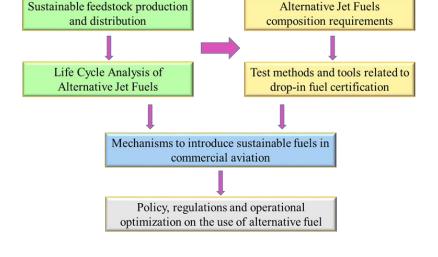


Environmental impact of sustainable aviation fuels from the hydroprocessing of oilseed crops: A life cycle assessment approach

Dr. Gonca Seber / Dr. Neus Escobar

Prof. Robert Malina / Dr. Hugo Valin



Objectives

- Aim 1: Improve physical and climate models to include alternative aviation use.
- Aim2: A reliable and globally harmonized life cycle assessment (LCA) approach (including the impact of land use change).
- Aim 3: Reduction of the fuel cost and time cost in drop-in jet fuel certification.
- Aim 4: Providing protocols and guidance for alternative fuel introduction in the aviation sector.

Aviation's GHG Emissions

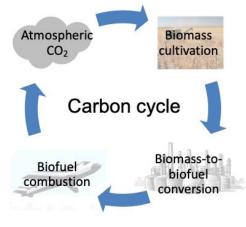
- Aviation: 2.1% of global greenhouse gas emissions in 2019.
 - International aviation: 1.3%
- ICAO (International Civil Aviation Organization)
 - Tracks emissions from international civil aviation
 - Aspirational goals
 - Short-term: 1.5% annual fuel efficiency improvement between 2009 and 2019.
 - Medium-term: Carbon neutral growth from 2020.
 - Long-term: Reduce net emissions to 50% of what they were in 2005 by 2050.

914 million

Tonnes of carbon dioxide $[CO_2]$ emitted by airlines, 2019^{47} . This is 2.1% of the global human CO_2 emissions of around 43.1 billion tonnes⁴⁸. Around 80% of aviation CO_2 is emitted from flights over 1,500 kilometres in length.

Air Transport Action Group (ATAG) Waypoint 2050 Report, 2020

Basket of Measures


- Technological advances
- Operational improvements
- Alternative sustainable aviation fuels (SAF),

Drop-in fuels

Seamless integration with existing infrastructure

Market-based measures
 e.g. CORSIA

40 million

Litres of neat sustainable aviation fuel used by commercial flights in 2019 (32,000 tonnes). This was blended with traditional fuel in over 65,455 flights from five international airports (Los Angeles, San Francisco, Bergen, Oslo and Stockholm)⁴⁹. Whilst this only represents less than 1% of the current fuel used in aviation globally, as this new source of fuel takes off, we will see this figure rise substantially.

CORSIA

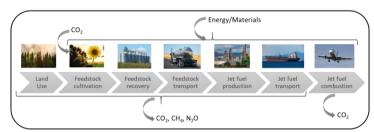
- Carbon Offsetting and Reduction Scheme for International Aviation
- Responsible parties: Airlines
 - Buying carbon credits
 - Credits generated by projects/proj
 - Using CORSIA Eligible Fuels (CEF)
 - SAF within CORSIA: Aviation fuel that he carbon emissions than conventional ke

	EEDSTOCK	
Agricuttural residues Forestry residues Municipal solid waste (MSW) Used cooking oil Tallow	Corn oil Soybean oil Rapeseed oil Palm oil	Sugarcane Sugar beet Corn grain Poplar Miscanthus Switchgrass Palm fatty acid distillate

Theme	Principle	Criteria
1. Greenhouse Gases (GHG)	Principle: CORSIA eligible fuel should generate lower carbon emissions on a life cycle basis.	Criterion 1: CORSIA eligible fuel shall achieve net greenhouse gas emissions reductions of at least 10% compared to the baseline life cycle emissions values for aviation fuel on a life cycle basis.
2. Carbon stock	Principle: CORSIA eligible fuel should not be made from biomass obtained from land with high carbon stock.	Criterion 1: CORSIA eligible fuel shall not be made from biomass obtained from land converted after 1 January 2008 that was primary forest, wetlands, or peat lands and/or contributes to degradation of the carbon stock in primary forests, wetlands, or peat lands as these lands all have high carbon stocks.
		Criterion 2: In the event of land use conversion after 1 January 2008, as defined based on IPCC land categories, direct land use change (DLUC) emissions shall be calculated. If DLUC greenhouse gas emissions exceed the default induced land use change (ILUC) value, the DLUC value shall replace the default ILUC value.

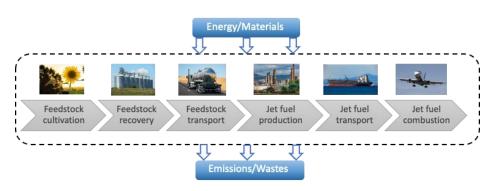
CORSIA SUSTAINABILITY CRITERIA FOR CORSIA ELIGIBLE FUELS

ASTM Approved Fuel Conversion Pathways


ASTM reference	Year of certification	Conversion pathway	Feedstock type	Blend ratio by volume
D7566 Annex 1	2009	<u>FT-SPK</u> : Fischer-Tropsch synthetic paraffinic kerosene	Coal, natural gas, biomass	50 %
D7566 Annex 2	2011	<u>HEFA-SPK</u> : Hydroprocessed esters and fatty acids synthetic paraffinic kerosene	Fats, oils and greases	50 %
D7566 Annex 3	2014	<u>HFS-SIP</u> : Hydroprocessed fermented sugars to synthetic isoparaffins	Sugars	10 %
D7566 Annex 4	2015	<u>FT-SPK/A</u> : Fischer-Tropsch synthetic paraffinic kerosene with aromatics	Coal, natural gas, biomass	50 %
D7566 Annex 5	2016	<u>ATJ-SPK</u> : Alcohol to jet synthetic paraffinic kerosene	Sugar/starch producing feedstocks and cellulosic biomass	50 %
D1655 Annex 1	2018	Co-processing	Fats, oils and FT Biocrude	5 %
D7566 Annex 6	2020	<u>CHJ</u> : Catalytic hydrothermolysis synthesized kerosene	Fats, oils and greases	50 %
D7566 Annex 7	2020	<u>HC-HEFA-SPK</u> : Hydroprocessed hydrocarbons, esters and fatty acids synthetic paraffinic kerosene	Bio-derived hydrocarbons and lipids (Algae)	10 %

Life cycle assessment (LCA)

- Methodology used to understand environmental impacts associated with a product, process or service
- Consistency between analysis methodologies is essential for comparisons
- Functional Unit: gCO₂e/MJ jet fuel
- System Boundary: emissions from the complete fuel cycle (well-to-wake)


• Baseline: e.g. ICAO Baseline for jet fuel is 89 gCO₂e/MJ jet fuel

Life cycle assessment (LCA)

- Co-products: Emissions from the life cycle can be distributed/allocated among coproducts using various allocation methods or displacement (system expansion).
- e.g. ICAO: Energy allocation, distributes the life cycle GHG emissions based on the energy content (lower heating value) of the co-products and fuel
- Attributional LCA
- Consequential LCA

Stochasticity

- Some of the technologies that will be assessed as part of this work are not yet fully commercialized. The data is sometimes limited, and variability might be high.
- For this reason, probability density functions were assigned into key parameters, using available data from the literature and industry sources.
- These distribution curves will then be used to conduct **Monte Carlo analysis** that samples values.

Example Life cycle inventory

Variable	Nominal Range ¹	Units	Distribution	
Feedstock properties				
Seed lipid content	[29, 34, 36], a	%	Triangular	
Seed moisture content	12, b	%	-	
Loss factor for oil extraction	4, c	%	-	
Material and energy inputs				
<u>Cultivation</u>				
N total	[27.8, 46.4, 138.9]	g/kg seeds	Beta	
P_2O_5	[3.26, 0.64]	g/kg seeds	Lognormal	
K_2O	[2.91, 0.48]	g/kg seeds	Lognormal	
Diesel	[0.17, 0.17, 0.16]	MJ/kg seeds	Triangular	
Oil extraction				
Feedstock to oil	(1-b)/a/(1-c)	kg/kg oil	-	
Meal	(1-a-b)/b/(1-c)	kg/kg oil	-	
HEFA Conversion				
Oil	[1.23, 1.25, 1.27]	kg/kg jet	Triangular	
Natural gas	[0.08, 0.14, 0.19]	MJ/MJ jet	Triangular	
Electricity	[0.0046, 0.0062, 0.0077]	MJ/MJ jet	Triangular	
Hydrogen	[0.017, 0.054, 0.092]	MJ/MJ jet	Triangular	

¹Lognormal distributions: [log mean, log standard deviation]

Triangular/Beta distributions: [low, mode, high]

Direct land use change (DLUC)

- Direct land use change (DLUC): conversion of land from previous uses to agricultural production (e.g., to grow biofuel feedstock).
- DLUC can increase life cycle GHG emissions when land carbon stocks decrease, e.g., when feedstock is produced at the cost of carbon-rich ecosystems
- IPCC's Tier 1 procedure: GHG emissions from DLUC estimated as differences in land carbon stocks before and after the land conversion
 - 25 years amortization period, in line with ICAO
- Several scenarios for land converted to cropland, considering spatial variability in yields, soil organic carbon (SOC), carbon pools in above- and below-ground biomass as well as management practices based on revised IPCC guidelines (2019)
- CORSIA currently does not have a method for DLUC inclusion

Method for DLUC estimation

- GHG sources from changes C pools → Equation 2.1 (IPCC 2006)
 - Above-ground biomass (AGB) and below-ground biomass (BGB)
 - Dead organic matter in dead wood (DW) and litter (LI)
 - Soil organic carbon (SOC)
 - Harvested wood products (HWP) are 0 under Tier 1

$$\Delta C_{DLUC} = \Delta C_{AGB} + \Delta C_{BGB} + \Delta C_{DW} + \Delta C_{LI} + \Delta C_{SOC} + \Delta C_{HWP}$$

- Additional C flows → Equations 2.27; 11.2; 11.8; 11.10 (IPCC 2006)
 - Non-CO₂ gases (CH₄, N₂O) from burning of AGB, DW and LI
 - N₂O emissions from mineralized N as a result of SOC changes (direct & indirect)
 - Foregone carbon sequestration over a 25-year period

Feedstocks for Alternate

Feedstock Type	Feedstock Name	CORSIA	New Feedstocks
Oilseed crops	Camelina	•	
	Carinata	•	~
	Castor bean		• Non-edible
	Corn oil (from DDGS)	•	vegetable oils
	Jatropha		• 0
	Microalgae		0
	Palm	•	
	Palm fatty acid distillate	•	
	Pennycress		•
	Rapeseed	•	
	Salicornia		•
	Soybean	•	
	Tobacco		•
	Xanthoceras		0

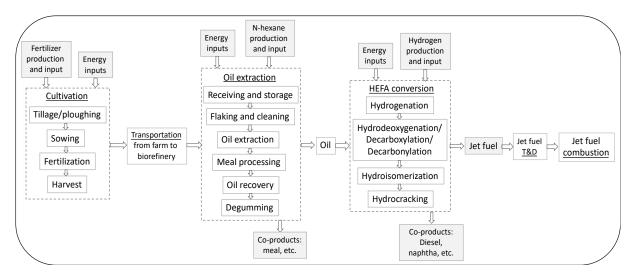
■ Feedstocks that have values under	CORSIA and will be reviewed as needed for ALTERNATE
-------------------------------------	---

[•] Feedstocks that will be evaluated by the EU consortium of ALTERNATE

Feedstock Type	Feedstock Name	CORSIA	New Feedstocks
Lignocellulosic biomass	Agricultural residues	■ 0	
	Forest residues	•	
	Giantreed		•
	Miscanthus	•	
	Reed canary grass		•
	Short rotation woody crops	•	
	Switchgrass	•	
Carbohydrate crops	Sweet sorghum		•
	Sugar beet	•	
	Sugar cane	•	
	Wheat		•
Wastes	Municipal Solid Waste (MSW)	•	
	Used cooking oil	■ ○	
	Tallow	•	
Fossil fuels	Crude oil		0
	Natural gas		0

o Feedstocks that will be evaluated by the Chinese consortium of ALTERNATE

Oilseed feedstocks


Feedstock	Distribution	Av.Yield (t/ha-yr)	Oil content (wt %)	Jet fuel production potential (L/ha) ⁶	Oil extraction co-products
Camelina	N. America, EU	1.9 ¹	36.0	799-3,085	Meal
Castor	India, Brazil, China	1.1 ²	47.0	398-1,535	Meal
Jatropha	Asia, Africa, S. America	2.5 ³	35.0	1,185-4,573	Meal/ husk/shell
Palm	Malaysia, Indonesia	17.94	22.4	10,018-38,666	Palm kernel meal
Pennycress	Eurasia, N. America	1.05	34.0	456-1,759	Meal
Rapeseed	EU	3.44	44.0	1,238-4,779	Meal
Salicornia	Africa, Middle East, S. America, China, US	2.03	28.2	1,169-4,511	Meal / straw
Soybean	N. America, Brazil	3.24	19.1	2,723-10,511	Meal
Tobacco	China, Brazil, India, US, Greece	2.15	38.0	925-3,568	Meal

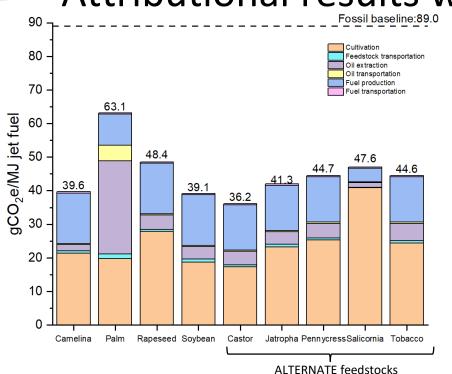
Scope for the attributional LCA

 All the direct and indirect energy/material inputs will be considered within the following process steps for the oilseed crops.

General system boundary for oilseed crops

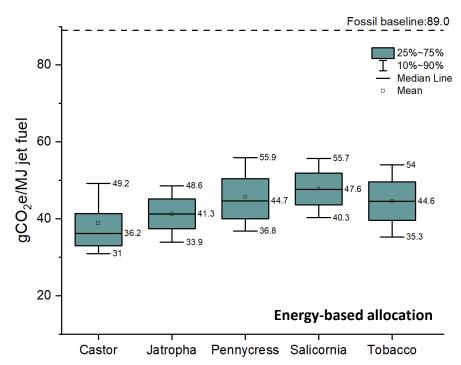
Assumptions for DLUC estimation

- Assumptions taken to estimate DLUC emission factors per feedstock
- Secondary data on average yields, annual carbon sequestration and root-to-shoot ratios


	Yield (t dm/ha)	Oil content i seed (%)	n Crop biomas (t C/ha)	ss Crop management	Input intensity
Camelina	1.9	0.36	1.375	Reduced tillage	Low input
Castor	1.1	0.47	1.29	Reduced tillage	Medium input*
Jatropha	2.5	0.35	12.02	No tillage	Medium input
Palm	18	0.24	37.5	No tillage	Medium input
Pennycress	1	0.34	1.02	Reduced tillage	Low input
Rapeseed	3.4	0.42	1.47	Tillage	Medium input
Salicornia	2	0.28	4.2	Reduced tillage	Low input
Soybean	3.2	0.18	1.37	No tillage	Low input
Solaris tobacco	2.1	0.33	2.01	Tillage	Medium input

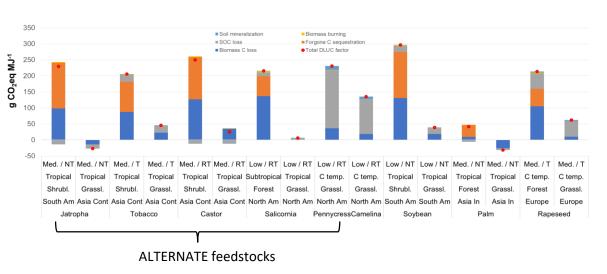
^{*} Medium input refers to medium input intensity without manure in all cases.

Attributional results without land-use change



- The attributional LCA results for the ALTERNATE feedstocks show life cycle greenhouse gas emissions below the ICAO fossil-fuel baseline of 89.0 gCO₂e/MJ (Median values from the stochastic analysis are shown here).
- Energy-based allocation was applied in order to distribute the emissions between the coproducts that are produced during the fuel production processes.
- The main contributors to the results are cultivation and fuel production steps. Oil extraction step is also important due to the amount, and energy content of by-products produced.
- The difference in the results is due to the cultivation step in most cases, where fertilizer/diesel use is the main factor.

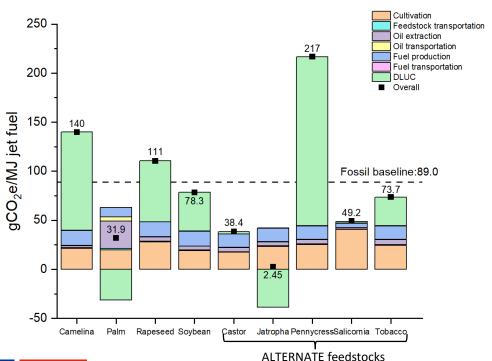
Stochastic uncertainty analysis



- Monte-Carlo simulations approach, based on 20,000 randomized trials, was used to evaluate the uncertainties caused by the variability of input parameters.
- The results show at least ±15 % variability.
- Parameters such as fertilizer and diesel use for cultivation are the main reasons for variability.

OLTERNOTE

Estimations of DLUC


Asia Cont: Asia continental; Asia In: Asia insular; C. temp: cool temperate; Deg. Grassl.: Degraded grassland; Grassl.: grassland; High: high input intensity; low: low input intensity; Med.: medium input intensity; NT: No tillage; RT: Reduced tillage; South Am: South America; T: Tillage; W. temp: warm temperate.

- Scenario-specific DLUC emission factors for ALTERNATE feedstocks vs. reference CORSIA feedstocks are shown, taking 25 years as amortization time.
- Results show the emission differences from DLUC when different types of land are converted for the cultivation of crops for SAF production.
- <u>DLUC</u> emission factors are high if forest or shrubland is converted for cultivation.
- Grassland and degraded grassland yield the lowest DLUC emission factors if they are converted into cropland.

Attributional results with DLUC

- Emissions including the impact from direct land use change are shown when grassland or degraded grassland is used for the cultivation of crops.
- High DLUC emission factors are due to low seed yields from the corresponding crops.
- Most of the ALTERNATE feedstocks are below the fossil baseline even when the land use change is factored in. <u>At least</u> <u>17% emissions savings are provided.</u>
- **Next step: Consequential LCA** that will factor in **induced land use change** and the changes to the market.

Summary

- Attributional LCA of GHG emissions from HEFA-jet fuels have been presented and the results show at least 17% emissions savings.
- Monte-Carlo sampling displayed the extent of uncertainty within the results: <u>at least ±15%</u> variability and up to 35%
- Treatment of co-products and allocation methods was shown to have an impact on results: <u>energy-based</u> allocation was used for baseline
- The importance of emissions from land use change is clearly visible in the overall results:
 Conversion of grassland/degraded grassland into cropland was shown to keep the overall emissions lower in most cases.
- The oil from most of the new crops investigated within this work are non-edible: No competition for food/feed sources.
- Most of the new crops presented are not domesticated, and they have been cultivated in small fields. Their domestication will improve the oil yields, and as a result have a positive impact on their life cycle emissions.

OLTERNOTE

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875538, supporting the European partners, while from the Ministry of Industry and Information Technology (MIIT) supporting the Chinese Partners.

This document and all information contained herein is the sole property of the ALTERNATE Consortium or the company referred to in the slides. It may contain information subject to intellectual property rights. No intellectual property rights are granted by the delivery of this document or the disclosure of its content.

Reproduction or circulation of this document to any third party is prohibited without the consent of the author(s).

The statements made herein do not necessarily have the consent or agreement of the ALTERNATE Consortium and represent the opinion and findings of the author(s).

All rights reserved ©