
R E S E A R CH A R T I C L E

Predicting the number of sulfur atoms in peptides and small
proteins based on the observed aggregated isotope
distribution

Jürgen Claesen1,2,3 | Dirk Valkenborg3 | Tomasz Burzykowski3,4

1Department of Epidemiology and Data

Science, Amsterdam UMC, VU University

Amsterdam, Amsterdam, The Netherlands

2Microbiology Unit, SCK-CEN, Mol, Belgium

3I-Biostat, Data Science Institute, Hasselt

University, Hasselt, Belgium

4Department of Statistics and Medical

Informatics, Medical University of Bialystok,

Bialystok, Poland

Correspondence

J. Claesen, Department of Epidemiology and

Data Science, Amsterdam UMC, VU University

Amsterdam, Amsterdam, The Netherlands.

Email: j.claesen@amsterdamumc.nl

Rationale: Identification of peptides and proteins is a challenging task in mass

spectrometry–based proteomics. Knowledge of the number of sulfur atoms can

improve the identification of peptides and proteins.

Methods: In this article, we propose a method for the prediction of S-atoms based

on the aggregated isotope distribution. The Mahalanobis distance is used as

dissimilarity measure to compare mass- and intensity-based features from the

observed and theoretical isotope distributions.

Results: The relative abundance of the second and the third aggregated isotopic

variants (as compared to the monoisotopic one) and the mass difference between

the second and third aggregated isotopic variants are the most important features to

predict the number of S-atoms.

Conclusions: The mass and intensity accuracies of the observed aggregated isotopic

variants are insufficient to accurately predict the number of atoms. However, using a

limited set of predictions for a peptide, rather than predicting a single number of

S-atoms, has a reasonably high prediction accuracy.

1 | INTRODUCTION

In a mass spectrum, peptides and proteins appear as a series of

correlated peaks corresponding to the fine or aggregated isotope

distribution (Figure 1). The fine isotope distribution reflects the

probabilities of occurrence of every isotopic variant of a molecule. If

we ignore small deviations of the masses from integer values, the

isotopic variants can be grouped into the aggregated isotopic variants.

The aggregated isotope distribution provides the number and

occurrence probabilities of these aggregated isotopic variants.1 The

fine or aggregated isotope distribution can be used, for instance, to

interpret the mass spectral data2 or to predict the elemental

composition of biomolecules.3,4

The mass and the probabilities of occurrence of the isotopic

variants of a molecule are a function of the elemental composition of

the molecule and the elemental isotope definition.5 Consequently, the

presence of atoms with a distinctive elemental isotope definition has

a profound effect on the isotope distribution of the biomolecule. For

example, the presence of a monoisotopic element such as a

phosphorus atom shifts the (aggregated) isotope distribution to

a higher mass (by ≈ 31 Da) without changing the probabilities of

occurrence of the isotopic variants. Another example is sulfur. Sulfur

has four stable isotopes, 32S, 33S, 34S, and 36S, of which the first and

third isotopes are the most abundant, with the probability of

occurrence equal to about 94.85% and 4.365%, respectively (Table 1).

Therefore, the probability of occurrence of the third (aggregated)
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isotopic variant of a molecule with one or more sulfur (S-)atoms is

larger than that for a molecule without S-atoms. In addition, the

masses of the S-isotopes (31.972, 32.971, 33.968, and 35.967)

influence the mass differences between the isotopic variants of a

molecule. A molecule without S-atoms has a larger difference

between the masses of the second and third (aggregated) isotopic

variants as compared to a molecule with one or more S-atoms.6

Successful prediction of the number of S-atoms is beneficial for

the identification of peptides and proteins in mass spectrometry

experiments, because contradicting identifications can be flagged as

false-positive findings. The prediction can also guide de novo

identification. A sulfur prediction method can be useful to screen for

disulfide-rich peptides.7,8

In the past two decades, several methods9–14 have been

introduced to determine the number of S-atoms of peptides and

metabolites based on the fine isotopic distribution extracted from

MS1 spectra. These methods derive the information about the mass

and the isotope abundance from the fine isotopic variant containing
34S ions and compare it to the monoisotopic variant.

In this paper, we introduce an approach to predict the number of

S-atoms of peptides and small proteins based on the observed

aggregated isotope distribution. In contrast to existing methods, our

approach does not use information from the fine isotopic variant

containing 34S ions, as this variant is not resolved in aggregated

isotope distributions observed in MS1 spectra. Therefore, we predict

the number of S-atoms based on the isotope abundance and masses

of the monoisotopic, second, and third aggregated isotopic variants

that are found in MS1 spectra.

2 | METHODS

The probabilities of occurrence of the aggregated isotope

distribution can be used to calculate the relative isotopic ratios, that

is, the ratio between the probability of occurrence of the (i + 1)th

isotopic variant and the ith isotopic variant.15 Plotting the first

(r = 1) theoretical relative ratio (RR) against the second (r = 2) RR

shows distinctive groups, as indicated in Figure 2. Each group

corresponds to a specific number of S-atoms. The differences

between these distinctive groups are mainly due to the second RR,

that is, the ratio of the probabilities of occurrence of the third and

the second aggregated isotopic variants. Note that, on the atomic

level, the isotopic abundance of the third sulfur isotope is five to six

times larger than that of the second isotope (Table 1). Therefore, at

the molecular level, the probability of occurrence of the third

(aggregated) isotopic variant of a molecule increases much faster

than that of the second (aggregated) isotopic variant when the

number of S-atoms increases.

F IGURE 1 The aggregated isotope
distribution of angiotensin II. The third aggregated
peak consists of 11 isotopic variants

TABLE 1 Sulfur isotopes according to IUPAC2018 (Holden et al.
2018)

Isotope Mass Probability of occurrence

32S 31.972071174 [0.944100, 0.952900]

33S 32.971458910 [0.007290, 0.007970]

34S 33.967867000 [0.039600, 0.047700]

36S 35.967081000 [0.000129, 0.000187]
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The mass differences between the (aggregated) isotopic variants

of biomolecules present a pattern similar to that presented in

Figure 3, that is, distinct groups of peptides differing by the number

of sulfur atoms. The mass difference between the second and third

sulfur isotopes (Table 1), that is, 0.99640809 Da, is the main cause of

the occurrence of the distinct groups. In particular, the mass

difference is smaller than the mass differences between 12C and 13C

(1.00354835 Da), 14N and 15N (0.99734895 Da), 16O and 17O

(1.004317138), 17O and 18O (1.00002785), and 32S and 33S

(0.999387736). In combination with the high occurrence probability

of the third sulfur isotope, this mass defect has a substantial effect on

the mass of the third aggregated isotopic variant: the mass difference

between the second and third aggregated isotopic variants decreases

when the number of S-atoms increases (Figure 3).

In a mass spectrum, the probabilities of occurrence of the

(aggregated) isotopic variants of a molecule are reflected by

the intensity or height of the peaks of the (aggregated) isotope

distribution. Therefore, the first (r = 1) and second (r = 2) RRs can be

estimated from MS1 spectra by computing the ratios of the

intensities. By comparing these observed RRs with their theoretical

values, one could determine the number of S-atoms in a peptide or

protein by using a high-quality MS1 spectrum. Similarly, comparing

the theoretical mass differences with the mass differences of the

observed (aggregated) isotopic variants could also be used to predict

the number of S-atoms.

It is worthwhile to mention that, due to the limited accuracy of

the spectral intensities and the masses of the (aggregated) isotopic

variants measured in MS1 spectra obtained by the currently available

equipment, the observed RRs and mass differences of a biomolecule

may significantly deviate from their theoretical values. In addition,

within each distinctive cluster, there is a substantial correlation

between the RRs (Figure 2), between the mass differences (Figure 3),

and between the RRs and the mass differences (Figure FIGURE S1,

supporting information). These deviations and correlations should be

considered when constructing a prediction algorithm.

The Mahalanobis distance16 is a dissimilarity measure that

captures, in a multidimensional space, the distance between two

points (row vectors) x and y that come from the same distribution

with the variance–covariance matrix Σ. It is defined as follows:

D x,y;Σð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�yð ÞΣ�1 x�yð ÞT

q
: ð1Þ

Thus, the distance measure accounts for the variation and correlation

present in a distribution.

To construct a prediction algorithm, we considered characterizing

each peptide by the first and second RRs (which will be denoted by

RR1 and RR2, respectively) and/or by the mass differences between

the first and second (aggregated) isotopic variants and between the

second isotopic and third (aggregated) isotopic variants, which will be

denoted by Δm21 and Δm32, respectively. More concretely, we

investigated the predictive value of following combinations of metrics

represented by the following four vectors: (RR1, RR2), (Δm21, Δm32),

(RR1, RR2, Δm32), and (Δm12, Δm32, RR2).

The proposed algorithm is summarized in Figure 4. Assume that a

peptide with monoisotopic mass m is observed in an MS1 spectrum.

We will term it an “observed” peptide. For this observed peptide, the

value x of a particular form of the vector of metrics (e.g., (RR1, RR2)) is

derived from the observed (aggregated) isotope distribution of the

peptide.

F IGURE 2 Theoretical relative isotope ratios
of peptides of the human proteome (UniProtKB
9606, keyword 181, release 2011-11) with a
monoisotopic mass between 1500 and 1505 Da.
Each peptide is colored according to its number of
sulfur atoms
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Next, peptides from an in silico tryptic digest (without missing

cleavages) of the human proteome (UniProtKB 9606, keyword

181, release 2011-11), with monoisotopic masses within a 20 Da

wide interval around m, are selected. We will term them “theoretical”
peptides. For each of those theoretical peptides, the value y of the

particular form of the vector of metrics is computed by using

the theoretical (aggregated) isotope distribution based on the

peptide's elemental composition.

Subsequently, the theoretical peptides are split into separate

groups containing the same number of S-atoms. We will index these

groups by index s equal to 0, 1, 2, and so on. For group s, the

variance–covariance matrix Σs of vectors y is computed. Then, using

the obtained matrix Σs, the Mahalanobis distance is computed for

vector x for the observed peptide and vector y for every theoretical

peptide from group s. Finally, the obtained values of the Mahalanobis

distance are averaged.

F IGURE 4 Proposed algorithm for the prediction of S-atoms based on the observed aggregated isotope distribution

F IGURE 3 Theoretical mass
differences of the isotopic variants of
peptides of the human proteome
(UniProtKB 9606, keyword 181, release
2011-11) with a monoisotopic mass
between 1500 and 1505 Da. Each
peptide is colored according to its number
of sulfur atoms
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The calculation is repeated for each group s. In the final step, the

number of S-atoms of the observed peptide, which was characterized

by a vector x, is predicted as being equal to the number of S-atoms of

the group s that was, according to the average Mahalanobis distance,

the closest to x.

Inaccuracies of mass and intensity of the isotopic variants of a

peptide may lead to incorrect predictions. To compensate for these

inaccuracies, one can extract, if available, multiple aggregated isotope

distributions of the same peptide (e.g., with different charges and/or

with different retention times) and average these isotope

distributions. (Alternative approaches to combine multiple aggregated

isotope distributions of one peptide can also be considered.) The

averaged aggregated isotope distribution can be used to calculate the

x-vector and subsequently used as an input to the proposed

prediction algorithm. We will refer to this approach as the “average-x”
prediction rule. The approach in which the extracted isotope

distributions of a peptide are not averaged, but for each individual

isotope distribution the x-vector is computed, will be referred to as

the “individual-x” prediction rule.

3 | DATA

To illustrate the proposed method, we selected two data sets from

two different mass spectrometers. The first data set is a tryptic

digest of the Candida albicans plasmid pHis3 (PXD01119417)

measured using an Orbitrap Q Exactive mass spectrometer

(ThermoFisher Scientific, Waltham, Massachusetts, US). The second

data set is a HeLa cell tryptic digest (PXD00159218) recorded using

an Impact II ESI-Q-TOF (Bruker, Billerica, Massachusetts, US). For

both data sets, lists of peptides and proteins identified with

MaxQuant19 were available. According to MaxQuant, the average

mass resolution of the pHis3 data set is equal to 54 805.74 and the

average uncalibrated mass error is 0.682 ppm for pHis3 and

8.516 ppm for the HeLa data set. For the latter, no information on

the mass resolution was available.

4 | RESULTS AND DISCUSSION

We randomly selected 333 identified peptides containing

0–4 S-atoms observed in the pHis3 data set and 560 peptides

containing 0–7 S-atoms observed in the HeLa data set (Table 2). For

each selected peptide, we attempted to extract multiple aggregated

isotope distributions with different charges from the MS1 spectrum

and from 10 adjacent spectra (5 before and 5 after the corresponding

MS1 spectrum) such that the first three isotopic variants were

present. A 50 ppm wide mass-tolerance window was used to select

the aggregated isotopic variants based on the expected masses of

the aggregated isotopic variants.

Therefore, we found 3654 aggregated isotope distributions

corresponding to 294 unique peptides and 8005 aggregated isotope

distributions corresponding to 453 unique peptides in the pHis3 and

the HeLa data sets, respectively.

For each data set and each peptide with an observed aggregated

isotope distribution, we applied the “individual-x” and “average-x”
prediction rules described earlier (Figure S2, supporting information).

For both prediction rules, we evaluated their performance when

considering prediction based on the s group of the theoretical

peptides with the smallest, the second-smallest, and the third-smallest

averaged Mahalanobis distance. We also considered the performance

when using the list of predicted numbers of S-atoms suggested by the

three smallest Mahalanobis distances. Note that we assess

the performance of the proposed prediction rules under the

assumption that the randomly selected peptides are correctly

identified. Consequently, the “true” performance of the prediction

rules might differ from the performance reported here.

4.1 | pHis3 data set

Table 3 summarizes the results of the “individual-x” prediction rule

applied to the 3654 individual aggregated isotope distributions. In

particular, the table presents the accuracy of the prediction by

TABLE 2 Number of selected peptides and aggregated isotope distributions for the pHis3 and HeLa data sets

Number of
sulfur atoms

pHis3 HeLa

Number of
selected
peptides

Number of
found
peptides

Number of found
aggregated isotope
distributions

Number of
selected
peptides

Number of
found
peptides

Number of found
aggregated isotope
distributions

0 100 92 1066 100 91 1587

1 100 94 1114 100 81 1509

2 100 84 1149 100 90 1594

3 29 20 287 100 78 1257

4 4 4 38 100 73 1344

5 0 0 0 54 37 658

5 0 0 0 5 3 56

7 0 0 0 1 0 0

Total 333 294 3654 560 453 8005
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comparing the number of S-atoms derived from the MaxQuant

peptide identification with the sulfur prediction from the smallest,

second-smallest, or third-smallest averaged Mahalanobis distance or

by the inclusion of the correct number of S-atoms in the list of

predictions obtained by considering simultaneously the three

distances.

When the smallest averaged Mahalanobis distance was

considered, the number of S-atoms was correctly predicted for 30.1%

of the peptides (1101/3654) characterized by vector (RR1, RR2,

Δm32). The majority of these peptides (800) did not contain any

S-atom. When the second-smallest averaged Mahalanobis distance

was used, the number of S-atoms was predicted correctly for 27.5%

of the peptides (1005/3654), including 735 cases with one S-atom.

When the number of S-atoms was predicted by using the peptide

group corresponding to the third-smallest averaged Mahalanobis

distance, the number of S-atoms was correctly predicted for 24.1% of

the peptides (879/3654), the majority (677) of which included two

S-atoms. The accuracy of the prediction based on the use of the set

of the three smallest averaged Mahalanobis distances was equal to

81.7% (2985/3654).

When peptides were characterized by vectors (RR1, RR2), (Δm21,

Δm32), and (Δm12, Δm32, RR2), the results of the “individual-x”
prediction rule were less accurate, though a pattern similar to that

observed in Table 3 was present (see Supplementary File 1).

Table 4 summarizes the results of the “average-x” prediction rule

combined with the use of the vector (RR1, RR2, Δm32) to characterize

the peptides. As compared to the “individual-x” prediction rule, the

prediction accuracy increased to 35.0% (103 correct predictions of

294) when the smallest Mahalanobis distance was used and to 87.1%

(256/294) when the set of the predictions for the three smallest

Mahalanobis distances was used. The prediction accuracy when the

smallest Mahalanobis distance was used was the highest for peptides

without any S-atoms. For peptides with one S-atom, the accuracy was

the highest when the second-smallest Mahalanobis distance

was used, whereas for peptides with two S-atoms, it was the highest

when the third-smallest Mahalanobis distance was considered. Similar

to the “individual-x” prediction rule, the accuracy of the “average-x”
prediction rule was lower when peptides were characterized by

vectors (RR1, RR2), (Δm21, Δm32), and (Δm12, Δm32, RR2) (see

Supplementary File 1).

4.2 | HeLa data set

Table 5 presents the results of the “individual-x” prediction rule for

the aggregated isotope distributions of 8005 nonunique peptides. The

peptides were characterized by vector (RR1, RR2, Δm32). When

the peptide group corresponding to the smallest averaged

Mahalanobis distance was used to predict the number of S-atoms,

prediction accuracy of 26.0% (2084/8005) was obtained. When the

set of the predictions for the three smallest Mahalanobis distances

was used, the prediction accuracy was equal to 65.7% (5256/8005).

Peptides with no S-atoms were most often correctly predicted

(1163/2084, i.e., 55.8%) when the smallest Mahalanobis distance was

used, peptides with one S-atom were most often correctly predicted

(885/1509, i.e., 58.6%) when the second-smallest Mahalanobis

TABLE 3 Number of correctly predicted S-atoms with the “individual-x” prediction rule for the pHis3 data set

Number of S-atoms in the molecule Smallest distance Second-smallest distance Third-smallest distance Three smallest distances

0 800 84 58 942

1 149 735 93 977

2 118 128 677 923

3 26 52 48 126

4 8 6 3 17

Total 1101 1005 879 2985

Note. For each individual aggregated isotope distribution of a peptide, the number of S-atoms has been predicted based on the (Δm32, RR1, RR2)-vector.

TABLE 4 Number of correctly predicted S-atoms with the “average-x” prediction rule for the pHis3 data set

Number of S-atoms in the molecule Smallest distance Second-smallest distance Third-smallest distance Three smallest distances

0 75 5 7 87

1 15 69 3 87

2 11 10 51 72

3 2 2 4 8

4 0 1 1 2

Total 103 87 66 256

Notes. The observed masses and intensities of the isotope distributions of the same peptide across multiple spectra were averaged. For each peptide, the

number of S-atoms has been predicted based on the (Δm32, RR1, RR2)-vector.
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distance was used, and peptides with two S-atoms were mainly

correctly predicted when the third-smallest Mahalanobis distance

(898/1594, i.e., 56.3%) was used.

Using the “average-x” prediction rule did not lead to any

substantial improvement in the prediction accuracy when

characterizing peptides by vector (RR1, RR2, Δm32) (see

Supplementary File 1). Using vector (RR1, RR2) led to an improvement

in the prediction accuracy of about 3% (from 26.0% to 28.7%) for the

smallest Mahalanobis distance and to no improvement (from 63.9% to

63.6%) for the set of the three distances, as compared to the

“individual-x” prediction rule (Table 6). As observed in the pHis3 data

set, the prediction accuracy for peptides without any S-atoms was the

highest (34.6%) when the smallest Mahalanobis distance was used,

and for peptides with two sulfur atoms, it was the highest when the

third-smallest Mahalanobis distance (37.5%) was considered. For

the second-smallest Mahalanobis distance, the prediction accuracies

for peptides with one or three sulfur atoms were the highest and

equal to 25.6% and 26.8%, respectively.

The differences in the prediction accuracy of the HeLa and pHis3

data sets may be explained by the difference in the observed mass

accuracies. The average mass accuracy of the HeLa data set was equal

to 10.79 ppm, as compared to 1.6 ppm for the pHis3 data set

(Table FIGURE S1, supporting information). The mass accuracy of

both data sets improved when the extracted isotope distributions

were averaged. However, the improvement was much more

substantial for the pHis3 data set (±1.6 ppm) than for the HeLa data

set (±0.5 ppm). This might explain why no or little improvement in the

prediction accuracy could be observed for the HeLa data set when

comparing the “average-x” prediction rule with the “individual-x”
prediction rule.

For the majority of peptides, multiple aggregated isotopic

distributions were extracted. We checked if the accuracy of

predicting the number of S-atoms was influenced by peptide charge,

intensity of the monoisotopic peak, mass accuracy, differences

between the theoretical and observed RRs, and differences between

the theoretical and observed differences of the masses of the second

and third aggregated isotopic variants.

In particular, for each peptide with multiple extracted isotopic

distributions, we compared the number of cases with correctly

predicted number of S-atoms across the charges. Differences

between the number of correctly predicted number of S-atoms could

be observed (Figures S3 and S4, supporting information). However,

these differences were limited and centered around zero, indicating

that charge did not have any systematic effect on the precision of the

“individual-x” prediction rule.

Similarly, we studied the effect of the intensity of the

monoisotopic peak. First, we categorized the intensity into five

distinct classes, ranging from a very low to a very high intensity

TABLE 5 Number of correctly predicted S-atoms with the “individual-x” prediction rule for the HeLa data set

Predicted number of S atoms Smallest distance Second-smallest distance Third-smallest distance Three smallest distances

0 1163 167 102 1432

1 249 885 173 1307

2 194 261 898 1353

3 183 180 145 508

4 234 180 100 514

5 61 36 43 140

6 0 1 1 2

Total 2084 1710 1462 5256

Note. For each individual aggregated isotope distribution of a peptide, the number of S-atoms has been predicted based on the (Δm32, RR1, RR2)-vector.

TABLE 6 Number of correctly predicted S-atoms with the “average-x” prediction rule for the HeLa data set

Predicted number of S-atoms Smallest distance Second-smallest distance Third-smallest distance Three smallest distances

0 45 9 14 68

1 19 21 14 54

2 15 16 33 64

3 19 22 15 56

4 20 14 12 46

5 11 10 3 24

6 1 0 0 1

Total 130 82 88 288

Notes. The observed masses and intensities of the isotope distributions of the same peptide across multiple spectra were averaged. For each peptide, the

number of S-atoms has been predicted based on the (RR1, RR2)-vector.

CLAESEN ET AL. 7 of 9



(Table S2, supporting information). Subsequently, we compared the

number of correctly predicted S-atoms for each peptide with multiple

aggregated isotopic distributions for which the monoisotopic

intensities were categorized in at least two different classes. For the

majority of peptides, no or limited differences in the number of

correctly predicted S-atoms were found (Figures S5 and S6,

supporting information). This indicates that the intensity of the

monoisotopic peak did not influence the outcome of the “individual-
x” prediction rule.

The effect of the mass accuracy and deviations from the first

(r = 1) and second (r = 2) theoretical RRs, categorized into five classes

(Tables S3 and S4, supporting information), on the prediction accuracy

of the “individual-x” prediction rule was also limited (Figures S7–S10,

supporting information).

Deviations from the theoretical difference between the mass of

the second and third isotopic variants (Table S5, supporting

information) influenced the performance of the prediction rule

(Figures S11 and S12, supporting information). The differences in the

number of correct predictions increased when the deviations from

the theoretical Δm32 values increased.

When the multiple isotope distributions of one peptide were

compared with the distributions of the other peptides, the prediction

accuracy of the “individual-x” prediction rule decreased when the

mass accuracy deteriorated for the pHis3 data set, whereas this was

not the case for the HeLa data set (Table S6, supporting information).

For the deviations from the first (r = 1) and second (r = 2) theoretical

RRs, the prediction accuracy decreased when the deviations increased

for the pHis3 data set, whereas for the HeLa data set, the accuracy

remained the same or even increased when the deviations from the

expected RRs increased (Table S7, supporting information). A

potential explanation for the latter effect might be that, whereas the

deviations from the theoretical isotope ratios increase, the mass

accuracy increases and/or the deviations from the theoretical Δm32

values decrease. Deviations from the theoretical Δm32 values have a

negative effect on the accuracy of the prediction rule. When these

deviations increase, that is, above 0.06 Da, the accuracy of the

prediction rule decreases (Table S8, supporting information).

We also evaluated the effect of posttranslational modifications

(acetylation and oxidation) and the effect of cysteine

carbamidomethylation on the performance of the “individual-x”
prediction rule (Table S9, supporting information).

In the case of acetylation, we found 11 different isotope

distributions for 1 acetylated peptide (pHis3) and 104 isotope

distributions for 7 acetylated peptides (HeLa). With the “individual-x”
prediction rule, when the three smallest distances were combined, a

prediction accuracy of 91% (10/11) and 90% (104/115) was found for

the pHis3 and HeLa data sets, respectively. The prediction accuracy

increased to 100% (1/1) for the pHis3 data set but decreased to

71.4% (5/7) for the HeLa data set when the “average-x” prediction

rule was used.

In the pHis3 data set we found 28 oxidized peptides; there was

one such peptide in the HeLa data set. For the oxidized peptides,

435 and 23 aggregated isotopic distributions were extracted. The

number of S-atoms was predicted correctly for 82.1% (357/435) and

91.3% (21/23) of the distributions with the “individual-x” prediction

rule, respectively, and for all peptides with the “average-x”
prediction rule in both data sets.

In the pHis3 data set, 689 aggregated isotope distributions for

65 peptides with one or more carbamidomethylated cysteines were

extracted. In the HeLa data set, we found 3769 aggregated isotope

distributions for 220 peptides with one or more cysteines that were

carbamidomethylated. The prediction accuracy of the “individual-x”
prediction rule for these peptides was equal to, respectively, 78.5%

(541/689) and 56.2% (2117/3769), whereas the prediction accuracy

of the “average-x” rule was lower, that is, equal to 72.4% and 55.3%

for the pHis3 and HeLa data sets, respectively.

Based on the aforementioned results we can conclude that the

occurrence of the evaluated (posttranslational) modifications had little

or no effect on the accuracy of the proposed prediction rule(s).

5 | SUMMARY AND CONCLUSIONS

In this paper, we investigated the prediction of the number of

S-atoms of a peptide or a protein based on the observed isotope

distribution. Our analysis indicates that, although the theoretical

isotope ratios and theoretical mass differences clearly show distinct

groups of peptides and proteins with differing number of S-atoms, the

mass and intensity accuracies of the observed aggregated isotopic

variants are insufficient to accurately predict the number of the

atoms. Averaging the observed intensities and masses of the isotopic

variants moderately improves the prediction accuracy. Using the

extracted ion chromatograms to determine which aggregated isotope

distributions of a peptide should be averaged may lead to higher

prediction accuracies. A reasonably high accuracy can be obtained if,

instead of predicting the correct number of S-atoms for an observed

peptide, one focuses on including the correct number in a limited set

of predictions.
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