for the attack

weaptype* Up to four weapon types are recorded for each incident.
This field records the general type of the *-thweapon used
in the incident in numerical form

weaptype* txt Up to four weapon types are recorded for each incident.
This field records the general type of the *-th weapon used
in the incident in textual form

weapsubtype* This field records a more specific value for most of the
Weapon Types identified immediately above in numerical
form

weapsubtype* txt This field records a more specific value for most of the
Weapon Types identified immediately above in textual
form

weapdetail This field notes any pertinent information on the type of
weapon(s) used in the incident

nkill This field stores the number of total confirmed fatalities
for the incident

nkillus This field records the number of U.S. citizens who died as
a result of the incident

nkillter Limited to only perpetrator fatalities

nwound This field records the number of confirmed non-fatal in-
juries to both perpetrators and victims

nwoundus This field records the number of confirmed non-fatal in-
juries to U.S. citizens, both perpetrators and victims

nwoundte Limited to only perpetrator fatalities

property “Yes” appears if there is evidence of property damage from
the incident

propextent Describes the extent of the property damage in numerical
form

propextent txt Describes the extent of the property damage in textual
form

propvalue If “Property Damage?” is “Yes,” then the exact U.S. dollar
amount (at the time of the incident) of total damages is
listed

propcomment If “Property Damage?” is “Yes,” then non-monetary or
imprecise measures of damage may be described in this
field
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ishostkid This field records whether or not the victims were taken
hostage (i.e. held against their will) or kidnapped (i.e. held
against their will and taken to another location) during an
incident

nhostkid This field records the total number of hostages or kidnap-
ping victims

nhostkidus This field reports the number of U.S. citizens that were
taken hostage or kidnapped in the incident

nhours If the “Attack Type” is “Hostage Taking (Kidnapping),”
“Hostage Taking (Barricade Incident),” or a successful “Hi-
jacking,” then the duration of the incident is recorded ei-
ther in this field or in the next field depending on whether
the incident lasted a matter of hours or days

ndays If the “Attack Type” is “Hostage Taking (Kidnapping),”
“Hostage Taking (Barricade Incident),” or a successful “Hi-
jacking,” then the duration of the incident is recorded ei-
ther in this field or in the next field depending on whether
the incident lasted a matter of hours or days

divert If the “Attack Type” is “Hostage Taking (Kidnapping)”
or “Hijacking” then this field will list the country that
hijackers diverted a vehicle to, or the country that the
kidnap victims were moved to and held

kidhijcountry If the “Attack Type” is “Hostage Taking (Kidnapping)” or
“Hijacking” then this field lists the country in which the
incident was resolved or ended

ransom Whether the incident involved a demand of monetary ran-
som

ransomamt If a ransom was demanded, then the amount (in U.S. dol-
lars) is listed in this field

ransomamtus If a ransom was demanded from U.S. sources, then the
amount (in U.S. dollars) is listed in this field

ransompaid If a ransom amount was paid, then the amount (in U.S.
dollars) is listed in this field

ransompaidus If a ransom amount was paid by U.S. sources, then this
figure is listed in U.S. dollars

ransomnote This field is used to record any specific details relating to
a ransom that are not captured in the other fields

hostkidoutcome This field captures the eventual fate of hostages and kidnap
victims in numerical form

hostkidoutcome
txt

This field captures the eventual fate of hostages and kidnap
victims in textual form

nreleased This field records the number of hostages who survived the
incident

addnotes This field is used to capture additional relevant details
about the attack

scite* This field cites the *-th source that was used to compile
information on the specific incident

dbsource This field identifies the original data collection effort in
which each event was recorded

INT LOG This variable is based on a comparison between the na-
tionality of the perpetrator group and the location of the
attack
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INT IDEO This variable is based on a comparison between the na-
tionality of the perpetrator group and the nationality of
the target(s)/victim(s)

INT MISC This variable is based on a comparison between the
location of the attack and the nationality of the tar-
get(s)/victim(s)

INT ANY Whether the attack was international on any of the dimen-
sions described above

related When an attack is part of a coordinated, multi-part inci-
dent the GTD IDs of the related incidents are listed here

Table C.10: Semantics of the columns in the GTD dataset.
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[13] Yká Huhtala et al. “Tane: An Efficient Algorithm for Discovering Func-
tional and Approximate Dependencies.” In: The Computer Journal 42.2
(1999), pp. 100–111. doi: 10.1093/comjnl/42.2.100.

[14] Ihab F. Ilyas and Xu Chu. Data Cleaning. New York, NY, USA: Asso-
ciation for Computing Machinery, 2019. isbn: 9781450371520.

[15] Ronald S. King and James J. Legendre. “Discovery of functional and ap-
proximate functional dependencies in relational databases.” In: Journal
of Applied Mathematics and Decision Sciences 7.1 (Jan. 2003), pp. 49–
59. doi: 10.1155/s117391260300004x. url: https://doi.org/10.
1155/s117391260300004x.

[16] Jyrki Kivinen and Heikki Mannila. “Approximate inference of functional
dependencies from relations.” In: Theoretical Computer Science 149.1
(Sept. 1995), pp. 129–149. doi: 10.1016/0304-3975(95)00028-u. url:
https://doi.org/10.1016/0304-3975(95)00028-u.

[17] Sebastian Kruse and Felix Naumann. “Efficient discovery of approximate
dependencies.” In: Proceedings of the VLDB Endowment 11.7 (Mar.
2018), pp. 759–772. doi: 10.14778/3192965.3192968. url: https:

//doi.org/10.14778/3192965.3192968.
[18] Jixue Liu et al. “Discover Dependencies from Data—A Review.” In:

IEEE Transactions on Knowledge and Data Engineering 24.2 (Feb.
2012), pp. 251–264. doi: 10.1109/tkde.2010.197.

[19] Panagiotis Mandros, Mario Boley, and Jilles Vreeken. “Discovering de-
pendencies with reliable mutual information.” In: Knowledge and In-
formation Systems 62.11 (July 2020), pp. 4223–4253. doi: 10.1007/

s10115-020-01494-9. url: https://doi.org/10.1007/s10115-020-
01494-9.

[20] Panagiotis Mandros, Mario Boley, and Jilles Vreeken. “Discovering Reli-
able Approximate Functional Dependencies.” In: Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, Aug. 2017. doi: 10.1145/3097983.3098062. url:
https://doi.org/10.1145/3097983.3098062.

[21] Panagiotis Mandros, Mario Boley, and Jilles Vreeken. “Discovering Reli-
able Dependencies from Data: Hardness and Improved Algorithms.” In:
2018 IEEE International Conference on Data Mining (ICDM). IEEE,
Nov. 2018. doi: 10.1109/icdm.2018.00047. url: https://doi.org/
10.1109/icdm.2018.00047.

112

https://doi.org/10.1016/j.is.2003.10.006
https://doi.org/10.1016/j.is.2003.10.006
https://doi.org/10.1016/j.is.2003.10.006
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1093/comjnl/42.2.100
https://doi.org/10.1155/s117391260300004x
https://doi.org/10.1155/s117391260300004x
https://doi.org/10.1155/s117391260300004x
https://doi.org/10.1016/0304-3975(95)00028-u
https://doi.org/10.1016/0304-3975(95)00028-u
https://doi.org/10.14778/3192965.3192968
https://doi.org/10.14778/3192965.3192968
https://doi.org/10.14778/3192965.3192968
https://doi.org/10.1109/tkde.2010.197
https://doi.org/10.1007/s10115-020-01494-9
https://doi.org/10.1007/s10115-020-01494-9
https://doi.org/10.1007/s10115-020-01494-9
https://doi.org/10.1007/s10115-020-01494-9
https://doi.org/10.1145/3097983.3098062
https://doi.org/10.1145/3097983.3098062
https://doi.org/10.1109/icdm.2018.00047
https://doi.org/10.1109/icdm.2018.00047
https://doi.org/10.1109/icdm.2018.00047


[22] Frédéric Pennerath, Panagiotis Mandros, and Jilles Vreeken. “Discov-
ering Approximate Functional Dependencies using Smoothed Mutual
Information.” In: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, July 2020.
doi: 10.1145/3394486.3403178. url: https://doi.org/10.1145/
3394486.3403178.

[23] Gregory Piatetsky-Shapiro and Christopher J. Matheus. “Measur-
ing Data Dependencies in Large Databases.” In: Proceedings of the
2nd International Conference on Knowledge Discovery in Databases.
AAAIWS’93. Washington, DC: AAAI Press, 1993, pp. 162–173.

[24] Matthew Reimherr and Dan L. Nicolae. “On Quantifying Dependence:
A Framework for Developing Interpretable Measures.” In: Statistical Sci-
ence 28.1 (Feb. 2013). doi: 10.1214/12-sts405. url: https://doi.
org/10.1214/12-sts405.

[25] Simone Romano et al. “A Framework to Adjust Dependency Measure
Estimates for Chance.” In: (Oct. 2015).

[26] C. E. Shannon. “A mathematical theory of communication.” In: The
Bell System Technical Journal 27.3 (1948), pp. 379–423. doi: 10.1002/
j.1538-7305.1948.tb01338.x.

[27] Nguyen Xuan Vinh, Julien Epps, and James Bailey. “Information the-
oretic measures for clusterings comparison.” In: Proceedings of the 26th
Annual International Conference on Machine Learning - ICML ’09.
ACM Press, 2009. doi: 10.1145/1553374.1553511. url: https://
doi.org/10.1145/1553374.1553511.

[28] Wikipedia contributors. Conditional entropy — Wikipedia, The Free En-
cyclopedia. [Online; accessed 9-May-2021]. 2021. url: https : / / en .

wikipedia.org/w/index.php?title=Conditional_entropy.
[29] Wikipedia contributors. Confusion matrix — Wikipedia, The Free En-

cyclopedia. [Online; accessed 5-June-2021]. 2021. url: https://en.

wikipedia.org/w/index.php?title=Confusion_matrix&oldid=

1023000804.
[30] Wikipedia contributors. Embarrassingly parallel — Wikipedia, The Free

Encyclopedia. [Online; accessed 24-May-2021]. 2021. url: https://en.
wikipedia.org/w/index.php?title=Embarrassingly_parallel&

oldid=1021904562.
[31] Wikipedia contributors. Entropy (information theory) — Wikipedia, The

Free Encyclopedia. [Online; accessed 25-May-2021]. 2021. url: https:
//en.wikipedia.org/w/index.php?title=Entropy_(information_

theory)&oldid=1024571966.
[32] Wikipedia contributors. Precision and recall — Wikipedia, The Free En-

cyclopedia. [Online; accessed 5-June-2021]. 2021. url: https://en.

wikipedia.org/w/index.php?title=Precision_and_recall&oldid=

1027023045.

113

https://doi.org/10.1145/3394486.3403178
https://doi.org/10.1145/3394486.3403178
https://doi.org/10.1145/3394486.3403178
https://doi.org/10.1214/12-sts405
https://doi.org/10.1214/12-sts405
https://doi.org/10.1214/12-sts405
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1145/1553374.1553511
https://doi.org/10.1145/1553374.1553511
https://doi.org/10.1145/1553374.1553511
https://en.wikipedia.org/w/index.php?title=Conditional_entropy
https://en.wikipedia.org/w/index.php?title=Conditional_entropy
https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=1023000804
https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=1023000804
https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=1023000804
https://en.wikipedia.org/w/index.php?title=Embarrassingly_parallel&oldid=1021904562
https://en.wikipedia.org/w/index.php?title=Embarrassingly_parallel&oldid=1021904562
https://en.wikipedia.org/w/index.php?title=Embarrassingly_parallel&oldid=1021904562
https://en.wikipedia.org/w/index.php?title=Entropy_(information_theory)&oldid=1024571966
https://en.wikipedia.org/w/index.php?title=Entropy_(information_theory)&oldid=1024571966
https://en.wikipedia.org/w/index.php?title=Entropy_(information_theory)&oldid=1024571966
https://en.wikipedia.org/w/index.php?title=Precision_and_recall&oldid=1027023045
https://en.wikipedia.org/w/index.php?title=Precision_and_recall&oldid=1027023045
https://en.wikipedia.org/w/index.php?title=Precision_and_recall&oldid=1027023045

	Introduction
	Contributions
	Research Aims
	Ethics
	Outline

	Functional Dependencies
	Exact Functional Dependencies
	Approximate Functional Dependencies

	Measuring Approximate Functional Dependencies
	Concepts
	AFD Measures
	g-measures (g1, g2 and g3)
	Tau ()
	Fraction of Information (FI)
	IFD
	Theoretical Examples

	Approximation Measure Axioms
	Refinements of FI
	Reliable FI
	Smoothed FI
	Theoretical Examples

	Discussion
	g-measures (g1, g2 and g3)
	Fraction of Information (FI)
	Tau ()
	Conclusion


	An AFD Discovery Tool
	Relevant AFD Decision Process
	Decision Tree

	Discovery Algorithm Implementation
	Data Flow
	Performance Improvements

	Interactive Tool
	Overview
	Rationale, Scores and Metadata of an AFD

	Implementation

	Experiments on Datasets
	MSBase
	Patients
	MRI
	Treatment
	Relapses
	Visit

	Claims
	Census Income
	Fatality Analysis Reporting System
	OPNMUT
	Global Terrorism Database
	Theoretical Findings in Practice
	Discussion

	Conclusion and Future Work
	Dutch Summary
	Introductie
	Bijdragen
	Doelstellingen

	Functional Dependencies
	Exacte Functional Dependencies
	Approximate Functional Dependencies

	Meten van AFD's
	g-maten
	Tau ()
	Fraction of Information (FI)
	Theoretische Verschillen
	Verfijningen van FI
	Conclusie

	Een Tool voor AFD Discovery
	Beslissingsproces voor Relevante AFD's
	De Implementatie van het Discovery Algoritme
	Een Interactieve Tool

	Experimenten op Datasets
	Bevindingen
	Vergelijking Tussen de Maten

	Conclusie

	Example output in JSON
	Column Semantics of the Used Datasets
	MSBase
	MRI
	Patients
	Relapses
	Treatment
	Visit

	Claims
	Census Income
	FARS
	OPNMUT
	GTD


