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A B S T R A C T   

In light of the ongoing global biodiversity crisis, the urge to monitor and map terrestrial plant biodiversity at 
large spatial extents has spurred research on adequate quantitative methods. The use of spectral diversity metrics 
from different remote sensing platforms has emerged as a promising tool for such biodiversity assessments. 
Satellite remote sensing presents the next frontier for implementation of these methods to assess plant diversity 
with spatial and temporal continuity at truly regional or global scales. However, the question of what exactly is 
monitored by spectral diversity metrics from relatively coarse multi-spectral satellite observations has remained 
largely unanswered. 

In this research, we examined which components contribute to satellite remotely sensed spectral diversity. We 
assessed the relationships between spectral diversity and in-situ taxonomic and trait diversity, and evaluated the 
role of confounding factors, vegetation cover, and landscape morphology (slope and elevation), in shaping these 
relationships. Hereto, we used Sentinel-2 imagery and in-situ field trait and species count data collected in the 
Montesinho-Nogueira Natura 2000 site (Portugal) together with radiative transfer models to quantify the 
theoretical link between in-situ trait diversity and simulated spectral diversity. 

Through the use of linear mixed-effect models, our results highlight that variation in vegetation cover dom-
inates the Sentinel-2’s spectral diversity signal (contributing 53–84% of the R2

marginal). The vegetation cover 
component encompasses spatial variability in canopy architecture traits as well as the fraction of bare soil and 
plant litter spectra. These elements together strongly impact the overall spectral diversity signal, as shown both 
in our radiative transfer simulations and empirical comparisons. Next to vegetation cover, we found that taxo-
nomic diversity is a significant predictor and covariate of spectral diversity, while the role of leaf trait diversity 
appeared insignificant in our multispectral dataset. 

Variation in vegetation cover dominated the spectral diversity signal in our study while it is not necessarily 
correlated with plant diversity. We, therefore, recommend that future applications of multi-spectral diversity 
metrics consider the impact of vegetation cover, including soil variability and the role of morphological traits, in 
shaping leaf trait - canopy reflectance relationships to better understand the ambiguous performance of spectral 
diversity as a proxy of plant diversity. This will result in higher robustness, consistency, and scalability of spectral 
diversity metrics for predicting in-situ plant diversity across scales, sensors, and ecosystems in regional biodi-
versity assessments.   
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1. Introduction 

Over the past few decades, the threats to global biodiversity have 
continued to increase. These threats mostly involve anthropogenic 
pressures, such as habitat loss and fragmentation, overexploitation, 
climate change, and pollution (IPBES, 2019; Rands et al., 2010). A large 
consensus exists on the evident importance of biodiversity for vital Earth 
system processes and the resilience thereof (Cardinale et al., 2012). 
Consequently, many national governments have set targets and are 
committed to halting biodiversity losses, as formulated by the Conven-
tion of Biological Diversity in the Aichi Biodiversity Targets (O’Connor 
et al., 2015; Pettorelli et al., 2016), and the Post-2020 global biodiver-
sity framework (CBD, 2020a, 2020b). To reach these ambitious goals, 
decision-making needs to be supported with well-understood and reli-
able indicators to track the current trends and state of biodiversity (Jetz 
et al., 2016; O’Connor et al., 2015; Pettorelli et al., 2016; Rocchini et al., 
2015). 

Biodiversity is multidimensional and includes the diversity of species 
(taxonomic diversity), the genetic variation within them (phylogenetic 
diversity), and the vast variety of traits, i.e. functional attributes, that 
each organism possesses (functional diversity) (Anderson, 2018; Gaston, 
2010). The interactions and diversity of these traits and attributes within 
a given community shape ecosystem processes - affecting its produc-
tivity, adaptability, vulnerability to disturbances, and general func-
tioning (Cadotte et al., 2011; Duncan et al., 2015; Funk et al., 2016; 
Isbell et al., 2011; Mori et al., 2013; Ruiz-jaen and Potvin, 2010). 

Satellite earth observation has gained increased attention as a global 
and timely technique for monitoring biodiversity dynamics (O’Connor 
et al., 2015). Satellite remote sensing uses radiative measurements to 
provide critical information on the features of the Earth’s surface using 
multiple wavelengths to capture detailed spectral information (Jensen, 
2013). However, for a long time, remote sensing operated at coarse 
spatial and spectral resolutions, which hampered local-scale interpre-
tation for biodiversity (Anderson, 2018; Butler, 2014). With ongoing 
advances in satellite sensors, a growing body of research examines the 
capabilities of satellite remotely sensed spectral information as proxies 
of biological diversity on the ground (Rocchini, 2007; Schmidtlein and 
Fassnacht, 2017; Torresani et al., 2019). 

The use of spectral diversity, e.g. the variability in spectral infor-
mation content, has become a widely studied approach for estimating 
terrestrial plant diversity through remote sensing (Wang and Gamon, 
2019). Initial research on this approach adopted the spectral variability 
hypothesis (Palmer et al., 2002) as their main premise (Rocchini, 2007; 
Rocchini et al., 2004). This hypothesis suggests that the diversity in 
spectral reflectance of an area is representative of in-situ plant diversity 
through its measurements of the spatial heterogeneity of the environ-
ment (Ewers et al., 2005; Palmer et al., 2002; Rocchini, 2007; Rocchini 
et al., 2010). Two theoretical concepts are central in the link between 
spectral diversity and in-situ plant diversity, namely 1) radiative transfer 
theory on vegetation-light interaction, and 2) the surrogacy hypothesis. 

Radiative transfer theory for vegetation physically describes how 
remotely sensed reflectance is determined by a suite of morphological, 
biochemical, physiological, and structural characteristics of plants and 
the relative position of the sun and sensor (Chandrasekhar, 1960; 
Ollinger, 2011). Particularly the impacts of leaf biochemical composi-
tion and structural properties of vegetation have been emphasized (Feret 
et al., 2008; Jacquemoud et al., 1996; Jacquemoud et al., 2009). These 
properties are not only spectrally important but also relate to plant traits 
that are of ecological importance and thus can shed light on the func-
tional traits, and diversity thereof, present in an ecological community 
(Damm et al., 2018; Gamon et al., 2019; Kattenborn et al., 2017). 
Indeed, links between functional diversity and spectral diversity have 
been established empirically at the leaf level (Schweiger et al., 2018). 

While trait ranges and functional diversity have been used to 
distinguish among plant functional types (van Bodegom et al., 2014; 
Verheijen et al., 2016), species spectral discrimination has generally 

been shown to be challenging in multi-spectral settings due to spectral 
and functional similarities among species and relatively large intra- 
specific variation in both spectral and functional characteristics 
(Cochrane, 2000; Hennessy et al., 2020; Price, 1994). Despite these 
challenges, links between spectral and taxonomic diversity might still 
apply, but through indirect relationships (Torresani et al., 2019; Vil-
loslada et al., 2020). 

The original premise of the spectral variability hypothesis (Palmer 
et al., 2002) relies on the ‘surrogacy hypothesis’ which suggests that 
patterns of biodiversity can be captured through its ecological and 
physical relationships with environmental heterogeneity (Beier and de 
Albuquerque, 2015; Palmer et al., 2002; Stein et al., 2014; Wang and 
Gamon, 2019). In other words, based on this environmental ‘surrogacy’, 
spectral diversity can capture plant diversity indirectly through spec-
trally observable landscape heterogeneity, as landscape heterogeneity 
drives plant diversity. 

Based on these theoretical concepts, different metrics and platforms 
have been deployed to quantify spectral diversity and to assess its link to 
in-situ plant diversity. Over time, studies have used proximal, airborne, 
and satellite remote sensing to link spectral diversity to either plant 
taxonomic, phylogenetic, and/or trait diversity (e.g.; Dahlin, 2016; 
Gholizadeh et al., 2018; Lucas and Carter, 2008; Madonsela et al., 2017; 
Rocchini, 2007; Schmidtlein and Fassnacht, 2017; Schweiger et al., 
2018; Torresani et al., 2019; Wang et al., 2018a). They reported both 
positive correlations and ambiguous relationships between spectral di-
versity and field-measured plant diversity. Overall, these studies have 
shown that scale, sensor, metric and season play a role in how well 
spectral diversity translates to plant diversity (Gholizadeh et al., 2018; 
Rocchini, 2007; Schmidtlein and Fassnacht, 2017; Torresani et al., 2019; 
Wang et al., 2018a, 2018b). 

Despite the advances in applying spectral diversity metrics, the 
question of what exactly is measured in spectral diversity remains 
largely unanswered. This is particularly the case for multi-spectral sat-
ellite remote sensing in which the relatively coarse spatial resolution 
does not allow for the direct identification of individual plants and 
canopy crowns. For instance, European Space Agency’s (ESA) flagship 
Sentinel-2 Multi-Spectral Instrument (MSI) presents spectral bands 
scaled at 10 m, 20 m, or 60 m spatial resolution, which implies that 
spectral signals are aggregates of multiple canopies. Furthermore, even 
in densely forested areas, the surface reflectance spectral signal at these 
scales comprises a number of different constituents, each contributing to 
the overall signal: vegetation cover (including plant size and density, 
canopy architecture, and understory layers), the soil/litter/background 
signal, vegetation biochemical and biophysical composition (trait di-
versity) as well as landscape morphology (Asner, 1998; Van Leeuwen 
and Huete, 1996; Zarnetske et al., 2019). Better characterization and 
quantification of the components contributing to satellite remotely 
sensed spectral diversity is therefore needed to further advance the use 
and interpretation of spectral diversity in assessing in-situ plant 
diversity. 

In this paper, we tested the hypothesis that spectral diversity from 
multispectral satellite observations is able to capture in-situ measured 
plant diversity directly, through spectral responses of plant traits as 
expected based on radiative transfer theory, or indirectly, through 
environmental ‘surrogacy’. Firstly, the theoretical physics-based ex-
pectations from radiative transfer were quantified through radiative 
transfer model (RTM) simulations, providing a theoretical reference. 
This helped assessing the extent to which modelled spectral diversity 
based on radiative transfer actually relates to the empirical data; in-situ 
measured traits as well as Sentinel-2 observed spectral diversity. 

Secondly, the empirical relationships between spectral, taxonomic, 
and trait diversity and confounding factors were examined using 
Sentinel-2 imagery and in-situ field data collected in the Montesinho 
Natural Park and Montesinho-Nogueira Natura 2000 sites in northern 
Portugal. The analysis of bivariate correlations and linear mixed-effect 
models allowed us to characterize the extent to which observed 
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Sentinel-2 spectral diversity covaries with in-situ observed taxonomic 
and trait diversity, but also of confounding variation in vegetation cover 
and landscape morphology. Ultimately, our findings feedback into the 
discussion on how to assess plant diversity from satellite remote sensing 
and the considerations needed for spectral diversity approaches in 
multi-spectral applications. 

2. Methodology 

2.1. Study area 

The study area includes the Montesinho Natural Park and the Natura 
2000 sites of Montesinho-Nogueira (PTZEP002 and PTCON0002), 
located in the Northeast of Portugal along the Spanish border (latitude 
41◦70′–41◦94′N, longitude 6◦57′–6◦90′W) (See Fig. 1). With a size of 
over 1000 km2, the area plays an important role in the conservation of 
regionally endemic biodiversity (Aguiar, 2001; Bastos et al., 2018). The 
study area is a natural mountainous area with an elevation between 371 
and 1488 m, characterized by high landscape richness and heteroge-
neous topography (Sil et al., 2016). This corresponds to a relatively wide 
range of climatic conditions between the highlands versus lowlands 
respectively with average annual temperature varying between 8.6 ◦C 
and 12.9 ◦C, and average annual precipitation between 1262 mm and 

806 mm (Sil et al., 2016). 
Semi-natural areas comprising of highly diverse shrub communities 

dominate the landscape, particularly in the highlands (Fonseca et al., 
2012). Native deciduous Pyrenean oak forests are well represented, 
particularly in the Nogueira site (Rego et al., 2011), while Holm-oak 
woodlands occur mostly in rock outcrops, shallow soils, and steep 
slopes (Azevedo et al., 2013). The lowlands consist of agriculture 
intermingled with chestnut groves, while pine forest plantations occur at 
mid-elevation in the eastern part of the area (Sil et al., 2017). The 
landscape is heterogeneous, dynamic, and anthropogenic fires play an 
important role as drivers of landscape change (Azevedo et al., 2011; Sil 
et al., 2019). 

A total of 28 multi-plot sites were sampled across 14 representative 
vegetated locations in the Montesinho area (Fig. 1), covering three 
different land-use types; shrublands, forested areas, and chestnut plan-
tations. Photographs indicative of the different sampling locations and 
land-use types can be found in Suppl. Mat. S1. Each location consisted of 
multiple (8-9) adjacent 20 m × 20 m sampled plots. Each plot (total N =
115) was precisely scaled and georeferenced in the field to match 
Sentinel-2’s pixel raster using a Trimble Catalyst GPS with Global 
Navigation Satellite System service of <1 m precision. Therefore, 
Sentinel-2 observations match field measurements in terms of the scale 
of the plots as well as the size of the clustered plots. Within each plot, we 

Fig. 1. Map of the study area depicting the location of the Montesinho-Nogueira Natura 2000 site in Portugal (panel A.), the distribution of the 14 individual 
sampling locations characterized by woody vegetation across the wider national park and Natura 2000 site (panel B.), and an exemplar individual location (panel C.) 
consisting of eight to nine plots scaled and georeferenced to Sentinel-2’s pixel raster which is illustrated by surface reflectance at 20 m spatial resolution as 
background. Diversity metrics (spectral, trait, and taxonomic) were calculated per five adjacent plot/pixel values resulting in two paired observations per location. 
For each plot (total N = 115), an average of 17 individual sunlit branches was sampled to collect leaves representative of trait means of the overstory areal 
composition. 
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sampled leaves following the sampling protocol described in Section 
2.2.1. All diversity metrics, both in-situ and remotely sensed, were 
calculated for clusters of five adjacent plots resulting in two paired ob-
servations per location. The diversity metrics (Section 2.3.1) quantify 
the relative distance between trait combinations rather than the indi-
vidual traits itself. As such, each observation of diversity is unique 
despite the overlap in pixels illustrated in Fig. 1C. 

2.2. Data collection 

2.2.1. Field data collection 
A field data collection campaign was conducted from 12/06 until 05/ 

07 of 2019. The prime objectives of the campaign were to collect for 
each plot individually; in-situ leaf trait data, conduct a species in-
ventory, and assess the vegetation cover. 

For leaf trait analysis, we collected samples from 15 to 20 individual 
branches of the healthy unshaded top of the canopies of each plot to 
capture a representative plot-level composite trait means. Prior visual 
and geometric inspection guided sampling choices to select the most 
dominant canopy types in terms of areal coverage of each plot. Collected 
leaves were weighted fresh, then transported on ice, and stored in a −
18 ◦C freezer until further analysis in the lab. In total, 1955 leaf samples 
were analyzed to derive four leaf traits (Section 2.2.2.) from 115 plots 
across 14 locations. Simultaneous with the collection of leaf samples, a 
species inventory was made for the sampled canopies for each plot of 
each site. This resulted in an area-based species count survey repre-
sentative of the top of canopy/overstorey vegetation. 

In addition to leaf sampling and the species inventory, we quantified 
the structural vegetation cover for each plot. Vegetation cover was 
characterized through the Plant Area Index (PAI), which is defined as 
the area of living plant material per unit of ground surface area. We used 
hemispherical photography to specify PAI similar to approaches by 
Garrigues et al. (2008), Hadi et al. (2017), and Weiss et al. (2004). For 
consistent measurements across all sites, we took five hemispherical 
photos per plot, one from the plot centroid and one from the center of 
each quadrant. Images were retaken in case of the presence of sunbeams 
or sun fleck problems. After the field campaign, we processed the RGB 
hemispherical photographs using CAN-EYE v6.4 open-source software 
to retrieve effective PAI estimates (Weiss and Baret, 2010). 

We cross-validated the PAI measurements from hemispherical 
photography with above and below canopy measurements taken with 
Photosynthetically Active Radiation (PAR) sensor (Apogee MQ-301; 
handheld device), quantifying the relative quantity of incident solar 
radiation absorbed by vegetation. Further, cross-validation was per-
formed through comparison of PAI measurements against the fraction of 
vegetation through spectral unmixing based on in-situ soil spectral 
reflectance measurements, and leaf spectral reflectance signals as 
generated by the PROSPECT model (Lehnert et al., 2018; Sohn and 
McCoy, 1997). The PAI observations strongly correlated with the PAR 
measurements as well as with the fraction of vegetation in the spectral 
signal derived from spectral unmixing (Fig. S2. in Suppl. Mat.). 

2.2.2. Leaf biochemical traits 
The collected field samples were analyzed in the lab to obtain rele-

vant plot-level community means of leaf biochemical traits to ultimately 
assess site-level leaf trait diversity. The selection of traits was based on 
1) their ecological importance in terms of plant functioning (Croft et al., 
2017; Damm et al., 2018; Díaz et al., 2016; Wright et al., 2004), and 2) 
their importance in the spectral response of leaves and our under-
standing thereof. Specifically, the four selected leaf traits are the input 
parameters of the widely applied PROSPECT radiative transfer model 
that links leaf traits and biochemistry to spectral responses using phys-
ical laws (Feret et al., 2008; Jacquemoud and Baret, 1990). 

Chlorophyll A and B content (μg/cm2; CAB) is the area-based leaf 
content of green photosynthetic pigments in chloroplasts. Chlorophyll 
plays an important role in the photosynthetic capacity and resource 

strategy of plants (Croft et al., 2017). Carotenoid content (μg/cm2; CAR) 
is the amount of orange and yellow photosynthetic pigments in chlo-
roplasts. CAR serves a number of roles in the functioning of plants, 
including light harvesting for photosynthesis and dissipating energy to 
avoid damage by excess light (Croft et al., 2017). Both CAB and CAR 
were derived using a protocol based on Lichtenthaler (1987). 

Equivalent water thickness (g/cm2; EWT) is the amount of water 
present in a leaf or canopy divided by its area. EWT plays a role in the 
physiological plant performance and regulatory mechanisms important 
for drought and stress tolerance (Damm et al., 2018; Lawlor and Cornic, 
2002; Saura-Mas, 2007; Weiher et al., 1999). Leaf mass per area (g/cm2; 
LMA) is the amount of dry mass of a leaf per leaf area. LMA is a key 
feature in capturing leaf economics, reflecting trade-offs between carbon 
gain and longevity of a plant (Díaz et al., 2016; Wright et al., 2004). Both 
EWT and LMA were calculated based on fresh and dry leaf weight and 
leaf area (as determined in Image J 1.52a software (Schneider et al., 
2012)). 

2.2.3. Sentinel-2 surface reflectance 
Spectral diversity metrics were calculated based on the optical sur-

face reflectance retrieved by ESA’s Sentinel-2 MSI sensor. The Sentinel- 
2a/b constellation consists of a wide-swath, medium-high spatial reso-
lution (10, 20, and 60 m), multi-spectral (13 bands) imager with 5–10 
days revisit time (ESA, 2015). Sentinel-2 surface reflectance (level-2a) 
imagery was downloaded from the Copernicus Scientific Hub which 
comes as atmospherically corrected by ESA using the Sen2Cor algorithm 
(Gascon et al., 2014; Louis et al., 2016). Only one scene (29th of July 
2019) covering all sampled locations was completely free of quality flags 
(cloud cover, cloud shadow, cirrus, and other atmospheric contamina-
tion) and corresponded with the time of our field campaign. We 
excluded the 60 m bands from the analysis and resampled the 10 m 
bands to 20 m spatial resolution using a nearest neighbour resampling 
method to match the scaling of our 20 m × 20 m georeferenced field 
plots. This resulted in nine spectrally non-overlapping bands which were 
used to calculate the spectral diversity metrics (See S3 for the spectral 
layout of the Sentinel-2 bands used). 

2.3. Data analysis 

2.3.1. Diversity metrics 
The relationship between plant diversity and spectral diversity is 

metric-dependent (Gholizadeh et al., 2018). Therefore, we implemented 
a multi-metric analysis with two of the most commonly used diversity 
measures in current research on both spectral diversity and trait di-
versity; Convex Hull Volume (CHV) and Rao’s quadratic entropy index 
(Rao’s Q) (Table 1). These metrics have been commonly used to capture 
plant trait diversity (Mouchet et al., 2010; Rocchini et al., 2017; Tor-
resani et al., 2019; Villéger et al., 2008). The use of the same metrical 
concepts for both spectral and trait diversity allows for consistency in 
the analyses. The spectral diversity metrics were based on spectra from 
pixel-based Sentinel-2 observations (Section 2.2.3). For the trait di-
versity metrics, we relied upon plot-wise means of leaf trait samples 
acquired in-situ, scaled, and georeferenced to the Sentinel-2’s pixel 
observations. The diversity metrics used allow for consideration of 
abundance. However, since we are using homogenously sized pixel/ 
plot-wise (composite) values, the abundance is equal across plots 
(abundance = 1). 

In addition to these spectral and trait diversity indices, we calculated 
taxonomic diversity using in-situ plot-wise species count data. We relied 
on Shannon’s H diversity index as a commonly applied indicator of local 
taxonomic diversity of each site; 

H = −
∑s

i=1
(pi×log2(pi) )

where s is the total number of species and Pi the proportion of the 
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community represented by species i. Taxonomic diversity calculations 
based on Shannon’s H were calculated using the scikit-bio 0.5.6 (htt 
p://scikit-bio.org/) package in Python. Min-max normalization of all 
metrics ensured all values were scaled between 0 and 1. 

2.3.2. Simulating spectral diversity through radiative transfer models 
In addition to the empirical data collected, we made use of theo-

retical models to assess how spectral diversity and the diversity of in-situ 
measured traits related according to radiative transfer processes. From 
radiative transfer models, simulated leaf and canopy spectra were 
generated based on in-situ trait information and, ultimately, used to 
calculate a simulated spectral diversity based on the metrics described in 
Section 2.3.1. The simulated spectral diversity served as a theoretical 
physics-based reference to evaluate its relationship to in-situ trait di-
versity based on radiative transfer theory and, in addition, were 
compared against Sentinel-2 spectral diversity to assess its correspon-
dence to empirical observations. 

The simulations were based on two radiative transfer models; the 
leaf-based PROSPECT-5 model (Feret et al., 2008) and the canopy-scaled 
PROSAIL model (Jacquemoud et al., 2006). For full compatibility with 
our empirical observations based on Sentinel-2, we ran a spectral 
convolution to resample the RTM-simulated spectra to the same spectral 
band layout as Sentinel-2 following ESA’s spectral response table (ESA, 
2020). Based on the plot-wise spectra, the spectral diversity was calcu-
lated for five adjacent plots like done for the calculations for the 
observed Sentinel-2’s pixel-based spectra and similar to the trait and 
taxonomic metrics. 

First, we modelled leaf spectra using the commonly applied 
PROSPECT-5 model (Feret et al., 2008) based on plot-wise aggregated 
observed trait values. This model uses well-established physical princi-
ples of light-matter interaction to simulate how light interacts with a 
single leaf and serves numerous more complex vegetation radiative 
transfer model models (such as PROSAIL, INFORM, SCOPE) (Feret et al., 
2008). It requires relatively few input parameters to determine spectral 
responses; leaf structure parameter (N), chlorophyll a + b (CAB), 
equivalent water thickness (EWT), leaf mass per area (LMA), brown 
pigment (CBP), and carotenoid concentration (CAR). The spectra were 
simulated for each plot individually on the basis of the mean leaf trait in- 
situ plot-wise measurements, with only the leaf structural parameter and 
brown pigments fixed to N = 1.6, and Cbrown = 0.01, respectively 
(Bacour et al., 2002). A strong correlation was expected between leaf 
trait diversity and spectral diversity calculated with PROSPECT-5 given 
that we related the diversity of simulated spectra based on in-situ 
derived trait information to the diversity of that same trait informa-
tion. Nevertheless, non-linearity in the relationship between traits and 
spectra and its representation in diversity metrics may have impacted 
the strength of this correlation (Verrelst et al., 2015). 

Secondly, we scaled the leaf trait characteristics to canopy reflec-
tance using the PROSAIL radiative transfer model, which combines the 
leaf model PROSPECT (Feret et al., 2008; Féret et al., 2017) and the 
canopy model 4SAIL (Verhoef, 1984; Verhoef et al., 2007). Canopy 

reflectance is more equipped to link directly to the Sentinel-2 observa-
tions. However, PROSAIL requires a larger number of parameters 
beyond what we could collect during the field campaign, with leaf angle 
distributions and plot-wise soil characteristics not measured. Instead, we 
modelled canopy reflectance i) by artificially fixing these values (based 
on Jay et al., 2017; Spitters et al., 1986; Bacour et al., 2002), and ii) local 
optimization of soil and leaf angle parameters to the observed Sentinel-2 
spectra through a genetic algorithm (GA). In recent years, GA has been 
successfully applied to a variety of optimization problems in remote 
sensing (Fang et al., 2003). The most significant advantage of GA is that 
it provides a systematic scanning of both the entire solution space as well 
of local minima to find the global optimum solution (Bozorg-Haddad 
et al., 2017). An overview of the two implementations of PROSAIL 
including its input parameters and search ranges is presented in 
Table S4. The spectral diversity obtained from these two implementa-
tions of PROSAIL was again compared to observed Sentinel-2 spectral 
and in-situ trait diversity. 

2.3.3. Statistical analysis 
Our study design is spatially nested with a total of 28 observations, 

each consisting of 5 clusters of adjacent plots/pixels, distributed in pairs 
across 14 independent locations. To avoid autocorrelation in this design, 
we opted for two solutions; 1) the use of average values between paired 
observations, and 2) the use of linear mixed-effect models. The first 
allowed us to integrate paired observations into single independent 
values without losing information. This increased robustness against 
outliers in either set of observations and robustness against possible 
noise in spectral and/or field measurements. Furthermore, it facilitates 
straightforward bivariate comparisons. The linear mixed-effect 
approach, on the other hand, allowed us to maintain power of the nes-
ted sample size (N = 28) facilitating multivariate analysis while ac-
counting for the effect of location on the empirical relationships (Zuur 
et al., 2009). 

Our statistical analyses consisted of three main parts. In the first part, 
we evaluated the bivariate relationships between simulated spectral 
diversity, either at leaf or canopy scale (Section 2.3.2), compared against 
the observed Sentinel-2 spectral diversity and in-situ trait diversity. The 
second part focussed on the empirically observed bivariate relationships 
between spectral-trait-taxonomic diversity. Both the first and second 
parts of our analysis relied on bivariate rank correlations operational-
ized through Spearman’s rho (ρ) as the non-parametric and rank-based 
alternative to Pearson’s r (Khamis, 2008; Schober and Schwarte, 2018). 
Spearman’s ρ does not assume normality and is robust against outliers in 
our small sample size (Fowler, 1987). 

The third part assessed the constituents of spectral diversity through 
a multivariate analysis. We used linear mixed-effect models to assess the 
relationship between in-situ plant diversity and spectral diversity while 
accounting for the role of (assumed) confounding factors; vegetation 
cover and landscape morphology. Models were run using the ‘lme4’ 
package in R and model outputs were visualised using the ‘sjPlot’ 
package in R v3.6.1 (R Core Team, 2019). The R2 values implemented 

Table 1 
Overview of the properties of the trait and spectral diversity metrics used in this study.  

Metric Concept Algorithm References 

Spectral diversity Trait diversity 

Convex Hull Volume (CHV) Volume in an n-dimensional 
spacea 

Quickhull Algorithm Dahlin (2016); Gholizadeh et al. 
(2018) 

Cornwell et al. 
(2006) 

Rao’s quadratic entropy index 
(Rao’s Q) 

Mean squared pairwise 
distancesb 

Q =
∑L− 1

i=1
∑L

j=i+1 dij× pi×pj 

dij= multivariate distance matrix comprising i-th to 
j-th pixel 
pij = pixel or plot value abudance (=1) 
L = collective of pixel or plots in site  

Rocchini et al. (2017); Torresani 
et al. (2019) 

Botta-Dukat 
(2005)  

a We used the first three principal components to calculate the convex hull volume to have an equal number of dimensions among spectra or traits metrics. 
b Traits and spectra were normalized prior to calculation of the index. 
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were split into marginal and conditional R2 statistics based on Nakagawa 
et al. (2017). The underlying assumptions of the linear mixed-effect 
regression models were checked (Suppl. Mat. S5) and considered as 
satisfactory. Landscape morphology was quantified as the elevation and 
slope (resampled to 20 m resolution using bilinear interpolation) 
derived from the Shuttle Radar Topography Mission (25 m spatial res-
olution). Vegetation cover was characterized through Plant Area Index 
(PAI). Both the mean and variance of landscape morphology and vege-
tation cover were included in the models. The dependent variable in 
these mixed-effect models was spectral diversity. The independent var-
iables were the matching metric of in-situ leaf trait diversity in combi-
nation with the mean and variance of landscape morphology and 
vegetation cover. We repeated the same design of models for taxonomic 
diversity, using Shannon’s H index instead of trait diversity metrics. 

In addition to the linear mixed-effect models, a relative weights 
analysis was conducted to assess the relative importance of predictors to 
supplement effect sizes and statistical significance (Johnson, 2000; 
Kraha et al., 2012). Relative importance is defined as the contribution 
each predictor makes to the total explained variance – while taking into 
consideration both its unique contribution and its contribution in the 
presence of the other predictors (LeBreton et al., 2007). The calculation 
of relative weights followed Tonidandel and LeBreton (2011). 

3. Results 

3.1. Assessing links and discrepancies between spectra and in-situ traits 
through RTM simulations 

When using PROSPECT, a strong relationship was found between 
simulated spectral diversity and in-situ observed leaf trait diversity 
(CHV: ρ = 0.72; Rao’s Q: ρ = 0.75, Fig. 2). In contrast to these simulated 

spectral-leaf trait relationships, no significant correlation was found 
between PROSPECT-simulated spectral diversity and the observed 
spectral diversity from Sentinel-2 (CHV: ρ = 0.21; Rao’s Q: ρ = 0.28) 
(Fig. 2). The latter can be understood through the mismatch in scale that 
exists between the PROSPECT simulated leaf spectra and the actual 
Sentinel-2 spectra which represent aggregate canopy-soil-understory 
observations. 

When using PROSAIL with fixed estimates of the unmeasured canopy 
properties, the relationships with in-situ trait diversity weakened (CHV: 
ρ = 0.46; Rao’s Q: ρ = 0.54, Fig. 2), as expected given the additional 
inclusion of canopy parameters, while the relationship with observed 
spectral diversity became equivocal (CHV: ρ = 0.51; Rao’s Q: ρ = 0.09, 
Fig. 2). When using an optimized PROSAIL with variable leaf angle 
distribution and soil characteristics determined by GA optimization, the 
simulated spectral diversity correlated strongly with observed spectral 
diversity from Sentinel-2 (CHV: ρ = 0.67; Rao’s Q: ρ = 0.86, Fig. 2) while 
the relationship with in-situ trait diversity was no longer clearly corre-
lated (CHV: ρ = 0.23; Rao’s Q: ρ = 0.07, Fig. 2). 

3.2. Trait-, taxonomic and spectral diversity relationships in empirical 
data 

Moving from simulated to entirely empirical data, the field mea-
surements showed that in-situ trait and taxonomic diversity were 
significantly correlated with each other (CHV: ρ = 0.55; Rao’s Q: ρ =
0.73, Fig. 3). We also observed a positive relationship between spectral 
diversity (CHV) and taxonomic diversity (Shannon’s H) (ρ = 0.61, 
Fig. 3) while for Rao’s Q this correlation was absent (ρ = 0.29). Bivariate 
correlations between leaf trait diversity and spectral diversity were 
weak (CHV: ρ = 0.25; Rao’s Q: ρ = 0.20), despite correlations found 
between taxonomic diversity and leaf trait diversity and the correlation 
of taxonomic diversity with spectral diversity (CHV). 

Fig. 2. Correlogram presenting the bivariate associations (Spearman’s ρ x 100) 
between in-situ trait diversity, observed Sentinel-2 spectral diversity, and 
simulated spectral diversity as modelled by PROSPECT, PROSAIL (with fixed 
parameters), PROSAIL (variable with GA-optimized parameters) respectively. 
Diversity metrics based on the Convex Hull Volume (CHV) are in the upper left 
half, and Rao’s Quadratic Entropy (Rao’s Q) in the lower right half, which are 
displayed in yellow to red, and yellow to blue, respectively. Values presented in 
bold are significant (p < 0.05). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Correlogram presenting the bivariate relationships (Spearman’s ρ x 
100) between in-situ plant diversity (Taxonomic; Shannon’s H, Traits), the 
observed Sentinel-2 spectral diversity, and environmental predictors of varia-
tion in elevation and variation in vegetation cover (PAI). Diversity metrics 
based on the Convex Hull Volume (CHV) are in the upper left half, and Rao’s 
Quadratic Entropy (Rao’s Q) in the lower right half, which are displayed in 
yellow to red, and yellow to blue, respectively. Values depicted in bold are 
considered significant (p < 0.05). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3 also gives insight into relationships between taxonomic, trait, 
and spectral diversity versus confounding factors of landscape 
morphology and vegetation cover. No significant correlations were 
found in our relatively small sample set. However, linear mixed-effect 
models (Section 3.3) allowed us to include a larger set of spatially nes-
ted observations and to look into the underlying multivariate and 
potentially confounding relationships with spectral diversity. 

3.3. Multivariate constituents of spectral diversity through linear mixed- 
effect models 

Fig. 4 offers a summarized breakdown of the linear mixed-effect 
models that assessed the role of plant diversity in combination with 
landscape morphology and vegetation cover as predictors and constit-
uents of Sentinel-2’s spectral diversity. Four linear mixed-effect models 
were specified with spectral diversity operationalized by either CHV or 
Rao’s Q and relying on either trait or taxonomic diversity as predictors 
in combination with confounding factors. Each of the individual model 
summaries is shown in the Suppl. Mater. S6. 

The role of location as a random effect was minimal for CHV, as 
revealed by the low values of the random factor intraclass correlation 
coefficient (ICC) (Tables S6a–6b). In contrast, Rao’s Q revealed mod-
erate effects of location on the proportion of the variance explained, 
ranging between one-fifth to one-third of the explained variance (ICC: 
0.18–0.33) (Fig. 4, Tables S6c–6d). 

Controlling for the effect of paired observations per location, the 
models explained between 22% and 40% of the variance found in 
spectral diversity (Fig. 4). These fixed effects were consistently stronger 
than the random effects of location. Across models, we found that 
vegetation cover is a particularly significant predictor. The relative 
weights analysis further highlighted the dominance of vegetation cover 
in predicting spectral diversity among fixed effects - contributing from 
53 to 84% of the explained variance (R2 

Marginal). 
Trait diversity did not significantly contribute as a predictor of 

spectral diversity in either CHV or Rao’s Q models. The relative 
importance of leaf trait diversity in explaining variation in spectral di-
versity was largely inferior to the predictive power of vegetation cover. 
Shannon’s H, on the other hand, constituted as a significant predictor in 
CHV-based spectral diversity and accounted for as much as 42% of the 

fixed effects (Fig. 4). This was in line with the earlier bivariate corre-
lation found between Shannon’s H and spectral diversity (CHV) (Fig. 3). 
No significant role of taxonomic diversity was observed in Rao’s Q 
calculations of spectral diversity. Instead, landscape morphology 
appeared as a significant explanatory variable in the Rao’s Q calcula-
tions, with a relative importance accounting for 30–31% of the fixed 
effects (Fig. 4). 

4. Discussion 

This paper examined the question of what exactly is measured in 
spectral diversity obtained from multi-spectral satellite observations, 
considering; 1) direct responses of physical mechanisms between plant 
traits and spectral reflectance, and 2) proxies of plant diversity through 
environmental heterogeneity. The combination of coordinated field data 
and Sentinel-2 information allowed for direct empirical comparisons 
between spectral, taxonomic, and trait diversity, as well as confounding 
factors, while the RTM simulations evaluated the theoretical physical 
relationship between spectral and leaf trait diversity based on radiative 
transfer theory. 

4.1. Leaf and canopy simulations show large differences in relation to 
empirical observations 

Our empirical observations showed a minimal correlation between 
in-situ leaf trait diversity and Sentinel-2’s spectral diversity. This 
departed from the strong theoretical relationships of spectral diversity 
and trait diversity modelled in the leaf-level PROSPECT simulations (ρ 
= 0.72–0.75) (Fig. 2) and earlier reported empirical relationships at the 
leaf scale (Schweiger et al., 2018). Notably, the discrepancy between in- 
situ leaf trait diversity and simulated leaf spectra versus the actual 
Sentinel-2 spectral diversity, as observed in our study, presents a scaling 
mismatch between leaf and canopy scales. Sentinel-2 observations 
represent aggregate complex canopy and background reflectance which 
limits the transferability of the leaf simulations (PROSPECT) to these 
empirical multi-spectral observations. 

To address the scaling mismatch, PROSAIL simulations were imple-
mented to model canopy reflectance for which we either fixed or varied 
(using optimization) the missing canopy and soil parameters. Despite 

Fig. 4. Summary of four linear mixed-effect models with Sentinel-2 observed spectral diversity as the dependent variable and vegetation cover, landscape 
morphology, and either trait or taxonomic diversity as predictors, while the location was set as the random effect (N = 28). Results from the relative weights analyses 
of each of the four sets of predictors are annotated in percentages and relate to the relative contribution of the fixed effects (excluding random effect). 
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the RTM’s relative simplicity, our GA-optimized PROSAIL simulations 
illustrated the possibility to closely model observed Sentinel-2 spectral 
diversity (ρ = 0.67–0.86) based on the inclusion of variability in soil and 
canopy variables (Fig. 2). Specifically, the differences in the configura-
tions of the RTM simulations used for modelling spectral diversity 
indicated a trade-off in describing either the in-situ trait diversity or the 
actual Sentinel-2 spectral diversity (Fig. 2). These findings assert the 
importance of soil and understory variability and canopy traits like leaf 
angle distribution in shaping and modelling spectral diversity in multi- 
spectral applications. 

4.2. Vegetation cover is dominant in spectral diversity signal 

The dominance of vegetation cover in the spectral diversity signal is 
manifested through its significance as a predictor in the linear mixed- 
effect models. The relative weights analysis highlighted that vegeta-
tion cover contributes 53–84% of the explained variance by fixed effects 
(R2

marginal) in the Sentinel-2’s spectral diversity signal (Fig. 4). Vegeta-
tion cover, measured through PAI, influences the extent to which soil, 
litter, and understory appear in the spectral reflectance signal of a 
Sentinel-2 pixel. The widely different spectral signatures of soil versus 
that of vegetation further contribute to the importance of vegetation 
cover in spectral diversity. Variation in the contribution of soil and 
vegetation to the overall spectral reflectance can result in relatively 
large spectral dissimilarities between corresponding plots (Gholizadeh 
et al., 2018; Villoslada et al., 2020; Wang et al., 2018b), even if plots are 
functionally relatively similar. 

Additionally, vegetation cover is tied to the present canopy archi-
tecture as dictated by morphological traits. Canopy traits tend to 
dominate the spectral signal of vegetation across a broad range of the 
electromagnetic spectrum (Asner, 1998; Gu et al., 2016). Asner (1998) 
demonstrated that leaf area index (LAI) and leaf angle distribution, as 
relevant descriptors of the canopy morphology, strongly control the 
relationship between leaf traits and canopy spectral characteristics. 
Similarly, Roelofsen et al. (2013) showed the importance of LAI in 
linking leaf traits to canopy-level reflectance. The multispectral broad-
band setup may further increase the dominance of canopy, soil, and 
biomass characteristics as opposed to expressions of biochemical and 
biophysical leaf traits found in narrower ranges of the electromagnetic 
spectrum that benefit from hyperspectral measurements (Durán et al., 
2019; Schneider et al., 2017; Schweiger et al., 2018). 

The dominance of variation in vegetation cover as a driver of the 
spectral diversity signal requires further attention in future applications 
of spectral diversity. Diversity in vegetation cover density, biomass, and 
canopy architecture captured in PAI might not necessarily relate to plant 
diversity. For example, our dataset revealed no clear bivariate re-
lationships between vegetation cover (variation in PAI) and trait di-
versity (ρ = − 0.07-0.16), or taxonomic diversity (ρ = 0.38) (Fig. 3). 
Similar to our findings, yet at a much higher (airborne) spatial resolu-
tion, Villoslada et al. (2020) reported that the sensitivity of spectral 
diversity to vegetation cover density could mask the effect of plant 
diversity. 

In combination, our evidence shows that while spectral diversity 
approaches allow circumventing the challenges and difficulties in 
isolating direct plant diversity signals, the approach risks the spectral 
diversity signal to be dominated by other factors, like vegetation cover 
(Fig. 4), instead of plant diversity directly. Our ability to account for 
spectrally dominant confounding factors, such as vegetation cover and 
soil, could improve the robustness and relationship of spectral diversity 
approaches to in-situ plant diversity across spatial, spectral, geographic, 
and temporal resolutions. 

Several approaches are already in place to assist in further dissection 
of the spectral signal to isolate plant diversity (Musavi et al., 2015). 
These techniques include spectral unmixing (Asner and Heidebrecht, 
2002; Clasen et al., 2015; Gholizadeh et al., 2019; Sohn and McCoy, 
1997), separate vegetation indices (Delegido et al., 2011; Schneider 

et al., 2017), radiative transfer model inversion (Ali et al., 2020b, 2020a; 
Brown et al., 2019; Hauser et al., 2021; Rossi et al., 2020), statistical 
learning (Berger et al., 2021; Durán et al., 2019; Ma et al., 2019) and 
data fusion approaches (Combal et al., 2002; Hakkenberg et al., 2018; 
Koetz et al., 2007; Lahoz and Schneider, 2014; Lewis et al., 2012). In 
Suppl. Mater. S7, we elaborate on the potential of these approaches. 

4.3. Spectral variability hypothesis works for taxonomic diversity, but the 
underlying mechanism remains unexplained 

Despite the influence of vegetation cover, our empirical results 
revealed a direct correlation between taxonomic diversity and spectral 
diversity for CHV calculations (ρ = 0.61, Fig. 3). Furthermore, linear 
mixed-effect models and the relative weights analysis confirmed taxo-
nomic diversity as an important contributor (42% of the fixed effects) to 
the explained variance (R2

marginal) in CHV calculations (Fig. 4). 
Although species are spectrally difficult to separate based on multi- 
spectral broadbands (Cochrane, 2000), our findings suggest that 
indeed spectral diversity (CHV) can be meaningful as a proxy of taxo-
nomic diversity using Sentinel-2 observations. 

The relationship between spectral diversity and taxonomic diversity 
is often linked to Palmer’s (2002) Spectral Variation Hypothesis which 
states that the spectral diversity in an area is expected to relate to the 
diversity of species through environmental heterogeneity (Dauber et al., 
2003; Ewers et al., 2005; Palmer et al., 2002). Empirical demonstration 
of this relationship in satellite-based multispectral applications was 
found by, e.g. Torresani et al. (2019), Madonsela et al. (2017), Rocchini 
et al., 2004, and Rocchini (2007). The underlying argumentation builds 
on the surrogacy hypothesis which suggests that higher environmental 
variation relates to higher species richness (Beier and de Albuquerque, 
2015; Stein et al., 2014; Wang and Gamon, 2019). However, thus far, 
studies on the spectral variability hypothesis tended to omit a charac-
terization of the exact drivers of ‘surrogacy’ that align spectral diversity, 
environmental heterogeneity, and the diversity of species. 

Here, we confirm the correlation of spectral diversity (CHV) and 
taxonomic diversity in a mountainous and heterogenous Mediterranean 
landscape using Sentinel-2 observations (ρ = 0.61; relative importance 
of 42% for R2

marginal). Despite our attempt to incorporate leaf trait di-
versity and confounding factors in multivariate models, the exact 
workings of this relationship remain unexplained in our study. While 
taxonomic and leaf trait diversity were strongly correlated in-situ, only 
the former showed a correlation with spectral diversity. In addition, 
neither variation in elevation or vegetation cover were clearly correlated 
to taxonomic diversity as confounding mechanisms of ‘surrogacy’ 
(Fig. 4). 

Hence, further research is needed to explore the exact mechanisms 
through which the relationship between spectral and taxonomic di-
versity is established. A more elaborate analysis of components of 
environmental heterogeneity at relevant spatial scales may allow a 
better understanding of the stronger association of taxonomic diversity 
compared to leaf trait diversity. For instance, taxonomic diversity 
observed here might covary with spectral diversity metrics through 
unmeasured canopy structure traits, not related to PAI, or through as-
pects of environmental heterogeneity not considered here. Given that 
we could explain only a moderate share of variance in spectral diversity 
(R2 

Marginal = 0.22–0.40), the role of variables like fire regimes, plant 
phenology, grazing, dead biomass, and soil types in multi-spectral 
spectral diversity deserves further attention (Pausas and Vallejo, 1999; 
Schneider et al., 2017; Vivian and Cary, 2012; Zarnetske et al., 2019). 
Despite our substantial field campaign efforts, our sample size remained 
relatively small for multivariate analyses (N = 28). 

Differences in the significance of predictors depending on the metric 
(CHV versus Rao’s Q) underpin that the choice of metric is highly 
relevant in the relationship between spectral diversity and in-situ plant 
diversity (see also Gholizadeh et al., 2018 for hyperspectral observa-
tions). Noteworthy in understanding differences between CHV and 
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Rao’s Q is that the latter also incorporates elements of divergence in 
quantifying diversity (Botta-Dukat (2005); Mouchet et al. (2010)). 
Furthermore, Wang et al. (2018b) highlighted the role of species even-
ness in metrics of spectral diversity. The authors suggested that the 
combined spectral effects of species richness and evenness are better 
captured with Shannon’s H index than the trait diversity metrics as 
expressed by CHV. Moreover, data dimensionality plays a role in the 
patterns observed (Gholizadeh et al., 2018). Our operationalization of 
CHV runs on three axes (PCA dimensions) of spectra and traits while 
Rao’s Q uses all standardized traits and spectral bands. The latter 
therefore does not reduce data dimensionality and could give more 
weight to signals that are expressed across a broad range of the observed 
spectral bands/trait space. 

4.4. Absence of leaf trait diversity in spectral diversity signal 

We expected trait diversity and spectral diversity to relate based on 
radiative transfer theory. Our simulations (Fig. 2) confirmed a direct 
theoretical relationship, yet only at the leaf level as much less associa-
tion was observed when scaled to the canopy level. In addition, given the 
correlation between taxonomic and trait diversity in-situ, an indirect 
relationship was still expected. After all, environmental heterogeneity 
creates diversity in the optimal environmental fitness and conditions of 
resource availability (Dézerald et al., 2018; Kraft et al., 2008; Read et al., 
2014). Nevertheless, the overall relationship of leaf trait diversity with 
spectral diversity appeared to be insignificant, even in consideration of 
confounding variables of vegetation cover and landscape morphology 
(Figs. 3 and 4). 

Based on the aforementioned arguments, we forward three non- 
mutually exclusive explanations for the observed underrepresentation 
of leaf trait diversity and the dominance of the vegetation cover signal in 
the Sentinel-2 spectral diversity measurements; (1) the spectral domi-
nance of variability in soil and morphological traits (Asner, 1998; 
Gholizadeh et al., 2018), (2) the underrepresentation of leaf optical 
properties at low vegetation density (Asner, 1998; Baret et al., 1994), 
and (3) the limitations of the multispectral broadbands at aggregate 20 
m resolution (Nagendra et al., 2010; Rocchini, 2007). 

4.5. Expanding spectral diversity applications 

The sites considered in this study consist of multiple land-cover 
types, growth forms, and a relatively heterogeneous abiotic environ-
ment to provide an important test for the implementation of spectral 
diversity metrics needed in biodiversity assessments at larger scales 
(Dahlin, 2016; Wang et al., 2018b). Stratification of our sampled sites in 
different levels of vegetation density, fractional cover, growth form, or 
land-use type might have helped to further examine the importance of 
each of the above-mentioned explanations. Our sample size posed lim-
itations on the type of analyses possible and the conclusions to be drawn. 
The sampling effort was strongly constrained by the labour- 
intensiveness of comprehensive field campaigns at the scale of satellite 
remote sensing. Future research efforts and/or combined analyses of the 
data already out there might provide further stratification of spectral 
diversity relationships and ensure a better representation across time 
and biomes. 

Further testing across different ecosystem types remains crucial. We 
anticipate the constituents of spectral diversity to be ecosystem- 
dependent, at least for multispectral spectral diversity metrics 
(Schmidtlein and Fassnacht, 2017). For instance, in some ecosystem 
types, variation in vegetation cover density might align more strongly 
with leaf trait diversity (Sheil and Bongers, 2020; Walter et al., 2020), 
while in other ecosystems vegetation cover density could mask or be 
ordinal to the effect of plant diversity (Hauser et al., 2021; Villoslada 
et al., 2020). Moreover, denser ecosystem types tend to allow for 
multiple-scattering, enhancing the contribution coming from leaf-level 
biochemical and biophysical information within canopy scale 

reflectance (Asner, 1998; Baret et al., 1994). Even temporally, within 
the same ecosystem, the impact of vegetation cover on the signal of plant 
diversity in spectral diversity metrics may vary. For instance, in Torre-
sani et al. (2019)’s temporal study in an alpine conifer forest, the highest 
correlations between spectral diversity and in-situ plant diversity were 
found at the peak of the growing season in June and July. 

The spectral resolution of the sensors also plays a role in our ability to 
detect in-situ plant diversity from remote sensing, as repeatedly pointed 
out in previous studies (Nagendra et al., 2010; Rocchini, 2007). 
Sentinel-2 MSI’s spectral configuration offers rich spectral coverage 
compared to its predecessors yet is still largely inferior to hyperspectral 
sensors. While the spectral responses of leaf traits included here (LMA, 
EWT, CAB, CAR) show sensitivity to the wavelengths present in Sentinel- 
2’s MSI sensor (de Sá et al., 2021; Gu et al., 2016; Verrelst et al., 2019), 
the aggregation of signals across 20 m spatial resolution through multi- 
spectral broadbands could have reduced the ability to pick up leaf trait 
diversity. Nevertheless, the forthcoming launch of hyperspectral satel-
lite imagers (e.g. EnMAP, SBG, CHIME; Cavender-Bares et al., 2020) 
offers prospective that might benefit plant diversity assessments from 
space with more versatile spectral and spatial resolutions allowing for 
more detail. 

5. Conclusions 

While the spectral variability hypothesis has been proposed to cap-
ture patterns of plant diversity through the relationship between envi-
ronmental ‘surrogacy’ drivers and spectral drivers, the identity of those 
environmental drivers had not yet been characterized. Our analysis 
shows that vegetation cover served as the most dominant constituent in 
Sentinel-2 observed spectral diversity, thus providing important insights 
in the working of the spectral variability hypothesis. Effects of plant 
functional diversity, here examined as leaf trait diversity, remained 
obscured due to the dominant impacts of vegetation cover, possibly due 
to the low vegetation density in various plots of this study and the 
spectral dominance of canopy traits in multi-spectral configurations. 

In contrast, spectral diversity based on Sentinel-2 observations was 
capable of predicting taxonomic diversity in accordance with the spec-
tral variability hypothesis. Nevertheless, despite our consideration of 
leaf trait diversity and confounding factors of vegetation cover and 
landscape morphology, the exact workings (or ‘surrogacy’) of this 
relationship remained hidden and will require a broader investigation of 
environmental heterogeneity and canopy traits. 

We recommend that future applications of satellite-based spectral 
diversity metrics consider the impacts of vegetation cover. As illustrated 
in our study, variation in vegetation cover can dominate the spectral 
diversity signal while it is not necessarily correlated with plant diversity. 
We, therefore, think it is important to account for vegetation cover to 
compare across ecosystems and study areas and understand the poten-
tially ambiguous performance of spectral diversity as a proxy of plant 
diversity. In the future, a practice of better characterization of constit-
uents of spectral diversity may result in more robust interpretations, 
consistency, and scalability of spectral diversity metrics in predicting in- 
situ plant diversity across scales, sensors, ecosystems, and other external 
drivers for regional biodiversity assessments. 
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