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Abstract

Background: This study focuses within the period 1800 – 1900, when the sanitation and hygiene

conditions in Belgium, together with a limited health care system were nowhere near the conditions

as nowadays. This period, had several epidemics (mostly Cholera, Typhoid or smallpox) which took

place throughout Belgium and made locally a lot of casualties, based on the birth and death dates of

the inhabitants of a small rural town in Limburg (Lummen and its sub-municipalities). Therefore,

identifying when these when these epidemics took place and whether they were as severe as indicated

in the literature on other places in Belgium is of great importance in epidemiological studies.

Objectives: The aim of this project is to identify when epidemics took place and whether they

were as severe as indicated in the literature. To determine for each year the number of people who

died compared to previous year. Finally, to analyse certain periods in the study where there was

excess death based on the age group.

Methodology: A time series linear regression analysis with smoothing splines is used to depict

yearly trends in the mortality from the population. Analyses was done to verify which year had the

highest mortality between 1800 to 1900. Furthermore, the top three years with the most mortality

per age group was analysed. Negative binomial model as well as logistic regression model which are

both generalized linear model each year..

Results: The results obtained showed differences in the variability of mortality between municipal-

ities and between different years. Yearly trends were observed in the mortality rate over time with

increasing mortality over periods of 10 or 15 years. Also, a handful number of individuals did not

live for more than a year. Categorising the observations into four groups based on how long the

lived showed that most individuals lived for 15 to 45 years in the various populations.

Conclusion: Overall, the 3 sub-municipalities had similar variability in the death counts, birth

counts and mortality between the period of 1800 to 1900. These rates of mortality from the popula-

tion falls in line with what is reported in history. However, note should be taken with regards to other

years within this period which showed quite a high mortality which was not reported in the literature.

Key Words: Keywords: Lummen, Time series regression, Poisson, PMM, Negative Binomial,

Deviance.
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1 INTRODUCTION

1.1 Background of the Study

The municipality of Lummen is located in the Belgian province of Limburg near Hasselt. On the first of

January 2006, Lummen had a total population of 13,691. The total land area is 53.38 km2 which gives

a population density of 256 inhabitants per km2. Before 1 January 1977, Lummen municipality was

divided into 3 sub-municipalities, namely Lummen, Meldert and Linkhout. Today, it is called Lummen.

Life expectancy in this region has more than doubled in the last 200 years. According to [Devos, 2020]

in Belgium, it rose from 37 years in 1830 to 47 years in 1900, 65 years in 1950 and 81.5 years presently.

The period under study was characterized by industrial revolution, Belgian Revolution of 1830, Belgian

independence, and also epidemics. This means, the sanitation and hygienic conditions in Belgium, to-

gether with a limited health care system were not as good as today.

In the eighteenth century, the central government became more involved in public health and began to

take more preventive measures. Previously, local authorities were in charge of public hygiene. Every

city and village took a different approach to this. The most widely used interventions were isolation and

quarantine of (potentially) sick patients to prevent disease spread.

The years after the wars were very challenging. The international economic crisis affected the country

negatively. This led to the outbreak of epidemics such as cholera, typhoid, smallpox just to name a

few. The outbreak of smallpox became the leading cause of death, particularly in children. Epidemics

at the time were usually caused by outbreaks of dysentery, also known as "the bloody flux" due to

the disease’s bloody diarrhoea. There has been no conclusive explanation for the plague’s absence, but

better quarantine measures, stronger human immunity, declining bacterium virulence, or the disappear-

ance of the black rat, which transmitted the disease (probably) through fleas, have all been suggested as

potential reasons. The cause of the decrease in smallpox related deaths, on the other hand, is undeniable.

The invention of a cowpox vaccine by English country doctor in late eighteenth century, the first vac-

cine ever, meant that the disease could be controlled in the majority of European countries, including

Belgium. Smallpox has also been eradicated globally.

During the nineteenth century, tuberculosis was the leading cause of death, but epidemics were also

caused by other diseases. Belgium was ravaged by cholera seven times; in 1832-1833, 1848-1849, 1854,

1859, 1866, 1883-1885 and 1891-1895. With around 43,400 victims, the epidemic of 1866 was the most

severe; it hit young active population the hardest. According to [Devos, 2020], typhoid, smallpox and
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influenza also caused mortality crises in 1846-1847, 1871 and 1918-1919 respectively. Several mortality

peaks, particularly during that period showed a correlation with wartime. Meaning that when war, high

prices, and epidemics all coincidentally happened at the same time, the most severe mortality crises

occurred. That was the case in 1690, when there was an outbreak of infectious diseases such as typhus

and dysentery in Western Europe as a result of a failed harvest, resulting in devastating death rates

[Devos, 2020].

A study on the bio-demography of human ageing by [Vaupel, 2010] concluded that, age is among the

strongest risk factors for mortality, even in the absence of a pandemic, with an exponential increase

in death risk with age. A systematic review and meta-analysis from [Galbadage et al., 2020] showed

that men are more likely to die from COVID-19 than women. Furthermore, studies carried out by

[Dana et al., 2020, Lodi et al., 2020], to explain the cause of high mortality in males compared to females

reveals that socio-behavioral and cultural aspects are some of the factors explaining higher mortality in

men compared to women.

In recent years, there has been an increasing amount of literature on modeling clinical and epidemiological

data. However, statistical methods have been developed to deal with such issues. These methods are

extensively discussed in the following chapters.

1.2 Research Objectives

This work is aimed to answer the following objectives

• Identify when epidemics took place and whether they were as severe as indicated in the literature

• Determine for each year the number of people who died compared to previous year

• Is there a certain period in the study where there was excess death based on the age group

2



2 METHODOLOGY

2.1 Description of the data

The data used in this research is an old demographic data collected by the municipalities at the time

between 1750 and 1900. Then, Lummen was divided into three communities namely; Lummen proper,

Meldert and Linkhout. For each community, 5 data-sets were recorded. These data-sets had overlapping

information, which made it possible for them to be merged. As a result, 3 data-sets were produced, one

for each municipality. Of more importance were the date variables since the study is focused on how

long people about that time lived. However, for some subjects, these were not recorded. Table 1 shows

the dimensions of the data and the proportion of missing observations.

Municipality N Variables Missing Obs

Linkhout 4272 23 60.4%

Lummen 17709 23 59.2%

Meldert 5061 23 61.4%

Table 1: Dimensions of the data

As can be seen in Table 1, Linkhout had 60.4%, Meldert had 61.4% and Lummen had 59.2% missing

observations. Before applying modelling techniques, other methods had to be devised in order to mini-

mize the amount of missing observations.

For subjects who had no date of death recorded, but had children that were part of the study, the

children’s birth dates were taken as the parent’s "last_known" value. If the individual had multiple

children, then the date of birth of the youngest child was considered as the "last_known" date for the

parent. Some individuals might not have had children, but were married. If their dates of death were not

recorded, but their dates of marriage recorded, then date of marriage was taken as a "last_known" value.

Some individual’s dates of death were earlier than their dates of births and so these observations were

flagged as errors in data capturing and were removed.

Some observations had neither birth dates nor death dates and so were not considered for this analysis.

For those having either of this dates, predictive mean matching which is a multiple imputation approach

was used to impute these missing values.

The "last_known" column, was necessary in order to determine how long an individual lived and this

in turn would allow us know when they were present in the population in a given year. The total years

lived for an individual was taken to be the difference between the "last_known" date and the date of
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birth of that individual.

Finally, there were some subjects who married or were married more than once and recorded for each

of the occasions. This resulted in duplicates and hence these observations were removed from the analysis.

A few assumptions were made regarding the data. Firstly, we assumed that individuals born in a com-

munity stayed there until the end of the study period. Secondly, for those born towards 1900 were

still alive at 1900. Thirdly, the study considered only individuals who lived and died between 1800 to

1900. Finally, individuals born before 1800 but died between the study period were not considered in

the population.

Municipality N Median Mean Std Dev Minimum Maximum

Linkhout 1571 48 36.74 23.45 0 98

Lummen 7655 44 35.11 21.81 0 92

Meldert 2293 37 31.06 20.15 0 92

Table 2: Summary statistics of final data sets

2 shows a summary statistics of the final data used for this analysis. Comparing Table 1 and Table 2,

we can see that more than half of the data could not be used for analysis after fixing the data.

Separate analysis was performed for three communities in order to take in to account their population

size since the higher the population, the higher the death numbers.

2.2 Imputation by Predictive Mean Matching (PMM)

In this analysis, the method implemented to cater for missing observations was Imputation by Predic-

tive Mean Matching. This was applied for those individuals with missing dates of births or deaths only.

This technique has been around for a long time [Little, 1988], but only recently has it become widely

available and practical to use. PMM is a convenient way to perform multiple imputation for missing

data especially for normally distributed quantitative variables.

Generally, imputed values will be discrete if the real values were discrete, when the original variable is

skewed, the imputed values will also be skewed. The reason for this as proposed by [Allison, 2015], is

that the imputed values are real values which are "borrowed" from the individual’s original data. PMM

4



assumes that the data are missing at random.

A review about PMM for imputation by [Rubin, 2004] revealed that the main disadvantage of the tech-

nique is that there is no mathematical theory to justify it as a result we have to rely on Monte Carlo

simulations. However, no simulation can study all the possibilities.

[Little, 1988] suggested that, PMM does almost as well as parametric methods for a correctly specified

model, and a little better than parametric methods in certain mis-specified models. So the current

consensus seems to be that this is an acceptable and potentially useful method.

2.3 Modelling Count Data

2.4 Time Series Regression

Time series regression is widely used in environmental epidemiology. It is useful for extracting meaning-

ful statistics and other characteristics of the data. This time series methodology has been largely used in

measuring short term associations between exposures such as air pollution, weather variables or pollen

and health outcomes such as mortality [Bhaskaran et al., 2013].

While it is a regression method, it predicts the dependent variable based on the outcome values at prior

points in time rather than independent factors [Yang and Berdine, 2015]. Therefore, using this method-

ology, the relationship between the mortality per year is analysed and patterns can be found over the

time period of 1800 to 1900.

A time series is usually a sequence of data points recorded at regular intervals. This implies, a time

series was observed which illustrates the counts of death per year. However, the counts of deaths per

year changes and the underlying population per year is also of interest. It becomes meaningful to use

the mortality per year.

In order to capture the trends or periodic behaviour over time with respect to the count of deaths of

the various municipalities, a time series linear regression analysis with smoothing splines was used. By

using smoothing splines, patterns are captured which depicts possible trends in the counts of death per

year in every municipality while taking into account the population present.

To fit a linear regression in the time series context, a dependent time series xt for t = 1, ...n, is being

influenced by an independent series zt1, zt2, zt3, ...ztq where the inputs are assumed fixed and known.

This relation can be expressed using the model;
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xt = β0 + β2zt2 + ...+ βqztq + wt

In order to smooth the data, a polynomial regression in terms of time is fitted. A cubic polynomial of

time would have xt = mt + wt where

mt = β0 + β1t+ β1t
2 + β3t

3

Furthermore, in order to smooth the data, a method of smoothing spline was used which minimizes a

compromise between the fit and the degree of smoothness given by

n∑
t=1

[xt −mt]
2 + λ

∫
(m

′′

t )
2dt

where mt is a cubic spline with a knot at each t and primes denote differentiation. The degree of

smoothness is controlled by the parameter λ. From the equation above, if λ = 0, this leads to mt =

xt which are not smooth. If λ = ∞, the curve becomes constantly smooth. Therefore, larger λ values

leads to smoother fits. This implies λ controls the smoothness of the linear regression (from completely

smooth) and the data itself(no smoothness). In order to fit smooth the λ from the smooth.spline package

in R is set to 0.5

2.4.1 The Poisson Regression Model

The Poisson Distribution

The Poisson distribution is a discrete distribution which describes the number of events occurring in

a fixed time interval. The distribution is bounded by zero and infinity and has only one parameter µ

which is equal to the mean and variance. The distribution is given by the formula:

Assumptions

To employ a Poisson regression, like with many other regression models, numerous assumptions must be

made.

• The occurrence of an event does not affect the occurrence of a subsequent event (independent

events).

• The probability of an event to occur in a certain time interval should be the same for every other

time interval of that same length (the rate at which events occur is constant).

• Rate changes resulting from the combined impact of many explanatory factors are multiplicative.

• At each level of the independent variable, the number of deaths has variance equal to the mean

• Independent error terms
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The probability for each individual being examined is assumed to be the same, so a parameter λ is

defined to be the average number of deaths during each time increase. Considering N is the population

of that year, then:

λ = Np

where p is the probability that a given individual dies. By rearranging the formula;

p = Nλ

The probability that exactly K deaths will be observed during a time interval follows the binomial

distribution expressed as:

P (k) = pk(1− p)N−K = (
λ

N
)K(1− λ

N
)N−K

As the population N increases, the limit of this expression is the Poisson distribution:

P (k) =
λke−λ

k!

A unique characteristic of a Poisson distribution is that the mean (average expected value) and the

variance of a Poisson distribution are both equal to λ. However, count data are all non-negative integers

hence the mean value of the counts is always greater than zero.

In addition, the distribution of count data is skewed to the right, and the variance of count data tends

to rise as the number of counts increases.

Poisson regression models are a type of generalized linear model in which the systematic effects are multi-

plicative, the error distribution is Poisson, and the link function is the natural log [Yang and Berdine, 2015].

The log link ensures that all the fitted values are positive.

It is useful for modeling a count variable Y, by counting the number of times that a certain event occurs

during a given time period. In this analysis, the dependent or outcome variable (Y) is the number

of deaths obtained in each each during the study period, described by a set of explanatory variables

X1, X2, ..., Xk. Therefore, time is treated as an independent covariate.

Poisson regression works by fitting a regression equation on the observed data which accurately models

the expected value of the dependent variable Y , E(Y ) as a function λ on a set of independent variables

X1 X2,..., Xk and β regression parameters [Kuhn et al., 1994]. Considering Y is the number of deaths

in a subgroup, and N is the population size, then

E(Y ) = Nλ(X,β)

The general form of the likelihood function is obtained as:

L(Y ;β) =
∏

[Nλ(X,β)]ye−Nλ(X,β)/y!

The regression coefficients are estimated by maximizing the likelihood function. It is important to specify

the function λ, which is commonly considered to be log-linear, in order to use the likelihood function.
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It is described as a linear function of the X predictor variables as the natural log of the predicted rate

of deaths Y.

λ(X;β) = exp(β1X1, β2X2 + ...+ βkXk)

The exponent of a Poisson regression coefficient is a rate ratio which corresponds to a one unit difference

in the independent variable variable. Considering the number of deaths every year in the study period,

we may see that each person is followed for a different amount of time. In this situation, the goal is to

model rates (counts per unit of time).

2.4.2 Assessing goodness of fit

The Pearson chi-squared and deviance test statistics can be used to measure the model’s goodness-of-

fit. The deviance is assumed to follow a chi-square distribution with degrees of freedom equal to the

model residual in this case. To check for overdispersion, this test works by comparing the deviance

with its degrees of freedom. The deviance is a measure of the difference between observed and fitted

values, compared to its degrees of freedom. The data are considered to be overdispersed if the observed

variability exceeds that anticipated by the Poisson distribution. If there is no overdispersion, the ratio

will be close to 1; if it is greater than 1 and less than 1 result in over-dispersion or under-dispersion

respectively. Large values of these statistics, as well as small P-values are indication that the model does

not fit the observed data.

2.5 Negative Binomial Regression Model

This regression model is used to model over dispersed count data that is, when the variance of the data

is higher than the mean. Because it has the same mean structure as Poisson regression and an extra

parameter to describe over-dispersion, it can be regarded a generalization of the Poisson regression.

The confidence intervals for Negative binomial regression are likely to be bigger than those for a Poisson

regression model if the conditional distribution of the outcome variable is over-dispersed.

In this study we want to model the count of deaths per year. The model has a less restrictive property

in that the variance is not equal to the mean.

2.6 Logistic Regression Model

Logistic regression is a technique for modelling the probability of a discrete outcome given an input

variable. It is a particular case of generalized linear models (GLM), in which the dependent variable is

dichotomous. Individuals are assigned to either one of two classes). In this case, a binary regression model

is considered which models the probability for an individual to dies yes or no for a given year and because

the logistic model’s dependent variable can only take two values (0 or 1), the probability predicted by
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the model must also fall within that range. The probability approaches 0 when X (independent variable)

takes on smaller values. As X increases, however, the probability approaches 1.

This model is important in that firstly, it is an extremely flexible and easily used function and also it

lends itself to clinical meaningful interpretations [Hosmer et al., 2000]. If the conditional mean of Y

given x is denoted as π(x) = E(Y |x), the form of the logistic regression model used will be;

π(x) =
eβ0+β1x

1 + eβ0+β1x

which gives us the estimated probability to die. An appropriate logit transformation of π(x) will result

in;

g(x) = ln[
π(x)

1− π(x)
] = β0 + β1x

where, π(x) is the probability to die. As this probability increases from 0 to 1, the logit rises from −∞

to +∞ with this transformation (resulting in a sigmoidal shape).

Fitting this model requires that the regression coefficients has to be estimated using maximum likelihood

approach. Maximum likelihood works by finding the smallest possible deviation between the observed

and predicted values. This value is called the deviance (-2 Log Likelihood). This requires constructing

a likelihood function which expresses the probability of the observed data as a function of the unknown

parameters. The log-likelihood is defined as;

L(β) = ln[l(β)] =

n∑
i=1

{yiln[π(xi)] + (1− yi)ln[1− π(xi)]}

Differentiating L(β) with respect to the regression coefficients and setting the expression equal, we obtain

the value for β (maximum likelihood estimate) that maximizes L(β).

2.6.1 Assessing goodness of fit

The log-likelihoods of having observed the true outcome, given the predicted probability of that outcome,

are connected to the deviance residuals.

2.7 Statistical Software

All statistical analysis was done using SAS software, version 9.4 of the SAS system and RStudio version

1.4.1717.
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3 RESULTS

3.1 Exploratory Data Analysis

The exploratory data analysis was done based on the imputed data.

Figure 1: Linkhout count of death over the years Figure 2: Lummen count of death over the years

Figure 3: Lummen count of death over the years

Figure 1, shows the count of death per year for Linkhout. It reveals that the deaths increases steadily

with the highest death count of 21 in the year 1898. Figure 2 represents the count of deaths in Lummen.

The deaths increases with time. The highest record was 89 deaths in 1876. Figure 3 represents the count

of deaths in Lummen. The deaths increases with time. The highest record was 20 deaths in 1880. All

three communities experience almost similar pattern of deaths which shows an increase over time.
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Figure 4: Birth Count Per Year-Linkhout Figure 5: Birth Count Per Year-Lummen

Figure 6: Birth Count Per Year- Meldert

Figures 4, 6 and 5 shows the birth count per year over the study period. However, after sometime there

was a steep decrease in deaths and it remained steady. This shows that there was epidemic at during

that year which concided to 1852, 1844 and 1864 for Linkhout, Lummen and Meldert respectively.
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Figure 7: Death Count Per Age group-Linkhout Figure 8: Death Count Per Age group-Lummen

Figure 9: Death Count Per Age group-Meldert

Age groups were created based on the years lived of the individual. Another variable derived is the

age group which consist of grouping the individuals based on the years lived. As a result, four groups

were created as follows: under 15 years, 15 to below 45 years, 45 to below 65 years and above 65 years.

Figures 7, 8 and 9 illustrates the count of individuals in the various age groups. Figure 7 individuals in

group 3 with the highest death counts. However, Lummen and Meldert illustrates that individuals in

group 2 have the highest counts of death.
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Linkhout Lummen Meldert

year age_group % death year age_group %death year age_group %death

1842 1 3.5 1834 1 3.3 1834 1 4.2

1875 1 3.1 1875 1 2.6 1842 1 2.8

1832 1 2.8 1859 1 2.5 1859 1 2.5

1900,1842,1841 2 4.8 1895,1879 2 2.2 1880 2 2.4

1834 2 4.0 1889 2 2.1 1876 2 2.3

1899 2 3.2 1886 2 2.0 1896 2 2.1

1895 3 3.1 1900 3 3.4 1893,1880,1871,1862, 3 5.3

1897 3 3.0 1878 3 3.2 1865 3 4.5

1899 3 2.9 1890 3 3.0 1891 3 2.8

1895 4 8.5 1900 4 5.6 1883 4 8.2

1899,1889,1881 4 6.9 1888 4 10.7 1892,1890 4 6.2

1898 4 6.9 1894 4 15.6 1894 4 5.5

Table 3: Illustrating top three years with most death per age group

Furthermore , table 3 illustrates the top three years with the most death counts in every age group per

town.

Yearly mortality rate per 1,000 people of the population was calculated to determine the rate of occur-

rence of death.

Yearly Mortality Rate =
(
Number of deaths/ year

Population

)
∗ 1000

The value of population was calculated by taking a cumulative count of the number of births each year

will removing the number who die in a given year so that it excluded those that had died in previous

years.

Figure 10: Linkhout Mortality Figure 11: Linkhout Mortality with smoothing spline
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Figure 10 shows the mortality rate calculated per thousand of the population of a given year. It shows

how the mortality rates were changing over the years in the study in that town. There were more deaths

per 1,000 in the early 1800, which decreased over time and then increased steadily.

A time series regression was fitted using smoothing splines to show trends in the mortality as shown in

figure 15. For Linkhout community, the trends revealed that there was an increase in the mortality for

the first ten years after which it decreased and remained constant and then increased gradually.

Figure 12: Lummen Mortality Figure 13: Lummen Mortality with smoothing spline

Lummen community had a very similar pattern of mortality just like Linkhout. There were more deaths

per 1,000 in the early 1800, which decreased over time and then at around 1834 there was a sharp

increase. This was again followed by a steady increase.

Figure 14: Meldert Mortality Figure 15: Meldert Mortality with smoothing spline

Meldert showed a small difference in the mortality. There were more deaths per 1,000 in the early 1800,

which decreased over time. It decreased at the beginning but later shows similar patterns in every 10

years.
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Linkhout Lummen Meldert

Ranking Year Mortality Year Mortality Year Mortality

1 1804 35.39 1811 32.67 1801 57.97

2 1900 33.98 1803 29.59 1808 33.08

3 1899 33.01 1890 25.01 1814 26.63

4 1807 28.4 1875 24.81 1834 26.00

5 1811 25.75 1892 24.36 1880 21.61

6 1814 24.91 1805 23.35 1805 20.30

7 1875 24.85 1815 23.32 1891 20.21

8 1895 24.06 1899 23.02 1894 20.07

9 1842 23.03 1808 23 1883 19.70

10 1887 22.94 1900 22.5 1842 19.07

Table 4: Table illustrating top ten years in terms of Mortality

Above is a follow up on the mortality plots for the communities. The periods with peaks showed years

with high mortality.

3.2 Model Fitting

3.2.1 Poisson regression model

The most popular method for analyzing rates is Poisson regression. However, because the over-dispersion

parameter was above one, a negative binomial model which models count over dispersed data was pre-

ferred.

3.2.2 Negative binomial model

The results are presented in the tables below;

Maximum Likelihood Parameter Estimates

Parameter DF Est Std Error Wald 95% CL Chi-square Pr >Chi Sq

Intercept 1 -28.476 3.2107 -34.769 -22.183 78.66 <.0001

Years 1 0.016 0.0017 0.0126 0.0194 86.44 <.0001

sex(f) 1 -0.0977 0.0875 -0.2692 0.0739 1.24 0.2646

Table 5: Parameter Estimates for negative binomial model on Linkhout Population
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Table 5 shows the result of the Poisson regression which models the death counts per year using gender

and year as the covariates. One unit change in the years, the difference in the logs of expected counts

of deaths is expected to change by 0.0113, given the other predictor variables (gender) in the model are

held constant.

Maximum Likelihood Parameter Estimates

Parameter DF Est Std Error Wald 95% CL Chi-square Pr >Chi Sq

Intercept 1 -39.232 2.126 -43.399 -35.066 340.54 <.0001

year 1 0.0226 0.0011 0.0204 0.0249 392.15 <.0001

sex(f) 1 -0.1322 0.0559 -0.2418 -0.0227 5.6 0.018

Table 6: Parameter Estimates for negative binomial model on Lummen Population

Table 6 shows the result of the binomial regression model for Lummen. The difference in the logs of

expected death counts is expected to be 0.1322 unit lower for females compared to males, while holding

the other variables constant in the model. Furthermore for a one unit change in the years, the difference

in the logs of expected counts of deaths is expected to change by 0.0113, given the other predictor

variables (gender) in the model are held constant.

Maximum Likelihood Parameter Estimates

Parameter DF Est Std Error Wald 95% CL Chi-square Pr >Chi Sq

Intercept 1 -19.414 2.9483 -25.193 -13.635 43.36 <.0001

Years 1 0.0113 0.0016 0.0082 0.0144 50.53 <.0001

sex(f) 1 -0.1038 0.0846 -0.2696 0.062 1.51 0.2199

Table 7: Parameter Estimates for negative binomial model on Meldert Population

Table 7 shows the result of the poisson regression model. Gender was not significant. However, results

shows that for a one unit change in the years, the difference in the logs of expected counts of deaths

is expected to change by 0.0113, given the other predictor variables (gender) in the model are held

constant.

3.2.3 Logistic Regression

The results for the three communities are presented below;
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Parameter Estimates

Parameter Est Std Error 95% CL Chi-square Pr >Chi Sq

Intercept -16.753 3.245476 -23.16 -10.44 -5.162 2.44e-07

year 0.0067 0.0017 0.003 0.010 3.862 0.000112

Table 8: Parameter Estimates for Logistic regression model on Linkhout Population

Table 8 shows the results of modelling the probability to d die in Linkhout per year. For every one-unit

change in years, we expect a 0.006 increase in the log-odds of deaths, holding all other independent

variables constant.

Parameter Estimates

Parameter Est Std Error 95% CL Chi-square Pr >Chi Sq

Intercept -21.523394 1.459245 -24.394 -18.674 -14.75 <2e-16

year 0.009318 0.000781 0.0077 0.0108 11.93 <2e-16

Table 9: Parameter Estimates for Logistic regression model on Lummen Population

Table 9 shows the results of modelling the probability to die in Lummen per year. For every one-unit

change in years, we expect a 0.009 increase in the log-odds of deaths, holding all other independent

variables constant.

Parameter Estimates

Parameter Est Std Error Wald 95% CL Chi-square Pr >Chi Sq

Intercept -7.313 2.684 -12.60 -2.076 -2.725 0.00644

year 0.001 0.001 -0.001 0.004 1.148 0.25096

Table 10: Parameter Estimates for Logistic regression model on Meldert Population

Table 10 shows the results of modelling the probability to die in Meldert per year. The variable year

was insignificant.
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4 DISCUSSION & CONCLUSION

4.1 Discussion

This research considered individuals in the time frame between 1800 and 1900. Based on existing litera-

ture, Belgium was ravaged by cholera seven times; in 1832-1833, 1848-1849, 1854,1859, 1866, 1883-1885

and 1891-1895, with the epidemic of 1866 the most severe. Also, typhoid, smallpox and influenza also

caused mortality crises in 1846-1847, 1871 and 1918-1919 respectively.

During the period under study, it is believed that there were years which encountered epidemics. There-

fore, first objective in this study was to identify when epidemics took place and whether they were as

severe as recorded in literature. Interestingly, all these epidemics fall in the the peaks of the time series

curve which trends in every ten years in that period.

Another interest was to find out the mortality rate of each year compared to the previous year. Since

the population was between 1800 to 1900, a very high mortality rate was observed in the beginning of

the study followed be sharp decrease. These were largely due to small samples and probably poor living

conditions. The mortality rate based on age groups revealed that children between 0-15 years had higher

mortality compared to other age groups. This is attributable to high infant mortality.

High mortality could be supported by the coincidence of wars, high prices, happening at the same time.

Based on the nature of the data, generalized linear modelling techniques were implemented. A Poisson

regression model was fitted to model the counts of deaths for each year. However, since the data was

over-dispersed, a negative binomial regression model was fitted. Three different models were fitted for

the three towns respectively in order to take in to account the population dynamics. Overall, year was

significant to model the count of deaths in the three towns. However, gender was only significant in the

modelling counts of death in Lummen.

A logistic regression model which models the probability to die each year was also fitted. Three different

models were fitted for the three towns respectively to take in to account the population dynamics in the

towns.

The models for Linkhout and Lummen showed that, year was significant to model the probability to die

in the towns. However, this was not the case for Meldert. This could be supported by the time series

plots wherein Meldert did not show much difference in their deaths.
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4.2 Conclusion

The study was focused on studying the population of individuals in 3 municipalities, which have since

been merged into 1 large municipality called Lummen in a particular period of time. Because these

data were recorded more than 100 years ago, a lot of errors and incomplete records were realized. This

called for extensive data cleaning and the use of survival techniques to deal with missing observations.

Imputation based on predictive mean matching was implemented. Based on the data, time series regres-

sion which uses smoothing splines, captured possible trends in the deaths per year in every municipality

while taking into account the population present at the time. The study identified epidemics in the time

period but because of limited population size conclusion can not be made about how severe they were.

The study concluded that the rates of mortality from the population falls in line with what is reported

in history. However, note should be taken with regards to other years within this period which showed

quite a high mortality which was not reported in the literature.

The limitation of the study include; firstly, a lot of missing data were observed for almost all the covariates

leading to loss of information, and secondly the age of the participants were not recorded and lastly there

was need for other meaningful variables to predict a person’s probability to die.
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Appendix

Figure 16: Linkhout Population over the years Figure 17: Lummen Population over the years

Figure 18: Lummen Population over the years
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Codes

## install packages

install.packages("reticulate")

install.packages("altair")

reticulate::conda_create("r-reticulate")

install.packages("lubridate")

install.packages("lavaan")

install.packages("mice")

install.packages(’plyr’)

install.packages(’epiDisplay’)

install.packages(’gmodels’)

# load packages

library("lubridate")

library(lavaan)

library(mice)

library("altair")

library("lubridate")

library("plyr")

library("epiDisplay")

library("gmodels")

## importing dataset

linkhout = read.csv("C:\\Users\\joyce\\Linkhout_cens_data.csv")

######converting to time-date formats

linkhout$birthdates <- dmy(as.character(linkhout$Birthdate))

linkhout$deathdates <- dmy(as.character(linkhout$DateDeath))

## extract years only

linkhout$birthdates <- year(linkhout$birthdates)

linkhout$deathdates <- year(linkhout$deathdates)

# add the age variable

#linkhout$age <- linkhout$deathdates - linkhout$birthdates

str(linkhout)

## selecting only observations that were born in Linkhout and died in Linkout

## selecting observations with either birthdate or deathdate known

## this will ensure no observation is present with both missing values on birth and death date

linkhout1 <- subset(linkhout,

(Birthplace == "Linkhout" & PlaceDeath == "Linkhout")|(DateDeath != "NA" | Birthdate != "NA")

)

## selecting some variables
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sel <- c("NrLi","Sex","Birthplace","PlaceDeath","NrChild","birthdates","deathdates","age","DEATH","DIED")

linkhout = linkhout[sel]

## descriptive statistics on birthdate and deathdate

summary(linkhout1$birthdates)

summary(linkhout1$deathdates)

#########################################################################

################## IMPUTATION USING PREDICTIVE MEAN MATCHING

sel2 <- linkhout[,c("birthdates","deathdates")]

# returns a tabular form of missing value present in each variable in a data set.

md.pattern(sel2)

## now let’s impute

imputed_Data <- mice(sel2, m=1, maxit = 50, method = ’pmm’, seed = 500)

summary(imputed_Data)

## this step replaces all the "NA’s" in the rows of the variables deathdates and birthdates to form a complete dataset.

complete_dates <- complete(imputed_Data ,1)

## now will add this complete observations to the original dataset and call the new dataset Linkhout_comp.

linkhout_comp <- data.frame(linkhout1$NrLi, linkhout1$Sex, linkhout1$Birthplace, linkhout1$PlaceDeath,

linkhout1$NrChild,complete_dates$birthdates,complete_dates$deathdates,linkhout1$DEATH,

linkhout1$DIED)

# calculating the years lived of all participants using the imputed birth and death dates.

linkhout_comp$age <- complete_dates$deathdates - complete_dates$birthdates

## deleting observations where age is negative

linkhout_comp <- subset(linkhout_comp, (age > 0 & complete_dates.deathdates <= 1900 & complete_dates.birthdates >= 1800))

# descriptive analysis of imputed values

summary(linkhout_comp$age)

summary(linkhout_comp$complete_dates.birthdates)

summary(linkhout_comp$complete_dates.deathdates)

## importing dataset IMPUTED datasets

linkhout = read.csv("C:\\joyce\\joyce\\New folder\\LINKHOUTPLOT.csv")

######################### MORTALITY FOR THE VARIOUS TOWNS ########

########################################################################

#### plotting for Mortality for Linkhout
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linkhout$NEW_YEAR <- as.character(linkhout$NEW_YEAR)

#

alt$Chart(linkhout)$

mark_line(interpolate = ’bundle’)$

encode(

alt$X(’year(NEW_YEAR):O’,title=’Year’, axis=alt$Axis(labelAngle=0)),

alt$Y(’MORTAL_R:Q’,title= ’Mortality Rate’)

)$

properties(title=’Mortality Rate For Linkhout’,

width=600,

height=400)

#### plotting for LUMMEN

lumen$NEW_YEAR <- as.character(lumen$NEW_YEAR)

alt$Chart(lumen)$

mark_line(interpolate = ’bundle’)$

encode(alt$X(’year(NEW_YEAR):O’,title=’Year’, axis=alt$Axis(labelAngle=0)),

alt$Y(’MORTAL_R:Q’,title= ’Mortality Rate’))$properties(title=’Mortality Rate For lumen’,width=600, height=400)

#### plotting for Meldert

meldert$NEW_YEAR <- as.character(meldert$NEW_YEAR)

alt$Chart(meldert)$

mark_line(interpolate = ’bundle’)$encode(

alt$X(’year(NEW_YEAR):O’,title=’Year’, axis=alt$Axis(labelAngle=0)),

alt$Y(’MORTAL_R:Q’,title= ’Mortality Rate’))$

properties(title=’Mortality Rate For Meldert’, width=600,height=400)

###############DEATH PER YEAR FOR THE VARIOUS TOWNS ###################################################################

#plotting for Linkhout

linkhout$NEW_YEAR <- as.character(linkhout$NEW_YEAR)

#

alt$Chart(linkhout)$mark_line(interpolate = ’bundle’)$

encode(alt$X(’year(NEW_YEAR):O’,title=’Year’, axis=alt$Axis(labelAngle=0)),alt$Y(’TOTALDIE:Q’,title= ’Death Count’))$

properties(title=’Count of Death Per Year For Linkhout’,width=600, height=400)

################BIRTH COUNTS################

linkhout$TOTALBORN

# birthcout

alt$Chart(linkhout)$

mark_line(interpolate = ’bundle’)$

encode(

alt$X(’year(NEW_YEAR):O’,title=’Year’, axis=alt$Axis(labelAngle=0)),

alt$Y(’TOTALBORN:Q’,title= ’Count of Birth’))$

properties(title=’Birth Count Per Year For Linkhout’,width=600,height=400)

#####################################################################
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###########GROUPING INDIVIDUALS BY YEAR LIVED ###################

#####

linkhout_imp <- read.csv("C:\\Users\\joyce\\complete\\linkhout_imp.csv")

lumen_imp <- read.csv("C:\\Users\\joyce\\complete\\lummen_imp.csv")

meldert_imp <- read.csv("C:\\Users\\joyce\\complete\\meldert_imp.csv")

### seletion only observations between 1800 and 1900

linkhout_imp <- subset(linkhout_imp, (NEW_YB != "NA" & NEW_YD != "NA") & (NEW_YB >= 1800 & NEW_YD <= 1900))

lumen_imp <- subset(lumen_imp, (NEW_YB != "NA" & NEW_YD != "NA") & (NEW_YB >= 1800 & NEW_YD <= 1900))

meldert_imp <- subset(meldert_imp, (NEW_YB != "NA" & NEW_YD != "NA") & (NEW_YB >= 1800 & NEW_YD <= 1900))

##delete observations with negative years lived

linkhout_imp <- subset(linkhout_imp, IMP_YSL >= 0)

lumen_imp <- subset(lumen_imp, IMP_YSL >= 0)

meldert_imp <- subset(meldert_imp, IMP_YSL >= 0)

## summary statitics

summary(linkhout_imp$IMP_YSL)

summary(lumen_imp$IMP_YSL)

summary(meldert_imp$IMP_YSL)

sd(linkhout_imp$IMP_YSL);sd(lumen_imp$IMP_YSL);sd(meldert_imp$IMP_YSL)

## create age groups for complete data linkhout;

linkhout_imp$age_group[linkhout_imp$IMP_YSL >= 0 & linkhout_imp$IMP_YSL < 15 ] <- 1

linkhout_imp$age_group[linkhout_imp$IMP_YSL >= 15 & linkhout_imp$IMP_YSL < 45 ] <- 2

linkhout_imp$age_group[linkhout_imp$IMP_YSL >= 45 & linkhout_imp$IMP_YSL < 65 ] <- 3

linkhout_imp$age_group[linkhout_imp$IMP_YSL >= 65 ] <- 4

## create age groups for complete data lummen;

lumen_imp$age_group[lumen_imp$IMP_YSL >= 0 & lumen_imp$IMP_YSL < 15 ] <- 1

lumen_imp$age_group[lumen_imp$IMP_YSL >= 15 & lumen_imp$IMP_YSL < 45 ] <- 2

lumen_imp$age_group[lumen_imp$IMP_YSL >= 45 & lumen_imp$IMP_YSL < 65 ] <- 3

lumen_imp$age_group[lumen_imp$IMP_YSL >= 65 ] <- 4

## create age groups for complete data meldert;

meldert_imp$age_group[meldert_imp$IMP_YSL >= 0 & meldert_imp$IMP_YSL < 15 ] <- 1

meldert_imp$age_group[meldert_imp$IMP_YSL >= 15 & meldert_imp$IMP_YSL < 45 ] <- 2

meldert_imp$age_group[meldert_imp$IMP_YSL >= 45 & meldert_imp$IMP_YSL < 65 ] <- 3

meldert_imp$age_group[meldert_imp$IMP_YSL >= 65 ] <- 4

##plots of number of deaths lived

tab1(linkhout_imp$age_group,main = "Death Counts Per Age Groups in Linkhout")

tab1(lumen_imp$age_group,main = "Death Counts Per Age Groups in Lumen")

tab1(meldert_imp$age_group,main = "Death Counts Per Age Groups in Meldert")
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################## LINKHOUT

# select only age group == 1

linkhout_group1 <- subset(linkhout_imp, age_group == 1)

# Find the year with the most deaths for age group 1

link_grp1_death <- tab1(linkhout_group1$NEW_YD,graph = TRUE,sort.group = "decreasing")

# select only age group == 2

linkhout_group2 <- subset(linkhout_imp, age_group == 2)

# Find the year with the most deaths for age group 1

link_grp2_death <- tab1(linkhout_group2$NEW_YD,sort.group = "decreasing")

link_grp2_death

# select only age group == 3

linkhout_group3 <- subset(linkhout_imp, age_group == 3)

# Find the year with the most deaths for age group 1

link_grp3_death <- tab1(linkhout_group3$NEW_YD,graph = FALSE,sort.group = "decreasing")

link_grp3_death

# select only age group == 4

linkhout_group4 <- subset(linkhout_imp, age_group == 4)

# Find the year with the most deaths for age group 1

link_grp4_death <- tab1(linkhout_group4$NEW_YD,graph = FALSE, sort.group = "decreasing")

link_grp4_death

###################################################################

################### TIME SERIES ANALYSIS#######################

### Linkhout

# creating time series object for MORTALITY

link_ts <- ts(linkhout_series$MORTAL_R,start = 1800, end = 1900, frequency=1)

### Smoothing Splines

plot(link_ts,ylab = ’Mortality’,main="Smoothing spline for Mortality of Linkhout")

axis(1,at=seq(1800,1900,10),lwd = 0)

lines(smooth.spline(time(link_ts),link_ts, spar =0.6), lwd=2, col=4)

### Lummen

# create a time series object for mortality

lumen_ts <- ts(lumen_series$MORTAL_R ,start = 1800, end = 1900, frequency=1)

## plot

plot(lumen_ts, type="l", ylab="Mortality",main="Mortality per year for Lummen")

axis(1,at=seq(1800,1900,10),lwd = 0)

## Smoothing Splines

plot(lumen_ts,ylab = ’Mortality’,main="Smoothing spline for mortality - Lumen")

axis(1,at=seq(1800,1900,10),lwd = 0)
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lines(smooth.spline(time(lumen_ts),lumen_ts, spar =0.6), lwd=2, col=4)

#### SORT TABLES TO DETERMINE TOP THREE MORTALITY YEARS ######################################################

proc sort data =linkhout_plot;

by MORTAL_R NEW_YEAR;

run;

/*sort lummen*/

proc sort data =lummen_plot;

by MORTAL_R NEW_YEAR;

run;

/*sort meldert*/

proc sort data =meldert_plot;

by MORTAL_R NEW_YEAR;

run;

### Fitting Negative binomial Model ###################################

## Linkhout

proc genmod data = count_linkhout;

class sex /param=glm;

model count = deathdates sex / type3 dist=negbin ;

run;

/*does the model fit the data properly*/

/* If the test had been statistically significant, it would indicate that the data do not fit the model well.*/

data pvalue;

df = 170; chisq = 180.0574;

pvalue = 1 - probchi(chisq, df);

run;

proc print data = pvalue noobs;

run;

## Fitting logistic regression Model ###################################

##logistic regression for linkhout

logis_linkhout <- pcount_linkhout <- glm(Frequency_death/Cumbirth ~Death_date ,combined_linkhout,family=binomial,weights= Cumbirth)

summary(logis_linkhout)

confint(logis_linkhout)

##logistic regression for Lummen

logis_lumen <- glm(Frequency_death/cumbirth ~Death_date ,combined_lummen,family=binomial,weights= cumbirth)

summary(logis_lumen)

confint(logis_lumen)

##logistic regression for Meldert

logis_meldert <- glm(Frequency_death/Cumbirth ~Death_date ,combined_meldert,family=binomial,weights= Cumbirth)

summary(logis_meldert)
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confint(logis_meldert)

str(combined_meldert)
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