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Abstract 

Cloud computing is an emerging technology used in many applications such as data analysis, storage, and Internet of 
Things (IoT). Due to the increasing number of users in the cloud and the IoT devices that are being integrated with 
the cloud, the amount of data generated by these users and these devices is increasing ceaselessly. Managing this data 
over the cloud is no longer an easy task. It is almost impossible to move all data to the cloud datacenters, and this will 
lead to excessive bandwidth usage, latency, cost, and energy consumption. This makes it evident that allocating 
resources to users’ tasks is an essential quality feature in cloud computing. This is because it provides the customers 
or the users with high Quality of Service (QoS) with the best response time, and it also respects the established Service 
Level Agreement. Therefore, there is a great importance of efficient utilization of computing resources for which an 
optimal strategy for task scheduling is required. This paper focuses on the problem of task scheduling of cloud-based 
applications and aims to minimize the computational cost under resource and deadline constraints. Towards this end, 
we propose a clipped double deep Q-learning algorithm utilizing the target network and experience relay techniques, 
as we as using the reinforcement learning approach.  
 
© 2021 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the Conference Program Chairs. 
 
Keywords: task scheduling; computational cost; energy consumption; deep reinforcement learning; Clipped Double Deep Q-learning (CDDQL). 

1. Introduction 

Due to the rapid increase in the deployment of applications over the cloud, there is a large amount of raw data that 
requires real-time processing and analysis. According to Statista [14], computing instances are expected to have the 
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highest share of global data center storage capacity by 2021, with capacity forecast to reach around 470 exabytes by 
then. It is stated that 60% of the workloads are running on hosted cloud service as of 2019 and will increase to 90% 
by 2021. To process such huge data by utilizing the cloud resources efficiently, scheduling the tasks which are 
generated by those applications, is extremely important. One of the most important research directions in computer 
paradigms of resource management is through task scheduling. Due to the uncertainty and complexity of the networks, 
it is not easy to develop efficient algorithms to tackle complex problems in different network scenarios. Machine 
learning (ML) approaches are known for dealing with complex problems and help in decision making, which 
consequently facilitates resource management and task scheduling. Machine learning helps in constructing models 
that learn and make decisions directly from data without following predefined rules. Most of the ML-based resource 
management schemes used supervised learning and reinforcement learning. Recently, the combination of deep 
learning (DL) and reinforcement learning have shown acceptable results [1]. The characteristics of deep learning hold 
the capability to learn continuously and produce good learning models. Hence, deep reinforcement learning has a 
strong capability to deal with decision-making problems, which in turn deal with resource management problems. In 
this paper, deep reinforcement learning (DRL) approach called clipped double deep Q-learning (CDDQL) is utilized. 

 
In this paper, we aim to combine Q-learning and clipped double deep Q-learning algorithms where the Q-learning 

sets the initial values using random actions for the clipped double deep Q-learning through the q-table or matrix, and 
the updated q-table for each episode. We summarize our contributions as follows: 

• The task scheduling problem is modeled as Markov Decision Process (MDP) in actor critic method to define 
interactions between task scheduler and cloud data center. By using this approach in a cloud resource 
allocation scenario, we aim to reduce computational costs under deadline and resource constraints. 

• Task scheduling algorithm is developed by combining Deep Q-learning, Clipped Double Q-learning (a 
modified version of double q-learning), target networks, and experience replay techniques. 

• The efficiency of our proposed algorithm is evaluated and validated. Both cost and time metrics are used. 
The performance of our proposed approach is compared with baseline algorithms such as time-shared 
scheduling, space-shared scheduling, random scheduling, and Q-learning Scheduling (QLS). 
 

The rest of the paper is organized as follows. Section 2 provides related works. Section 3 describes the system model 
and formulation. Section 4 discusses the proposed algorithm, followed by the experimental results in section 5.  

2. Related Work 

Resource allocation through task scheduling is an important field of research in cloud computing. Researchers have 
proposed many attempts to address this issue. Using algorithms for task scheduling is the most attractive approach for 
researchers to deal with resource allocation in the cloud [2, 4, 5, 7, 9, 10, 12, 18, 19]. Machine learning (ML) 
approaches have proven to perform well in dealing with complex issues. A surveyed study in [18] identified seven 
approaches with respect to performance-driven self-adaptaion supported by queuing networks. Th study [18] 
concluded that optimization techniques such as Machine learning, Search-Space Exploration and Mixed Integer 
Programming, can be exploited to optimize a fitness function involving performance indices. Cloud is a complex 
environment, where allocation of tasks to resources is a complex job. Hence, ML can be considered in dealing with 
resource allocation issues in the cloud. Among various machine learning approaches, reinforcement learning with 
deep learning has shown convincing results. Zhiping Peng et al in [4] used Q-Learning based task scheduling with 
immediate reward function and state aggregation to coordinate optimization problem in multiple VMs. The authors in 
[4] focus was on reducing the response time in the cloud computing environment. However, using a discrete reward 
function cannot show the exact effect of each action. A QL-based task scheduling scheme in a grid or IaaS cloud is 
used in [5]. Additionally, during the evaluation metrics, the authors focused on minimizing average waiting time and 
optimize resource utilization. A unique study of assessing a fog model’s performance by using simulation with three 
scheduling with combinations of three load balancing strategies has been proposed in [19]. The researchers in [19] 
have also concluded that AI and deep learning models can assist in task placement decision. 

Deep reinforcement learning approaches have a great effect in several applications such as video games [6], cooling 
datacenters [7], etc. According to [8], the DeepRM method which is described in [9] is the first work that has applied 
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deep reinforcement learning (DRL) algorithm for cluster job scheduling. They have taken a policy network that takes 
a collection of distinct images as inputs and then outputs a probability distribution over all possible actions. Then, 
they selected the average job slowdown as an objective metric. In [10], the authors have proposed a DQN- based task 
scheduling algorithm which is a task-specific. The proposed algorithm deals with the characteristics of the server, 
tasks being regarded as state inputs, and numbers being regarded as actions. The authors in [10] proposed a DQN-
algorithm that sorts the tasks in upward ranking. Then, the algorithm decides the scheduling order of the tasks and 
progress by using two neural networks: target network and evaluation network. The target network has the target Q-
value which is the maximum Q-value of the next predicted action in the upcoming state and the evaluation network 
evaluates the action taken in the state by computing the q-value with the reward assigned to the action. The output of 
each network is action distribution and the probability of choosing an action. The authors in [10] focused on 
minimizing the response time. Since the algorithm involves complex tasks like sorting and ranking for each iteration 
of task scheduling. By looking at the performed evaluation in [10], it is found that the algorithm can take more time 
and cost to execute. Nevertheless, other parameters such as the deadline of tasks and cost constraints that are important 
in a real cloud environment are overlooked. 

Xianfu Chen et al. in [11] have focused on parallel offloading in radio access networks by formulating it as Markov 
Decision Process and derived a double deep Q-network based reinforcement learning algorithm. They have resort to 
a deep neural network-based function approximator to deal with state-space explosion and learn from the optimal 
computational offloading policy without any prior knowledge. The authors in [11] have proposed a State-Action-
Reward-State-Action (SARSA) based deep learning algorithm to achieve the best computation offloading 
performance. SARSA has a slight variation of the Q-learning algorithm, as represented in Equation (1). While Q-
learning is an off-policy approach that uses the greedy approach to learn Q-value, SARSA is an on-policy approach 
that uses action performed by current policy to learn Q-value. They also claimed that their contribution is the first 
work to combine the Q-function decomposition technique with the double DQN. However, they have eliminated the 
transmission and the propagation delay. 

 
Q(st,at) = Q(st,at)+α(rt+1+𝛾𝛾Q(st+1,at+1) - Q(st,at))    (1) 

 
In [12], the researchers have modified the Q-learning algorithm with user-defined parameters such as throughput, 

the number of VMs, and latency to ensure fairness in resource allocation. Resources are divided based on properties 
like Pareto efficiency, incentive sharing, envy-freeness, and strategy-proofness. The distribution was performed in 
fairness scheme so that all the users requested for resources will get a guaranteed resource. In [13], the authors used 
the Double Deep Q-learning algorithm for scheduling by allocating fog nodes with VMs. The idea in [13] of using 
fog nodes and assigning multiple schedulers to run in parallel can decrease the execution time effectively. In [17], the 
authors have introduced double Q-learning by using two Q-networks where each one updates another. The research 
in [17] proved to be effective in reducing overestimation and maximization bias. The authors in [13] proposed a double 
deep Q-learning scheduling algorithm to schedule the incoming user tasks. They have also used several 
hyperparameters’ analysis that can achieve the least average service delay. However, they didn’t mention how the 
VMs in the datacenter are allocated to fog nodes. Moreover, no discussion as to how or on what basis the fog nodes 
are created. In their approach, giving a proper analysis of the algorithm’s performance is restricted although a standard 
environment with predefined fog nodes, number of user tasks, and number of virtual machines are provided. In [20], 
clipped double Q-learning has been introduced. The researcher in [20], has used two Q networks for computing the 
update targets and taking minimum of next two next-state action values produced by the two Q-networks. In the 
clipped double Q-learning algorithm [20], when the Q- estimate of one is greater than the other, we reduce it to 
minimum to avoid overfitting. Our work modifies the clipped double Q-learning algorithm with deep learning 
techniques to schedule tasks to resources in cloud.  

3. Proposed Model 

This section provides a detailed description of our proposed Algorithms. The scheduling scheme is divided into two 
parts. The first part is related to the configuration of the cloud’s environment and the agents, and this is the subject of 
Algorithm-1. Algorithm-2 explains the proposed clipped double deep Q-learning used in this research. This is the 
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main algorithm that schedules the tasks to their respective virtual machines based upon action selection done in 
Algorithm-3. Algorithm-3 deals with selecting action based on the ε value to achieve a trade-off between exploration 
and exploitation. 

3.1. Configuration of Environment and Agents: 

All our proposed algorithms for the scheduling scheme are first described as a container in Algorithm-1, which 
contains all the necessary pre-processes for the other proposed algorithms. Firstly, we create the network topology 
that defines the count of datacenters, hosts, and VMs. Secondly, we configure all of the VMs and determine the 
value of each VM according to its features. Thirdly, we determine the paths in the network topology. Finally, we 
calculate the total number of resources (CPU, Storage, and Memory) in each path of the network by getting the 
sum of each resource separately. In our proposed work, we describe the scheduler as an agent.  

In our approach, two separate Q-models are created for an agent, namely: Q1 and Q2. Where Q1 is used for 
action selection according to Algorithm 3, and Q2 is used for action evaluation by calculating Q-values (using 
the Bellman equation). After that, we create the agents and assign them their models and parameters as per Epsilon 
Decay Rate (EDR), which is explained in Algorithm-3. These parameters include state space, action space, and 
step value. Consequently, we will be able to determine the size of the replay memory. Replay memory is the 
storage space that stores historical Q-value data that is necessary to update the Q-network Q1 from the target Q 
network Q2. At the start of the algorithm, Q1 and Q2 are initialized with random weights. Since the weights are 
learnable parameters in neural networks, they use error information to update connection weights. At the 
beginning of each episode, each agent starts its activities from the initial state. Therefore, we reset the environment 
to its initial state and reset the timer to 0 msec. We also reset each agent’s cumulative reward to 0 at the beginning 
of each episode. When the initialization is completed, it is possible to run the agents in this environment 
simultaneously, using Algorithm-2. 

 
Algorithm-1: Configuration of Environment and Agents 

1. Input: tvm, no_of_agents, possible_actions, rm_capacity, no_of_episodes, broker // tvm represents total 
 number of virtual machines and rm_capacity represents replay memory capacity 

2. // Create network topology 
3. for i=1 to tvm do // Gather all virtual machines necessary information from the datacenter 

2.1 Configure VMs (IDi, CPUi, Memoryi, Storagei, PIdlei, PRuni, Costi) 
4. end for 
5. for i=1 to tvm do 

4.1.   Submit VM information to broker 
6. end for 
7. for j=1 to no_of_agents do // create the Q-network agents responsible for scheduling 

7. 1. Determine pathj in network topology // broker path is set to datacenter and incoming user tasks 
7. 2. Determine total resources of the agent in pathj (total_CPU, total_Memory, total_Storage) // broker 

obtains necessary information about the VMs 
7. 3. Select scheduler // broker selects the scheduler for scheduling the tasks based on VM information 

obtained in step 7.2 
7. 4. Create agentj’s Q1 and Q2 models //the term agent refers to scheduling or learning algorithm  

     used by the scheduler 
8.  end for 
9. for k=1 to no_of_agents do // set weights for the Q-networks and Q-table limit as rm_capacity 

9. 1. Set replay memory to rm_capacity 
9. 2. Initialize Q1 with random weight w1 for agentk // weight is assigned for Q1’s learning agent. agent 

refers the learning or the scheduling algorithm. 
9. 3. Initialize Q2 with w2 for agentk // weight is assigned for Q2’s learning agent. These agent weights 

(w1 and w2) help in updating the evaluation network with values in target network. 
9. 4. stepk = 0 
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10. end for 
11. // Create and initialize cloud’s problem environment 
12. for l=1 to no_of_episodes do // every episode is considered as a fresh start. Number of episodes help in  

   converging the difference between target and evaluated Q-network 
12.1. Reset the environment to initial state 
12.2. Run all the agents according to Algorithm-2 

13. end for 
 

3.2. Clipped Double Deep Q-Learning (CDDQL) Scheduling: 

The CDDQL scheduling algorithm described in Algorithm-2 is the core of the proposed model. It depicts the 
internal operations of each agent.  

 
Algorithm-2: Clipped Double Deep Q-Learning (CDDQL) Scheduling 

1. Input: no_of_agents, total_tasks, possible_actions, EDR, ε, Mini_Batch_Size, 𝛾𝛾, 
Target_Update_Frequency  
// EDR is epsilon decay rate whose ε value is usually set to 0.5 

2. Output= Cumulative_Reward 
3. for i=1 to no_of_agents do  

3.1. Set Cumulative_Reward to 0 // initial cumulative reward is zero 
3.2. Shuffle the primitive task set 
3.3. for j=1 to total_tasks do // for every set of tasks, analyse its state 

3.3.1. stepk = stepk + 1// Increment the step 
3.3.2. Calculate sk

i = (CPU, Memory, Storage) 
3.3.3. Set activation_flag to false 
3.3.4. while activation_flag is false do //select action based on epsilon value 

3.3.4.1. Select aj
i  // Using Algorithm-4 

3.3.4.2. Validate aj
i and set activation_validation_flag accordingly 

3.3.4.3.  if activation_validation_flag==true then // the validation flag means that the action is 
 being evaluated and no other action can take place until the selected action 
 is executed 

3.3.4.3.1. Break 
3.3.4.4. end if 

3.3.5. end while 
3.4. Allocate vmj

a to taskj and set status as busy. 
3.5. Execute taskj and calculate execution time 
3.6. Calculate waiting time of taskj in pathi 
3.7. Release vmj

a 
  and set status as idle 

3.8. Calculate Immediate_Reward of actiona at taskj in pathi 
3.9. Set Cumulative_Rewardj to Cumulative_Rewardj + Immediate_Rewardj

i (action) 
3.10. Add transition tuple (sj

i, aj
i, rj

i, s’j
i) into replay memory // (present state, action, reward, next state) 

3.11. Update εj
i // Using εj

i =0.5 
3.12. Get random Mini_Batch_Size from the transition tuples 
3.13. Calculate target Q-value of action a by agenti to perform taskj // Using Equation (2) 
3.14. Train Q1

i and perform gradient descent step 
3.15. Select the minimum Q-value from the two maximum Q-values obtained in Q1

i and Q2
i 

3.16. if stepk % Target_Update_Frequency is 0 then 
3.16.1.  w2=w1 //update the targets so that the Q-table is updated frequently 

3.17. end if 
3.18. end for 
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4. end for 
5. Return Cumulative_Reward 

 
For the purpose of generalization, at the beginning of each episode, we reset the cumulative reward of agents to 0 

and shuffle the primitive task set. In order to avoid making the wrong decision by the agent before taking an action, it 
validates the output using ε- greedy policy. The validation process is essentially based on the comparison between the 
selected resources and the required resources of the current task. If the action is not valid, then the agent runs ε- greedy 
policy again until the activation_validation_flag changes to true. 

 
Q*(st,at) = 𝔼𝔼s` [Rt+1+𝛾𝛾 maxa` Q*(s`t,at`)| s,a]      (2) 

 
Where 𝔼𝔼s is the sum of the Q-value of the state-action pair and learning rate 𝛼𝛼. Learning rate specifies how reliable 

the algorithm should be on the unbiased reward value. 𝛾𝛾 represents a discount factor that controls the reaction of 
immediate and future rewards 

After the initialization process is completed, the incoming task is sent to the cloud server where the selected VM 
is located. If the selected VM is idle, then the task is immediately allocated. If the selected VM is busy executing 
another task, the incoming task is appended to the VM’s waiting queue. After allocating VM with a task, the agent 
calculates the next state of the environment and the execution time. In the next step, it calculates the waiting time of 
the current task. The proposed algorithm is non-preemptive and can run only one task in each of the VMs. 

Upon the completion of the task, the VM is released and output data is returned to its designated destination. To 
calculate the immediate reward of the action, the agent normalizes the elements of service delay individually and takes 
the sum of the normalized elements. And finally, it uses Immediate_Reward = 1/ (sum of the normalized elements) to 
calculate the immediate reward. The sum of the normalized elements is the sum of waiting time, execution time, total 
(upstream and downstream) transmission time, and total (upstream and downstream) propagation time. Then, the 
agent adds the immediate reward to the cumulative reward of the current episode and adds the transition tuple of the 
current experience to replay memory. 

After each step, the agent updates the value of ε using this formula εj
i =( εstart - εend) * e-EDR*step

k. To train the Q1 
model; first, the agent gets the random mini batch size of Mini_Batch_Size from experiences and uses the current state 
(s) values as training samples (X) and the next state (s’) values to calculate the target values (Y). Then, the Q1 model 
of the agent performs a gradient descent step on loss and updates Q1 weights as w1. At last, it updates all weights of 
Q2 model, w2 by using w1 at each step of Target_Update_Frequency. This process is used for every task that enters 
the agent. The target Q-value is calculated by using CDDQL Equation (3). 

 
Q1*(st,at) = rt+ 𝛾𝛾 mini=1,2 Q1 (st+1, argmaxa, Q1(st+1,a’))    (3) 

 
Where, 𝛾𝛾 is the discount factor. As the discount factor quantifies the importance of the algorithm that gives future 
rewards, we set the value of 𝛾𝛾 to 0.99. This helps the algorithm to consider future rewards with high weights. It is 
important to update network parameters for each iteration. Maintaining the updated target networks can decrease the 
growth of approximation error. An error function reports back the difference between the estimated reward of any 
given state or time step and the actual reward. Such an error is known as the temporal difference (TD) error. To reduce 
the TD error, it is important to update the target network with the primary network regularly. So, we update the target 
network parameters by using Equation 4 [3]. 
 
                                                                         θ` = 𝜏𝜏*θ + (1-𝜏𝜏)* θ`                                                                                              (4) 
 
Where, θ` is the target network parameter and it is updated by the primary network parameter θ. τ is the rate of 
averaging that is set to 0.01. The target networks use a slow-moving updated rate, parameterized by τ. To update a 
randomly selected state without a target network τ is set to 1. But in our considered case, we need to update the target 
networks slowly. This helps us to decrease the TD error and free the algorithm from overestimation bias (if the error 
is vanished; it means the algorithm has overestimated). Every reinforcement learning algorithm is like chasing a target 
while the target keeps moving. We need to make sure that the difference between the estimated value and the target 
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value is not large, but the difference must exist to ensure overestimation is not being done. So, we update the target 
network parameter at a slow rate of τ = 0.01. 

 
Algorithm-3: ε- greedy policy 

1. Input: present state (si
j), εj

i , possible_actions 
2. Output: selected action (aj

i) 
3. Select random_number in range [0,1] 

3.1. If random_number < εj
i then //exploration, ε value is 0.5 

3.2.  Select aj
i in range [1, possible_actions] randomly 

4. Else 
4.1. Calculate aj

i // Using Equation (2) // exploitation 
5. end if 
6. Return aj

i  
 

This algorithm is used as an action selection strategy. The ε-greedy policy is used to the trade-off between 
exploration and exploitation. The only difference between QLS and CDDQLS is that in CDDQLS, the agent performs 
exploration using Q1 model to select the action with maximum Q-value and Q2 for calculating the Q-values. For QLS 
algorithm, it uses only one Q-model for both action selection and validation by referring to Q-table. The CDDQLS 
uses Equation (5) for action selection. 

 
 aj

i = argmaxa Q1(st+1,a’)j
i     (5) 

4. Evaluation 

4.1. Simulation Environment 

To evaluate the efficiency of the proposed algorithm, Cloudsim [15] with Cloudsim plus [16] java-based cloud 
simulation framework is utilized to create and configure the cloud environment. Python is used to work with the 
proposed deep reinforcement learning algorithm in the cloud environment created in Cloudsim [15]. We used the 
Google task events dataset to generate user tasks. In our simulations, we used four Virtual Machines with 500MB 
RAM and 1000MB storage. Virtual machine ranges from 213 to 431MB are used for a task to execute. With the 
Google task events dataset, nine user tasks are generated. As reinforcement learning needs to learn the environment 
through exploration, random scheduling is performed for the first set of tasks, and the efficiency of each virtual 
machine is judged. Based upon the simulation results after performing random scheduling, the average computational 
efficiency (Megabytes/second) of each virtual machine is calculated. With four virtual machines, we created four 
categories of reward allocation to each virtual machine. If the VM with the best computation capability is considered, 
the action is rewarded with +2. When the action schedules the task to the second-best VM, it is rewarded with +1. If 
the user task is allocated to the slowest functioning VM, the action is given a penalty of -2. If the action selects VM 
with the third fastest computation capability, it is given a penalty of -1. 

In the proposed deep reinforcement learning-based scheduling, an action that schedules a task to a VM is rewarded. 
This means that VMs are assigned with rewards. An action of selecting a VM is assigned with rewards or penalties, 
not the task as such the scheduling process is non-preemptive. 

The deep Q- network in the CDDQL algorithm contains a sequential model with 4 dense layers, an input, and an 
output layer along with ReLu activation with Adam optimization.  

4.2. Simulation Results 

Figure 1 shows the time taken to execute each user task for the following scheduling: time shared scheduling (blue), 
space shared scheduling (orange), random selection scheduling (grey), Q-learning scheduling (yellow), and our 
proposed CDDQLS scheduling (light blue). 

In a cloud environment, the incoming tasks vary in size. Thus, random sizes are taken from the Google Task Events 
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This means that VMs are assigned with rewards. An action of selecting a VM is assigned with rewards or penalties, 
not the task as such the scheduling process is non-preemptive. 
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output layer along with ReLu activation with Adam optimization.  

4.2. Simulation Results 

Figure 1 shows the time taken to execute each user task for the following scheduling: time shared scheduling (blue), 
space shared scheduling (orange), random selection scheduling (grey), Q-learning scheduling (yellow), and our 
proposed CDDQLS scheduling (light blue). 

In a cloud environment, the incoming tasks vary in size. Thus, random sizes are taken from the Google Task Events 
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dataset in Cloudsim plus [16] and randomly distributed in chunks of user tasks. The sizes of tasks ranges from 1 to 4 
are equal to 431MB, tasks from 5 to 6 are equal to 213MB, tasks from 7 to 8 are equal to 228MB, and the task size of 
the 9th task is equal to 248MB. It should be noted that there is a big difference between the execution time of the first 
four tasks and the other tasks due to the fact that of the size difference between them. 

 
Fig. 1. Execution time of each user task. 

 
In many cases, we can notice that the results of random scheduling show similar efficiency to QLS and CDDQLS 

scheduling. The QLS and CDDQLS scheduling select the actions based on ε- greedy strategy. Whenever the random 
value is less than ε value (i.e., 0.5), random action is performed. This means in many cases tasks are scheduled to VMs 
randomly. This can help the learning agent to explore the environment; however, it leads to a decrease in the efficiency 
of the scheduling. 

To visualize the efficiency of the proposed algorithm clearly, we took a batch of nine tasks from the Google task-
events dataset and used them as inputs to various scheduling algorithms five times. The size of each task is the same 
as the size used previously. The evaluation results that visualize the algorithms’ performance when the batches of 
tasks are fed to input is shown in Figure 2. 

 

  
 

Fig. 2. Execution time of 5 batches with 9 tasks each. 
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The evaluation results from Figure 2 show that the proposed algorithm performs better than the other algorithms 
in accordance with the total execution time of a batch of nine tasks. This is because the Q-table continuously updates 
itself for each episode or epoch to learn the environment.  

The average service delay in the reinforcement learning approach is effectively dependent on what extent the 
learning agent knows about the environment. This evaluation metric is inspired by [2]. Exploration and exploitation 
need to go together to fetch healthy results leading to optimal resource allocation. The selection between exploration 
and exploitation is dependent on the ε value. In our approach, we choose the value of ε equal to 0.5. Figure 3 shows 
how the waiting time of a batch of 9 tasks changes with respect to the ε value that effecting the service delay. The 
average service delay is calculated by taking the average waiting times for each task. 

 

 
 

Fig. 3. Waiting time or delay of a batch of 9 tasks with respect to changing ε values. 
 
From Figure 3 we can understand that on both ends the delay is high when ε value is too low or too high. The proposed 
algorithm is designed in such a way that actions are chosen based on the ε value. Every time a randomly chosen integer 
is less than the ε value (0.5), the q-value is calculated by choosing a random (next state, action) value from the q-table, 
as demonstrated in Algorithm 3. This decreases the efficiency of the algorithm by not choosing high rewarding action, 
i.e. an optimal action. This results in scheduling the task to a VM with low execution speed and accordingly delays 
other tasks in its queue. This explains the reason of the delay that being high when ε=1. As the ε value decreases, the 
possibilities of the random number being less than ε also decreases. This helps the learning agent to choose maximum 
(next state, action) q-value when using Equation 2. This allows optimal usage of VMs and decrease in service delay. 
Nevertheless, when the ε value is 0, it restricts the learning agent to explore the environment and forces the agent to 
perform Equation 2 in every iteration. This eliminates exploration, which results in poor selection of virtual machine 
and causing traffic in the VM queue. Hence, it is important to choose an ε value that can result in a good management 
between exploration and exploitation. This made it natural for us to choose ε equals to 0.5 for our approach. 
 

5. Conclusion and Future Work 

In this paper, we studied the task scheduling and VM allocation problem in a cloud environment with the aim of 
decreasing execution time and cost. To ensure the optimality in using resources, we proposed a Clipped Double Deep 
Q-learning (CDDQL) based scheduling algorithm. The algorithm focuses on maximization of its objective function, 
target network, and experience replay techniques.  

According to the experimental results, the proposed algorithm performed better than conventional scheduling 
algorithms, such as time shared and space shared, and a reinforcement Q-learning algorithm. The hyperparameter 
experiment using ε showed the importance of the trade-off between exploration and exploitation.  
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In the future, we intend to use better cloud modeling techniques like fog or edge computing with multiple schedulers 
to decrease the load on cloud datacenter and ensure faster scheduling. Choosing an ε value that accurately deals with 
choosing between exploration and exploitation is important.  
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