
Journal of The Electrochemical
Society

OPEN ACCESS

Implementation of Dual Number Automatic Differentiation with John
Newman’s BAND Algorithm
To cite this article: Nicholas W. Brady et al 2021 J. Electrochem. Soc. 168 113501

View the article online for updates and enhancements.

This content was downloaded from IP address 193.190.2.252 on 16/11/2021 at 10:50

https://doi.org/10.1149/1945-7111/ac3274
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvHN0ejbYM7YNJi6p_wgu1MMHD6PxkFmZ1Tda85AvRAso1cQY74tTxogRd0Uzu3xCMJ7wJ9ym6nhuqMqf-TqH2lc2gagkcIHHfiuUWieZdnzdWAQaz2_9kg6OmeMSrlkfHRlIY4eLwNFUlIXH64SEYejj8Zdu9KETFqCjY9qBm5MQONWQiirvZOcKuGsS919sJ7QW1OHH5_QulUCp5-1pKf25rqVGlSPcooso3U9My8H5bOj7V7IZMtTxxtvYXXq4B--7C2NMPmv9dYdQvRd8-NHwdU8FxLAyI&sig=Cg0ArKJSzJwmfGHdM5o8&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/241/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3DDLAds%26utm_campaign%3D241AbstractSubmit

Implementation of Dual Number Automatic Differentiation with
John Newman’s BAND Algorithm
Nicholas W. Brady,1,2,3,*,z Maarten Mees,3,4,5 Philippe M. Vereecken,3,4,5,* and
Mohammadhosein Safari1,2,3

1Institute for Materials Research (IMO-imomec), UHasselt, 3500 Hasselt, Belgium
2IMEC division IMOMEC, 3590 Diepenbeek, Belgium
3Energyville, 3600 Genk, Belgium
4Imec, 3001 Leuven, Belgium
5cmacS, M2S, KU-Leuven, 3001 Leuven, Belgium

This paper asserts that the development of continuum-scale mathematical models utilizing John Newman’s BAND subroutine can
be simplified through the use of dual number automatic differentiation. This paper covers the salient features of the BAND
algorithm as well as dual numbers and how they can be leveraged to algorithmically linearize systems of partial differential
equations; these two concepts can be combined to produce accurate and computationally efficient models while significantly
reducing the amount of personnel time necessary by eliminating the time-consuming process of equation linearization. As a result,
this methodology facilitates more rapid model prototyping and establishes a more intuitive relationship between the numerical
model and the differential equations. By utilizing an existing and validated programming module, dnadmod, these advantages are
achieved without burdening the general user with significant additional programming overhead.
© 2021 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-
NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction
in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse,
please email: permissions@ioppublishing.org. [DOI: 10.1149/1945-7111/ac3274]

Manuscript submitted September 3, 2021; revised manuscript received October 15, 2021. Published November 8, 2021.

Driven by an increasing number of researchers, technological
advancements, and the ability to cheaply store large amounts of
digital information, experimental data is abundant. Physics-based
mathematical modeling, in conjunction with experimental data, is
essential to scientific discovery and technological advancement
because it allows one to quantitatively test hypotheses, measure
physical parameters, and gives the necessary precision to perform
quantitative design, optimization, and control—which drive the
maturization of a technology. This is true in lithium-ion battery
applications where highly coupled physical process—mechanical
factors, thermodynamics, thermal effects, electrodynamics, and
chemical reactions—all need to be understood to fully optimize
and control performance. Because model development is a time-
consuming process, it can be difficult for it to keep pace with the rate
of experimental data collection, which can stifle innovation.

Computers and software may provide the solution. Computers are
ubiquitous and the costs of computational resources continue to drop
exponentially.1,2 In addition, the low costs of computational
resources has led to huge advancements in the fields of machine
learning and artificial intelligence and these techniques are widely
accessible even to non-experts. With cheap computers and sophis-
ticated software, it is becoming increasingly the case that the rate-
limiting (and most costly) steps are those that involve human input.

To elucidate where possible bottle-necks exist, it is helpful to
segregate the model development and implementation process into
distinct steps:

1. Developing a physical hypothesis
2. Developing a mathematical model to emulate the physics
3. Developing a numerical program from the mathematical ex-

pressions
4. Performing quantitative parameter estimation
5. Performing quantitative optimization, design, and control

Although advanced computational techniques are routinely linked
with physics-based models in the scientific and battery literature to

perform tasks such as physical parameter estimation3 and optimiza-
tion (steps 4 and 5 above), there is a need to go further and move as
much of step 3, sometimes called discretization, from a human task
to a computer task. Using dual number automatic differentiation, one
can algorithmically perform equation linearization, significantly
decreasing the amount of human input needed in developing a
numerical program.

While the use of dual number automatic differentiation has been
validated in computational fluid dynamics (CFD),4–7 to the authors’
knowledge this technique is not widely used in modeling electro-
chemistry or battery applications. This paper leverages existing and
validated tools: BAND,8 material balances based on a control volume
approach,9 and dnadmod4 to develop a systematic approach to
modeling physical conditions relevant to electrochemical and battery
applications. This approach is accurate to machine precision,
computationally efficient, physically intuitive, and most signifi-
cantly, eliminates the need for user-input to the linearization process.

This paper illustrates how paradigms currently used in battery
model development can be easily integrated with dual number
automatic differentiation to build a model development process
that is both more physically intuitive while also eliminating the need
for human interaction with equation linearization. This paper first
reviews the salient features of BAND and the control volume
approach, as well as commonly used techniques for equation
linearization, and the mathematical concept of a dual number.
Finally, there is a detailed description of how dual number automatic
differentiation can be coupled with the control volume approach and
BAND to systematically solve systems of coupled differential
equations, while minimizing the need for human input. The appendix
provides selections of Fortran code that the reader is invited to copy
and use to model systems relevant to their own research.

The State of the Art

This Section gives a summary of the BAND algorithm, the control
volume or finite element formulation, methods of equation linear-
ization, as well as the properties of dual numbers. This Section does
not contain any novel developments but lays the groundwork for
understanding the utility of dual number automatic differentiation
and how it can be used to simplify the programming necessary to
solve problems with BAND.zE-mail: nwb2112@columbia.edu

*Electrochemical Society Member.

Journal of The Electrochemical Society, 2021 168 113501

https://orcid.org/0000-0001-7877-6704
https://orcid.org/0000-0001-7217-5510
https://orcid.org/0000-0003-4115-0075
https://orcid.org/0000-0003-0633-731X
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1149/1945-7111/ac3274
mailto:nwb2112@columbia.edu
https://crossmark.crossref.org/dialog/?doi=10.1149/1945-7111/ac3274&domain=pdf&date_stamp=2021-11-08

BAND.—John Newman first published his BAND and MATINV
subroutines in the 1960s.8,10,11 These subroutines allowed for
systems of differential equations to be iteratively solved with
improved computational efficiency. To numerically solve systems
of coupled differential equations, the equations need to be discre-
tized over a set of node points, see Fig. 1A. The computational
efficiency of Newman’s BAND subroutine is derived from its
assumption that the solution at node j only depends on the values
of the variables at node j, and the adjacent nodes, j− 1, j+ 1, thus
creating a block tridiagonal matrix, which can be solved explicitly
and efficiently. Detailed explanations of the mathematics and
numerics behind BAND can be found in the literature,8,12 but the
salient features are summarized here.

BAND is essentially a multivariate Newton-Raphson method.
Consider the equation

() = []g c 0 1

where g is an arbitrary continuous function that can be approximated
using a Taylor series expansion

() = () + (−) + []◦

◦

◦g c g c
dg

dc
c c ... 2

where the quadratic, cubic, and higher order terms are ignored. Let
Δc= c− c◦ and call this the change variable. Using the Taylor
series approximation, the value of Δc that solves Eq. 1 is

Δ = − ()
∣

[]
◦

◦
c

g c

dg dc
3

One can iteratively solve this problem with quadratic convergence
by successively updating the value of c◦

= + Δ []◦ ◦c c c 4prev

where ◦cprev is the value of c◦ from the previous iteration.
For a system of N governing equations, gi, and N unknowns, Ck,

where the equations have been discretized over NJ node points, as
shown in Fig. 1, one can apply a multivariate Newton-Raphson
approach at each node point j:

() = []− +g C C C, , 0 5i k j k j k j, 1 , , 1

here i corresponds to the equation number (1 to N), k corresponds to
the variable number (1 to N) and j the node index (1 to NJ). Note,
this assumes that the solution to the governing equation at j only
depends on the values of the variables at node j and the adjacent
nodes, j− 1, j+ 1. Using a multivariate Taylor series expansion
yields the following equation

∑ Δ + ∑ Δ
+∑ Δ = []

◦
−

◦

◦
+

◦
A C B C

D C g 6
k i k k j k i k k j

k i k k j i j

, , 1 , ,

, , 1 ,

where ◦gi j, represents the evaluation of the governing equation i using
the values of the variables from the previous iteration, i.e.

= () []◦
−

◦ ◦
+

◦g g C C C, , 7i j i k j k j k j, , 1 , , 1

and the coefficients ◦Ai k, ,
◦Bi k, , and

◦Di k, are defined as

= −
∂

∂
= −

∂
∂

= −
∂

∂
= []

◦

− ◦

◦

◦

◦

+ ◦

◦ ◦

A
g

C
B

g

C

D
g

C
G g

, ,

, 8

i k
i j

k j
i k

i j

k j

i k
i j

k j
i j i j

,
,

, 1
,

,

,

,
,

, 1
, ,

The detailed mathematics of how to tractably and iteratively
solve these coupled systems of equations is covered in Appendix C
of Electrochemical Systems.8 For this paper, the reader only needs to
understand that the coefficients outlined in Eq. 8 are the partial
derivatives of gi,j. There are two significant challenges to working
with BAND:

1. The coefficients ◦Ai k, ,
◦Bi k, ,

◦Di k, ,
◦Gi j, do not intuitively relate to the

differential forms of the equations commonly encountered in
scientific and engineering situations

2. The efficiency of BAND derives from the block tridiagonal
matrix structure as well as the assumption that the system is
linear. This means that non-linear systems need to be linearized
to be congruent with the program’s structure. The linearization
process, i.e. evaluating ∂ ∂ ◦g Ci k j, , is not always trivial and until
now, a general computerized process for linearization has not
been introduced to be used with BAND.

Control volume formulation.—One approach to make BAND
more intuitively accessible was introduced by J. Deliang Yang.9 The
strategy utilized a numerical technique called the finite volume
method (FVM) or control volume approach;12–17 a visual illustration
of this approach is given in Fig. 1B and the strategy is summarized
here. The control volume is centered at node j, with the “western”
interface lying between nodes j− 1 and j and the “eastern” interface
lying between nodes j and j+ 1; the 3-dimensional space contained
within the control volume is ΔV, and the linear distance from the
“western” to “eastern” interface is Δx.

Figure 1. (A) Diagram of the discretization process and (B) a cartoon representation of the control volume approach. The “western” interface lies between nodes
j − 1 and j, while the “eastern” interface lies between j and j + 1. The cross-sectional areas at these respective interfaces are indicated as Ax,w and Ax,e. The
distance between adjacent nodes is marked as Δx, while the 3-dimensional space contained within the control volume is referred to as ΔV. Nw and Ne represent
the fluxes through the western and eastern interfaces, respectively.

Journal of The Electrochemical Society, 2021 168 113501

The shell balance over the control volume is written as:

{ }
{ }

={ }

−{ } + []

Rate of
Accumulation

Rate In

Rate Out
Rate of

Generation
9

where the terms Rate In and Rate Out are related to transport
phenomena, and Rate of Generation is related to the reaction
expression. A general mathematical expression for the control
volume indicated in Fig. 1B can be written as:

Δ () = − + Δ []V A A VRN NAccum 10i x w i w x e i e i, , , ,

where Accumi and Ri are the rates of accumulation and generation of
specie i per unit volume, respectively, and Ni,w and Ni,e are the fluxes
of specie i through the “western” and “eastern” faces, respectively.
These expressions for flux, generation, and accumulation can each
be linearized:

= + ∑
∂

∂(∇)
Δ(∇)

+ ∑
∂
∂

Δ []

◦

◦

◦

c
c

c
c

N N
N

N
11

i w i w k
i w

k w
k w

k
i w

k w
k w

, ,
,

,
,

,

,
,

= + ∑
∂

∂(∇)
Δ(∇)

+ ∑
∂
∂

Δ []

◦

◦

◦

c
c

c
c

N N
N

N
12

i e i e k
i e

k e
k e

k
i e

k e
k e

, ,
,

,
,

,

,
,

∑= + ∂
∂

Δ []◦

◦
R R

R

c
c 13i i

k

i

k
k

∑= ∂()
∂(Δ)

Δ ∂
∂

= Δ
Δ

[]
◦c

c
c

t

c

t
Accum

Accum
; 14i k

i

k
k

k k

where ck is the average concentration of specie i within the control
volume, ck,w and ck,e are the concentration of specie i at the
“western” and “eastern” interfaces, respectively, and ∇ck,w and
∇ck,e are the spatial concentration gradients at these respective
interfaces.

Inserting the expressions listed in Eqs. 11–14 into Eq. 10, one
obtains the following expression:

− + − Δ

= ∑
∂

∂(∇)
Δ(∇) + ∑

∂
∂

Δ

− ∑
∂

∂(∇)
Δ(∇) + ∑

∂
∂

Δ

+ Δ ∑ ∂
∂

− ∂()
∂(Δ)

Δ []

◦ ◦ ◦

◦ ◦

◦ ◦

◦ ◦

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

A A VR

A
c

c
c

c

A
c

c
c

c

V
R

c c
c

N N

N N

N N

Accum
15

x w i w x e i e i

x w k
i w

k w
k w k

i w

k w
k w

x e k
i e

k e
k e k

i e

k e
k e

k
i

k

i

k
k

, , , ,

,
,

,
,

,

,
,

,
,

,
,

,

,
,

from which the following terms can be defined:

∣ =
∂

∂(∇)

∣ =
∂

∂(∇)
[]

◦

◦

d A
c

d A
c

N

N

;

16

i k w x w
i w

k w

i k e x e
i e

k e

, ,
,

,

, ,
,

,

∣ =
∂
∂

∣ =
∂
∂

[]

◦

◦

f A
c

f A
c

N

N

;

17

i k w x w
i w

k w

i k e x e
i e

k e

, ,
,

,

, ,
,

,

= Δ ∂
∂

− ∂()
∂(Δ)

[]
◦ ◦

⎡
⎣⎢

⎤
⎦⎥r V

R

c c

Accum
18i k

i

k

i

k
,

= −(− + Δ) []◦ ◦ ◦ ◦g A A VRN N 19i j x w i w x e i e i, , , , ,

The coefficients outlined in Eqs. 16–19 relate more directly to
physical processes, as opposed to discretized equations, making
them arguably more intuitive. At the control volume interfaces, the
values of the dependent variables and their gradients are defined as:

α α= + (−) []−c c c1 20k w w k j w k j, , , 1

α α= + (−) []+c c c1 21k e e k j e k j, , 1 ,

β β∇ = − []−c c c 22k w w k j w k j, , , 1

β β∇ = − []+c c c 23k e e k j e k j, , 1 ,

where the coefficients α and β are given by

α α=
Δ

Δ + Δ
=

Δ
Δ + Δ

[]−

− +

x

x x

x

x x
; 24w

j

j j
e

j

j j

1

1 1

β β=
Δ + Δ

=
Δ + Δ

[]
− +x x x x

2
;

2
25w

j j
e

j j1 1

(Note: If convective transport dominates relative to diffusive
transport, then oscillatory numerical behavior can be prevented by
using an upwind scheme: αw = 0 and αe = 0 for flow from west to
east, and αw = 1 and αe = 1 for flow from east to west.13) The
coefficients used in BAND, ◦Ai k, ,

◦Bi k, ,
◦Di k, and ◦Gi k, , can be defined in

terms of the quantities defined by Eqs. 16–25.

α β= (−) ∣ − ∣ []◦A f d1 26i k w i k w w i k w, , ,

α β
α β

= + ∣ + ∣
− (−) ∣ + ∣ []

◦B r f d

f d1 27
i k i k w i k w w i k w

e i k e e i k e

, , , ,

, ,

α β= − ∣ − ∣ []◦D f d 28i k e i k e e i k e, , ,

= −(− + Δ) []◦ ◦ ◦ ◦G A A VRN N 29i j x w i w x e i e i, , , , ,

It is numerically convenient to set the control volume (ΔV) to
zero at the boundaries, which slightly modifies Eqs. 26–29. At the
west-side boundary (j= 1), there is no “western” interface

α β= − (−) ∣ + ∣ []◦B r f d1 30i k i k e i k e e i k e, , , ,

α β= − ∣ − ∣ []◦D f d 31i k e i k e e i k e, , ,

= −(− + Δ) []◦ ◦ ◦G A VRN 32i j x e i e i, , ,

and at the east-side boundary (j= NJ), there is no “eastern” interface

α β= (−) ∣ − ∣ []◦A f d1 33i k w i k w w i k w, , ,

Journal of The Electrochemical Society, 2021 168 113501

α β= + ∣ + ∣ []◦B r f d 34i k i k w i k w w i k w, , , ,

= −(+ Δ) []◦ ◦ ◦G A VRN 35i j x w i w i, , ,

J. Deliang Yang showed that writing the governing equations using a
physically intuitive control volume approach, i.e. segregating the
differential equations into accumulation terms, flux terms, and
reaction terms, is compatible with Newman’s BAND structure.9

The remaining difficulty is to efficiently and accurately linearize
the governing equations.

Equation linearization.—Certain criteria for a viable algorithmic
approach to equation linearization are suggested below:

1. user-input is minimized
2. the process can be applied generally
3. the results are accurate
4. the process is computationally efficient

Methodologies deficient in any of these criteria are programmati-
cally untenable. Several methods for equation linearization are
discussed below. Manual, numerical, and symbolic differentiation
are each deficient in at least one of the requisite criteria, while
automatic differentiation meets these standards for viability.

Manual differentiation has no programming overhead and
achieves machine precision, but requires significant user input, is
susceptible to human error, and is not generalizable—each unique
physical model costs significant personnel time to develop.

Numerical differentiation (or difference quotient) is frequently
performed using symmetric difference quotient, see Eq. 36, where g
is an arbitrary function of the variables c1, ⋯ , cn. The method
requires only a small amount of programming overhead and the
process is intuitive. Conceptually, this method can be applied
generally, but practically, the optimal step-size, h in Eq. 36, is
difficult to determine in a general case.18–21 Choosing the optimal
step-size can be costly in terms of personnel time or require
sophisticated programming, which can decrease computational
performance. Non-optimal values of h lead to inaccuracies in the
form of systematic precision or truncation errors. Newman intro-
duced AUTOBAND to perform numerical differentiation, but noted its
vulnerability to inaccuracies and loss in computational
performance.8 Even an optimally chosen value of h, only accurately
computes two-thirds of the significant digits of ∂g/∂ci.

22

∂
∂

≈ (⋯ + ⋯) − (⋯ − ⋯) []g

c

g c c h c g c c h c

h

, , , , , , , ,

2
36

i

i n i n1 1

Symbolic differentiation is attractive because user-friendly
software packages such as SymPy and Mathematica already exist
to perform this type of differentiation, therefore there is little
programming overhead for the general user. However, symbolic
differentiation is prone to producing overly complicated representa-
tions of the derivative, called expression swell,23 which can lead to
costly evaluations of the derivative. In addition, it can be difficult to
produce a symbolic derivative of a function that cannot be expressed
in closed form.24

While there are a number of different automatic differentiation
approaches,24,25 this paper will focus on dual number automatic
differentiation. This process uses a bottom-up approach to differ-
entiation: though there are an infinite number of possible functions
that can be programmed, there are only a finite number of
elementary functions (sin, cos, log, exp, etc.) and elementary
operations (addition, subtraction multiplication, division, etc.) within
a programming language. If the derivatives of these elementary
operators and functions can be programmed, then by applying the
chain-rule, the derivative of any arbitrary function can be calculated
because it is composed of these elementary functions and operations.

The next Section illustrates how dual numbers are used to conserve
the chain-rule. The major drawback of this method is that it requires
extensive programming overhead: the definition of a new numeric
structure (type(dual)) and definitions for how elementary
operators, elementary functions, and existing data types interact
with this new numeric structure; a process frequently referred to as
operator overloading. Fortunately, the extensive work of operator
overloading has already been accomplished for a variety of
programming languages4,26–29 and this work has been compiled
into respective libraries and modules. For the general scientific user,
this means that automatic differentiation is achievable by simply
importing a library or copying a module.

Dual number automatic differentiation.—A comprehensive
analysis of dual numbers and their applications can be found in the
literature.30–32 And while a rigorous mathematical description of
these concepts is beyond the scope of this paper, a brief overview of
the properties of dual numbers serves to illustrate their utility in the
context of automatic differentiation. A dual number ui can be
represented as

ϵ= + ̇ []u c c 37i i i

where c1 and ̇c1 are real numbers, and ϵ is a nilpotent number (i.e. a
small non-zero number such that, ϵ2= ϵ3=⋯= 0). Addition and
multiplication of dual numbers are defined by Eqs. 38 and 39,
respectively

ϵ ϵ
ϵ

+ = (+ ̇) + (+ ̇)
= (+) + (̇ + ̇) []

u u c c c c
c c c c 38

1 2 1 1 2 2

1 2 1 2

ϵ ϵ
ϵ

· = (+ ̇)(+ ̇)
= + (̇ + ̇) []

u u c c c c
c c c c c c 39

1 2 1 1 2 2

1 2 2 1 1 2

where ϵ̇ ̇ =c c 01 2
2 because ϵ2 = 0.

Using a Taylor series expansion, one can evaluate a function with
a dual number as input:

ϵ ϵ

ϵ ϵ

ϵ

(+ ̇) = () + ′() ̇

+ ″() ̇ + +

= () + ′() ̇ []

f c c f c f c c

f c c

f c f c c

1

2
... ...

40

1 1 1 1 1

1 1
2 2 3

1 1 1

The chain rule is also preserved through the process outlined in
Eq. 40:

ϵ ϵ
ϵ

[(+ ̇)] = [() + ′() ̇]
= [()] + ′[()] ′() ̇ []

f g c c f g c g c c
f g c f g c g c c 41

1 1 1 1 1

1 1 1 1

The conservation of the chain rule shown in Eq. 41 illustrates that
dual numbers can be applied generally to evaluate numerical
derivatives. By setting ̇ =c 1i one can simultaneously evaluate both
the function, f(ci), and its derivative, ′()f ci . Conceptually, this means
that by programming a function one is also implicitly defining its
derivative—a useful simplification for numerical programming.

As can be seen from Eqs. 10–12, the partial derivatives of the
flux, generation, and accumulation expressions are necessary inputs
to the BAND subroutine. However, through the use of dual numbers,
the user is completely absolved from linearizing the system of
equations; by programming the analytical expressions for flux,
generation, and accumulation, the linearization of the equations is
accomplished implicitly through dual number automatic differentia-
tion.

Merging Automatic Differentiation with BAND

In the Sections above, an overview of BAND, the control volume
formulation, and dual number automatic differentiation were given,

Journal of The Electrochemical Society, 2021 168 113501

with the intention of giving the reader a high-level understanding of
how these techniques can be combined to simplify the process of
numerical programming. The following Sections provide a detailed
explanation of how to implement dual number automatic differentia-
tion. When discussing these dual expressions, braces have been used
to highlight connections between the dual expressions and
Eqs. 16–19. In addition, large Sections of the code itself are
discussed and an example problem using porous electrode theory
is used to guide the reader through the implementation process.

Representing the dependent variables using dual numbers.—As
can be seen from Eqs. 11–14, the finite volume formulation produces
two types of change variables: one with respect to concentration,
Δck, and a second with respect to the spatial concentration gradient,
Δ(∇ck). The total number of change variables then is 2N, where N is
the number of dependent variables: N terms of ck and N terms of
∇ck. The dual variables of ck and ∇ck can be constructed from their
real counterparts, and structured into arrays:

= ∂
∂

⋯ ∂
∂

∂
∂(∇)

⋯ ∂
∂(∇)

[]
  

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠

⎟
⎟
⎟
⎟⎟

c c
c

c

c

c

c

c

c

c
, , , , , , 42k k

real k k

N

k k

N

dx

1 1

∇ = ∇ ∂(∇)
∂

⋯ ∂(∇)
∂

∂(∇)
∂(∇)

⋯ ∂(∇)
∂(∇)

[]

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟c c

c

c

c

c

c

c

c

c
, , , , , ,

43

k k
real k k

N

k k

N1 1

The terms inside the inner parentheses form the dx array, where

∂
∂(∇)

= ∂(∇)
∂

= []c

c

c

c
0 44k

j

k

j

and

δ∂
∂

= ∂(∇)
∂(∇)

= []c

c

c

c
45k

j

k

j
kj

where δkj is the Kronecker delta function; i.e. dx is a sparse array
composed entirely of zeros except for a single value of 1.

Representing the governing equations using dual numbers.—
The dual output of a function of these change variables has a similar
structure; for example the flux, Ni, takes the form:

(⋯ ∇ ⋯ ∇)

= ∂
∂

⋯ ∂
∂

∂
∂(∇)

⋯ ∂
∂(∇)

[]◦

     

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

⎞

⎠

⎟
⎟
⎟
⎟⎟

c c c c

c c c c

N

N
N N N N

, , , , ,

, , , , , , 46

i N N

i
i i

N

f

i i

N

d

1 1

1 1

i k i k, ,

where ◦Ni is the value of the flux evaluated at the state
(⋯ ∇ ⋯ ∇)c c c c, , , , ,N N1 1 , and the dx array is composed of the partial

derivatives of the flux with respect to the change variables and has a
length of 2N. The dx array can be further segregated into partial
derivatives of the form ∂Ni/∂ck, and ∂Ni/∂(∇ck), which correspond to
the coefficients fi,k and di,k from Eqs. 16 and 17.

The generation, Ri, and accumulation, Accumi, expressions are
not functions of spatial concentration gradients and therefore the
trailing zeros in Eqs. 47 and 50 correspond to the partial derivatives
∂Ri/∂(∇ck) and ∂(Accumi)/∂(∇ck), respectively.

(⋯) = ∂
∂

⋯ ∂
∂

⋯ []◦

{ }

  

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

⎞

⎠

⎟
⎟
⎟
⎟
⎟

R c c R
R

c

R

c
, , , , , , 0, ,0 47i N i

i i

N

r

1
1

i k
rxn

,

The accumulation term, Accumi, takes the form

= ∂()
∂

[]h

t
Accum 48i

i

where hi is an arbitrary function of the dependent variables, ck

(⋯) = ∂
∂

⋯ ∂
∂

⋯ []◦
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟h c c h

h

c

h

c
, , , , , , 0, ,0 49i N i

i i

N
1

1

Noting that

∂
∂

=
◦h

t
0i

and using the numerical approximation

∂
∂

≈ Δ
Δ

c

t

c

t
k k

Accumi can be represented as

=
Δ

∂
∂

⋯
Δ

∂
∂

⋯ []

{ }

  

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

⎞

⎠

⎟
⎟
⎟
⎟
⎟

t

h

c t

h

c
Accum 0,

1
, ,

1
, 0, ,0 50i

i i

N

r

1

i k
acc

,

which allows one to evaluate ri,k (Eq. 18) in terms of the generation
and accumulation terms.

= (−)Δ []{ } { }r r r V 51i k i k
rxn

i k
acc

, , ,

As a reminder the real portions of the governing expressions, ◦Ni

and ◦Ri are used in the expression for ◦gi j, (Eq. 19). The reader may
notice in Eq. 50 that the value ◦hi - i.e. the real portion of hi - may
simply be ignored because it is not utilized in the control volume
formulation. However, in representing boundary conditions, there is
utility in explicitly defining =◦h 0i .

Representing boundary conditions using dual numbers.—As
stated previously, and as can be seen in Fig. 2, at the boundaries
the control volume is set to zero for numerical convenience. The
effect of setting Δx= 0 (i.e. ΔV= 0) can be inferred from Eqs. 20,
21, and 24: at j= 1, ck,1= ck,e and at j=NJ, ck,NJ = ck,w. This
provides another convenience for the user because one does not need
to distinguish between control volume variables and interface
variables at the boundaries; this allows the boundary conditions to
be defined in terms of the interface variables, which is compatible
for a wide range of physical conditions.

The boundary conditions commonly take one of three forms: 1) a
specified flux expression, 2) a specified concentration expression, or

Figure 2. Diagram of numerical approach used at the boundaries.

Journal of The Electrochemical Society, 2021 168 113501

3) in the case that there are no spatial gradients in the governing
equation, the governing equation is repeated at the boundary:

= []pN 52

= []c q 53

∂
∂

= []h

t
s 54

where p, q, and s are arbitrary functions of time and the dependent
variables. To make these expressions algorithmically compatible
with dual number representations, they need to be written as
homogeneous expressions:

= − []BC pN 551

= − []BC c q 562

= ∂
∂

− []BC
h

t
s 573

The dual representation of the boundary conditions, BCi, can then
be readily decomposed into the relevant matrix coefficients.

Figure 3. Schematic of the simple porous-electrode system used to
demonstrate the utility of combining BAND with a automatic differentiation.
At x = 0, the porous-electrode is in contact with the separator, where the
concentration of Li+ in the electrolyte is assumed to remain constant at its
bulk concentration, cbulk; the electrochemical potential in the solution is set to
an arbitrary reference potential of 0, Φ2 = 0. At the other end, x = L, the
electrode is in contact with an electrically conductive current collector. The
equations used to model this system are outlined in Table I and the
parametric information is provided in Table II.

Table I. A summary of the mathematical expressions used to simulate the performance of a hypothetical porous cathode material.

Separator Governing equations Current Collector

c+ = cbulk ϵ ϵ= − ∇· +∂
∂ +

+ Nc

t

ai

F
1.5 n N+ = 0

— ϵ(−) =∂
∂

−1 c

t

ai

F
x n —

i1 = 0 0 = (1 − ϵ)σ∇2Φ1 − ain i1 = − iapp
Φ2 = 0 0 = − ϵ1.5F∑izi∇ · Ni + ain i2 = 0

Thermodynamics

()()= + θ
θ

(−)⎡
⎣⎢

⎤
⎦⎥U U lnRT

F

c

c0
1

bulk

0 θ = c

c
x

x,max

Electrochemical Reaction Kinetics

() ()= −

= (−)

α η α η

α α α

−⎡⎣ ⎤⎦i i

i Fk c c c c

exp expn
F

RT

F

RT

rxn x x x

0

0 0 ,max

a c

a c a

η = Φ1 − Φ2 − U

Table II. Physical parameters used to simulate the electrode performance illustrated in Fig. 11.

Solid-State Properties

Electrode thickness Lelect = 100 m
Electronic conductivity σ = 3 × 10−4 S cm−1

Porosity ϵ = 0.4 —

Active-material size (radius) Rx = 500 nm
Electrochemical surface area a = 3(1 − ϵ)/Rx cm2 cm−3

Material density ρ = 5 g cm−3

Material specific capacity =Q 200x,max mAh g−1

Solution Properties
Electrolyte concentration cbulk = 1 × 10−3 mol cm−3

Ionic Diffusion coefficients = = × −+ −D D 1 10Li PF
7

6
cm2 s−1

Species charge = − = ++ −z z 1Li PF6 —

Electrochemical Reaction Parameters
Standard voltage (vs. Li) U0 = 3.3 V
Charge-transfer coefficients αa = αc = 0.5 —

Electrochemical reaction rate constant krxn = 1 × 10−8 cm5/2 mol−1/2 s−1

Maximum solid-state concentration ρ=c Q Fx x,max ,max mol cm−3

Temperature T = 298 K
Ideal Gas Constant R=8.314 J mol−1 K−1

Farraday Constant F = 96485 C mol−1

Journal of The Electrochemical Society, 2021 168 113501

⏟

(⋯ ∇ ⋯ ∇)

= ∂
∂

⋯ ∂
∂

∂
∂(∇)

⋯ ∂
∂(∇)

[]◦

◦      

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

⎞

⎠

⎟
⎟
⎟
⎟⎟

BC c c c c

BC
BC

c

BC

c

BC

c

BC

c

, , , , ,

, , , , , , 58

i k k

i

g

i

i

i

k

f

i

i

i

k

d

1 1

i j

i k i k

,

, ,

BC3 represents the specific case where setting =◦h 0i is of
practical utility. By inspection of Eq. 54, it can be seen that

= −◦g s;j3, this is achieved if and only if =◦h 0i . Simply using
Eq. 49 would erroneously produce = Δ −◦ ◦g h t sj3, , which is not
mathematically or physically consistent with Eq. 54.

Example problem.—The following brief example may be useful
to the reader in understanding the general expressions outlined
above. The problem explored here is a porous-electrode with solid-
solution active-material particles soaked in a dilute electrolyte

composed of a monovalent binary salt completely dissolved and
dissociated in a solvent. One end of the electrode is in contact with a
separator, and the other end is attached to an electronic current
collector (Fig. 3). Two main assumptions are used to simplify the
problem. First, the solid-state radial diffusion within the insertion
particles is assumed very fast and thus transport resistances within
the particles are neglected. Second, the electrolyte concentration at
the electrode/separator interface is assumed time invariant; polariza-
tion induced by the transport phenomena in the separator and the
kinetics of the counter electrode are not considered. It is assumed
that there are variations only along the length of the electrode (from
the separator to the current collector). The model as described
involves 4 dependent variables: the concentration of Li+ in the
solution (c0), the concentration of Li in the solid-state (cx), the
electric potential in the solid-state (Φ1), and the electrochemical
potential in the solution, (Φ2). Simulations are run for the continuous
constant-current insertion of Li+ into the solid-state starting from a
fully delithiated state. The instantaneous electrode potential at the
current-collector interface, i.e. Φ ∣ =x L1 , is monitored and used to
control the end of the insertion process.

Figure 4. Program unsteady uses auto_fill, ABDGXY, and BAND to iteratively solve an unsteady (time varying) system of equations.

Figure 5. The functions c_to_dual and dcdx_to_dual convert ck and ∇ck to dual numbers.

Journal of The Electrochemical Society, 2021 168 113501

Mathematical expressions.—Assuming dilute solution theory and
no convection, the mass flux of specie i is driven by Fickian
diffusion and ionic migration

= − ∇ − ∇Φ []D c z u FcN 59i i i i i i 2

where the specie mobility, ui is assumed to follow the Nernst-
Einstein relation:

= []u
D

RT
60i

i

The current in the solid-state, i1, follows Ohm’s law

σ= − ∇Φ []i 611 1

and the solution (electrolytic) current, i2, is facilitated by the flux of ions

∑= []F zi N 62
i

i i2

For this problem it is assumed that the porosity, ϵ, of the
electrode does not vary spatially or temporally, and the tortuosity, τ,

Figure 6. Programmatic representation of the finite volume method (FVM) or control volume approach: flux (FLUX), generation (RXN), and accumulation
(ACCUM). The real portion of the accumulation term is explicitly set to zero (Accum_%x = 0.0) for programmatic simplicity; there is no physical interpretation
for this term. These expressions are used in auto_fill to calculate the matrix coefficients di,k, fi,k, ri,k, and

◦gi j, - see Fig. 9 lines 77–101.

Journal of The Electrochemical Society, 2021 168 113501

is assumed to follow the Bruggeman relationship:

τ ϵ= []− 630.5

The effective flux of within the electrolyte is proportional to the
porosity and inversely proportional to the tortuosity:

ϵ
τ

= []N N 64i eff i,

The insertion reaction at the particle/electrolyte interface is
assumed to follow Butler-Volmer kinetics, while the electrochemical
thermodynamics are assumed to follow a Nernstian relationship.
Detailed expressions of the governing equations, boundary condi-
tions, electrochemical reaction kinetics and thermodynamics can be
found in Table I, while the parametric information is provided in
Table II.

Programmatic representations.—The necessary equations to
integrate dual number automatic differentiation with BAND have
been reported. To streamline the adoption of this process functional
Fortran subroutines and functions are provided. The details of the
provided code solve the equations outlined in Table I. The
subroutines BAND and MATINV are freely available online 33 as
well as in Appendix C of Electrochemical Systems 3rd Ed.8

dnadmod is also available online Ref. 34 and so these Sections
of code will not be repeated here.

The main iterative loop to solve a system of partial differential
equations is given in Fig. 4. The program unsteady uses the
subroutines auto_fill, ABDGXY, and BAND to solve for delC and
then update the values of the dependent variables, cprev.

The subroutine auto_fill takes ck,j as an input, and returns the
values αw, αe, βw, βe, ∣di k w, , ∣di k e, , ∣fi k w, , ∣fi k e, , ri,k, and

◦gi j, . The
sequence of calculations auto_fill performs are provide below:

1. calculate αw, αe, βw, βe
2. calculate ck,w, ck,e, ∇ck,w, ∇ck,e
3. convert ck,j, ck,w, ck,e, ∇ck,w, ∇ck,e to dual numbers
4. Evaluate the governing equations: Ni, Ri, Accumi, or appropriate

boundary conditions
5. Calculate ∣di k w, , ∣di k e, , ∣fi k w, , ∣fi k e, , ri,k,

◦gi j, from the governing
equations and boundary conditions

Steps 1 and 2 follow Eqs. 24, 25, and 20–23 (see lines 33-37 and
44-48 of auto_fill). Step 3 is carried out through the functions
c_to_dual and dcdx_to_dual given in Fig. 5; these two
functions correspond to Eqs. 42 and 43, respectively, and the values
of dx_array (dx) follow from Eqs. 44 and 45.

The governing equations are evaluated using the functions FLUX,
RXN, and ACCUM given in Fig. 6, and the boundary conditions are
evaluated using Boundary_WEST and Boundary_EAST given in
Fig. 7. The dual number results of these functions are used to
calculate the matrix coefficients in step 5.

Step 5 is performed in lines 59–101 of auto_fill using
conditional statements to differentiate between the western and
eastern boundary conditions, as well as the governing equations;
these calculations are done in accordance with Eqs. 16–19.

The governing equations need to be segregated into their flux,
generation, and accumulation components as outlined by Eqs. 9 and
10 and as can be seen from Fig. 6, their programmatic representa-
tions easily relate to their mathematical forms. It is important to note
that for the functions FLUX, RXN, and ACCUM, the input variables as
well as the resulting output need to be defined as type(dual),
with dimension, N. In addition, any intermediate calculations that are
functions of the change variables need to be defined as type
(dual) as well—see the electrochemical reaction rate, i_rxn in
function RXN.

In instances where the physics are complex it can be advanta-
geous to use supplemental modules to contain the equations that

Figure 7. Programmatic representation of the western (Boundary_WEST) and eastern (Boundary_EAST) boundary conditions. Look at function
Boundary_WEST, three commonly utilized types of boundary conditions are shown: (1) specified concentration, (2) repetition of the governing equation, (3)
specified flux.

Journal of The Electrochemical Society, 2021 168 113501

Figure 8. Programmatic representation of the electrochemical reaction expressions, given in Table I. Using dual numbers to represent these expressions
eliminates the need to derive and program functions to evaluate the partial derivatives of these expressions, i.e. ∂U/∂c0, ∂U/∂cx, etc.

Figure 9. Fortran subroutine auto_fill. This subroutine (1) calculates the α and β coefficients, (2) calculates the interface variables ck,w, ck,e, ∇ck,w, and c∇k,e,
(3) converts the change variables, ck, and interface variables to dual numbers, (4) evaluates functions for the governing equations, FLUX, RXN, ACCUM, and
boundary conditions, and (5) uses the results of the governing equations and boundary conditions to calculate the matrix coefficients di,k, fi,k, ri,k, and

◦gi j, .

Journal of The Electrochemical Society, 2021 168 113501

describe these complex phenomena. For the porous electrode
problem discussed in this paper, the electrochemical equations that
describe the open-circuit potential, U, the exchange current density,
i0, and the Butler-Volmer rate expression, in, were contained in a
separate module, echem_mod (see Fig. 8). The code

The output from auto_fill (Fig. 9) is used by the subroutine
ABDGXY (Fig. 10) to compute the matrix coefficients used by BAND
(see Eqs. 26–35). Similar code to Fig. 10 can be found in Appendix
2 of J. Deliang Yang’s thesis;9 because this work is not available
online, it has been reproduced here with some modifications to
leverage modern Fortran’s ability to perform array operations.

The simulation results of the model outlined in Tables I and II
and linearized using dual number automatic differentiation are
displayed in Fig. 11. The potential at the current collector, Φ1∣x=L

is displayed for three current rates C/10, C/5, C/3 (0.3, 0.6, 1.0
mA cm−2); for C/5, profiles of the dependent variables, c0, cx, Φ1,

and Φ2, are plotted at capacities of 0, 30, 60, 90, and 120 mAh g−1.
As discussed previously, dual number linearization is accurate to
machine precision; therefore, the numerical results plotted in Fig. 11

Figure 10. Subroutine ABDGXY uses the values of α, β, di,k, fi,k, ri,k, and
◦gi j, calculated in auto_fill to evaluate the coefficients for the block tridiagonal

matrices in BAND (◦Ai k, ,
◦Bi k, ,

◦Di k, ,
◦Gi j,) as expressed by Eqs. 26–35.

Figure 11. Simulated results for lithium insertion into a porous electrode. The equations used to simulate this phenomena are given in Table I. (A) The solid-
state potential at the current collect (Φ1∣x=L) vs capacity for varying current rates: C/10, C/5, and C/3. (B)–(E) Time-varying profiles of the dependent variables
for the C/5 data are displayed, where the line colors correspond to the marker color on the plot of Φ1∣x=L vs capacity.

Table III. Average and standard deviations of the computational
run-times (in units of seconds) for the simulations displayed in
Fig. 11. Code was compiled using gfortran -fdefault-real-8
-O3 (compiler: GFortran, 8-byte real numbers, and all possible optimi-
zations for speed), and run 30 times at each C-rate.

C-Rate Conventional BAND Using Dual Numbers

C/10 45.638 ± 0.262 48.348 ± 0.400
C/5 15.785 ± 0.422 16.800 ± 0.514
C/3 6.093 ± 0.076 6.810 ± 0.603

Journal of The Electrochemical Society, 2021 168 113501

are identical to the results achieved using the more conventional
manual linearization process as outlined by Newman8. In terms of
computational efficiency, the results in Table III illustrate that the
dual number implementation takes about 5%–10% longer than the
conventional implementation for this particular problem.

Conclusions

BAND is a useful and flexible numerical tool. Coupling
BAND with dual number automatic differentiation does not inhibit
its utility, but allows for numerical results to be achieved with
significantly less user programming, without compromising numer-
ical precision, and only a small loss in computational efficiency. The
procedure using BAND, FVM, and dnadmod, written as the
subroutine auto_fill, is quite useful and intuitive and has been
used to simulate a physical scenario relevant to battery applications.

Appendix

There are two points to discuss with respect to Fig. A·1. The first,
as discussed throughout the paper, the length of the dx array is
2N; this length is set programmatically as ndv = N*2. The second
important point is that, while dnadmod is extensive, it is not
exhaustive. The user may find that an intrinsic Fortran function is not
included in dnadmod; fortunately extending the module to include
additional functions is relatively straightforward. The user needs to
define the dual elemental function, i.e. tanh_d. The input
(u) and output (res) to this function will both be type(dual).
The dual elemental function is composed of two parts: the real part
(res%x), which is equal to the intrinsic function (res%x = tanh
(u%x)), and a differential part, which parallels the form:

∂[()] = ′()·∂f x f x x

For ()xtanh

∂[()] =
()

·∂x
x

xtanh
1

cosh2

which is written programmatically as

= * ()**res dx u dx 1 0 cosh u x 2% % . %

To overload the intrinsic function, one creates an interface within
dnadmod with the same name as the intrinsic function (interface
tanh) and within that interface the module procedure for a dual
number is used (module procedure tanh_d). The statement
public tanh ensures that the overloaded function is accessible to
all modules that use dnadmod. The interface should appear
above the contains statement in dnadmod and the elemental
function should appear below the contains statement.

It may be desirable for user-defined functions to produce dual
outputs in some instances and real outputs in other cases. For
example, when writing data it is often simpler to use a function with
real inputs and outputs. In these cases, it may be useful to overload
the user-defined functions. Overloading a user-defined function is
also relatively simple through the use of an interface block. In
Fig. A·2, an overloaded function exchange_current is created
from a real function and a type(dual) function. The output of
exchange_current will be real, when the inputs are real, and
dual when the inputs are dual.

Figure A·1. Fortran code fragment illustrating how to overload an intrinsic function such as atanh through the module dnadmod. The ellipses indicate lines of
code that were omitted.

Journal of The Electrochemical Society, 2021 168 113501

One may contend that overloading user-defined functions is a
disadvantage of this automatic differentiation process. However,
upon inspection of the functions in A·2, it is apparent that the real
and dual functions are identical expect for the declarations of the
input and output variables; if desired, one could even write a script to
systematically overload user-defined functions.

ORCID

Nicholas W. Brady https://orcid.org/0000-0001-7877-6704
Maarten Mees https://orcid.org/0000-0001-7217-5510
Philippe M. Vereecken https://orcid.org/0000-0003-4115-0075
Mohammadhosein Safari https://orcid.org/0000-0003-0633-731X

References

1. H. Koh and C. L. Magee, “A functional approach for studying technological
progress: Application to information technology.” Technological Forecasting and
Social Change, 73, 1061 (2006).

2. W. D. Nordhaus, “Two centuries of productivity growth in computing.” The
Journal of Economic History, 67, 128 (2007).

3. N. W. Brady, C. A. Gould, and A. C. West, “Quantitative Parameter Estimation,
Model Selection, and Variable Selection in Battery Science.” J. Electrochem. Soc.,
167, 013501 (2020).

4. W. Yu and M. Blair, “DNAD, a Simple Tool for Automatic Differentiation of
Fortran Codes Using Dual Numbers.” Comput. Phys. Commun., 184, 1446
(2013).

5. R. E. Spall and W. Yu, “Imbedded dual-number automatic differentiation for
Computational Fluid Dynamics sensitivity analysis.” Journal of fluids engineering,
135, 014501 (2013).

6. S. Stamatiadis and S. Farantos, “AUTO_DERIV: Tool for automatic differentiation
of a Fortran code.” Comput. Phys. Commun., 181, 1818 (2010).

7. A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation (SIAM, Philadelphia, PA) 2nd ed. (2008).

8. J. Newman and K. E. Thomas-Alyea, Electrochemical Systems (Wiley, Hoboken,
New Jersey) 3rd ed. (2004).

9. J. Deliang Yang, “Numerical Computation for Electrochemical Systems Using
Finite Volume Method.” Experimental and Numerical Investigation of Mass
Transfer in Electrochemical Systems, Columbia University (1997), Columbia
University.

10. J. Newman, “Numerical solution of coupled, ordinary differential equations.”
Industrial & Engineering Chemistry Fundamentals, 7, 514 (1968).

11. J. Newman, Numerical Solution Of Coupled, Ordinary Differential Equations
UCRL-17739, University of California Lawrence Radiation Laboratory (1967).

12. R. E. White, “On Newmanʼs numerical technique for solving boundary value
problems.” Industrial & Engineering Chemistry Fundamentals, 17, 367 (1978).

13. S. V. Patankar, Numerical Heat Transfer and Fluid Flow (CRC Press, Boca Raton,
FL) 1st ed. (1980).

14. C. Hirsch, Numerical Computation of Internal and External Flows (Elsevier, Amsterdam)
Fundamentals of Numerical Discretization, 2nd ed., 1 (2007).

15. A. West and T. Fuller, “Influence of rib spacing in proton-exchange membrane
electrode assemblies.” Journal of applied electrochemistry, 26, 557 (1996).

16. R. H. Pletcher, J. C. Tannehill, and D. Anderson, Computational Fluid Mechanics
and Heat Transfer (CRC Press, Boca Raton, FL) 3rd ed. (2012).

17. J. H. Ferziger, M. Perić, and R. L. Street, Computational Methods for Fluid
Dynamics (Springer, Berlin) 3rd ed. (2002).

18. T. Sauer, “Numerical Differentiation and Integration.” Numerical Analysis
(Pearson, Boston, MA) 2nd ed., 5, 243 (2012).

19. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “ Evaluation of
Functions.” Numerical Recipes: The Art of Scientific Computing (Cambridge University
Press, Cambridge, MA) 3rd ed., 5, 229 (2007).

20. J. N. Lyness and C. B. Moler, “Numerical Differentiation of Analytic Functions.”
SIAM Journal on Numerical Analysis, 4, 202 (1967).

21. W. Squire and G. Trapp, “Using Complex Variables to Estimate Derivatives of Real
Functions.” SIAM Review, 40, 110 (1998).

22. Andreas Griewank and Andrea Walther, “Introduction.” Evaluating Derivatives:
Principles and Techniques of Algorithmic Differentiation (SIAM, Berlin) 2nd ed., 1
(2008).

23. G. F. Corliss, “Applications of Differentiation Arithmetic.” Reliability in
Computing, The Role of Interval Methods in Scientific Computing (Academic Press,
Inc., Boston, MA) p.127-148 (1988).

24. A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic
Differentiation in Machine Learning: a Survey.” Journal of Machine Learning
Research, 18, 1 (2018).

25. Louis B. Rall, “Perspectives on Automatic Differentiation: Past, Present, and
Future?” Automatic Differentiation: Applications, Theory, and Implementations
(Springer, Berlin) (2006).

26. J. Revels, M. Lubin, and T. Papamarkou, Forward-Mode Automatic Differentiation
in Julia (2016), arXiv:1607.07892[cs.MS].

27. S. F. Walter and L. Lehmann, “Algorithmic differentiation in Python with AlgoPy.”
Journal of Computational Science, 4, 334 (2013).

28. M. A. Patterson, M. Weinstein, and A. V. Rao, “An Efficient Overloaded Method
for Computing Derivatives of Mathematical Functions in MATLAB.” ACM Trans.
Math. Softw., 39, 17 (2013).

29. James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake Vander{P}
las, Skye Wanderman-{M}ilne, and Qiao Zhang, (2018), JAX: Composable
Transformations of Python + NumPy programs, http://github.com/google/jax.

30. W. K. Clifford, “Preliminary Sketch of Biquaternions.” Proceedings of the London
Mathematical Society, 4, 381 (1873).

31. A. T. Yang and F. Freudenstein, “Application of Dual-Number Quaternion Algebra to the
Analysis of Spatial Mechanisms.” Journal of Applied Mechanics, 31, 300 (1964).

32. J. Angeles, “The Application of Dual Algebra to Kinematic Analysis.”
Computational Methods in Mechanical Systems: Mechanism Analysis, Synthesis,
and Optimization (Springer, Berlin) 3 (1998).

33. John Newman, (1998), FORTRAN Programs for the Simulation of Electrochemical
Systems, http://www.cchem.berkeley.edu/jsngrp/fortran.html.

34. Wenbin Yu and Kshitiz Swaroop, (2014), Dual Number Automatic Differentiation,
https://cdmhub.org/resources/374.

Figure A·2. The figure contains code for a user-defined function, exchange_current_real, with real inputs and output and a user-defined function,
exchange_current_dual, with type(dual) inputs and output. In addition the interface block creates an overloaded user-defined function
exchange_current from the real and type(dual) functions.

Journal of The Electrochemical Society, 2021 168 113501

https://orcid.org/0000-0001-7877-6704
https://orcid.org/0000-0001-7217-5510
https://orcid.org/0000-0003-4115-0075
https://orcid.org/0000-0003-0633-731X
https://doi.org/10.1016/j.techfore.2006.06.001
https://doi.org/10.1016/j.techfore.2006.06.001
https://doi.org/10.1017/S0022050707000058
https://doi.org/10.1017/S0022050707000058
https://doi.org/10.1149/2.0012001JES
https://doi.org/10.1016/j.cpc.2012.12.025
https://doi.org/10.1115/1.4023074
https://doi.org/10.1016/j.cpc.2010.06.043
https://doi.org/10.1021/i160027a025
https://doi.org/10.1021/i160068a026
https://doi.org/10.1201/9781482234213
https://doi.org/10.1016/B978-0-7506-6594-0.X5037-1
https://doi.org/10.1007/BF00253453
https://doi.org/https://doi.org/10.1201/b12884
https://doi.org/https://doi.org/10.1201/b12884
https://doi.org/10.1007/978-3-642-56026-2
https://doi.org/10.1007/978-3-642-56026-2
https://doi.org/10.1137/0704019
https://doi.org/10.1137/S003614459631241X
https://doi.org/https://www.doi.org/10.1137/1.9780898717761.ch1
https://doi.org/https://www.doi.org/10.1137/1.9780898717761.ch1
http://arxiv.org/abs/1607.07892
https://doi.org/10.1016/j.jocs.2011.10.007
https://doi.org/10.1145/2450153.2450155
https://doi.org/10.1145/2450153.2450155
https://github.com/google/jax
https://doi.org/10.1115/1.3629601
https://doi.org/10,1007/978-3-662-03729-4
https://doi.org/10,1007/978-3-662-03729-4
https://www.cchem.berkeley.edu/jsngrp/fortran.html
https://cdmhub.org/resources/374

