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Preface 

Overtaking manoeuvre which involves both lateral and longitudinal control is 
considered as one of the most dangerous and complex manoeuvres that a driver can perform. 
The reason is that most of traffic accidents are caused by human misbehaviours such as driver 
cognitive overload, judgement mistake and operation errors. In all types of road accidents 
related to overtaking manoeuvres, there is a risk of rear-end accidents that the overtaking 
vehicle no longer maintains the safe distance from the car ahead in preparation for overtaking. 
The research is an effort to contribute to the development of an Advanced Driver Assistance 
System which helps predict dangerous overtaking manoeuvres with respect to rear-end 
accidents before the headway between the driven and preceding vehicles reaches its critical 
threshold and alert the driver about these possible dangers, giving him enough time to react. 
A sensory-fusion deep learning architecture based on Recurrent Neural Networks (RNNs) with 
Long Short-Term Memory (LSTM) units is proposed to monitor vehicle dynamics and driving 
context and signal predictions. The prediction performance of regular LSTM-RNN and 
bidirectional LSTM-RNN are also compared with other models based on Feedforward neural 
network (FFNN). In term of experiment settings, the model is trained in simulation with driving 
scenarios on two-lane rural roads but is tested in natural freeway and city driving. The study 
also indicates implications and relevance of the constructed model in real-world application 
as well as current limitations and directions for future research.  

The thesis with the topic “How to identify dangerous overtaking manoeuvres based on 
real-time sensor data?” marks a culmination of my study in the program of Master of 
Transportation – Traffic Safety Specialization at Hasselt University in the academic year 2020-
2021.  First and foremost, I would like to express my gratitude to the Creator of life for giving 
me the strength and courage to successfully complete the program, along with all the 
blessings and lessons learned in the last two years. Secondly, I gratefully acknowledge the 
funding opportunity received from VLIR-UOS in the pursuit of this master’s degree. Thirdly, I 
wish to express my sincere thanks to my supervisor, Prof. Dr. Tom Brijs who introduced me 
into this interesting research topic and has guided me in the right direction. Besides, I would 
like to express my great appreciation to my co-supervisor, Dr. Muhammad Adnan who has 
provided me with profound advices and knowledge sources on the research problem. One 
more time, sincere thanks go to Dr. Muhammad Adnan and his colleague, Bart De Vos for 
helping me set up the simulation experiment and operate the naturalistic driving experiment, 
especially under the difficult circumstance of coronavirus pandemic. In addition, my special 
regard also goes to my friend, Nguyen Do who enthusiastically participated in my experiments. 
Without their support, this dissertation would not be completed. I also wish to thank all the 
professors in the Master of Transportation department of Hasselt University who gave me 
necessary knowledge to write this dissertation, as well as to send a thank you to Hasselt 
University in general for free access to MATLAB software and reading materials used in the 
study period. Last but not least, I wish to acknowledge the encouragement of my family and 
my friends who dedicated their time with me and kept me going on this work.   
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Abstract 

Most of traffic accidents are caused by human misbehaviours such as driver cognitive 
overload, judgement mistake and operation errors (Yang and Wang, 2007; Bellis and Page, 
2008; Martinez et al., 2017). Overtaking is therefore considered as one of the most dangerous 
and complex manoeuvres where the driver needs to be assisted the most with the help of 
Advanced Driver Assistance Systems. Our research scope is limited to developing a prediction 
model of dangerous overtaking with respect to rear-end accidents on two-lane roads.    

Our study focuses on the preparation phase of overtaking before a significant lateral 
change to the left of the vehicle. The total of 40 and 28 legitimate overtaking manoeuvres 
were respectively recorded in simulation driving for model training, internal validation and 
testing purposes and in naturalistic driving in Hasselt city for further testing purposes. Four 
interested variables, including longitudinal speed, longitudinal acceleration, steering 
wheel/heading angular rate and headway between the driven vehicle and the preceding 
vehicle are extracted and interpolated. In this research, a sensory-fusion deep learning 
architecture based on Recurrent Neural Networks (RNNs) with Long Short-Term Memory 
(LSTM) units is proposed to monitor vehicle dynamics and driving context and predict 
dangerous overtaking manoeuvres with respect to rear-end collisions at 1-2s before the 
headway reaches its threshold of 1.2s with the performance accuracy of about 80%. This 
LSTM-RNN based system fuses multiple sensory streams from driving context and vehicle 
dynamics, models long temporal dependencies in a sequence-to-sequence prediction manner, 
learns to anticipate using only a partial temporal context and predict the dangerous overtaking 
before it is performed. The performance of three types of neural networks, including 
Feedforward shallow neural network (FFNN), regular LSTM-RNN and bidirectional LSTM-RNN 
are also compared and data pre-processing is required to build different input and output 
formats for training process in different neural network applications in MATLAB. Different 
from LSTM-RNN based methods which have a neural network layer for fusing the temporal 
streams of data coming from different sensors, the non-sequence-based method of FFNN uses 
a simple sensory approach of concatenation of feature vectors instead. The results are in line 
with previous works, showing that the Bi-LSTM-RNN based model outperforms in prediction 
performance because of its advantages in modelling temporal context and using all available 
input information in the past and future of a specific time framework for prediction. The study 
also found out that drivers are more likely to violate the safe headway rule in urban areas 
rather than in rural roads; changing the overtaking strategies does not help to increase the 
chance of avoiding rear-end collisions; speed is an important feature contributing to the early 
and accurate prediction while the steering wheel/heading feature only helps increase the 
prediction performance after their turning-points which can be used in manoeuvre 
recognition rather than prediction models. In general, the study shows that although the 
model is trained in simulation with driving scenarios on two-lane rural roads, the model testing 
in natural freeway and city driving with the relatively high prediction accuracy regardless of 
overtaking strategies indicates a high possibility for model standardization.  
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Chapter 1: Introduction  

1.1 Statement of problem 

Overtaking safety problems  

As driver’s error, among other factors, shares the highest proportion (75%) in contributing to 
crash occurrence (Vogel and Bester, 2005), overtaking involving both lateral and longitudinal 
control is considered as one of the most dangerous and complex manoeuvres that a driver can 
perform. Indeed, overtaking on roads with oncoming traffic is one of the most difficult driving 
tasks (McKnight and Adam, 1970). As shown in Figure 1.1, the study of self-reported driver 
behaviour in Europe indicated that risky overtaking is typical among samples in Slovakia, Czech 
Republic, Greece and Cyprus (SARTRE3, 2004). National policies on overtaking vary with 
general prohibitions of overtaking of different vehicle types, on different categorized roads, 
for certain times or distance. However, a Dutch study showed that 20% of overtaking 
manoeuvres were still observed on sections with an overtaking prohibition (Hegeman, 2004). 
Therefore, dangerous overtaking is among the most targeted traffic violation by police in 
Europe (Makinen et al., 2003).   

Figure 1. 1. The frequency of self-reported overtaking when respondents think “just make it” 

 
Source: SARTRE3 (2004) 
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In the seventies, 43% of all traffic accidents on two-lane highways involved overtaking or 
passing manoeuvres (Kemper et al., 1972), making overtaking as the fifth most common cause 
of road traffic accidents (IDBRA, 1973).  Clarke et. al (1998) classified road accidents involving 
overtaking manoeuvres into ten types and discussed three in detail, including collision with a 
right-turning vehicle, head-on collision and the ‘return-and-lose-control’ accident. There is 
also a risk of rear-end accidents that the overtaking vehicle no longer maintains the safe 
distance from the car ahead in preparation for overtaking (Rajalin et al., 1997). Also, the 
percentage of passenger vehicles involved in lane change crashes was the highest among 
other vehicle types, ranging up to 89.7% (Wang and Knipling, 1994). Naranjo et al. (2008) 
believed overtaking accidents are mainly resulted from failing to leave enough distance, 
overtaking when there was poor visibility, or not giving way to an overtaking vehicle. Mota et 
al. (1998) indicated the driver’s focus only on his way forwards without the attention to the 
rear-view mirror makes the overtaking manoeuvre risky. Moreover, Gordon and Mart (1968) 
claimed that it is unable for drivers to estimate the overtaking distances and safety margins 
correctly because the speed of the involved vehicles, especially the overtaken vehicle, are not 
constant. Mosedale and Purdy (2004) reported that erroneous speed choice is a contributory 
factor to 18% of UK rural road accidents involving risky overtaking manoeuvres. Clarke et. al 
(1998)  also found that differences in overtaking manoeuvres are a function of driver age. 
Afshin et al. (2010) also agreed that younger drivers (18-28 years old) with less than 2-year 
driving experience are most likely to be at fault in overtaking crashes. In general, Farah et al. 
(2009) analysed drivers’ passing decisions on 2-lane rural highways and found that the most 
important factor affecting the measurement of overtaking risk by drivers is traffic-related 
variables, followed by geometric design and driver characteristics.  

Within Europe, 25% of fatal crashes in Organization for Economic Cooperation and 
Development (OECD) member countries are head-on collisions that overtaking may be the 
main cause (OECD, 1999). In the US, 20% of all fatal crashes on two-lane rural roads, making 
up about 4500 fatalities annually, were crashes with oncoming traffic (Persaud et al., 2004). 
Between 2004-2008, there were other 336,000 crashes involved in lateral control manoeuvres 
such as overtaking and lane changing as a result of drivers’ distraction or inappropriate 
decision making, representing a significant proportion of the total accidents (Najm et al., 
2013). In the Netherlands, 2.6% of the total number of traffic fatalities was caused by 
overtaking on two-land rural roads (SWOV, 2003). In the UK, 7.9% of the fatal traffic accidents 
are estimated to be caused by overtaking on two-lane roads (Clarke et al., 1998). In Saudi 
Aribia, illegal overtaking is the second most frequent cause of traffic accidents after speeding 
and accounted for 10% of total accidents in 2001 (Nedal, 2004). Another study of overtaking 
in Iran showed that 20% of crashes which takes place on non-separated two-way two-lane 
rural roads were due to improper overtaking but these crashes accounted for 50% of fatalities, 
implying the seriousness of these overtaking-related crashes (Afshin et al., 2010). Table 1.1 
shows the overview of other country specific overtaking accident findings. 

Table 1. 1. Overview of country specific overtaking accidents’ findings 

Country Findings 

Denmark             
(Larsen, 2004) 

Between 1986 and 1995, an average of almost 130 fatalities have 
been recorded each year in connection with head-on collisions, 
accounting for more than 20% of all fatalities 
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Finland                   
(Katila and Keskinen, 
2000) 

When traffic accidents are divided into the groups “same driving 
direction”, “intersection” and “opposing driving direction”, 72% of 
accidents can be grouped in the last category 

The Netherlands     
(AVV Transport 
Research Centre, 
2002) 

One third of all accidents between trucks and cars on roads outside 
built-up areas with a speed limit of 50, 80 or 100 km/h are frontal, 
indicating that overtaking may be the cause 

Nottinghamshire, UK 
(Clarke et al., 1997) 

Of 970 analysed accidents, 8% were caused by overtaking, 
representing 20% of the total fatalities. One of five most frequent 
accident scenarios is overtaking on a hill where overtaking is 
prohibited   

Nottinghamshire, UK 
(Clarke et al., 1999) 

Misjudgement of speed and distance to oncoming vehicles 
accounts for on average 8% of overtaking accidents. Highest 
dangers for overtakers come from oncoming vehicles that are not 
seen and from unexpected actions of overtaken vehicles 

United Kingdom   
(DETR, 2000) 

The number of accidents caused by overtaking manoeuvres is only 
3.5% but assumed to be overrepresented in fatality statistics 
because of the high speeds at which they occur. 

South Africa          
(Vogel and Bester, 
2005) 

Overtaking was identified as the main factor behind human error 
that causes 75% of the analysed accidents 

Source: Adopted from Hegeman (2005) 

Overtaking assistance systems 

Advanced Driver Assistance Systems (ADAS) is a series of fast-developing techniques 
designed for allowing driving tasks more safely, more comfortably and more efficiently 
(Masikos et al., 2013). Nowadays, several of these systems, such as advanced cruise control, 
lane keeping assistance and back spot monitoring are already standard in many production 
vehicles in alerting drivers whenever they commit a dangerous manoeuvre (Broek et al., 
2011). The high percentage of traffic accidents and fatalities in overtaking and lane change 
manoeuvres has given the rise to the need for the development of overtaking assistance 
systems (OAS) (Hegeman, 2008). Indeed, drivers would like to have some assistance with 
overtaking (Houtenbos et al., 2005a). Hegeman (2005) identified opportunities for developing 
potential overtaking assistance by dividing the overtaking task into 5 phases with 20 subtasks, 
each requiring different according assistance.  

Early developments towards an overtaking assistant began around 2003 that Mitsubishi 
Proudia in Japan developed a system intended as a lane change assistance system for use in 
motorway driving (STARDUST, 2003). Similar developments focus on one directional traffic 
while most serious overtaking accidents happen on rural roads with opposing traffic. Later in 
2007, BMW introduced a warning system of unsafe overtaking situations based on road 
infrastructure information (e.g., a hill, a sharp curve, sign information, etc.) (Loewenau et al., 
2006). Hegeman et al. (2007) also proposed an OAS for two-lane rural roads that gives support 
on judging accepted overtaking opportunities based on the time gap to the next oncoming 
vehicle. This system was later tested in traffic simulation on two-lane roads, indicating 
improved traffic safety without negative consequences for traffic efficiency and driver comfort 
(Hegeman et al., 2009).  
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Despite that a large number of accidents are caused by human error or misbehavior, including 
cognitive (47%), judgement (40%) and operational errors (13%) (Ortiz, 2013), the inputs into 
current ADASs are mainly based only on the vehicle dynamic states and traffic context 
information without taking into account the driver factor itself. As vehicles are operating in a 
three-dimensional environment with continuous driver-vehicle-road interactions, allowing 
ADASs to monitor and understand diver behaviours in real-time and follow driver’s intention 
is of importance to driver safety, vehicle drivability and traffic efficiency. Thus, the active 
interaction between the human driver and the intelligent units are the major object for the 
next-generation ADAS products (Tawari et al., 2014; Xing et al., 2018). 

In general, research on the OASs includes the development of decision-making assistance on 
whether to initiate the overtaking (Fuchs, 2008; Saengpredeekom and Srinonchat, 2009) and 
the development for autonomous overtaking (Chiang et al., 2014; Milanesa, 2012). However, 
our research mainly concerns with the former which predicts dangerous overtaking 
manoeuvres that a driver is likely to perform in the next few seconds and alert the driver about 
these possible dangers, giving him enough time to react. Prediction of future human actions 
requires anticipation of future events from a limited temporal context, which differentiates it 
from action recognition where complete temporal context is available for anticipation (Wang 
et al., 2013). Previous works on general prediction usually deal with single-data modality 
(Kitani et al., 2012; Koppula and Saxena, 2013; Kuderer et al., 2012), but the driving 
environment is one kind of sensory-rich robotics settings and the way information from 
different sensors are fused largely affects the end performance of any prediction applications. 
Therefore, the machine learning techniques with a rich theory background rather than 
mathematic models can help deal with high dimensional real-time data of large volume. 
However, previous models learn representations using shallow architectures that cannot 
handle long temporal dependencies (Bengio and Delalleau, 2011). Basically, deep 
architectures with internal memory are required to handle long temporal dependencies (Hihi 
and Bengio, 1995) and allow the input features to undergo a hierarchy of non-linear 
transformation through its network to learn rich representations.  

1.2 Research scope, objectives and questions  

To better understand the problem and the scope of this thesis, this section indicates 
research aim, defines the scenario of interest and states the objectives and main research 
questions.  The research aims to answer the question “How to identify the driver intention to 
perform dangerous overtaking manoeuvres based on real-time sensor data?”.  

Scope  

The scope of this study is limited to overtaking manoeuvres performed on two-lane roads 
where the opposing traffic lane needs to be used during overtaking. The scenarios considered 
are illustrated in Figure 1.2. The ego/host vehicle A that performs the overtaking manoeuvre 
is defined as the overtaker, the preceding/lead vehicle B that is overtaken is defined as the 
overtaken vehicle, the oncoming traffic is varied from 0-4 vehicles (C – F) with variable 
distance and speeds. The ego vehicle is equipped with different types of sensors and the 
navigation system to collect real-time data about the driving context and the vehicle state.  
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There are four critical moments for one overtaking manoeuvre which are the intention 
triggering point (denoted as T1), manoeuvre preparation point (T2), lane crossing point (T3) 
and manoeuvre finishing point (T4). The specific moment when the driver arises an intention 
(T1) is hardly detectable which can be the first moment of relative speed reduction between 
the ego vehicle and the lead vehicle, considered as the traffic context stimuli. At T2, the driver 
uses the turn signal indicator, adjust speed and then turn the steering wheel. Finally, T3 and 
T4 are the moments that the vehicle just crosses the central line to start and finish the 
overtaking manoeuvre, respectively. Our research focuses on the time interval between T2 
and T3 which is denoted as overtaking preparation before the vehicle departure from central 
lane markings. The temporal sequence up to 9s before the crossing of central markings is 
sufficient to cover the important features for our research purposes, which particularly 
comprises of 7s before and 2s after the moment of turning the steering wheel to the left for 
overtaking.  

Figure 1. 2. The overtaking scenario 

 

Objectives 

The following research objectives are drawn up to address the aforementioned problem 

• To understand the safety concerns related to the overtaking manoeuvre and the need 
of overtaking assistance systems   

• To investigate the driver intention inference in the context of dangerous overtaking, 
taken into account multi-modal data from different sensors.  

• To develop prediction models of dangerous overtaking based on Neural Networks in 
driving simulation as well as test this trained model in naturalistic driving, all with the 
assistance of MATLAB tools 

• To evaluate the prediction performance of different types of Neural Networks used for 
deep-learning  

• To discuss the relevance of the constructed model in real-world application  

Research questions 

1. How safe is an overtaking with respect to normal/accelerative overtaking and flying 
overtaking strategies?  

2. How is the prediction performance between different neural network models? 
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3. Which are important indicators for driver intention inference of dangerous 
overtaking? 

4. How is the prediction performance with respect to prediction time?  

5. What is the feasibility of standardization of the prediction model for all drivers around 
the world?  

1.3 Contents of research 

This thesis is comprised of five chapters. Chapter 1 provides the introduction which 
includes the problem identification, the role of overtaking assistance systems, statements of 
research objectives and questions and the outline of the thesis. Chapter 2 focuses on the 
literature review on the concepts, characteristics and empirical facts of overtaking 
manoeuvres, the state-of-the-art developments of overtaking assistance systems and the 
driver intention inference studies. Chapter 3 focuses on methodologies used to identify 
dangerous overtaking, with respect to data collection methods, driver intention inference 
algorithms and workflow of model training process in MATLAB. The Chapter 4 presents the 
results found using MATLAB tools and following discussion. The Chapter 5 gives the conclusion 
on the research with implications, limitations and suggested the potential for future research.  
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Chapter 2: Literature review  

2.1.   Overtaking manoeuvres  
2.1.1. Definition and types of overtaking manoeuvres  

An overtaking manoeuvre is defined by “moving of the subject vehicle to another lane, 
passing of at least one (slower) preceding vehicle and moving back to the lane where the 
manoeuvre started” (Hegeman, 2008). Hegeman (2005) divided the overtaking task into 5 
phases, including: 1. Decide whether to overtake, 2. Prepare to overtake, 3. Change lane, 4. 
Pass and 5. Return to own lane and each of these phases consists of several subtasks, making 
up to 20 subtasks (i.e. Some important subtasks are listed in Table 2.1). Yan et al. (2019) 
considered Hegeman’s first two phases as “intention emerging process” and the rest of phases 
as “action executing process”. Both Hegeman (2005) and Fei et al. (2019) agreed that the initial 
driver intention to overtake appears much earlier than the execution of the overtaking 
manoeuvre. The study of Farah et al. (2018) about overtaking the cyclist also showed that the 
decision on overtaking strategies was made when the drivers are further than 100m away 
from the cyclist (i.e., about 5s before reaching the cyclist). The presence of this large time 
window allows warnings and intervention systems to be effective to prevent a driver from 
performing a dangerous overtaking manoeuvre. Thus, this dissertation will focus on the first 
two phases mentioned mainly.  

Table 2. 1. Phases and main subtasks of an overtaking manoeuvre  

Phases  Subtasks 

1. Decide whether to overtake 1.1. Verify overtaking wish/need 
1.2. Verify whether overtaking is permissible (e.g., road 
signs, lane markings, …)  
1.3. Verify an overtaking opportunity with respect to 
infrastructural factors (e.g., hills, curves, intersections, 
…) 

2. Prepare to overtake  2.1. Judge the gap with the first oncoming vehicle 
2.2. Observe any deviations of the preceding vehicle 
(e.g., left turn signalling, sudden deceleration, weaving, 
…) and other obstructing traffic from behind. 
2.3. Maintain a proper following distance  
2.4. Turn on indicator  

3. Change lane  3.1. Steering, accelerating, monitoring 
4. Pass  4.1. Continuation of acceleration, gear change 

4.2. Monitoring the gap with oncoming vehicles 
4.3. Pass the lead vehicle 

5. Return to own lane  5.1. Turn off indicator 
5.2. Steering, monitoring, accelerating/decelerating  
5.3. Adjust speed  

Source: Sumarized from the study of Hegeman (2008)  
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Earlier studies distinguished the overtaking strategies between accelerative (normal), flying 
and piggy backing types (Wilson and Besta, 1982).  

- In accelerative overtaking manoeuvres, the overtaker approaches the preceding vehicle, 
adjusts his/her speed to follow the preceding vehicle, waits for a sufficiently large gap in 
the opposing traffic stream to overtake that vehicle.  

- In flying type of overtaking, the overtaker drives at his/her desired speed and overtakes 
the preceding vehicle without car-following process.  

- In piggy backing type of overtaking, the driver follows his/her preceding vehicle which is 
overtaking another slower vehicle in front.  

In addition, other 2+ strategies of overtaking consider the driver overtakes more than one 
preceding vehicles at once, involving either accelerative, flying or piggy backing strategy 
(Hegeman, 2008). Also, according to another paper (Kashani et al., 2016), four overtaking 
levels are considered, including normal overtaking manoeuvre, aborted overtaking 
manoeuvre, lane sharing and cutting in type of overtaking manoeuvres. In general,  
accelerative overtaking manoeuvres are safer than flying overtaking manoeuvres as the 
drivers often drive at lower speeds and better control the interaction with the oncoming traffic 
(Dozza et al., 2016). Therefore, the accelerative strategy in overtaking is mostly used by the 
driver (Wilson & Besta, 1982; Hegeman et al., 2008) and this strategy can be divided into 
approaching, tailgating, lane changing, passing and lane returning. Farah et al. (2018) 
developed models that predict drivers’ decisions to perform either a flying or an accelerative 
overtaking manoeuvre in the presence of oncoming traffic. They suggested that the subject 
vehicle speed was a good indicator of the driver’s choice in overtaking strategies, in line with 
the findings of Bianchi et al. (2018) and Dozza et al. (2016). Bianchi et al. (2018) also found a 
significant correlation between the overtaking strategy and the nominal times to collision 
(TTC) in the study of cyclist-overtaking manoeuvres on a rural road: as the TTC decreases, 
more drivers used the accelerative strategy as slowing down and waiting for the oncoming 
vehicle to pass before accelerating to overtake the cyclist.      

2.1.2. Overtaking rules and related traffic safety measures 

Overtaking prohibitions  

To solve the overtaking safety problem, structural overtaking prohibitions are applied in many 
countries. Different countries select locations for installing overtaking prohibitions for 
different reasons, such as limited sight distances due to curves and hills, level 
crossings/intersections or straight roads with perfect views which induce high driving speeds 
and driver distraction, … The Dutch Sustainable Safety Program of the Netherlands considers 
overtaking prohibitions as a possible means to increase safety of two- lane flow roads (CROW, 
2002a; Wegman and Aarts, 2005).  

Means of overtaking prohibitions can be a (double) continuous/solid centre line, accompanied 
with a road sign at the start of each road section as shown in Figure 2.1.a. Finland, New-
Zealand and the USA use yellow paint (instead of white) for the (double) continuous centre 
line to indicate overtaking prohibitions. Other countries do use yellow paint for temporarily 
overtaking prohibitions, for example in case of road works. Although the double solid centre 
line can be replaced by physical barriers installed between the driving directions, the former 
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is mostly preferred because they are cheaper to be implemented and more flexible to allow 
crossings in case of emergency. In a Dutch study, 20% of normally performed overtaking 
manoeuvres were still observed on sections with an overtaking prohibition despite of an 
overall overtaking frequency reduction due to overtaking prohibitions (Hegeman, 2004b). One 
possible explanation is that passenger car drivers who are allowed to drive at higher speeds 
up to 100km/h on these roads than drivers of trucks and cars with trailers (80 km/h), are more 
inclined to violate overtaking prohibitions. Koorey (2007) found that a lack of opportunities to 
overtake slow moving vehicles can cause frustration and even road rage among aggressive 
drivers, prompting dangerous overtaking manoeuvres and resulting in an increase in crashes, 
as traffic violations in general are positively correlated with accident involvement (Parker et 
al., 1995). Moreover, when the overtaking prohibition is in place, any violations to perform an 
overtaking manoeuvre become more dangerous situations as other drivers do not expect 
these overtaking manoeuvres (Houtenbos et al., 2005b). Davidse et al. (2002) also agreed with 
this finding and indicated that a road is safe when expected behaviour corresponds with real 
behaviour. This implies that overtaking is presumed to be more unsafe with the presence of 
overtaking prohibitions, all else being equal. To tackle overtaking prohibition violations, the 
European Transport Safety Council  designated overtaking offences as one of the important 
areas of misconduct that needs traffic enforcement efforts in the future (ETSC, 1999). Police 
in Europe also targeted dangerous overtaking as the most important behavior that needs to 
be intervened to increase traffic safety (Makinen et al., 2003). 

Overtaking lanes  

Overtaking lanes are auxiliary traffic lanes alternating for the two driving directions, which are 
nearest the centre of the road and used for passing slower vehicles without confronting the 
oncoming traffic on the opposing lane. The concept of overtaking lanes to increase traffic 
efficiency and drivers’ comfort is successfully applied in many countries, for example in 
Australia (Charlton et al., 2001, Charlton, 2007) and Sweden (Bergt et al., 2005). Figure 2.1.b 
demonstrates an example of overtaking lane in which short stretches of dual carriageway are 
used to enable overtaking opportunities and the driving directions are divided by means of a 
cable barrier. In the USA, alternating overtaking lanes and median barriers on multilane roads 
has been suggested to minimise the likelihood of head-on crashes with opposing traffic 
(NCHRP, 2003). May (1991) confirmed that well-designed overtaking lanes could significantly 
reduce the number of accidents caused by overtaking. In terms of efficiency, overtaking lanes 
may improve the capacity of the road from maximum 3600 pcu/h for two lanes to a maximum 
of 4000 pcu/h for the three driving lanes together (CROW, 2002a & 2002b), ultimately 
resulting in less aggressive driving behaviour as an indication of higher driver comfort (Shinar 
and Compton, 2004). Indeed, a Dutch study (Levelt and Rappange, 2000) indicated that more 
than half of the motorists feel irritated and make aggressive driving behaviours because of the 
delays caused by slow moving traffic in front. However, the overtaking lane in one direction 
requires overtaking prohibitions installed in the opposing direction lane with resultant 
disadvantages already mentioned above. Therefore, compared to the permitted overtaking 
case without overtaking lanes, the alternating overtaking lanes do not yield more overtaking 
manoeuvres in one direction (Harms, 2006).  Kim and Elefteriadou (2007) also found no effect 
of overtaking lanes on capacity in their simulation study. In real world, any countries with 
narrow roads, high density of level crossings/intersections and short road segments, such as 
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the Netherlands, cannot install overtaking lanes. The minimum design length of an overtaking 
lane is 1200 m (BTCE, 1997).  

Driver assistance systems 

Driver assistance systems have been developed and improved for more than two decades. In 
1994, high technology Intelligent Vehicle Highway System (IVHS) has paid a high attention to 
crash avoidance systems to tackle lane change/merge crashes (Wang and Knipling, 1994). 
Developments of overtaking assistants began in 2003 (Louwerse, 2003, Hegeman, 2004b). 
These assistants are supposed to warn drivers of unsafe manoevres by measuring the range 
and speed of the oncoming and preceding vehicle (Gray and Regan, 2005). In 2007, BMW 
introduced a so-called passive overtaking assistant on the market, which is based on the road 
infrastructure to warn drivers of unsafe overtaking situations (Loewenau et al., 2006). Its 
interface is displayed in Figure 2.1.c The advantage of driver assistance systems is helping 
drivers perform overtaking manoeuvres safely rather than preventing drivers from overtaking 
(i.e., overtaking prohibitions) or preventing conflicts with oncoming traffic (i.e., overtaking 
lanes). Therefore, overtaking safety can be guaranteed without causing negative capacity 
effects or discomfort. Also, driver assistance systems will work identically in any countries and 
road types and can be considered as a cheaper solution compared to other safety measures 
mentioned above. However, driver assistance may encourage overtaking manoeuvres and 
distracted drivers who are inclined to wholly trust the system can face extra risk as a result of 
other unexpected traffic situations. 

International overtaking rules and executions  

Various rules and regulations for road traffic and use of highway are set up by the “Ministry 
of Infrastructure and the Environment, Netherlands” (Road Traffic Signs and Regulations in 
the Netherlands), “Province of Alberta” (Use of highway and rules of the road regulation) and 
the “Government of UK” (The Highway Code)  in which certain rules and regulations for the 
overtaking manoeuvre are considered under the subsection “Conditions for safe and legal 
overtaking” (Waterstaat, 2010; Alberta, 2002; UK Gov, 2017).  

- Conditions before overtaking: It should be made sure that road markings and signage 
should permit overtaking, the road ahead is clearly seen (i.e., not when approaching 
bends, junctions, lay-bys, pedestrian crossings, hills or dips, …), the host vehicle is not 
being overtaken by its following vehicle and there is a sufficient gap between the host and 
lead vehicle (UK Gov, 2017)   

Figure 2. 1. Solutions to reduce overtaking fatalities   

 
Source: (Hegeman, 2008). 

a. Overtaking prohibition; b. Overtaking lane and c. Overtaking assistance 
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- Conditions for safe and legal overtaking  
o The lead vehicle should be moving at a constant speed along a relatively 

straight route (Naranjo et al., 2008) 
o The left lane should be free or the approaching vehicle should be far enough to 

avoid collision (Perez et al., 2010) 
o The left lane must be long enough for the overtaking manoeuvre to be 

completed at the current speed (Naranjo et al., 2008) 
o The overtaking duration should be less than 15 seconds and the overtaken 

vehicle cannot increase its speed once the manoeuvre has been triggered 
(Milanes et al., 2012) 

o The host vehicle should depart to the left lane after a safe gap to the lead 
vehicle and return to the original lane after a sufficient gap created (Alberta, 
2002) 

o  The host vehicle must be able to accelerate enough to overtake the lead 
vehicle without violating the speed limit.  

o It should not follow the lead vehicle which overtakes another slower vehicle 
ahead because there may only be enough room for one vehicle (UK Gov, 2017) 

Hegeman (2005) also studied the international differences and similarities in overtaking rules 
and executions on two-lane rural road. Speed limits on the prohibited overtaking roads 
generally vary between 80 and 100 km/h with lower limits for (large) trucks, the lowest being 
70 km/h in Sweden and Italy. In the Netherlands, the “Sustainable Safety Program”, launched 
in 1992, includes overtaking prohibitions on all two-lane rural roads introduced in the self-
explaining road concept with a speed limit of 80 km/h (distributor roads) and 100 km/h (flow 
roads) (Wegman and Aarts, 2005).  In the study of Hegeman (2005), the most cited reason for 
installing overtaking prohibitions is restricted views. Sight distance can be defined as the 
visible roadway that can be observed by the drivers (AASHTO, 2001) and the passing sight 
distance is an essential aspect of single carriageway road section which allows drivers to judge 
whether the overtaking vehicle can safely complete the entire passing manoeuvre. Other 
reasons are bad surface, temporary high traffic flows, bad weather, near bus stops (i.e., 
Austria) or inside the tunnels (i.e., Italy). However, compliance to overtaking prohibitions that 
are installed only for safety reasons is estimated to be low in all countries because of the small 
perceived chance by drivers of getting caught by police. Besides fixed fines, Finland applies 
income-dependent fines and the USA, UK and Sweden offenders receive a notification on 
driving license with the risk to lose their driving license.  

In terms of indicator usage, the rules are fairly similar in most of the countries which require 
the use of indicator at the start and end of the overtaking manoeuvre, right before changing 
lane to the opposing traffic lane and then to the original traffic lane respectively. However, 
the indicator usage in practice may reach only 64% in the study of Hegeman (2005) and 44% 
in the study of Lee et al. (2004). Apart from the indicator, the start of an overtaking manoeuvre 
can also be indicated by means of other signs such as headlight flashing as done in Finland, 
Spain, Italy, Brazil, … With respect to safe headway keeping, the two-second rule (i.e., keep at 
least 2s headway with preceding vehicles) is known in Belgium, Finland, the Netherlands, New 
Zealand and Austria. However, Hegeman (2005) found that more than half of the observed 
headways were smaller than 1s. She also indicated other overtaking executions seen in the 
real world which are three vehicles side by side on two traffic lanes, the preceding and 
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oncoming vehicles slowing down to assist the overtaker, the preceding vehicle moving to the 
emergency lane, involved vehicles taking invasive actions due to misjudgements of the 
overtaker, the overtaker cutting in in front of the overtaken vehicle, …   

2.1.3. Empirical facts of overtaking behaviour observations 

Early studies on overtaking manoeuvre were developed by the American, Swedish and 
Australian. Much research effort in overtaking observations was made during the 1930s, then 
again, the interest in overtaking behaviour has grown again during the 1980s and at the start 
of the 21st century (Jenkins, 2004). Matson and Forbes (1938) were the pioneers who used 
moving observation vehicle technique with visual recording methods to study the driver 
overtaking behaviour. Other researchers who also used instrumental vehicles to conduct 
overtaking observation studies are Lerner et al. (2000), Hegeman (2005), … Other methods of 
collecting overtaking behaviour data including simulator study, accident analysis and test track 
observation (i.e., a test using still video camera which is situated on a higher ground level to 
observe the whole area of overtaking section) (Hegeman et al., 2005; Hassan, 2005; Gera and 
Shinar, 2005; Benedetto et al., 2004).   

Accepted gap 

Accepted gap can be measured as the estimated minimum time available for safe overtaking 
manoeuvre before the arrival of the next oncoming traffic or the certain threshold of distance 
gap between the ego vehicle and the next oncoming vehicle at which an overtaking 
opportunity can be accepted. Wilson and Best (1982) indicated that 14% of accepted gaps 
were judged to be too small (threshold 400m). Gordon and Mart (1968) claimed that drivers 
are unable to estimate the overtaking distances and safety margins correctly because the 
speed of the involved vehicles, especially the overtaken vehicle is not easily anticipated. Thus, 
accepted gap is one of the most considered indicators in overtaking, for which 11.5s was found 
by both Crawford (1963) and Tapio (2003).  Van der Horst et al. (1993) suggested that the 
observed overtaking average duration of 7.8s should be added with a safety margin of 4s to 
set the threshold of safe time gap for positive advice (i.e., “It’s safe to overtake”). Hegeman 
et al. (2005a) also found similar results that the average overtaking duration found of 7.8s 
(SD=1.9s) which is independent of overtaking strategy and of the observed overtaken vehicle’s 
speed, should be added with a safety margin of 3s to achieve the overtaking assistant 
threshold.  

Miller and Pretty (1968) assumed that every driver has a critical gap which represents his 
boundary between acceptance and non-acceptance of a presented gap. A time to collision 
(TTC) below 3s has been found to be experienced as uncomfortable by drivers (Hoogendoorn, 
2000).  Godfrey et al. (2016) also used the TTC as a surrogate safety measure of the risk 
associated with passing manoeuvres and found that TTC less than 3 seconds caused unsafe 
passing manoeuvres involving sudden speed reduction, flashing headlights, and lateral shift 
to shoulders. Lee et al. (2004) studied naturalistic lane-changes and suggested a TTC of 
between 4s and 6s.  

Other values of accepted gap may vary between 9.0s and 12.4s for different oncoming vehicle 
types and different lane width while the overtaking duration values of 6.5s, 6.7s, 11.2s and 
13s were also found in literature (Hegeman, 2008). Differences between these findings can be 
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explained by differences in definitions of the start and end of the manoeuvre. Hegeman et al. 
(2007) developed the overtaking assistant to support drivers in overtaking decision-making 
based on accepted time gap with the minimum assistant threshold setting in the driving 
simulator of 8s. The advice of the overtaking assistant is likely to be less respected by the 
drivers as the longer the assistant threshold. Thus, the time to carry out the overtaking 
manoeuvre must be less than 15s as stated by Milanés et al. (2012) and 15s was also chosen 
as the maximum time to perform quality overtaking manoeuvres in the study of developing 
test protocol for the highway overtaking manoeuvre (Kakade, 2018). According to 
Greenshields et al. (1935), the minimum overtaking distance requirement was between 305 
and 488 m. The mean overtaking distance was 282 m (SD = 75 m) in the study of Harwood and 
Sun (2008) and 175.5 m (SD = 56.3 m) in the study of Farah (2016).  

Headway at the start of an overtaking manoeuvre 

Hegeman (2008) observed 48 overtaking manoeuvres while driving at 70, 80 and 90 
km/h using an instrumented vehicle and found that the mean observed distance headways 
between the host and lead vehicle were 17.8m (SD = 9.8m) at the start of overtaking 
manoeuvre. Flying overtaking and piggy backing are suggested to have longer headways 
compared to accelerative/normal overtaking manoeuvres.  Farah (2016) suggested the mean 
following gap at the moment of initiating overtaking was 25m. Other studies found the 
headway distance between the ego and lead vehicle of 1s (SD=0.5s) (Roozenburg and 
Nicholson, 2000) and 1.6s (SD=1.3s) (Farah, 2013). Larger headways at the start of the 
manoeuvre will increase the overtaking duration, thereby possibly increasing the risk of a 
collision, especially with unseen oncoming traffic or unexpected movements of overtaken 
vehicle. According to Hegeman (2008), headways smaller than 1s at the start of overtaking 
manoeuvres are likely to be less dangerous than during normal following conditions but the 
driver have to either switch off or adjust the ACC to smaller headways. The minimum headway 
time should be greater than 0.8s as per the ISO 15622 standard for ACC (ISO, 2010) 

Acceleration  

Shinar (1998) believed that acceleration and speed of overtaking vehicle is a function 
of the speed of the overtaken vehicle and for various levels of constraint on the overtaking 
manoeuvre. Roozenburg and Nicholson (2000) carried out Monte Carlo simulations of their 
developed overtaking model with the mean acceleration of ±3.6 m s2 (SD = 0.45 m s2)⁄⁄ . 
Khodayari et al. (2012) developed an intelligent control system for autonomous overtaking in 
which the maximum acceleration was limited to ±3.5 m s2⁄ . Taken into account the comfort 
aspects for drivers, Hrishikeh (2018) agreed on the maximum longitudinal acceleration of 
±3.5 m s2⁄  to be used in developing test protocol for the highway overtaking manoeuvre. 
Generally, the maximum acceleration in other studies varies such as ±2.5 m s2⁄  (Schmidt, 
2017), ±5 m s2⁄  (Gustafsson, 2013) and ±7 m s2⁄  (Chandru and Selvaraj, 2016). As per the 
ISO standard 15622 (ACC), the average automatic deceleration of ACC systems shall not 
exceed 3.5 m s2⁄ , the average rate of change of automatic deceleration (negative jerk) shall 
not exceed 2.5 m s3⁄ and automatic acceleration of ACC systems shall not exceed 2 m s2⁄  (ISO, 
2010).  

Relative speed 
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 The threshold speed difference to provoke an overtaking wish for the ego vehicle 
varies between 5 and 40 km/h, as revealed by a survey amongst drivers in 17 countries 
(Hegeman, 2008). The relative speed range of 5-40 km/h was also used in the study of 
Hrishikeh (2018). AASHTO (American Association of State Highway and Transportation 
Officials) design criteria are based on the assumption that the speed differential between the 
host and lead vehicles is equal to 16 km/h, while this value is closer to 19 km/h as found by 
Harwood and Sun (2008) and 26.9 km/h [SD = 6.78 km/h] suggested by Roozenburg and 
Nicholson (2000). Bar-Gera and Shinar (2005) assessed the speed differential threshold - if 
there is one -at which drivers decide to overtake a lead vehicle and found that the more 
variable the driver’s speed the more likely he or she was to pass the vehicle ahead even when 
the overtaken vehicle’s speed was greater than traffic flow’s average speed. Also, the host 
vehicle mean speed was 75.6 km/h during overtaking (SD = 21.2 km/h) (Farah, 2016), the host 
vehicle speed range was 80-96 km/h when changing lanes (Chen et al., 2015) and almost no 
drivers initiate lane change at vehicle speeds above 129 km/h (Chen, 2016). 

Effect of changes in variables 

It is found that when drivers have the larger available gaps, the overtaking manoeuvre was 
performed in a more relaxed manner with increased overtaking duration and distance (Farah, 
2013). Also, the overtaking duration significantly decreases with higher driving speeds of the 
ego vehicle at the beginning of the manoeuvre. Drivers are likely to keep small headways 
before overtaking to minimize time spent in the opposite lane (Ahmad and Papelis, 2000). 
Vlahogianni (2013) concluded that the overtaking duration depends the speed difference, the 
speed of opposing traffic, the gender as well as the types of overtaking manoeuvre. It is 
observed that overtaking chance increases significantly with the absence of any hindrance to 
overtake, the decreased longitudinal distance and the decrease of relative speed (Budhkar 
and Maurya, 2016). Farah (2016) concluded that the probabilities to complete the overtaking 
manoeuvres increase with shorter following gaps between the ego and lead vehicle at the 
moment of initiating the manoeuvre, larger accepted overtaking gaps, higher desired driving 
speeds and slower speeds of the front vehicles. 

2.2.  Advanced driver assistance systems  

2.2.1. Advanced driver assistance systems in general 

An Advanced Driver Assistance System (ADAS) is designed to allow the driver to 
perform manoeuvres on roads with less stress, more safely, more comfortably, and efficiently 
(Masikos et al., 2013). Compared to in-vehicle passive safety systems (e.g., airbags, seat belts, 
…) which minimise the injuries for drivers and passengers in cases of accidents, ADASs are 
active safety features designed to prevent accidents from happening by alerting the driver to 
potential problems, helping reduce the workload of driving or even automatically taking over 
the control of vehicle’s steering and throttle in case of an emergency situation to avoid 
collision. ADAS can be grouped according to three driving phases, including environment 
detection (recognition), decision making (judgment) and implementation of the action 
(operation) (Hiramatsu, 2010). ADASs as modern safety systems have one of the fastest 
development rates in the field of automatic vehicles and autonomous driving. ADAS relies on 
a holistic system based on multimodal sensors such as light detection and ranging (lidar), 
radar, camera, and GPS as illustrated in Figure 2.2.  
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Figure 2. 2. Distribution of ADASs in an advanced vehicle with lidar, light detection and 
ranging 

 

Source: Yang et al. (2020) 

In the last decade, a great variety of ADAS systems have been tested by automotive 
manufacturers with successful deployment in commercial vehicles, as listed as bellows: 

- Adaptive cruise control (ACC) is designed to support drivers in maintaining a safe 
distance to the lead vehicle by brake interventions and vehicle acceleration/deceleration after 
the detection of changes in lead vehicle’s speed. The study of Bar-Gera and Shinar (2005) 
suggested that the tendency to overtake vehicles in unnecessary and undesirable cases may 
be reduced with the introduction of in-vehicle ACC. Also, Forward collision warning systems 
(FCW) paired with ACC are active safety features that warn the drivers in the event of an 
imminent frontal collision by making use of a scanning device mounted at the front of vehicle 
to measure the distances from front vehicles. 

- Lane departure warning (LDW) is an advanced safety technology installed in vehicle 
to alert drivers via auditory warning, visual warning and hepatic feedback when they 
unintentionally drift out of current lanes without a turn signal. In addition, Lane keeping 
assistance is coupled with LDW to actively assists the driver to remain in the marked lane by 
influencing the lateral movement of vehicle. These systems  may use a camera to detect lane 
markings and monitor the vehicle’s position in relation to the lanes or the infrared system can 
be mounted under the front bumper to detect the lane mark crossings on the road based on 
different reflections from the signals. Lane change Assist System alerts the driver about the 
presence of approaching vehicles in the adjacent zones from the rear. A radar sensor on each 
side of the rear of the car scans the surrounding area and detects any vehicle near and behind 
the vehicle. Other kinds of sensors are also used in LCAS such as camera, infrared and 
ultrasonic sensors. However, if the lane marks are not clear or the weather condition is 
adverse such as rainy, foggy and ice on the carriageway, these systems cannot work well. Also, 
these systems will fail to work if the drivers do not use the turn signal. In fact, based on the 
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US traffic statistics, less than half of the drivers signal when they change the lane during their 
normal driving (Yang et al., 2020).  

- Intelligent speed adaption is an in-vehicle system that supports drivers’ compliance 
with the speed limit in force at a particular location. GPS allied to digital speed limit maps 
allows ISA technology to continuously update in-vehicle speed limits in accordance with 
statutory local speed limits. Jamson et al. (2010) also investigated how mandatory and 
voluntary ISA might affect a driver’s overtaking decisions with respect to the frequency and 
safety of the manoeuvres on rural roads by presenting drivers with a variety of overtaking 
scenarios. However, they found that drivers disengaged the voluntary ISA in 70% of overtaking 
scenarios while the mandatory ISA could affect the safety of overtaking manoeuvres.  

- Electronic Stability Control designed to automatically provide traction and anti-skid 
support in cases of loss of control realized by a yaw sensor, wheel speed sensors and a steering 
angle sensor.  Emergency Brake Assist works in combination with Anti-lock Braking Systems 
to make use of wheel speed sensors to help braking as effective as possible in critical situations 
while avoiding wheel lockage during an episode of heavy braking.  

Figure 2. 3. Advanced Driver Assistance Systems market prediction 

 

Source: Grand View Research, Inc. 

(ACC, adaptive cruise control; AEB, automatic emergency braking; AFL, adaptive front light; 
BSD, blind spot detection; LDWS, lane departure warning systems; TPMS, tire pressure 

monitoring system) 

Other common ADASs are pedestrian detection, traffic sign recognition, blind spot 
detection,… Besides inputs from various sensors present inside or outside the car or with the 
help of a vision-based camera, additional inputs can be sourced separately from other vehicles 
(i.e., Vehicle-to-Vehicle (V2V)) or Vehicle-to-Infrastructure systems (i.e., mobile telephony or 
WIFI data network). However, ADAS is currently only used for assisting and helping functions, 
leaving final decision making to the car driver who has the ability to override the electronic 
assistance in all conditions and is legally responsible for his driving. It is also predicted by many 
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automotive market analysers such as Grand View Research that ADAS products will show a 
significant increase in the next 5 years (Figure 2.3).  

2.2.2. Overtaking assistance system  

Overtaking is still one of the difficult manoeuvres where driver needs to be assisted 
the most with the help of ADAS application. The Overtaking Assistance System (OAS) is a 
subsystem of the ADAS and designed to assist the driver in the overtaking process. Although 
ADAS listed above may not be incompatible with overtaking and must be automatically 
deactivated when the driver initiates overtaking manoeuvre, many of its components can be 
very useful, taking into account the capabilities offered by the radar sensors to measure 
speeds and distances of all vehicles involved. For example, Lee et al. (2004) confirmed that an 
overtaking assistant should include a collision warning system if other vehicles approach too 
close. The reuse of already existing ADAS functionalities would encourage the user acceptance 
of new models.  

State-of-the-art OAS developments 

In general, research on the OAS includes the developments of decision-making assistance as 
well as autonomous overtaking technologies. The former can be seen in the development of 
the ‘‘Dynamic Pass Prediction” system which informs drivers whether it is safe to overtake on 
road sections of two-directional traffic based on navigation system data such as curve and sign 
information (Loewenau et al., 2006).In 2007, this so-called passive overtaking assistant was 
introduced by BMW on the market. Another example is the work of Hegeman et al. (2007) 
who proposed an overtaking assistance system for two-lane rural roads that gives support on 
judging accepted overtaking opportunities based on the time gap to the next oncoming 
vehicle. This system was later tested in traffic simulation on two-lane roads, indicating 
improved traffic safety without negative consequences for traffic efficiency and driver comfort 
(Hegeman et al., 2009). Gong et al. (2016) used various sensors for environmental perception, 
GPS receiver for self-location and V2X communication for interaction information (i.e., 
distance, velocity) while developing decision-making model for overtaking behaviour on 
freeways. This developed model was integrated into their vehicle “Ray” in the simulation 
environment with experimental results showing the feasibility and reliability of the model. 
Fuchs (2008) studied a constraint-based and context-aware overtaking assistance system with 
fuzzy-probabilistic risk classification to support decision-making for initiating overtaking 
manoeuvre. Also, Saengpredeekorn (2009) proposed a new technique to define the 
overtaking distance using image process to assist decision-making process.). The latter area of 
research includes, for example, the study of Chiang et al. (2014) which proposed an embedded 
driver-assistance system using multiple sensors for a safe overtaking manoeuvre; the work of 
Vicente et al. (2012) which suggested an intelligent automatic overtaking system using vision 
for vehicle detection.  From another perspective, Wasudeo (2015) reviewed on OAS and 
classified them into three categories based on technology used. Firstly, OAS proposed by 
Rafael et al. (2009) is the system to estimate overtaking risk, consisting of Vehicle-to-Vehicle 
(V2V) Communication to share vehicle kinematics information and road shape between 
vehicles over the 3G cellular network, the Global Navigation Satellite System (GNSS) combined 
with dead-rocking sensors and digital maps to predict lane change and collision and the 
Collision Avoidance System. Human-machine Interface (HMI) is also used to make the driver 
aware of dangerous situations for overtaking. Secondly, OAS in the study of Antonio et al. 
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(2013) instead used another technology called VANET (Vehicle Ad hoc Network) as the 
medium of communication to share kinematics information. This VANET system is based on 
coordinate position message broadcast protocol which interacts with other vehicles using 
wireless sensors, works irrespective of any infrastructure and position vehicles in relatively 
long distance away from the ego vehicle to assist the driver while performing the overtaking 
manoeuvre. Finally, Jarnea et al. (2015) proposed an approach which is not based on V2V 
communication but rather the acquisition of real-time scenario operations. This technique 
uses stereo vision cameras and radars which capture the real time images of the front and 
back side of the vehicle, obtain the distances between the objects and calculate the disparity 
map measures to inform and assist the driver to perform overtaking manoeuvres. Figure 2.4 
illustrated the transition between different levels of the OAS in which the cooperative 
assistance system means some assistance systems in different vehicles can work together by 
means of communication (e.g., V2V, VANET, …). The study of Hegeman et al. (2009) showed 
that the assistance in judgement of the distance gap with the first opposing vehicle can be 
difficult because no radar, laser, camera or sensor can be able to detect far enough ahead 
unless means of navigation systems based on V2V communication are available. However, the 
European project PReVENT aims to develop a model which warns drivers about approaching 
vehicles with a relative velocity of 120 km/h from long distance by using sensors (PreVENT, 
2005).  

Figure 2. 4. Transition between different levels of overtaking assistance system 

 

Source: Basjaruddin et al. (2014) 

Monitoring system architecture in OAS 

Zamfir et al. (2020) illustrated an ideal monitoring system architecture of the overtaking 
manoeuvre via a series of sensors and its own communication network, which operates 
independently from other ADAS devices already installed in the vehicle. Figure 2.5 describes 
the system as follows:  

- Module 1 is responsible to detect the road configuration and recognize the overtaking 
manoeuvre initiated by the driver. The main parameters monitored are the steering wheel 
angle, the acceleration and brake pedal angles, the longitudinal and lateral acceleration, 
… However,  most of the dynamic vehicle parameters required for overtaking manoeuvre 
analysis can be practically taken from the Electronic Stability Program (ESP) system via the 
propulsion-associated CAN 5b network. GPS precise position monitoring and the inclusion 
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of information related to lane number, road category, radius of curvature, road slope … in 
digital maps are mandatory and useful to increase traffic safety.   

- Module 2 is responsible for the real-time monitoring of the front and rear areas of the 
vehicle at 360 degrees surrounding area, simultaneously receiving information from the 
four sensors via an Ethernet switch 7. Useful radar sensor ranges suggested for overtaking 
monitoring are 300-350m for the front radar, 100-150m for the rear sensor and 25-60m 
for the two side radars. The radar sensor measures the distance, relative velocity and 
angular orientation of any objects which reflects waves transmitted by the transceiver to 
the receiver.       

- Module 3 performs recognition functions of those objects identified in parallel by radar 
sensors controlled by previous Module 2. The most important function consists of image 
acquisition from video cameras and graphical image processing based on the theory of 
neural networks defined and trained to recognize the classes of objects (e.g., vehicle types, 
traffic signs, …) 

Figure 2. 5. System architecture of the overtaking manoeuvre monitoring system 

 

Source: Zamfir et al. (2020) 

1.Master module; 2. Radar control module; 3. Video, GPS and IMU control module; 4. 
Overtaking Manoeuvre Monitoring System (OMMS); 5. CAN network (5a. Vehicle internal 

CAN; 5b. ODAS CAN-FD Network); 6-7. Ethernet switches; 8. EPS (Electronic Power Steering) 
– ECU; 9. Electronic Stability Program (ESP) – ECU; 10-13. FMCW radar sensors placed in 

front, sides and rear locations on the vehicle; 14-17. High resolution video cameras placed in 
front, sides and rear locations on the vehicle; 18. GPS – antenna; 19. Inertial Measuring Unit 

(IMU) 9 DOF  

Graphic information processed in Module 3 about recognized objects found in surrounding 
area are passed to Module 1. Once the overtaking manoeuvre is recognized by Module 1, a 
command is sent to Module 2 to strictly store information of vehicles involving in the 
overtaking manoeuvre (i.e., the vehicle in front or appearing on the opposite front lane, …). 
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The information can also be validated by processing GPS data and positioning the vehicle on 
an electronic map.  

Future improvements in OAS 

The abovementioned monitoring system architecture lacks of the monitoring component of 
the driver behaviour and the inputs of current ADASs are mainly based only on the vehicle 
dynamic states and traffic context information without taking into account the most critical 
factor, the driver itself. Meanwhile, a large number of accidents are caused by human error 
or misbehavior, including cognitive (47%), judgement (40%) and operational errors (13%) 
(Ortiz, 2013). The important challenges of ADASs and vehicle automation are concerned with 
not only the adaption to different traffic situations but also the cooperative participation with 
the human drivers as “team-players” (Christoffersen and Woods, 2002). The active interaction 
between the human driver and the intelligent units are the major object for the next-
generation ADAS products (Tawari et al., 2014; Xing et al., 2018). Although the autopilot 
products of Tesla are one of the most successful commercial driver assistances and semi-
automated ADAS in the world, Tesla car was also reported for car crashes worldwide (The 
Guardian, 2018). One of the most common reasons for such a crash is the driver over-trusting 
the autopilot with activated systems while there is a lack of mutual understanding between 
the driver and the automation. Therefore, the driver’s intention needs to be recognized and 
corrected by future effective ADASs, as of importance to driver safety, vehicle drivability and 
traffic efficiency. For example, driver intention inference technique allows ADAS to warn 
potentially dangerous situation as early as possible before any vehicle movements realized by 
intention; better assess the future risk based on the driver’s driving styles (Berndt and 
Dietmayer, 2009) or avoid making decisions against the driver’s intent especially in case of the 
level 3 or higher automated vehicle (according to the SAE International standard on the 
classification of automated vehicles) which requires a smooth and safe transition of control 
authority between the driver and the autonomous controllers (Eriksson and Stanton, 2017; 
Nilsson and Falcone, 2015). In the end, developments in driver intention inference can 
accelerate a more naturalistic human-like on-board decision-making system for future 
autonomous vehicles (Liu and Pentland, 1997). Noticeably, because the driver can be 
distracted from the driving task by an increasing use of in-vehicle devices and information 
systems, it is suggested that the design of future ADAS should integrate intended driver 
behaviours from the early design stages (McCall, 2006a&2006b). The topic of driver intention 
inference will be further discussed in the next part.   

2.3.  Driver intention inference  

2.3.1. Driver intention mechanisms  

The human intention has been theoretically studied in the past two decades. Intention 
refers to the thoughts that the driver has before performing the actions based on the cognitive 
psychology perspective (Carruthers, 2007). The theory of planned behaviour postulates that 
intention (i.e., supportive expression towards behaviours under study) is the most proximal 
determinant of behaviour and is determined by three conceptually independent variables: (1) 
Attitude towards behaviour, (2) Subjective norm reflecting pressure from social life of human, 
and (3) perceived behavioural control as confidence of an individual to perform the behaviour 
(Ajzen, 1991). The process of understanding the intention of another agent based on its 
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actions is called intention recognition (Tahboub, 2006). For designing adaptive automation 
that can support human’s decision-making, driver intention recognition is of importance 
although human intentions may not result in observable behaviors which can be described as 
“intention-action gap” (Howard & Cambria, 2013). Driver intention can be classified into 
different categories according either the motivation, timescale or direction of driving, with the 
last two categories as the two most straightforward ways of classification. 

• Timescale-based driver intention classification: Michon (1985) suggested that driving 
skills of the road user can be classified into three levels: strategy, tactical and control 
levels. Strategy level defines planning skills such as trip route, destination, comfort zone 
and risk assessment, which requires time constants of at least several minutes. In terms of 
tactical level with time constants in seconds, the driver will make a short-term decision 
such as turning, lane changing and braking manoeuvres and perform a sequence of 
operational actions on vehicle to negotiate the prevailing circumstance. Meanwhile, the 
control intention occurs within the shortest time constant in milliseconds and stands for 
the willing of the driver to stay safe and comfortable in the traffic situation. Another driver 
model, namely, Adaptive Control of Thought-Rational cognitive architecture (Salvucci, 
2006) shares similarities with the three-level architecture of road user model given by 
Michon. He developed the integrated driver model into three main components, which 
are control, monitoring and decision-making modules. The control component is 
considered as the same as the control level given by Michon, responsible for perceiving 
the external world and transferring the perceptual signals directly to the vehicle. The 
monitoring component maintains the awareness of the current situation while the 
decision-making component functions as part of Michon’s tactical level.     

• Direction-based driver intention classification: There are two basic directions for the 
underground vehicle, which are the longitudinal and lateral intention. The driver’s 
longitudinal behaviour includes braking, acceleration, lane keeping, … Lateral behaviours 
mainly include turning, lane changing and merging. There are many studies on driver 
deceleration/braking intention prediction (Takahashi & Kuroda, 1996; Tran et al., 2012; 
Kumagai et al., 2003), and lane change intention prediction ( Campbell (2015); Lethaus et 
al. (2011); Hou et al. (2011)). However, it is less accurate to describe the intention as 
merely longitudinal or lateral as the complex driving manoeuvre comprises of multiple 
short-stage actions.     

• Task-based driver intention classification: The multitask-based intention usually contains 
both longitudinal and lateral manoeuvres compared with the single-task oriented 
intention. Liu and Pentland (1997) analysed the patterns within a driving action sequence. 
Imamura (2010) developed a driver intention identification and labelling based on the 
assumption of compliance with traffic rules. 

Figure 2.6 illustrates the taxonomy of driver intention systems, also suggesting sources of data 
which can be used to infer the driver intentions.   
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Figure 2. 6. Taxonomy of driver intention systems 

 

Source: Adapted from Yang et al. (2020) (ECG = Electrocardiography; EEG = 
Electroencephalography) 

2.3.2. The architecture of driver intention inference system 

Because lane change can be considered as the first observable action of overtaking 
manoeuvres, previous literature on lane change intention inference can help recognize the 
overtaking intention. Driver intention inference (DII) system mainly contains the following 
modules: road and traffic perception module, vehicle dynamic measurement module, driver 
behaviour recognition module and DII module, as depicted in the Figure 2.7. Road and traffic 
perception module detects the surrounding traffic situation, using cameras, light detection 
and ranging (lidar), radar and GPS signals. Meanwhile, relative distance and velocity between 
the ego vehicle and the preceding vehicle can be obtained through the Controller Area 
Network (CAN) bus. These traffic and vehicle data together with the driver behaviour signals 
(i.e., from the driver head rotation, eye gaze, body movement, etc) will be fed into the DII 
module. The probability of lane change intention is then calculated by the DII module based 
on the fused information. The lane change decision is based on a binary signal produced. As 
the decision is activated, the interaction control module monitors driver dynamics (e.g., EEG, 
eye gaze behaviours, head/body movements, etc.) and the driver vehicle interface (e.g., 
hand/steering interaction, foot/brake & acceleration, etc.). The vehicle dynamics data (e.g., 
yaw angle, longitudinal and lateral velocity, path and position, etc.) ultimately feeds back as 
the continuous input into the DII module. 

The DII system can clearly define the time flow of the driver intention procedure. At the 
strategy level, the driver first perceives the traffic context, then generate the intention and 
performs a series of checking behaviours to assess the safety of the surrounding traffic. Once 
the safety opportunity is given, the driver will decide to activate the intended manoeuvre at 
the tactical level. Next, the driver controls the vehicle through the steering wheel and the 
pedal at the control level. Finally, the vehicle responds to control behaviours and vehicle 
dynamic changes.    
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Figure 2. 7. DII framework of lane change 

 

Source: Adapted from Yang et al. (2020) 

2.3.3. Inputs for driver intention inference system 

Generally, indicators for driver intention recognition found in literature (Doshi and Trivedi, 
2011; Lefevre et al., 2014) can be classified into information about the vehicle state, the driver 
itself and the situational context. The signals from three parts of the traffic-driver-vehicle loop 
can be used as inputs into the DII system. While the understanding of specific traffic context 
perceived by the driver helps reasonably infer driver’s intention, the driver behaviour 
information enables the estimates of how long the driver has generated the intention and 
how the driver performs a series of safety checking on surrounding traffic. Meanwhile, the 
vehicle dynamics signals indicate the driver’s actions taken to realize the intent. Table 2.2 
summarizes the common input signals and sensors as multimodal signals used to infer driver 
mental intent and predict driver behaviour. Selecting the most important and relevant data 
as input into the DII system can increase the accuracy of the prediction rate and reduce the 
false alarm rate. 

Table 2. 2. Common input signals and sensors used for driver intention inference 

Sensor sources 
Sensor categories 

Traffic Current ego-vehicle position (collected with GPS and digital map), 
relative distance, velocity and acceleration with respect to the 

front and surrounding vehicles (collected with cameras, radar, light 
detection and ranging/lidar) 

Driver  Cameras (head rotation, gaze direction, foot dynamics). EEG, EMG, 
heart rate, etc. 

Vehicle CAN bus signals (including steering wheel velocity, brake/gas pedal 
position, velocity, heading angle, etc.) 

 

 



Chapter 2 – Literature review 

 
 

24 

 

Traffic context 

 Traffic context is the major stimuli for driver intention. Yan et al. (2019) indicated that 
the “intention emerging process” when drivers form the initial intention to overtake, appears 
much earlier than the “action executing process” when drivers execute the overtaking 
manoeuvre and revealed that the lead vehicle speed has a significant influence on initial driver 
intention to overtake while the complexity of the oncoming traffic (i.e. the number of vehicles, 
the gap size between them and their speeds) increases the time taken until the overtaking 
execution. Farah (2013) also investigated the influence of speed difference to the lead vehicle 
on the decision to overtake but did not include any opposing traffic. Perez et al. (2011) 
proposed an intelligent automatic overtaking system on two-way roads which can suggest 
whether to overtake by analysing the preceding environment with real-time variables such as 
time-to-collision, width and length of the preceding vehicle, differential global positional 
system and inertial measurement unit.  Leonhardt et al. (2018) presented a model for the 
recognition and prediction of lane changes based on both driver-based input and the traffic 
situation, particularly the discrete levels of occupancy for each lane. The prediction of 
overtaking manoeuvres based on the traffic situation is usually addressed by gap acceptance 
models to assist the decision-making of accepting an available gap as seen in the work of 
Farrah et al. (2009) and Hassein et al. (2017). Unfortunately, a definition of latent critical gap 
required in these models are not clear and logistic regressions realized in these models can be 
overly restrictive in more complex traffic scenarios. Farah et al. (2009) studied the impact of 
traffic conditions, road geometry and driver characteristics on the decision to overtake but 
limited their work to two combinations of speeds for the lead and oncoming vehicles 
employed in driving simulator experiments. Recently, Hassein et al. (2017) performed similar 
analysis to the study of Farah et al. (2009) but real-world field data was used and their study 
is limited to a single oncoming vehicle and single target speeds for all involved vehicles. Gray 
and Regan (2005) also investigated different overtaking situations with oncoming traffic on 
rural roads in comparative driving simulator studies.  

There are many kinds of sensors used to capture the surrounding traffic context such as 
cameras, radar and lidar systems. Most of the traffic information can be obtained from ADAS 
with the most popular vision-based ADASs such as LDW and LKA. Vision-based LDW is able to 
compute the distance between the host vehicle and the lane boundary, the vehicle lateral 
velocity and acceleration, yaw angle, road curvature, … (Beauchemin et al., 2012). Radar-
based ACC can detect the relevant distance between the host vehicle and the front vehicles 
(Vahidi & Eskandarian, 2003). McCall et al. (2004) proposed a modular scalable architecture 
to capture surrounding environment, using radar and video devices to obtain the forward, 
rear and side information. The SWA system helps scan the area of rear and side vehicles up to 
50m behind the vehicle, based on at least two radars mounted under the side mirrors (Doshi 
et al., 2011). These authors also evaluated the impact of different sensors on the prediction 
of driver intention. The prediction of lane change intention based on sensor data is also seen 
in the study of Kumar et al. (2013) to obtain the lane information given by a lane tracker, 
vehicle position and its derivation, …. However, a digital map with GPS, a space-based 
navigation system, can provide more precise information about vehicle location, road type 
and road geometry, as indicated in the study of Berndt et al. (2008), even in rough weather 
conditions when the camera and radar system cannot work. Moreo and Izquierdo (2009) 
introduced an interactive multiple-model based approach to predict lane change manoeuvres 
by using the GPS/IMU (inertial measurement unit) sensors to collect the vehicle position data.  
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Driver behaviours 

 Driver behavioural signals are also observed to allow earlier prediction of characteristic 
preparatory measures preceding the execution of a manoeuvre. Driver eye movement can be 
classified as either intention-guided movement in which eye fixation or saccades were done 
on purpose, or nonintentional-guided eye movement caused by distractions. Moreover, 
intention-oriented eye movement also can be viewed as the cognitive progress of either 
information gathering (i.e., before the manoeuvre is initiated) or action execution (i.e., when 
the manoeuvre is operated). Caceres et al. (2007) indicated that the driver’s intention at an 
information gathering step is less likely to change when compared with that in the action 
execution step. Eye movement of the distracted driver cannot reflect the driver’s intention 
and the intention inference results cannot be trusted (Shinar, 2008). However, eye movement 
is still a useful signal for intention decoding and inference (Borji et al., 2015). Many prior 
research has applied the eye-tracking technique to predict lane change intention (Zhou et al., 
2008, 2009 & 2010; Doshi & Trivedi, 2008 & 2009) and it has been proved that eye movement 
information does increase the accuracy rate of prediction and reduce the false alarm rate. To 
overcome the challenges of effects caused by lightness, glass and hair near the eye on eye-
tracking performance, some robust algorithms for eye movement detection have been 
proposed (Timm & Barth, 2011; Wang et al., 2015; Martin et al., 2018). The eye-tracking 
system available on the market can be categorized into intrusive wearable glass type and non-
intrusive camera-based system mounted on the vehicle dashboard. In driving silmulator 
experiments, the eye data can be captured by the SMI (SensoMotoric Instruments) eye-
tracking system, as in the study of Lethaus et al. (2013a) who evaluated how early the eye 
gaze information can reflect the driver intent and how many gaze features used for intention 
recognition. They concluded that a 5s window for the eye data is better for intention 
prediction because the 10s window carries more noise.     

Similar to eye movement, head motion is another cognitive process for information gathering. 
It has been even proved that head movement is a more important factor than eye movement 
for driver intention prediction (Jain et al., 2016) and has also been widely used in many past 
DII research (Dogan et al., 2008; Girshick, 2015; Lv et al., 2015). Chutorian and Trivedi (2009) 
concluded that there has been a variety of head pose estimation algorithms used to track head 
movement. According to the current head-tracking algorithms, those developed with 
multicameras shows better performance than a monocular camera algorithm despite of its 
high system costs. However, the in-vehicle head-tracking system has one significant challenge 
of the online computing ability of the onboard processor to deal with large amount of data. 
The sensitivity and specificity of the eye-tracking system can be improved by 10% using the 
data processing method in the study of Ahlstrom et al. (2012). Another challenge is the noise 
issue of captured images, caused by vibration from the road and lightness variation issues in 
the vehicle cabinet.  

In addition to camera-based driver eye- and head- tracking system, some other driver 
behaviours such as the foot, hand and body gestures were also recorded through a camera in 
some research (Tran et al., 2012; Das et al., 2015; Tran & Trivedi, 2012). Eshed et al. (2015) 
studied real-time and early prediction of overtaking intent and manoeuvres based on a 
naturalistic dataset of driver, vehicle and surroundings. Their data were taken from distributed 
vision sensors to track head pose, hand and foot motions, surround vehicle trajectories, lane 
and road geometry, surround visual. The results indicated that driver cues (i.e., foot) and 
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surround cues (i.e., visual cues, lidar/radar) are better for early prediction rather than lane 
deviation and the steering information. Doshi et al. (2011) also uses head pose, among other 
cues to predict the possibility of crossing the lane marking in a 2s window before the actual 
event. Other studies which applied driver-based input approaches include Ohn-Bar et al. 
(2014), Doshi and Trivedi (2011), Oliver and Pentland (2000) and Jain et al. (2015). However, 
driver-based input may be short-lived and misleading as the result of the ever-increasing 
introduction of automation  

Electroencephalography (EEG) is a brain action measuring device that measures the flow of 
brain electric current with non-invasive electrodes on the scalp. EEG is also an important 
sensor for detecting a human mental state. EEG has been widely used to monitor driver 
workload and driver status such as drowsiness, happiness, sadness, mental fatigue and 
abnormal conditions (Tiwari & Giripunje, 2014).  EEG has also been used in driver steering 
intention prediction with the prediction accuracy of 65%-80% (Ikenishi et al., 2008). However, 
in the real-world driving environment, EEG signals contains lots of noise and can be affected 
by head movement, making it impractical to be used (Alonso and Gil, 2012) 

Vehicle dynamics 

The vehicle state subsuming information about vehicle dynamics (i.e. velocity, 
acceleration, yaw rates, …) and the position and orientation of the vehicle in the road is most 
commonly used to compare the observable vehicle state sequence with expected sequences, 
as seen in the work of Kumar et al. (2013) to predict lane change intention, the work of Bi et 
al. (2015) to detect driver normal and emergency lane-changing intentions or the work of 
Liebner et al. (2012) to study driver intent inference at urban intersection. Also, Ali et al. (2013) 
predicted overtaking behaviour using the kinematic features such as velocity, longitudinal 
acceleration and movement angle of two vehicles involved, especially in all instantaneous 
values without any assumed constants.  

Vehicle data collected from the vehicle CAN bus can be processed with large amount of data 
at high transfer speed. Blaschke et al. (2008) predicted overtaking manoeuvres via CAN bus 
data with collected indicators such as brake pressure, accelerator pedal value, accelerator 
pedal speed, … In terms of lane change intent, throttle pedal position, brake pressure, cross-
acceleration, steering wheel angle, steering wheel angle velocity, yaw rate and velocity are 
collected from CAN bus in the study of Morris et al. (2011) and Berndt et al. (2008). Schmidt 
et al. (2014) proposed an explicit mathematic model of the steering wheel to recognize lane 
change intent. Lethaus et al. (2011) constructed a driver intention recognition model based 
on artificial neural networks (ANNs), which was fed with both CAN bus data and driver gaze 
information. In the driving simulator environment, the input signals into a driver lane 
change/keep intention inference model can be the steering wheel angle, steering angle 
velocity,  lateral acceleration, relative speed of the front vehicle, transmission position, 
acceleration pedal position (Li et al., 2014; Hou et al., 2011).. However, vehicle dynamics data 
gives delayed information compared to the signals from driver behaviours and traffic situation 
to infer the driver intention, once the manoeuvre has been already initiated, because it can 
be considered as direct responses to the driving actions. Still, the vehicle data is an important 
data source to increase the accuracy of the intention identification because not all driver 
intention is realized into observable actions.     
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Chapter 3: Research methodology  

3.1.  Selected variables  

Due to limited time and resources, input signals and sensors used for prediction are 
sourced from the vehicle dynamics and traffic context only, ignoring the factor of driver 
behaviours. Our study focuses on four available kinematic vehicle variables of real-time 
instantaneous values used as model inputs as follows: 

- Longitudinal speed (kilometres/hour) of the driven vehicle 

- Longitudinal acceleration (meters/second2) of the driven vehicle 

- Steering wheel angular rate (degrees/second) or heading angular rate 
(radians/second) of the driven vehicle 

- Headway (seconds) between the driven vehicle and the preceding vehicle 

To classify whether an overtaking manoeuvre is safe or dangerous, the value of headway at 
the turning-point of steering wheel angular rate to start overtaking is judged. On Dutch roads, 
(too) short headway times was registered by police as the cause of 80% off all rear-end 
collisions and serious rear-end crashes made up 36% of all registered serious crashes and 25% 
of all registered fatal crashes from 2007-2011 that the Dutch government has paid much 
attention to keeping safe headway in many traffic safety campaigns (SWOV, 2012). In 
overtaking manoeuvres, there is also a risk of rear-end accidents that the overtaking vehicle 
no longer maintains the safe distance from the car ahead in preparation for overtaking (Rajalin 
et al., 1997). According to SWOV (2012), passenger car drivers are advised to keep two-second 
headway in the Netherlands to allow sufficient reaction time to commence emergency 
braking, if necessary, under various circumstances. This 2s rule is also known in Belgium, 
Finland, New Zealand and Austria. However, this critical headway value is not the same for 
every driver and varies from less than one second to about two seconds because the reaction 
time is a function of the driver’s alertness, expectation and situational complexity (Lamm et 
al., 1999). 

In practice, Hasen and Minderhoud (2003) collected data on the headway between passenger 
cars on a Dutch motorway, using an instrumented vehicle. They realized that as the speed of 
vehicle increases, the average headway time decreases and at the speeds from about 90 km/h, 
the average headway of passenger cars is less than one second. Hegeman (2008) also 
indicated that more than half of observed overtaking headways between passenger cars in 
the Netherlands are smaller than 1s. In developing an automated driving system for the 
overtaking manoeuvre, Kakade (2018) used the control strategy called ‘Constant time gap’ 
with a headway threshold of 0.8s. However, the chosen headway threshold in our study is 
1.2s that any overtaking manoeuvres which records a headway smaller than 1.2s at the 
turning-point of steering wheel angular rate are classified as “Dangerous”.  
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3.1.1. Data collected from driving simulators  

Driving simulators provide an artificial environment best used for drivers to experience 
critical driving situations without severe ethical and safety concerns. Although driving 
simulators may not always provide ecologically valid results (Farah et al., 2019), their main 
advantages are the large number of accurately measured variables extracted such as 
headway, time to collision, lateral lane position of the driven vehicle, …  without the problem 
of missing signals as often occurred in naturalistic driving. Also, tests using driving simulators 
are used for years to design and evaluate many active safety systems (e.g., system acceptance 
(Lubbe & Davidsson, 2015), EuroNCAP scenario definitions, …).  

Figure 3. 1. Experiment in driving simulation 

 

The driving simulator experiment in our study was conducted at Transportation Research 
Institute (IMOB) of Hasselt University. The fixed-base driving simulator was equipped with a 
steering wheel, an accelerator pedal and a brake pedal. The driving scene was shown on one 
screen as presented in Figure 3.1. The driving scenarios were designed to allow the driver 
overtake on a two-lane rural road with the presence of oncoming traffic on the opposing lane. 

One young male university student of the age 25 who had owned a driving license for around 
3-4 years was invited as the only participant in the experiment. During the experiment, the 
participant first underwent several test trials to get familiar with the driving simulator 
environment, the scenery and the overtaking task, which was followed by repeated 
experimental trials. In the end, the total of 40 legitimate overtaking manoeuvres were 
recorded. Although the raw dataset was recorded in milliseconds, our study dataset prepared 
for model training and testing was processed and recorded in seconds. Our considered 
variables, including longitudinal speed, longitudinal acceleration, steering wheel angle and 
headway were directly extracted from raw dataset. The steering wheel angular rate was then 
derived from the steering wheel angle values which is the difference between the current and 
previous angle values, positive to the left as shown in Figure 3.2. 
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Figure 3. 2. Definition of steering angle 

 

 

3.1.2. Data collected from naturalistic driving  

The advantage of naturalistic driving study is to offer much wider perspectives in 
understanding normal traffic behaviour inn normal everyday traffic situation. UDRIVE is the 
first large-scale European naturalistic driving study on cars, trucks and powered two-wheelers, 
using recorded details of the driver, the vehicle and the surroundings through unobstrusive 
data gathering equipment and without experimental control (Yvonne et al. 2016). Similar 
studies include PROLOGUE, INTERACTION, 2BeSafe, DaCoTA, SemiFOT and Large Field 
Operational Tests (e.g., euroFOT, TeleFOT). 

In our study, data was also collected from naturalistic driving on two-lane roads in the 
built-up areas in Hasselt as shown in Figure 3.3.a. The vehicle testbed is a commercial vehicle 
equipped with multiple radar and lidar sensors as shown in Figure 3.3.b. Data was extracted 
mainly from GPS positioning and CAN bus vehicle dynamics. One IMOB’s young male staff with 
experienced driving of more than 10 years was invited to drive and overtake as usual without 
being told of the experiment objectives. Another assistant was sitting next to the driver to 
record the exact time point of executing the overtaking manoeuvre. The driver drove the 
vehicle for about an hour and a total of 28 overtaking manoeuvres were recorded. Three 
considered variables, including longitudinal speed, heading angle and headway were directly 
extracted from the raw dataset in the timeframe in seconds. Some missing values of headway 
can be replaced by the previous value. The longitudinal acceleration in meters/second2 equals 
the difference between the current and previous speed values, divided by 3.6. The heading 
angular rate (rather than its absolute angle values)  can be used as a similar measure to the 
steering wheel angular rate. Because the heading angle values taken from GPS are based on a 
compass rose as indicated in the Figure 3.4, the  heading angular rate equals to the difference 
between the previous and current heading angle values to be comparable to the steering 
wheel angular rate (i.e., negative as rotating clockwise). 
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Figure 3. 3. Experiment in naturalistic driving  

 

a. Driving on an urban road in Hasselt 

 

b. The vehicle testbed 

Figure 3. 4. The compass rose 
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3.2.  Driver intention inference algorithms  

Conventional intention inference algorithms can be roughly divided into the following 
groups: mathematic model, driver cognitive model and the widely used machine learning (ML) 
models. Because it is difficult or even impossible to build an accurate mathematic model for 
human mental state, the ML techniques with a rich theory background provide an efficient 
way to learn knowledge from naturalistic data and even achieve an end-to-end learning 
process with some advanced deep learning methods. Also, the learning of long-term 
dependency between driver behaviours and traffic context enables ML algorithms to 
significantly increase the inference accuracy. Importantly, the ML technique rather than 
mathematic models can deal with high dimensional real-time traffic context and driver 
behaviour data of large volume. Therefore, the ML algorithms are widely adopted because of 
their ability to construct the inference system by fusing a large number of signals (i.e., up to 
200 sensor signals adopted in the intelligent vehicle in the study of Morris et al. (2011)). 
However, the major limitation of using ML algorithms is data collection that insufficient data 
volume will lead to overfitting and bad inference results and data manual labelling is time-
consuming. Higher computational burden both for the financial and temporal costs in training 
and testing ML algorithms is another limitation.  

Machine learning algorithms can be divided into generative models and discriminative 
models. The generalized model relies on probability theory and prior knowledge about the 
work, whereas the discriminative model does not require statistical information. The 
generative models provide a joint probability distribution over the observed and target values, 
which can generate both the inputs and outputs according to some learned hidden states. The 
discriminative model only provides the dependence of the target on the observed data and 
usually can be generated from the specific generative models through the Bayes rule. 
Compared with the discriminative model, the generative model is less easy to be trained 
because multiple models are trained simultaneously and each model is provided to each class 
based on the different probability distribution. As mentioned in Doshi and Trivedi (2011), 
discriminative models provide a better result on a single target problem than the generative 
models, whereas the generative models are more suitable for multitarget problems. Recently, 
deep learning methods are also employed in the studies of driver intention inference systems, 
as shown in Figure 3.5.  

Figure 3. 5. Taxonomy of algorithms for driver intention inference system 

 

Source: Adapted from Adopted from Yang et al. (2020) 
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3.2.1. Cognitive Models 

Salvucci (2004&2006) introduced a real-time system for detecting driver lane change 
intention based on a mind-tracking architecture and implemented in the study of Adaptive 
Control of Though-Rational. The system suggests four steps, including collecting data, 
simulating model, tracking action and inferring thought. During the simulation, several models 
were run simultaneously within the system which detected the driver’s intentions by 
examining the “thoughts” of the best matching model. Although the mind-tracking system 
achieved 85% accuracy with a 4% false alarm rate for lane change intention detection, 
investigations were conducted exclusively in simulators . Luzheng et al. (2015) constructed a 
queuing network cognitive architecture to detect the normal lane change and emergency lane 
change manoeuvres. The intention was detected based on a threshold of root-mean-square 
error (RMSE) value with a high accuracy rate of 90% and a low false alarm rate of 0.294%. This 
method can be easily applied to real-world context rather than intelligent inference methods 
based on eye gaze and head movement. However, the steering wheel angle signal as the only 
input into the algorithm cannot help infer the driver manoeuvre at a very early stage or before 
the manoeuvre happens. Ohasi et al. (2004) also proposed a driver recognition method based 
on the HMM in the framework of a cognitive model of human behaviour to classify between 
emergency lane change, normal lane change and lane keeping.  

3.2.2. Generative Models 

Generative models such as Hidden Markov Models (HMMs) and Dynamic Bayesian 
Networks (DBNs) are widely used in previous intention inference (Schmidt et al., 2014; Li et 
al., 2014; Jang et al., 2014; Doshi and Trivedi, 2009; Campbel & Bajcsy, 2015). Pentland and 
Liu (1997) used the HMM to recognize seven kinds of driver intention. Berndt et al. (2008) 
used the HMM to investigate early lane-change intention. Oliver and Pentland (2000) also 
used the HMM to predict overtaking manoeuvres with a high level of reliability approximately 
one second before their performance. Just like many other studies, the authors failed to assess 
false-positive predictions of overtaking manoeuvres and the algorithm was not validated for 
other situations or drivers for generalizability of the findings. Pech et al. (2014) proposed a 
driver head-tracking system based on Naive Bayesian system to classify the glance area of the 
driver. In the study of Kasper et al. (2012), a lane change detection model was based on the 
object-oriented Bayesian network which was constructed by various sub-Bayesian networks 
with different functions. This system was designed according to the modularity and reusability 
of the Bayesian network to facilitate system extension according to different requirements. Li 
et al. (2016) proposed an integrated intention inference algorithm in which a preliminary 
output from the HMM was further filtered using the Bayesian filter (BF) method to make the 
final decision. The HMM-BF framework achieved a recognition accuracy of 93.5% and 90.3% 
for the right and left lane changes, respectively. A driver lane change behaviour classifier can 
also be based on a hybrid model that combines a Bayesian network and Support Vector 
Machine (SVM) (Morris & Doshi, 2011). Hou et al. (2011) constructed a lane change intention 
recognition method based on the continuous HMM and concluded that the continuous HMM 
with six hidden states and 1.5s window size (i.e., data collected between 0 and 1.5s prior to 
the vehicle crossing the lane) gave the best classification result (95.48%). Another context-
based highway lane change intention system based on HMM in the study of Polling et al. 
(2005) suggested that additional inputs of context data lead to a high false-positive result rate 
and the classification performance was worse than the system with vehicle state information 



Chapter 3 – Research methodology 

 
 

33 

 

only. It indicates that the HMM has limited ability to capture the context information during 
the lane change process. More powerful algorithms such as double-layered HMM and input-
output HMM are suggested (Jain et al., 2016).      

3.2.3. Discriminative Models 

Discriminative models such as support vector machine (SVM) and artificial neural network 
(ANN) are also widely used in intention inference because of the rich background theories and 
the successful application experience. Lethaus et al. (2013b) used different algorithms and 
concluded that the performance of ANN was the best, as compared with other two methods, 
including Bayesian networks and Naive Bayesian. Mandalia and Salvucci (2005) proposed a 
driver lane change and lane keeping intention classification method based on SVM.  Morris et 
al. (2011) and Doshi et al. (2011)  used a Bayesian extension to the SVM algorithm, namely, 
the relevance vector machine to classify the driver lane change (right and left) and lane 
keeping intentions. The false alarm rate of the system decreased with the use of multiple 
detection suppression techniques, helping the classifier achieve 80% accuracy. However, the 
online classification results were worse in a real-time environment than in the experimental 
environment. In the study of Campbell (2015), SVM, random forest and logistic regression 
were algorithms used to identify three kinds of driver intentions: lane keeping, preparing for 
lane changing, and lane changing. The SVM was then reported to achieve the best 
classification performance. Lethaus et al. (2011) proposed a lane change intention recognition 
method based on ANNs and indicated that head rotation had consistent gains between 1.5 
and 2.5 s prior to the lane change manoeuvre. Kumar et al. (2013) combined the SVM and 
Bayesian filter (BF) to construct an algorithm which can realize prediction of the intention in 
an average of 1.3s in advance and achieve a maximum prediction horizon of 3.29s. To reduce 
the false alarm rate, the performance of the lane tracker system was suggested to be 
improved. Dogan et al. (2008) introduced and compared  three machine learning methods, 
which were the feedforward neural network (FFNN), recurrent neural network (RNN), and 
SVM, based on four evaluation criteria, including the mean value of prediction horizon, the 
number of the correctly recognized lane change, the number of not recognizing the lane 
change, and the number of false alarms. The results showed that SVM gave the best results 
followed by RNN and the classifiers were able to predict the lane change 1-1.5 s prior to the 
vehicle crossing the lane.  

In particular case of overtaking prediction, both Khodayari et al., (2010) and Ghaffari et al. 
(2013) used the concept of Artificial Neural Network (ANN) with the FFNN as its most common 
network type. An ANN is generally an information processing system replicating the design 
and functioning of human brain, comprised of highly connected processing elements/nodes 
called neurons connected by weighted links. In FFNN, input is fed into the network in the input 
layer, processed in the hidden layers and transformed into an output in the output layer, 
mapping only raw data to categories (Figure 3.6). The feedforward phase means that input 
signals propagate in forward direction (layer by layer) to produce output and the backward 
propagation process of an error between computed and observed values of the target variable 
modifies the connection strengths (weights).  ANN model can be described in the following 
formula as: 
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𝑂𝑘 = 𝑔2 [∑ 𝑊𝑘𝑗𝑔1 (∑ 𝑊𝑗𝑖 𝑥𝑖 + 𝑊𝑗𝑜

𝑁

𝑖=1

)

𝑀

𝑗=1

+ 𝑊𝑘𝑜] 

, where 𝑥𝑖 is the input value to node i, 𝑂𝑘is the output at node k, 𝑔1and 𝑔2 are respectively 
nonlinear and linear activation function of the hidden and output layers. N and M respectively 
represent the number of nodes in the input and hidden layers. 𝑊𝑗𝑜  𝑎𝑛𝑑 𝑊𝑘𝑜  are biases of the 

jth node in the hidden layer and the kth node in the output layer. 𝑊𝑗𝑖 is the weight between the 

input node i and the hidden node j and  𝑊𝑘𝑗  is the weight between the hidden node j and the 

output node k.  

Figure 3. 6. FFNN architecture with one hidden layer 

 

Source: Caihong et al. (2018) 

3.2.4. Deep learning Methods 

Recently, tremendous achievement has been made in the deep learning area related to 
many computer vision tasks such as image classification, segmentation and object detection 
domains (Lv et al., 2015; Girshick, 2015) . This achievement has been facilitated by the 
development of deep learning theories, computation hardware platforms, software systems 
and large-scale annotated dataset. The deep convolutional neural network has been widely 
adopted in many intelligent and automated vehicles (Krizhevsky et al., 2012). Meanwhile, the 
recurrent neural network (RNN) also achieved significant results on natural language 
processing and image captioning areas (Jain et al., 2015&2016).  
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Figure 3. 7. A simplified recurrent neural network architecture 

 

Source: Yang et al. (2020) 

RNNs are a strict superset of feedforward neural networks (FFNN), augmented by the inclusion 
of recurrent edges that span adjacent time steps and thus are powerful models for sequential 
data, certainly fitted in the case of driver intention inference which is not an instance 
detection task and should take previous driver behavioural data into consideration. In other 
words, the RNN model is applied to learn the temporal dependency between the input data, 
exhibiting the dynamic temporal behaviour of a sequence by forming a directed connection 
between previous states and the current state (Zyner et al., 2018; Morton et al., 2017; Olabiyi 
et al., 2017). Figure 3.7 illustrates a basic structure of the RNN model that the right-side 
illustration is the unfolded version of the left circuit diagram. 𝑥, 𝑠 𝑎𝑛𝑑 𝑜 represent the input, 
hidden states and the output of the RNN, respectively. 𝑊, 𝑈 𝑎𝑛𝑑 𝑉 are parameters for 
weights. At time 𝑡, nodes receiving input along recurrent edges receive input activation from 
the current example 𝑥𝑡 and also from the hidden nodes 𝑠𝑡−1 in the network’s previous state 
to calculate output 𝑜𝑡, given the hidden state 𝑠𝑡 at the time step. Thus, input 𝑥𝑡−1 at time 𝑡 −
1 can actually influence the output 𝑜𝑡  at time 𝑡 by way of these recurrent connections.  

The RNN model can be described as two equations necessary for computation at each 
timestep on the forward pass as follows, 

𝑠𝑡 = 𝑓(𝑊𝑥𝑥𝑡 + 𝑊𝑠𝑠𝑡−1 + 𝑏𝑠) 

𝑜𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑜𝑠𝑡 + 𝑏𝑜) 

where 𝑊𝑥 , 𝑊𝑠 𝑎𝑛𝑑 𝑊𝑜  are the model parameter matrix for the input, hidden states and 
output; 𝑏𝑠  𝑎𝑛𝑑 𝑏𝑜are the bias vectors which allow each node to learn an offset. Although the 
RNN shares the same 𝑊𝑥 , 𝑊𝑠  𝑎𝑛𝑑 𝑊𝑜  at each time step to reduce the number of training 
parameters, RNN still suffers another serious problem known as the gradient vanishing or 
exploding (Bengio et al., 1994) to remember long-term dependency. Therefore, the long short-
term memory (LSTM) scheme was also proposed to increase the memory ability of the RNN 
model (Hochreiter & Schmidhuber, 1997) by introducing three extra gates, known as the input 
gate, forget gate and output gate which cooperate with each other to control how much 
information should be remained and forgot. Figure 3.8 shows the LSTM cell architecture. The 
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only difference from Figure 3.7 is that LSTM-RNN replaces the hidden unit (normally sigmoid 
or tanh activation function) with an LSTM cell.  

Figure 3. 8. Illustration of long short-term memory cell structure 

 

Source: Yang et al. (2020) 

First, the forget gate controls what information to throw away. Then, the input gate chooses 
new information to be updated and stored and the output gate controls the candidate layer 
output. The function of these gates in the LSTM cell is represented as these following 
mathematic functions: 

𝑓𝑡 = 𝜎(𝑈𝑓𝑥𝑡 + 𝑊𝑓𝑠𝑡−1 + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑈𝑖𝑥𝑡 + 𝑊𝑖𝑠𝑡−1 + 𝑏𝑖 ) 

𝑜𝑡 = 𝜎(𝑈𝑜𝑥𝑡 + 𝑊𝑜𝑠𝑡−1 + 𝑏𝑜) 

, where 𝜎 represents the sigmoid function, 𝑥𝑡 as the current input vector,  𝑠𝑡−1 as the previous 
layer output. 𝑓, 𝑖, and 𝑜 are the forget gate, input gate, and output gate. 𝑈, 𝑊, and 𝑏 are the 
corresponding model parameters. The candidate cell state can be represented as: 

𝑐t̃ = 𝑡𝑎𝑛ℎ(𝑈𝑐xt+𝑊𝑐st-1+𝑏𝑐) 

The 𝐶𝑡  in the center of the Figure is the internal memory cell state of the LSTM unit which is 
the combination of previous 𝑐𝑡−1 and current candidate states as follow 
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𝐶𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐t̃ 

, where ∗ is the element-wise production. Finally, the layer output is the products of the cell 
state 𝐶𝑡  and the candidate output from the output gate.  

𝑠𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) 

The RNN outperformed the quadratic discriminate analysis model in the study of Zyner et al. 
(2018) to infer the driver’s intention when entering an intersection. Similarly, Jain et al (2016) 
compared the lane-change intention inference performance of the LSTM-based RNN with 
multiple HMMs, considering input data such as driver head rotation and traffic context from 
the GPS and digital map. This deep learning algorithm showed a more significant advantage in 
prediction accuracy and larger prediction horizon because of higher ability to capture long-
term dependence of previous driver behaviours and traffic context, despite of their higher 
computational burden. In comparison with the feedforward neural network (FFNN) which 
trains the nontemporal discriminative model with the statistic features of the sequence (Jain 
et al., 2015), Yang et al. (2020) proved that the detection rate of lane-change using the LSTM-
RNN was higher. 

Figure 3. 9. Visualization of the amount of input information used for prediction  

 

Figure 3.9 illustrates the amount of input information used for prediction with different kinds 
of neural networks. Instead of using a fixed number of input vectors at the current time frame 
(𝑡𝑐) as done in the FFNN structures, the RNN architecture can make use of all the available 
input information up to the current time frame to predict output. Because future input 
information coming up later than 𝑡𝑐 is usually also useful for prediction, a bidirectional 
recurrent neural network (BiRNN) is proposed that can be trained using all available input 
information in the past and future of a specific time frame (Schuster and Paliwal, 1997). Figure 
3.10 illustrates the general structure of the BiRNN shown unfolded in time for three timesteps. 
The idea is to split the hidden neurons of a regular RNN in two parts: one responsible for the 
positive time direction (forward neurons) and one for the negative time direction (backward 
neurons). Outputs from forward neurons are not connected to inputs of backward neurons, 
and vice versa. Therefore, the BiRNN can be trained in the same algorithms as a regular 
unidirectional RNN because these two types of hidden neurons do not interact to each other. 
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With both time directions taken care of in the same network, the objective function can be 
minimized by simultaneously training input information both in the past and the future of the 
currently evaluated time frame. Similarly, a bidirectional LSTM-RNN (Bi-LSTM-RNN) is 
obtained by replacing the hidden unit (normally sigmoid or tanh activation function) in the 
BiRNN with an LSTM cell. Schuster and Paliwal (1997) proved that the BiRNN in classification 
experiments on both artificial and real data shows better prediction results than the regular 
RNN. Yang et al. (2020) also indicated a better performance of Bi-LSTM-RNN than the LSTM-
RNN in predicting right/left lane change and lane keeping.  

Figure 3. 10. The Bi-LSTM-RNN structure shown unfolded in time for three timesteps 

 

3.2.5. Selected methodology 

Our goal is to build a model which anticipates dangerous overtaking manoeuvres before 
they occur which means predicting the point of the headway reaching its threshold before the 
turning-point of steering wheel/heading angular rate. The main tasks require modelling of 
driving context and vehicle dynamics taken from different sensors and then recognizing 
variable time occurrence of informative cues necessary for anticipation. In other words, our 
end-to-end trainable model via back propagation must (i) model the temporal aspects of the 
problem; (ii) fuse multiple sensory streams; and (iii) anticipate manoeuvres.  

Two building blocks of our architecture are RNNs (Pascanu, 2012) and LSTMs (Hochreiter and 
Schmidhuber, 1997). A Recurrent Neural Network (RNN) based architecture equipped with 
Long Short-Term Memory (LSTM) units is proposed to learn rich representation for prediction 
and capture temporal dependencies. Both regular and bidirectional LSTM-RNN systems are 
investigated and compared to the baseline algorithm of a Feedforward Neural Network 
(FFNN). In addition, appropriately fusing the information from different sensors is crucial for 
the final prediction performance. While simple sensory approaches like concatenation of 
feature vectors is used in FFNN-based method (as specified in section 3.3.1), RNN-based 
method learns a neural network layer for fusing the temporal streams of data coming from 
different sensors.   

Our work is directly inspired by previous works, including the work of Jain et al. (2015 & 2016) 
who anticipate different types of vehicle manoeuvres and compare results derived from 
different learning algorithms such as the LSTM-RNN, Autoregressive Input-Output HMM, 
Random-Forest, SVM, …; the work of Yang et al. (2020) who further include an ensemble 
learning-based method combining three bidirectional LSTM-RNNs into performance 
evaluation of lane-change prediction and the work of Zyner et al. (2018) who proposed a RNN 
solution for predicting driver intention at unsignalized intersections.   
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3.3.  Workflow in MATLAB  

3.3.1. Data pre-processing 

Building the network input XTrain and output YTrain for training purposes in different 
application scenarios is a critical step. In terms of application scenarios in Feedforward Neural 
Network (FFNN) which trains the nontemporal discriminative model by concatenating the 
feature vector at each step into a large feature set, the 9-D temporal sequence data in our 
study are transformed into a 36 x 1 feature vector for each training sample in the network 
input XTrain, as illustrated in Figure 3.11. This 36-dimensional feature vector is much smaller 
compared with the 3840-dimensional vector in the work of Jain et al. (2015) mainly because 
of their large number of input variables. The network output YTrain comprises of 40 
classification vectors of 2 x 1 dimension, corresponding to 40 training samples collected from 
simulation and 2 classes for each sample (i.e., “Safe” and “Dangerous”). The naturalistic data 
collected for further testing purposes also needs to be pre-processed in the same way as the 
data set collected from simulation.   

Figure 3. 11. Data pre-processing in the application of FFNN 

 

In terms of application scenarios in Long Short-Term Memory – Recurrent Neural Network 
(LSTM-RNN), the network input XTrain is a 40-by-1 cell array and each cell is a 4-by-9 matrix. 
XTrain can be described as follows: XTrain contains 40 data sequences collected from 
simulation, the length of each sequence is 9 and the feature dimension of the sequence is 4. 
In each sample (i.e., each cell), column data represents a feature vector at a certain point in 
time with a length of 9. Columns of data are arranged in the row direction to form a time 
stamp. The Figure 3.12 shows the cell array in XTrain (a) and the first sequence of XTrain after 
expanding it (c). In the sequence-to-label classification application scenario, the network 
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output YTrain needs to be category type data which means a 40-by-1 category cell as 
illustrated in Figure b. The naturalistic data collected for further testing purposes also needs 
to be pre-processed in the same way as the data set collected from simulation. All the data 
sets are manually pre-processed and transferred from .xlsx files to .mat files in the workspace 
of MATLAB software. 

Figure 3. 12. Data pre-processing in the application of LSTM-RNN 

 

3.3.2. Deep network designer 

Feedforward Neural Network 

A two-layer feed-forward network is selected and designed with sigmoid hidden neurons and 
softmax output neurons to classify input vectors, as shown in the Figure 3.13. Although 
feedforward networks with more layers can learn complex relationship more quickly, our 
study found the performance of a two-layer feed-forward network satisfactory already. 
Because increasing the number of neurons in the hidden layer increases the power of network 
but requires more computation and is more likely to produce overfitting, the number of 
neurons in the hidden layer is ultimately chosen as 20 after trials and errors.  
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Each neuron receives the input vector of 36 elements. Each input is weighted with an 
appropriate w. The sum of the weighted inputs and the bias b forms the input to the tan-
sigmoid nonlinear transfer/activation function ƒ to compute its own output. A softmax layer 
employed in the output layer corresponds to a fully-connected layer with softmax as 
activation function ƒ and two neurons equal to the number of classes desired in the output. 
The softmax function is known as the normalized exponential and can be considered the multi-
class generalization of the logistic sigmoid function (Bishop, 2006). This output layer takes the 
output of its previous hidden layer as input and applies another set of weights and biases and 
non-linearity to give a probability distribution over the class variables in the dataset. 
Generally, the network architecture is considered as a fully-connected network because the 
neurons in current layer are connected to every neuron in the previous layer by these sets of 
weights.  

A general form of applying a non-linearity to an input time series 𝑋 can be indicated in the 
following equation: 

𝐴𝑙𝑖
=  ƒ(𝑤𝑙𝑖

× 𝑋 + b) 

, where 𝑤𝑙𝑖
being the set of weights with length and number of dimensions identical to 𝑋’s, b 

the bias term and 𝐴𝑙𝑖
the activation of the neurons in the layer 𝑙𝑖. In other words, each time 

stamp has its own weight and the temporal information is therefore lost as time series 
elements are treated independently from each other. Thus, the network architecture itself 
indicates that FFNN does not exhibit any spatial invariance.   

Figure 3. 13. The design of FFNN 

 

(Bidirectional) Long Short-Term Memory – Recurrent Neural Network 

The diagram in Figure 3.14 illustrates the flow of a time series 𝑋 with C features (channels) of 
length S through an LSTM layer. In the diagram, at time step t, the LSTM block uses the current 
state of the network (i.e., the hidden/output state 𝐡𝑡−1 and the cell state 𝐜𝑡−1) and the next 
time step of the data sequence to compute the output and the updated cell state 𝐜𝑡.  
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Figure 3. 14. The information flow through LSTM-RNN 

 

Two types of 6-layer LSTM networks are proposed for classification in the MATLAB application, 
as illustrated in Figure 3.15. Generally, the network starts with a sequence input layer followed 
by a (Bi)LSTM layer which learns long-term dependencies between time steps of sequence 
data and a dropout layer to help prevent overfitting with random dropout with probability 
0.05. To predict class labels, the network ends with a fully connected layer, a softmax layer 
and a classification output layer. The size of the sequence input layer is set to be 4, equal to 
the number of features of the input data and the size of the fully connected layer is set to be 
2, equal to the number of output classes. The sequence length does not need to be specified. 
For (Bi)LSTM layer, the number of hidden units is specified as 100, the output mode as ‘last’, 
the state activation function as ‘tanh’ and the gate activation function as ‘sigmoid’. With the 
constant learning rate factors specified, other learnable weights of (Bi)LSTM layers are 
initialized as default, including input weights, recurrent weights and biases. 

If we use the full sequence at the prediction time, a bidirectional LSTM layer in the network is 
chosen which learns from the full sequence at each time step by looking at the time sequence 
in both forward and backward direction (Schuster and Paliwal, 1997). If we are forecasting 
values or predicting one time step at a time, an LSTM layer is used instead by looking at the 
time sequence in the forward direction. In our study, these two types are both used for 
comparison purposes. Although the number of hidden neurons specified for both models is 
100, the number of activation neurons for the bidirectional LSTM network is 200, as twice as 
its counterpart (Figure 3.16). The reason is that the state neurons presented in each hidden 
neuron of the bidirectional LSTM network must include both forward and backward states 
independent of each other to take into account input information from both past and future 
of the currently evaluated time point of prediction. Meanwhile, the regular LSTM network is 
only designed with forward neurons. 
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Figure 3. 15. The design of regular and bidirectional LSTM-RNN 

 

Figure 3. 16. The network analysis of regular and bidirectional LSTM-RNN 
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3.3.3. Training and testing 

Within the data set collected from driving simulation, 40 samples are randomly divided 
into 75% for training (30 samples), 15% for validation (6 samples) and 10% for testing (4 
samples). Training data are presented to the network during training and the network is 
adjusted according to its error. Validation data are used to measure network generalization 
and to halt training when generalization stops improving. Testing data have no effect on 
training and provide an independent measure of network performance during and after 
training.  

Feedforward Neural Network 

Given an input 𝑋, a L-layer neural network performs the following computations to predict 
the class: 

ƒ𝐿(𝜃𝐿 , 𝑋)  =  ƒ𝐿−1 (𝜃𝐿−1, ƒ𝐿−2(𝜃𝐿−2, . . . , ƒ1(𝜃1, 𝑋))) 

, where ƒ𝑖  corresponds to the non-linearity applied at layer 𝑙𝑖. The process is also referred as 
feed-forward propagation in the deep learning literature. In our study, the network is trained 
with scaled conjugate gradient backpropagation which is a good choice for training pattern 
recognition network that its memory requirements are relatively small and it is much faster 
than standard gradient descent algorithms (MATLAB, 2020). Hence, given a certain number of 
known input-output, by iteratively taking a forward pass followed by backpropagation, the 
network values of the weights and biases are tuned to optimize the network performance. 
The performance function for FFNN is mean square error which is the average error between 
the network outputs and the target outputs. However, if the error on the training set is driven 
to a very small value, the problem of overfitting occurs which causes large error as new data 
is presented to the network. Therefore, the method for improving generalization called “early 
stopping” is used that the training is stopped when the error on the validation set begins to 
rise, indicating the network begins to overfit the training data, as shown in Figure 3.17. Also, 
because the system automatically initializes different weights and biases of the network for 
training and randomly allocates different samples into training, validation and test sets, 
different results can be found with the same input data and retraining multiple times is 
needed to ensure that a neural network of good accuracy has been achieved.  

(Bidirectional) Long Short-Term Memory – Recurrent Neural Network 

The training options are specified as follows: the solver set to be the adaptive moment 
estimation (i.e., ’adam’) which is suggested to work best with RNNs (MATLAB, 2020), the 
gradient threshold to be 1 and the maximum number of epochs to be 100 to allow the network 
to make 100 passes through the training data. Because the data set is small with short 
sequences, the training is better suited for the CPU as specified in the ‘ExecutionEnvironment’.  

Figure shows an example of training accuracy and loss subplots during training progress across 
all iterations. When the training progresses successfully, the accuracy value eventually 
increases towards 100% while the cross-entropy loss value decreases towards zero. If the 
training is not converging but oscillating between values, changing the training options such 
as decreasing initial learning rates may help the network learn better although it might result 
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in a longer training time. Each training in our study may take about 10 seconds and several 
trainings are needed to achieve best results. The training process is set and executed using 
written commands on MATLAB’s command window. 

Figure 3. 17. Training performance in FFNN 

 

Figure 3. 18. Training performance in LSTM-RNN 

 

3.3.4. Further testing with naturalistic data  

Firstly, general performance of the FFNN, LSTM-RNN, Bi-LSTM-RNN models on inference 
accuracy is compared using the full testing sequences collected from naturalistic driving which 
are completely independent datasets from training datasets. The results of testing accuracy 
are visualized by confusion matrices.  

Secondly, the prediction performance for three models is evaluated using the sliding window 
method which is a temporary approximation over the actual value of the time series data 
(Yahmed et al., 2015). Specifically, the intention is inferred every 1s before the manoeuvre as 
the testing sequence of 9-second window is shifted back for every 1s, as illustrated in the 
Figure 3.19. The process will be continued till time series data of its initial 9s window is 
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exhausted. In this method, more data in many previous time steps need to be extracted and 
pre-processed in the same way as previously described.   

Figure 3. 19. Illustration of the sliding window method 

 

Thirdly, using the same sliding window method, models are trained with only 3 input variable, 
one time without the steering wheel feature and another time without the speed feature. The 
aim is to compare the variable importance between these two features in contributing to the 
prediction accuracy of the model trained with full input features.  

Next the models are trained with completed sequence data while, at the testing step, the 
testing data are cropped to predict partial temporal sequences. The aim is to compare the 
sensitivity of models to the partially observed dataset. In LSTM-RRN, testing data of certain 
number of time steps is simply cropped, leaving empty cells. However, in FFNN, empty cells in 
testing sequences are not accepted. Here the data that are desirably cropped can be replaced 
with “NaN” text (i.e., “not a number”). In this method, the models are also trained three times, 
one with full input features, one without the steering wheel feature and one without the 
speed feature.  

Finally, the real-time intention inference with the Bi-LSTM-RNN model is presented. Hence, 
the model is trained in terms of sequence-to-sequence classification rather than sequence-to-
label classification as done in previous methods which requires the output mode in the neural 
network set to be “sequence” rather than “last”. Also, the training output YTrain needs to be 
reformatted as a cell array of categorical sequences as shown in Figure 3.20. The testing 
output must be rearranged in the same manner and the testing dataset is also expanded about 
12s before and 5s after the heading angle turning-point to simulate the whole inference cycle 
for an overtaking manoeuvre.  

Generally, all the training results at each time step for each type of models are recorded in 
Excel to ultimately visualize these results using graphs. 

Figure 3. 20. The data pre-processing in sequence-to-sequence classification 
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Chapter 4: Analysis results and discussion  

4.1. Results 

4.1.1. Description  

The next 2 pages illustrate safe and dangerous overtaking, extracted from simulation driving. 
The first observation for each type represents the flying overtaking style and the remainder 
the accelerative overtaking style. The first graph in one observation maps three features 
including longitudinal acceleration, lateral acceleration and steering wheel angle rate, all 
against the headway measure on the horizontal axis and the second graph show the vehicle 
speed also against the headway measure. The lateral acceleration measure used in this part is 
for clarification purposes but will not be used in the model training. Generally, from 4 
observations in Figure 4.1 & 4.2, the road section designed in the simulation seems to have a 
slight right-curve before a straight road with an overtaking opportunity. Hence, in most cases, 
the steering wheel angle rate is negative, right before a sharp increase into a large positive 
rate when starting overtaking. Noticeably, it takes up to 2 seconds after the steering wheel 
turning point to observe the lateral acceleration to start increasing. This finding explains the 
9-second framework chosen in our study which expands 2 seconds after the steering wheel 
turning point and still makes the prediction useful. In flying overtaking, the longitudinal 
acceleration line is positive all along the time and the vehicle speed smoothly increases over 
the timeframe. In contrast, the longitudinal acceleration line in accelerative overtaking either 
equals zero or drops into a negative value at some point before soaring back to a large positive 
value and the speed line adjusts accordingly. However, the speed choice for overtaking varies 
much. The steering wheel turning points must be at the headway value equal or larger than 
1.2 to be classified as “safe” which is the only clear difference between two Figures.  

Table 4.1 shows the distribution of two overtaking styles by safety categories. The driver 
in this experiment seems to prefer accelerative overtaking which accounts for 60% (24/40) in 
total 40 overtaking manoeuvres. Interestingly, the shares of dangerous overtaking in both 
flying and accelerative overtaking strategies are relatively equal with 43.8% and 50% 
respectively. This means that either the driver overtakes at his desired speed without car-
following in the flying style or adjust his speed to follow the preceding vehicle before 
overtaking in the accelerative strategy, he will have the same chance of violating the headway 
rule. The explanation is that both the task of restraining over-speeding in flying overtaking and 
the task of maintaining a safe gap in car-following process of accelerative overtaking are 
equally difficult.  

Table 4. 1. Distribution of overtaking styles by safety in simulation driving 

Category Flying Accelerative Total 

“Safe” 9 (56.2%) 12 (50%) 21 (52.5%) 

“Dangerous” 7 (43.8%) 12 (50%) 19 (47.5%) 

Total 16 (100%) 24 (100%) 40 (100%) 
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Figure 4. 1. Observations of safe overtaking in simulation driving 
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Figure 4. 2. Observations of dangerous overtaking in simulation driving 
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Similarly, observations from naturalistic driving are presented in the next 2 pages with the 
same structure described in the previous part. However, the lateral acceleration measures are 
absent and the steering wheel angular rate is replaced by the heading angular rate. The 
features of flying and accelerative overtaking with respect to longitudinal acceleration and 
speed variables are quite similar to observations found the simulation dataset. Given all 
overtaking is taken on the straight road, the small fluctuation in heading rate lines in all the 
graphs indicates the vehicle’s lateral adjustments towards the road centre before the lateral 
departure into opposing lane in the last 2 seconds of time window. The mean and standard 
deviation for each of 9 timesteps of four considered variables are further shown in the 
Appendix A- D. 

The Table 4.2 again shows the distribution of two overtaking styles by safety categories. The 
driver in real-world environment also prefers accelerative overtaking which accounts for 
64.3% (18/28) in total 28 overtaking manoeuvres. This finding was already confirmed by 
Wilson & Besta (1982) and Hegeman et al. (2008) that the accelerative strategy in overtaking 
is mostly used by the driver. The chances of being classified as “dangerous” are relatively equal 
in both flying and accelerative overtaking styles, with 70% and 72.2% respectively, again 
stating that the latter should not considered safer than the former. In fact, based on t-tests, it 
is also found that there is statistically no significant difference in the headway at the turning 
point of steering wheel between two overtaking strategies in both simulation dataset (t = 
0.027, significance level = 0.05) and naturalistic dataset (t = -0.274, significance level = 0.05). 
However, the only noticeable difference between simulation and naturalistic dataset is the 
much higher chance (64.3%) of not keeping the safe headway in real-world driving. Many 
manoeuvres in samples start rotating the vehicle to overtake at the headway smaller than 1s 
(i.e., the smallest value observed is 0.5s), leaving only 1s to reach the headway of zero as 
shown in Figure 4.4. Even in safe overtaking as indicated in the 1st observation in Figure 4.3, 
the driver leaves only 2s to reach the preceding vehicle after the heading rate turning-point. 
In other words, the overtaker had not even totally crossed the centre line at the moment the 
front of the vehicle is next to the preceding vehicle. Statistically, it is found that headway at 
the start of overtaking in simulation driving is significantly larger than this value in naturalistic 
driving (t=2.68; significance level = 0.05). This finding is in line with the study of Hegeman 
(2008) in which more than half of observed overtaking headways between passenger cars in 
the Netherlands were smaller than 1s. Compared to driving scenarios in simulation with few 
distant oncoming vehicles on the opposing rural lane, driving in urban areas face high 
opposing traffic volume, more likely forcing the driver to leave its own lane quite late and 
overtake on the opposing lane as quick as possible. The vehicle speed line in the 2nd 
observation in Figure 4.4 is horizontal before heading turning-point, indicating a long car-
following period with a constant speed while waiting for an overtaking opportunity. SWOV 
(2012) also agreed that the average headway times are often smaller on busy roads than on 
quiet roads and rear-end collision take place more frequently when traffic is busy.  

Table 4. 2. Distribution of overtaking styles by safety in naturalistic driving 

Category 
Flying Accelerative Total 

“Safe” 3 (30%) 7 (38.9%) 10 (35.7%) 

“Dangerous” 7 (70%) 11 (61.1%) 18 (64.3%) 

Total 10 (100%) 18 (100%) 28(100%) 
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Figure 4. 3. Observations of safe overtaking in naturalistic driving 

 

 

 

 

-1

-0.5

0

0.5

1

1.5

2.5 2.5 2.5 2.5 2.5 2 1.6 1 0

Observation 1 - "Safe" type - Flying strategy

Longitudinal acceleration Heading rate

0

10

20

30

40

50

60

70

2.5 2.5 2.5 2.5 2.5 2 1.6 1 0

Observation 1 - "Safe" type - Vehicle speed

-2

-1

0

1

2

3

1.4 1.4 1.4 1.4 1.6 1.6 1.4 1.4 1.4

Observation 2 - "Safe" type - Accelerative strategy

Longitudinal acceleration Heading rate

42

44

46

48

50

52

1.4 1.4 1.4 1.4 1.6 1.6 1.4 1.4 1.4

Observation 2 - "Safe" type - Vehicle speed



Chapter 4 – Analysis results and discussion 

 
 

52 

 

Figure 4. 4. Observations of dangerous overtaking in naturalistic driving 
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4.1.2. Results of Feedforward Neural Network (FFNN)  

The confusion matrix shows the true positive, false positive and false negative counts. 
Class 1 and 2 represents the “Safe” and “Dangerous” categories respectively and the target 
and output classes as ground-truth and predicted classes respectively. For each class, the true 
positive counts are displayed on the diagonal. The top subplot in the Figure 4.5 shows the 
results of testing the trained FFNN model using 04 samples taken from simulation dataset, in 
which 100% of ground-truth “Safe” signals are correctly classified as output class 1 and 100% 
of ground-truth “Dangerous” signals are correctly classified as output class 2, resulting the 
overall accuracy of 100%. However, when further testing the trained model using naturalistic 
dataset indicates the overall prediction accuracy of 85.7%, as shown in the second confusion 
matrix. Specifically, 80% of the signals classified as “Safe” are actually safe and 88.9% of the 
signals classified as “Dangerous” are actually dangerous.  

Figure 4. 5. Confusion matrix of FFNN testing 
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4.1.3. Results of Long Short-Term Memory – Recurrent Neural Networks 

Figure 4.6 and 4.7 indicate confusion matrices of LSTM-RNN and Bi-LSTM-RNN testing 
respectively.  The left subplots in each Figure show model testing results using simulation 
testing samples kept aside before, which indicates a prediction accuracy of 100% (4/4) in both 
models. However, when testing these models using naturalistic dataset, the Bi-LSTM-RNN 
model achieves a better prediction performance with the overall accuracy of 92.86% (26/28), 
as compared to 89.29% (25/28) in the regular LSTM-RNN model. In the Bi-LSTM-RNN model, 
94,4% (17/18) of dangerous overtaking is correctly predicted and 90% (9/10) of safe 
overtaking is correctly recognised while in the regular LSTM-RNN model, the corresponding 
numbers are 100% (18/18) and  70% (7/10) respectively.  

It is understandable that testing samples taken from naturalistic driving achieves a lower 
prediction accuracy than testing samples taken from the same training sources. Different 
driving environment and drivers’ driving styles may be some obvious explanation. For 
example, while the speed of preceding vehicle in simulation is designed to keep constant, this 
speed is dynamically changing in real-world which may affect the internal prediction of 
headway in trained models. Meanwhile, the classification criterion critically depends on the 
headway measure.  In general, these two kinds of LSTM-RNN models perform better than the 
FFNN model described before. This finding is in line with the work of Yang et al. (2020) and 
Schuster et al. (1997). The RNNs with LSTM units are very expressive models with an internal 
memory to allow them to model the much needed long temporal dependencies for prediction.  

Figure 4. 6. Confusion matrix of LSTM-RNN testing  

    

Figure 4. 7. Confusion matrix of Bi-LSTM-RNN testing 
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4.1.4. Comparisons between neural networks  

Figure 4.8 illustrates the model prediction performance of FFNN and RNNs using the sliding 
window method. The upward trends in prediction lines for all considered models means the 
less error approximation is achieved when sliding the time window closer to the overtaking 
event. The Bi-LSTM-RNN based method generally achieved the most accurate results, 
followed by the regular LSTM-RNN and FFNN based methods. This can be explained that while 
the FFNN approach performs a simple fusion by concatenating input feature vectors, RNN- 
approaches use a fully connected layer to fuse the high-level representations at each time 
step, capturing temporal contexts. This form of sensory fusion is more principled since the 
sensor streams represent different data, ultimately resulting in better performance. 
Specifically, the LSTM-based approaches are more accurate than the FFNN-based model when 
predicting the overtaking safety since the turning point of heading rate. In contrast, the FFNN 
model gives a more robust detection of dangerous overtaking than the other two methods 
when the safety is predicted more earlier. This may be explained by the fact that as the testing 
sequence move earlier, the RNN model is confused with more irrelevant information involved 
in the temporal sequence. On the other hand, the FFNN model is trained with the statistic 
features of sequence which allows the network to still be able to capture the significant 
features within the temporal sequence.  

Figure 4. 8. Prediction accuracy using the sliding window method  
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Figure 4.9 includes two subplots showing the importance of steering wheel/heading and 
speed features in contributing to the prediction performance of FFNN and LSTM-RNN based 
models respectively. Based on results from these two different methods, the longitudinal 
speed information significantly contributes to the prediction performance. The trained models 
without the speed as a variable input achieved much lower accuracy than the models with full 
feature vectors despite that these models are still trained with the longitudinal acceleration 
variable – a very relatable variable to the speed. In contrast, the trained models without the 
consideration of steering wheel/heading features achieved only slightly lower accuracy than 
the models based on full input feature vectors, indicating a small impact of steering 
wheel/heading feature on prediction performance. Besides, this small impact can only be 
clearly observed from the steering wheel/heading angular rate turning-point onwards. In the 
second subplot, exclusion of steering wheel information in training LSTM models even makes 
the prediction performance better when inferring safety early. The reason may be that there 
are no significant characteristics of the steering wheel feature in temporal sequence if the 
time window is captured way too early from the steering wheel angular rate turning-point. Bi 
et al. (2015) constructed the model to detect the normal lane change and emergency lane 
change manoeuvres and agreed that the steering wheel angle signal as the only input into the 
algorithm cannot help infer the driver manoeuvre at a very early stage or before the 
manoeuvre happens. 

Figure 4. 9. Variable importance in prediction accuracy 
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In order to predict in a useful way, an algorithm must learn to predict the future given only a 
partial temporal context which makes anticipation challenging and also differentiates it from 
activity recognition. Previous works (Koppula and Saxena, 2013; Morris et al., 2011; Ryoo, 
2011) train discriminative classifiers (such as Support Vector Machine or Conditional Random 
Field) on the complete temporal context but at test time predictions are made within a 
filtering framework due to only observing a partial temporal context. Figure 4.10 illustrates 
the prediction performance with respect to the prediction time by observing partial temporal 
context. As the testing sequence getting smaller, more important characteristics of input 
features will lose along with shorter overtaking preparation duration. The orange, grey and 
yellow lines respectively represent prediction results given by LSTM-RNN models with full 
feature vectors, without steering wheel feature and without speed feature. Again, the speed 
feature is more important than the steering wheel feature in improving prediction 
performance. Without speed feature, the trained LSTM-RNN model can only achieve the 
maximum accuracy of 71,43%. The LSTM-RNN based model with full input feature can 80% 
accurately predict dangerous overtaking at 1s before the turning point of heading angular rate 
which gives sufficient time to react (i.e., either reducing speed or quickly turning the steering 
wheel if overtaking opportunity perceived). In addition, prediction results given by the FFNN 
model are represented by the blue line in which the accuracy drops more rapidly as the testing 
sample getting smaller, showing a more sensitivity to the partially observed datasets of the 
FFNN model which is not a sequence-based method. In contrast, prediction models with a 
recurrent architecture which unfolds through time let us train a single classifier to learn to 
better handle partial temporal context of varying lengths. 

Figure 4. 10. Prediction accuracy with respect to prediction time  
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4.1.5. Real-time inference  

Figure 4.11 illustrates examples of the real-time safety prediction with the Bi-LSTM-RNN 
model. In the training process, the point of initiating dangerous overtaking is manually 
selected as the point of headway value reaching 1.2 before the turning point of steering wheel 
angular rate and the finished point of prediction is determined as the moment when the 
vehicle is just crossing the lane (i.e., presumably 2s after the turning point of steering wheel 
angular rate). The top subplot represents a safe overtaking and the bottom subplot as 
dangerous overtaking. The Figure 4.11 shows that the LSTM-based system can efficiently 
detect the dangerous overtaking at 1-2s early before the headway feature reaching the critical 
value of 1.2. Noticeably, as the RNN models take the sequence data as inputs, the safety 
prediction signal can still be generated even after the vehicle has crossed the lane. This can be 
a concern in the real-world if the model is integrated with the Lane Departure Warning system 
to capture the vehicle lane position feature for model accuracy improvement. However, our 
main study objectives are to concentrate on the fast and early prediction for dangerous 
overtaking only which is more important than the status recovery issue.  

Figure 4. 11. Real-time safety prediction of overtaking 
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4.2. Discussion  

Our prediction model is trained in driving simulation based on the scenario of driving on 
rural roads but later tested in natural freeway and city driving with a relatively high inference 
performance. Also, between two considered overtaking strategies, only small differences are 
found in considered features in both datasets. Therefore, it would be possible to develop a 
single overtaking assistant, enabling assistance for these overtaking strategies and all drivers 
in different driving environments. Also, a questionnaire among drivers in 17 countries in the 
study of Hegeman (2008a) indicated that overtaking rules do not differ much which also 
enables international applicability of the overtaking assistant.  

The model aims to predict dangerous overtaking which means a twofold task, including 
inferring overtaking intention first and then classifying its safety. As reported by Berndt et al. 
(2008), the turn signals are only used in 66% lane changes and less than 50% of the turn 
indicator activation happens in the initial phase of the lane-change manoeuvre. Therefore, it 
is not possible to rely on indicator usage for early overtaking intention inference and also the 
functioning of overtaking assistance system, as recommended by Lee et al. (2004). As a result, 
the overtaking assistant should be always switched on by the driver to perform effectively.   

Existing driver assistance systems could have influence on the overtaking assistant, both in a 
positive and negative way. Hoedemaeker (1999) found that overtaking on two-lane rural roads 
is more dangerous when driving with Adaptive Cruise Control (ACC). Instead, proposed 
Forward Collision Warning systems (FCW) are more suitable to assist drivers to keep a safe 
following distance prior to overtaking, reducing the percentage of driving distance spent in 
rear-end collision mode up to 34 % (Regan et al., 2006). However, time headways at the start 
of overtaking manoeuvres as short as 0.5s are observed in our study while 2s is the 
recommended safe headway used in FCW. To avoid interfere by the FCW system before the 
overtaking assistant, the overtaking assistant should be integrated with the FCW in a way that 
once the early overtaking intention is recognised (i.e., speed acceleration), the FCW must be 
overruled and switched off automatically, as illustrated in Figure 4.12. Fairly short average 
perception-reaction time at the start of overtaking as of below 1s were observed (Lamm et 
al., 1999; Hegeman, 2008), confirming the fact that small headways as of 1.2s at the start of 
overtaking manoeuvres are likely to be less dangerous than during normal following 
conditions. In addition, a GPS and street map logger should be made use to extract a binary 
feature indicating if the vehicle is near a road artifact such as intersections, turns, hills … as 
seen in the work of Jain et al. (2015 & 2016) to help verify overtaking wish. More importantly, 
information about the vehicle’s lateral lane position with respect to the lane markings possibly 
taken from Lane Departure Warning (LDW) signals should be used as inputs in training process 
as the lateral offset and lateral velocity are shown crucial in recognizing driver path planning 
intention in the work of Morton and Kochenderfer (2017). Li et al. (2016) also agreed with 
them that current prediction systems rely only on the driver control command such as the 
steering wheel angle and velocity which cannot provide an early intention prediction. In 
addition, vehicle-to-vehicle communication systems are being developed to inform drivers 
about sudden deceleration or swerving of preceding vehicles. In real-world, wrong predictions 
can still occur for different reasons such as signal loss of headways due to bad weather, 
failures in recognizing unmodeled events such as piggy overtaking, …  
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In terms of model building, information about vehicle dynamics and headway as the only 
measure of driving context are not sufficiently rich. The use of videos of the driver inside the 
car and the road in front may help improve prediction performance. While the road-facing 
camera outside the vehicle enables additional reasoning on manoeuvres (i.e., the presence of 
incoming traffic on the opposite lane, deviations of the preceding vehicles, traffic rules…), the 
driver-facing camera inside the vehicle provide head motion and facial landmark features. 
These are valuable inputs for overtaking intention inference system before any further safety 
classification tasks. In the study of Yang et al. (2020), they proved that the driver’s intention 
can be early and roughly detected according to the driver’s intended checking behaviours 
alone. Fortunately, significant advances have been made in the automobile industry in rich 
sensory integration such as radar for modelling the traffic, infra-red cameras for eye-tracking 
(Google, 2014; Wang et al., 2015) where our work can apply. However, Zhou et al. (2008) 
analysed driver eye movement to assess the cognitive distraction during lane-change 
preparation process and concluded that a secondary task could affect the intention prediction 
based on driver behaviour. Therefore, it is suggested that the prediction system based on 
driver behaviours needs to cooperate with the driver workload estimation module to achieve 
more accurate results (Xing et al., 2018b).  

Looking back at the early study by Liu and Pentland (1997) who first employed hidden Markov 
model (HMM) and used only the vehicle status data such as the steering angle, steering 
velocity and the vehicle velocity to predict several driver intentions on a car simulator, an 
average of 88.3% detection rate was achieved after 0.5s when the action was initiated and 
they concluded that the vehicle status data are better used for intention recognition rather 
than intention prediction. In comparison, although our study uses the same limited number 
of vehicle status features, the LSTM-RNN based algorithm allows to predict the future given a 
partial temporal context with the accuracy about 80% at 1-2s before the significant change in 
steering wheel angle or 3s before the observation of significant lateral movement. With the 
much larger number of input signals inside and outside the vehicle, the RNN model in the 
study of  Jain et al. (2015 & 2016) even achieved better prediction precision of 90%, can 
anticipate the manoeuvres 3.5s before they occur and outperformed over a range of different 
machine learning algorithms. This highlights the importance of modelling the temporal nature 
in the data for driver intention prediction. However, in prediction problems, there is an 
inherent ambiguity in which once the algorithm is certain about the manoeuvre type which 
exceeds the chosen threshold value, the question is that whether the system should predict 
immediately or wait for more information. For example, in situations where the driver aborts 
overtaking intention in the middle, different prediction strategies will result in different 
performance. This causes difficulties when manually labelling sequence-to-sequence 
classification. In our study chose, the earliest point for sending prediction signals is chosen as 
2s before the turning point of steering wheel, as shown in Figure 4.12. 

Figure 4. 12. Illustration of prediction model with respect to time-to-manoeuvre  
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Chapter 5: Conclusion  

Most of traffic accidents are caused by human misbehaviours such as driver cognitive 
overload, judgement mistake and operation errors (Yang and Wang, 2007; Bellis and Page, 
2008; Martinez et al., 2017). Driver assistance system (ADAS) products such as Lane Departure 
Warning (LDW), Adaptive Cruise Control (ACC) and Side Warning Assistant (SWA) which have 
been implemented on commercial vehicles, are treated as active safety systems despite that 
these functions interact with the human driver in a passive way which fails to monitor and 
understand the driver in real-time. Overtaking is one of the most dangerous and complex 
manoeuvres where the driver needs to be assisted the most with the help of ADASs.  

Our study focuses on the preparation phase of overtaking before a significant lateral 
change to the left of the vehicle. The total of 40 and 28 legitimate overtaking manoeuvres 
were respectively recorded in simulation driving for model training, internal validation and 
testing purposes and in naturalistic driving in Hasselt city for further testing purposes. Four 
interested variables, including longitudinal speed, longitudinal acceleration, steering 
wheel/heading angular rate and headway between the driven vehicle and the preceding 
vehicle are extracted and interpolated. In this research, a sensory-fusion deep learning 
architecture based on Recurrent Neural Networks (RNNs) with Long Short-Term Memory 
(LSTM) units is proposed to monitor vehicle dynamics and driving context and predict 
dangerous overtaking manoeuvres with respect to rear-end collisions at 1-2s before the 
headway reaches its threshold of 1.2s with the performance accuracy of about 80%. This 
LSTM-RNN based system fuses multiple sensory streams from driving context and vehicle 
dynamics, models long temporal dependencies in a sequence-to-sequence prediction manner, 
learns to anticipate using only a partial temporal context and predict the dangerous overtaking 
before it is performed. The performance of three types of neural networks, including 
Feedforward shallow neural network (FFNN), regular LSTM-RNN and bidirectional LSTM-RNN 
are also compared and data pre-processing is required to build different input and output 
formats for training process in different neural network applications in MATLAB. Different 
from LSTM-RNN based methods which have a neural network layer for fusing the temporal 
streams of data coming from different sensors, the non-sequence-based method of FFNN uses 
a simple sensory approach of concatenation of feature vectors instead. The results are in line 
with previous works, showing that the Bi-LSTM-RNN based model outperforms in prediction 
performance because of its advantages in modelling temporal context and using all available 
input information in the past and future of a specific time framework for prediction. The study 
also found out that drivers are more likely to violate the safe headway rule in urban areas 
rather than in rural roads; changing the overtaking strategies does not help to increase the 
chance of avoiding rear-end collisions; speed is an important feature contributing to the early 
and accurate prediction while the steering wheel/heading feature only helps increase the 
prediction performance after their turning-points which can be used in manoeuvre 
recognition rather than prediction models.   

In general, the study shows that although the model is trained in simulation with 
driving scenarios on two-lane rural roads, the model testing in natural freeway and city driving 
with the relatively high prediction accuracy regardless of overtaking strategies indicates a high 
possibility for model standardization.  
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5.1. Implications  

In this study, short headway as of below 1s were often observed in real-world overtaking 
and drivers perform dangerous overtaking related to rear-end collisions at relatively same 
rates between accelerative and flying strategies. This calls for those responsible for enforcing 
regulations and providing driver training programs to increase drivers’ awareness about the 
safe headway rule and practice regardless of their overtaking plans. Secondly, the study 
highlights the importance of driver intention inference in ADASs to actively warn the drivers 
about dangerous manoeuvres before they perform them. This importance is grounded in 
three reasons, including increased driving safety, increased mutual understanding between 
the human driver and the automation for the further construction of highly intelligent shared 
control strategies and contribution to a more naturalistic decision-making system for 
autonomous vehicles with human-like decision-making algorithms, making the intelligent 
vehicle much easier to be accepted by the public. Therefore, a more comprehensive 
understanding of the cognitive intention generation process according to the traffic context 
and driver behaviour is required before designing any prediction models. Thirdly, the fact that 
RNN-based models outperform other shallow neural networks in manoeuvre prediction 
indicates its power of capturing temporal context in improving prediction performance 
because it helps capture informative cues necessary for prediction which appear at variable 
times during preparation process for the manoeuvre. In addition, less sensitivity of the RNN-
based models to partial temporal data allows the possibility of useful, acceptable and safe 
intervention at 1-2s before the headway reaches its critical value. Hegeman (2008) proved 
that the perception-reaction time defined as the time between passage of last oncoming 
vehicle and start movement to the left lane is fairly short, smaller than 1s. Therefore, the 
prediction window of 1-2s before the headway reaching its critical value in our study is more 
than sufficient for the driver to react. As speed feature itself was shown to largely contribute 
to prediction performance, the longitudinal acceleration can be used to overrule the Forward 
Collision Warning system which uses larger headway threshold for normal lane-following 
conditions and then the overtaking assistant takes control instead. In other words, integration 
with existing ADASs is necessary in implication phase. Finally, because the model was trained 
and tested in different driving environments by different drivers, it would be possible to 
develop a single overtaking assistant, enabling assistance for these overtaking strategies and 
all drivers in different driving environments.  

5.2. Limitations and future research  

Despite the promising results, this study has some limitations that should be considered in 
future research. The model in this study was constructed in a driving simulator experiment 
involving only one participant, more participants with diverse driving styles and experience 
should be invited in the experiment to achieve generalized results. Afshin et al. (2010) agreed 
with Clarke et. al (1998)  that differences in overtaking manoeuvres are a function of not only 
driving experience but also driver age. Another limitation of the current study is linked to the 
realism of the driving environment, including (a) the preceding vehicle was driving with 
constant speed and (b) the same virtual driving environment was repeated, ignoring the 
variability of real-world road shapes and conditions. Farah et al. (2009) analysed drivers’ 
passing decisions on 2-lane rural highways and found that one of the most important factors 
affecting the measurement of overtaking risk by drivers is geometric design. The sample size 
for both model training and testing less than or equal to 30 is indicated as “small”, suggesting 



Chapter 5 – Conclusion 

 
 

63 

 

more overtaking manoeuvres that should be performed in the simulator as well as collected 
in naturalistic driving in different countries. Secondly, other safety concerns with respect to 
overtaking such as insufficiently large gap in the next oncoming traffic stream should also be 
taken into account to predict another class of dangerous overtaking. Hegeman (2008) stressed 
that estimating an overtaking gap to a next oncoming vehicle is fairly the most difficult but 
crucial subtask of overtaking in need of assistance which are not yet available. The reason is 
the difficulties with judging the speed of oncoming vehicles despite of reasonable estimates 
of the distance gap (Farber et al., 1967). 

Theoretically, the prediction model should be based on the driver intention inference 
mechanism which requires three input modules, including road and traffic perception module, 
vehicle dynamic measurement module and driver behaviour recognition module. Therefore, 
to improve the model performance, not only vehicle dynamics and driving contextual 
information but also driver behaviour clues should be obtained from videos inside the car. 
This complex set-up for experiment needs further investments in future study. In the end, the 
challenge in further work still lies in modelling the temporal aspects of driving and fusing the 
multiple sensory streams in which the structure design and selection of training algorithm for 
the neural network is the heart of the prediction mechanism. Therefore, an ensemble 
learning-based method which combines three bi-directional LSTM-RNN models suggested by 
Schuster and Paliwal (1997) can be further investigated.  
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(2012). Intelligent automatic overtaking system using vision for vehicle detection. Expert 
Systems with Applications, 39(3), pp.3362–3373.  

Miller and Pretty (1968). Close-following drivers on two-lane highways. Accident Analysis and 
Prevention, 29(6), pp.723–729.  

Moreo, R. and Izquierdo, A. (2009). IMM-based lane-change prediction in highways with low-
cost GPS/INS. IEEE Transactions on Intelligent Transportation Systems, 10(1), pp.180-185.  

Morris, B., Doshi, A. and Trivedi, M. (2011). Lane change intent prediction for driver assistance: 
on-road design and evaluation. In: 2011 IEEE Intelligent Vehicles Symposium (IV). Baden-
Baden, Germany.  

Morton, J., Wheeler, A. and Kochenderfer, J. (2017). Analysis of recurrent neural networks for 
probabilistic modeling of driver behavior. IEEE Transactions on Intelligent Transportation 
Systems, 18(5), pp.1289-1298. 

Mosedale, J. and Purdy, A. (2004). Excessive Speed as a Contributory Factor to Personal Injury 
Road Accidents. London: Department for Transport. 
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Appendix A – Descriptive statistics of accelerative overtaking 
in simulation driving 
 

Variable Time step Mean 
Standard 
deviation 

Speed 

1 79.5 11.9818704 

2 79.2083333 13.7048997 

3 78.2083333 16.1836718 

4 78.875 18.2335393 

5 80.375 18.3464545 

6 81.8333333 16.8797967 

7 83.9166667 15.4636085 

8 88.9166667 15.8605792 

9 95.2916667 17.2412023 

Longitudinal acceleration 

1 0.17737422 1.13812235 

2 -0.2507159 1.49810259 

3 -0.1670662 1.502623 

4 0.23771207 0.76290353 

5 0.57846945 1.28634561 

6 0.39970589 1.1016112 

7 0.68898109 1.39313118 

8 1.91374226 1.38161695 

9 1.71303772 1.58478079 

Steering wheel angular rate 

1 -0.1375 3.12630664 

2 0.07299996 2.14141552 

3 0.17300004 2.42025169 

4 0.60799996 3.04708925 

5 -0.3265 2.91175747 

6 -3.175 5.30381689 

7 -3.399 4.55290479 

8 6.2215 7.20946246 

9 5.5245 4.82581642 

Headway 

1 2.41640497 1.4045321 

2 2.22567332 1.18949159 

3 2.07121914 1.01314345 

4 1.89716798 0.87581053 

5 1.78521987 0.64299152 

6 1.58220479 0.60268636 

7 1.35059058 0.57479045 

8 1.04651838 0.55136365 

9 0.70482651 0.53458255 
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Appendix B - Descriptive statistics of flying overtaking in 
simulation driving 
 

Variable Time step Mean 
Standard 
deviation 

Speed 

1 91.4375 30.0376847 

2 93.375 31.9434396 

3 94.8125 31.9900375 

4 95.6875 31.0198189 

5 95.625 28.3545999 

6 95.0625 24.0817185 

7 94.5625 21.3040489 

8 95.8125 20.295217 

9 97.5625 19.0996291 

Longitudinal acceleration 

1 0.58108328 1.17665885 

2 0.58203349 1.57927559 

3 0.49781576 1.11399423 

4 0.07756909 0.84815304 

5 -0.0789538 1.24439871 

6 -0.0934301 2.01288593 

7 -0.0641559 1.58296946 

8 0.74085606 1.37396744 

9 0.22051366 1.38890619 

Steering wheel angular rate 

1 -0.54225 2.59093022 

2 -0.44925 2.4710832 

3 0.22724994 0.68542972 

4 -0.5804999 1.2839056 

5 -0.3375 1.62794128 

6 -1.70925 2.42521937 

7 -3.20775 2.53993909 

8 5.87924988 4.69545647 

9 6.72975013 3.79238798 

Headway 

1 3.15556675 1.4419699 

2 2.7990565 1.11452426 

3 2.47744994 0.87482487 

4 2.19414816 0.73201134 

5 1.91677067 0.60126157 

6 1.6346633 0.5001112 

7 1.3462801 0.40687012 

8 1.04518299 0.3715237 

9 0.73862433 0.38584039 
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Appendix C - Descriptive statistics of accelerative overtaking 
in naturalistic driving 

Variable Time step Mean 
Standard 
deviation 

Speed 

1 49.1806 7.1406195 

2 49.1092 7.33003404 

3 50.364 6.022086 

4 50.0558 5.74971376 

5 49.634 6.00230878 

6 49.489 6.89311805 

7 50.3534 6.55073342 

8 52.1338 8.21296495 

9 55.231 10.6224946 

Longitudinal acceleration 

1 0.14861111 0.59408151 

2 -0.0198333 0.3320252 

3 0.34855556 0.75948444 

4 -0.0856111 0.5245711 

5 -0.1171667 0.40692639 

6 -0.0402778 0.5590679 

7 0.24011111 0.34940452 

8 0.49455556 0.79738213 

9 0.86033333 1.1363092 

Heading angular rate 

1 -0.0111111 1.45152613 

2 0.30555556 1.24213868 

3 1.579E-15 0.85954845 

4 0.41666667 1.10892104 

5 0.31666667 1.11526837 

6 0.01666667 0.94011889 

7 -0.4555556 0.91279933 

8 1.46111111 1.04269949 

9 1.53888889 1.72971908 

Headway 

1 1.27777778 0.22895043 

2 1.25 0.21760731 

3 1.21666667 0.20651164 

4 1.15 0.2093407 

5 1.14444444 0.23818486 

6 1.07777778 0.25101103 

7 0.92777778 0.28034759 

8 0.51111111 0.56764621 

9 0.33888889 0.50775039 
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Appendix D - Descriptive statistics of flying overtaking in 
naturalistic driving 

Variable Time step Mean 
Standard 
deviation 

Speed 

1 37.28016 11.296395 

2 38.85444 10.9480279 

3 42.28128 8.59883105 

4 45.39276 6.37650834 

5 49.33764 5.64763843 

6 51.6708 5.50357652 

7 53.67132 5.99993857 

8 56.57832 6.25156739 

9 60.17148 7.23625175 

Longitudinal acceleration 

1 0.1335 0.83162989 

2 0.571 0.74516575 

3 1.2349 1.11365629 

4 1.2604 1.4361481 

5 1.6154 1.60799483 

6 1.2963 2.10959101 

7 1.2142 2.03200147 

8 1.3631 1.84518084 

9 1.4972 1.27421381 

Heading angular rate 

1 0.92 6.25935744 

2 -0.53 2.16643589 

3 2.95 8.28361837 

4 -0.34 2.23218876 

5 -0.99 2.63542111 

6 -0.09 0.4954235 

7 -1.18 1.19703337 

8 1.38 1.96909455 

9 2.08 1.64370854 

Headway 

1 1.18 0.93903023 

2 1.42 0.7130529 

3 1.42 0.7130529 

4 1.48 0.5573748 

5 1.35 0.49721446 

6 1.2 0.34960295 

7 0.96 0.30623158 

8 0.49 0.45813632 

9 0.15 0.33747428 
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