Real-time Detection of 2D Tool Landmarks with Synthetic Training Data

Keywords:

Abstract:

Bram Vanherle®?, Jeroen Put, Nick Michiels® and Frank Van Reeth ©¢

Hasselt University - tUL - Flanders Make, Expertise Centre for Digital Media,
Agoralaan, 3590 Diepenbeek, Belgium

Object Keypoint Detection, Deep Learning, Synthetic Data Generation.

In this paper a deep learning architecture is presented that can, in real time, detect the 2D locations of certain
landmarks of physical tools, such as a hammer or screwdriver. To avoid the labor of manual labeling, the
network is trained on synthetically generated data. Training computer vision models on computer generated
images, while still achieving good accuracy on real images, is a challenge due to the difference in domain. The
proposed method uses an advanced rendering method in combination with transfer learning and an intermedi-
ate supervision architecture to address this problem. It is shown that the model presented in this paper, named
Intermediate Heatmap Model (IHM), generalizes to real images when trained on synthetic data. To avoid the
need for an exact textured 3D model of the tool in question, it is shown that the model will generalize to an
unseen tool when trained on a set of different 3D models of the same type of tool. IHM is compared to two
existing approaches to keypoint detection and it is shown that it outperforms those at detecting tool landmarks,

trained on synthetic data.

1 INTRODUCTION

The modern manufacturing industry requires more in-
tricate technical knowledge from the operators assem-
bling products, as those products become more com-
plex. This in turn, creates a need for more advanced
vision systems to both support and train the humans
assembling these products. The goal of this paper is
to detect the 2D location of certain landmarks in an
RGB image of a tool being used in such assembly
processes. This could, for example, be the head of a
screwdriver or the two ends of a combination wrench.
There are a lot of variables—such as pose, occlusions,
lighting and physical variations—that impact the ap-
pearance of a tool in an image. This makes it chal-
lenging to robustly localize that tool’s landmarks.
The developed method has a strong focus on exe-
cution speed so that it can be used in real-time video
analysis systems. An example application is the au-
tomatic monitoring of assembly progress, where our
method can be used to detect if tool-based actions are
completed. This could be used to offer the operator
adaptive feedback. In this paper the method is applied
to assembly tools, but this work could easily general-

https://orcid.org/0000-0001-8755-0002
b https://orcid.org/0000-0002-7047-5867
¢ https://orcid.org/0000-0002-3705-7807

40

Vanherle, B., Put, J., Michiels, N. and Van Reeth, F.
Real-time Detection of 2D Tool Landmarks with Synthetic Training Data.
DOI: 10.5220/0010689900003061

ize to different types of objects.

Deep Convolutional Neural Networks have
proven to be an exceptional tool at interpreting visual
information due to their ability to automatically
detect features at multiple levels. An important
drawback of using deep learning is that large amounts
of labeled data are required. To ensure this system is
easily adopted to new types of tools, the network is
trained solely on computer generated images. This
avoids a human having to make pictures of tools
and manually label these to apply this method to a
different tool. Whereas the usage of synthetic data
allows for easy collection of data, it often leads to a
decrease in accuracy. This is due to the model being
trained on a different domain than it is being used on
during inference. The negative impact of the domain
gap is mitigated by using a specialized network
architecture, and data generation techniques that are
optimized for deep learning input. A full overview of
method presented in this paper is shown in Figure 1

This paper proposes a Fully Convolutional Neural
Network that generates heatmaps indicating the prob-
ability that a certain landmark is at the specified loca-
tion. The novel Intermediate Heatmap Model (IHM)
combines a feature detection network with upsam-
pling layers. Intermediate supervision is implemented
by generating output at multiple levels to boost the

In Proceedings of the 2nd International Conference on Robotics, Computer Vision and Intelligent Systems (ROBOVIS 2021), pages 40-47

ISBN: 978-989-758-537-1

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

Real Images Neural Network Heatmaps Keypoint Locations

Hlnference “
Generated

Images
. -

Figure 1: An overview of the proposed method for keypoint
localization.

learning of higher level features. To prove the usabil-
ity of this method, it is compared to two existing key-
point detection methods on a custom tool dataset. The
method is also validated on the Pascal3D (Xiang et al.,
2014) dataset. Our main contributions are:

e A method for quickly generating images that are
suitable for deep learning, along with appropriate
labels.

e A Deep Learning architecture for keypoint detec-
tion that achieves good performance when trained
on synthetic images.

2 RELATED WORK

In classic computer vision, keypoint detection is
usually done using feature descriptors such as
SIFT (Lowe, 2004) or SURF (Bay et al., 2006). These
methods focus on local features and fail to consider
the global context of the image, hence why they do
not generalize well to unseen data and fail under vari-
ations of pose, lighting and texture.

In more recent works there has been a shift to-
wards Deep Learning to avoid these issues. Early
works, such as DeepPose (Toshev and Szegedy,
2014), would use a CNN to detect image features, fol-
lowed by fully connected layers that directly regress
the (x,y) coordinates of the keypoints. These meth-
ods had low accuracy, which lead to the creation of
networks that regress heatmaps for each keypoint.
Keypoint locations are computed from the maxima
of these heatmaps. This method has been used for
6DoF Pose Estimation (Pavlakos et al., 2017), Object
Detection (Law and Deng, 2020) and mainly for Hu-
man Pose Estimation (Wei et al., 2016; Newell et al.,
2016; Xiao et al.,, 2018). These methods are eas-
ier to train, but have difficulties detecting keypoints
when objects are occluded or truncated. For this rea-
son Pixelwise-Voting network (Peng et al., 2019) was
introduced. This type of network learns, for each key-
point, to generate unit vectors at each pixel pointing
to that keypoint. Those unit vectors are then used to

Real-time Detection of 2D Tool Landmarks with Synthetic Training Data

vote for keypoint locations using RANSAC (Fischler
and Bolles, 1981). This forces the network to focus
on local features and spatial relations between object
parts, and allows it to infer the position of invisible
parts.

The method proposed in this paper falls under the
category of heatmap generating models. Although
the pixel-wise voting method can handle occlusions
better, the RANSAC voting adds extra computational
complexity at runtime which is to be avoided in a real-
time system. Existing heatmap models often have
fast inference times, but rely on real images with an-
notations as training data. Our method removes this
need by offering a data generation method and a deep
learning model that performs well, when trained on
synthetic images.

3 TRAINING DATA

3.1 Image Generation

A key challenge of using a data-driven approach is
data collection. Training a model for a real-time 2D
landmark detection requires the collection of suffi-
cient training data with a broad range of variations
for each physical tool at hand. Such training datasets
are not easily available and building new ones re-
quires access to large amounts of representative exist-
ing image data. Additionally, manual labor for iden-
tifying the ground truth 2D landmarks is required,
which is cumbersome and introduces human error to
the dataset. Furthermore, this approach does not gen-
eralize well when new types of physical tools are in-
troduced.

To avoid the time consuming process of taking
and manually labeling thousands of photos of tools,
we propose a synthetic data generation tool to eas-
ily generate training sets of newly introduced tools.
Synthetic data generation is often done by using a
Cut and Paste strategy (Dwibedi et al., 2017; Ghiasi
et al., 2020). This entails cutting the foreground ob-
jects from a limited set of images and pasting these at
randomized locations on random backgrounds. This
method lends itself well to Object Detection and Seg-
mentation problems, as those labels can be directly
inferred from the image composition. Although this
method can quickly generate large datasets, the im-
ages produced are often not realistic and lack varia-
tion in appearance, as the foreground objects are typi-
cally sourced from a very limited set. This could have
a negative impact on the accuracy of the keypoint lo-
calization. We therefore propose a tool that can ren-
der a set of images by constructing fully random 3D

41

ROBOVIS 2021 - 2nd International Conference on Robotics, Computer Vision and Intelligent Systems

scenes with the desired objects in them.

This tool will allow for more intricate appearance
and 3D variations than the classic data augmentation
techniques such as noise and translation. Examples
of more representative variations are 3D physical tool
rotations, translations, camera pose, occlusions, shad-
ows, lighting conditions, etc. Furthermore, we aim to
generate images as photorealistically as possible, as
this has been shown to improve performance on other
deep learning tasks (Hodai et al., 2019). To achieve
this, we have exploited the real-time raytracing capa-
bilities of recent NVidia RTX hardware.

To be able to create a scene with the desired object
in it, a 3D model of the object is needed. These can be
acquired by either performing a 3D scan or by manu-
ally modeling the object in CAD software. Both these
options are time consuming and can introduce errors.
We argue that this can be avoided by using a set of 3D
models of variations on the object, as opposed to one
exact model of the object. These variations can differ
in shape or texture, as long as they portray the same
type of object. By training a neural network on a set
of tools that all sufficiently vary in appearance, the
network will generalize to unseen tools of the same
kind. This allows us to simply source our 3D models
from the internet, for example.

The main input of this tool is a set of textured 3D
meshes of the physical tools. The tool will automat-
ically generate a wide range of variations based on
these models. The following parameters are random-
ized:

e Object position

e Object rotation

e Environment

e Lighting
Each random sample will be rendered with a path
tracer to create a photo-realistic image. Figure 2
shows different examples of randomly generated syn-
thetic image data. An advantage of using such a syn-
thetic data generator is that we can export any kind of
additional labeled metadata as well. Here, the ground
truth 2D positions of the landmarks are exported to-
gether with the rendered images. This results in an
automatic approach for generating large amounts of
data needed for training deep learning networks such
as the one presented in Section 4.1. The use of path
tracing ensures a sufficient amount of visual realism.

To further increase the size of the dataset and to
add occlusions, a copy of each image is added to
the dataset with a random object pasted in front of
it, or with the background switched out for a random
one. Foregrounds and backgrounds are added to the
image using a random blending method to avoid the

42

Figure 2: Synthetically generated images of tools.

network focusing on pixel artifacts, as described by
(Dwibedi et al., 2017). Blending was either done by
alpha blending, Poisson blending (Pérez et al., 2003)
or Laplacian pyramid blending (Burt and Adelson,
1983).

3.2 Heatmaps

In the proposed method, a Convolutional Neural Net-
work is used to interpret the image. This creates a
feature map. The locations of the keypoints need to
then be extracted from this feature map. This could
be done by flattening the features and using one or
more fully connected layers to transform that vector
into the coordinate values of the keypoints. The flat-
tening operation obfuscates the spatial information,
and the fully connected layers, unlike convolutional
layers, are not spatially invariant. This adds learning
complexity that leads to lower accuracy. A better ap-
proach is to use a fully convolutional neural network
that generates a set of heatmaps, as opposed to nu-
merical coordinates. A heatmap is generated for each
keypoint and contains, for each pixel, the probabil-
ity that the keypoint is at that location. Such a set of
heatmaps can be derived from the feature map by us-
ing convolutions, which uses the spatial information
more efficiently.

To construct the training data for an image a
heatmap is generated for each keypoint. A heatmap is
created by placing a two-dimensional Gaussian ker-
nel, with o = é - width, centered at the 2D image lo-
cation of the keypoint. A smaller value for ¢ would
make it difficult for the network to learn, whereas
a higher value would decrease localization accuracy.
Using this method, the value of the heatmap is 1.0 at
the keypoint location, with values tapering off further
away from the keypoint. An alternative to this is to
only make the correct pixel 1.0, but this is difficult to
learn due to the overwhelming amount of zero values.
Assigning 1.0 to a larger area around the ground truth
pixel would solve this, but this would make it impos-

Figure 3: Synthetically generated image of a combination
wrench and the two heatmaps that the neural network will
try to predict.

sible to retrieve the exact pixel location. A Gaussian
kernel is therefore ideal in this scenario. Figure 3
shows the two Gaussian heatmaps generated for the
two keypoints of a combination wrench. When key-
points are very similar, as is the case for the two ends
of an open ended wrench, the heatmaps are added to-
gether into one heatmap. This removes ambiguity,
making learning easier.

During inference, the maximum of each heatmap
is computed to find the pixel location of that keypoint.
When the heatmaps are compressed into one heatmap,
for the case of similar keypoints, local maxima are
then used as keypoint locations instead of the global
maximum. The value of the maximum pixel can be
interpreted as the confidence of the prediction, which
can be used to threshold less certain predictions.

4 METHOD

4.1 Network Architecture

A Fully Convolutional Neural Network is trained to
generate these heatmaps. To be able to detect features
from real images while being trained on synthetic
images, a pre-trained feature detector is used. Dur-
ing training the feature detector’s layers are frozen,
as proposed by (Hinterstoisser et al., 2017). This is
done so that it cannot learn low-level features from
the synthetic data as these would not match the fea-
tures from real images. This has the additional bene-
fit of decreasing the number of required training sam-
ples and time. ResNet50 (He et al., 2015) is used as
it offers good performance due to its relatively small
size, while still achieving good accuracy. The net-
work is pretrained on ImageNet (Deng et al., 2009).
This is the transfer learning aspect of our approach,
as knowledge learned from real images is transferred
the synthetic domain.

Using consecutive Residual Blocks, ResNet
down-samples the (224,224,3) input image to a
(7,7,2048) feature map. The resulting feature map
is up-sampled five times to generate a feature map of

Real-time Detection of 2D Tool Landmarks with Synthetic Training Data

Feature
Map

Skip / > > >

Connection

3x3 Conv + BN + ReLU ----NN upsampling --->Dropout

Figure 4: Illustration of the upsampling block.

size (224,224, f) with f the number of filters used.
Upsampling happens by using nearest neighbour in-
terpolation to double the width and height of the fea-
ture map. Skip connections are used to recover the
spatial information that was lost during downsam-
pling to increase the accuracy of the final heatmaps.
This is done by concatenating the output of the final
activation layer from the corresponding size from the
ResNet to the up-sampled feature map. This is fol-
lowed by two convolutional blocks, consisting of a
2D convolution with kernel size 3, Batch Normaliza-
tion (Ioffe and Szegedy, 2015), a Leaky ReLU and a
Dropout (Srivastava et al., 2014) layer with a rate of
0.2. An illustration of the upsampling block is shown
in Figure 4. The lowest level convolutions use 256 fil-
ters, this amount is divided by two, each time the fea-
ture map is up-sampled. Finally, a convolution with
kernel size one, N filters and a sigmoid activation is
applied to generate the final heatmaps. N is the de-
sired number of heatmaps.

When training neural networks on synthetic data it
is desirable that the network uses high level features
when generating output as opposed to focusing on
lower level features. This is because higher level fea-
tures, such as shape, match between synthetic and real
images; whereas lower level features, such as texture,
can differ tremendously. In a classic FCN, output is
generated at the final upsampling step. This means
that, when using skip connections, output is created
from the upsampled feature map combined with the
lowest level features from the feature detector net-
work. This could lead to the network lazily focus-
ing on these lower level features, which we are trying
to avoid. Intermediate supervision is used to force
the network to learn good features that assist in local-
izing the keypoints, at each level of the upsampling
chain. This is implemented by generating a heatmap
after each upsampling block and using each heatmap
in the loss function. So as opposed to outputting one

43

ROBOVIS 2021 - 2nd International Conference on Robotics, Computer Vision and Intelligent Systems

224x224 112x112 56x56 28x28 14x14

7x7convstride2 [] downsampling ResBlock] upsampling block
[7] 33 conv + max pool ResBlock 1x1 conv + sigmoic

Figure 5: A full overview of the neural network used to
generate heatmaps.

heatmap, the network generates a set of progressively
larger heatmaps, starting at (14, 14) up to (224,224).
By applying this type of supervision at each upsam-
pling level, the learning of high level features gets
boosted, while lower level features can also still be
used to generate the final output. Although, poten-
tially less accurate, each of the intermediate heatmaps
can be used to localize keypoints. A full overview of
the neural network is given in Figure 5.

4.2 Training

The loss function is the sum of the Mean Squared Er-
ror between the heatmap generated at each level and
their corresponding ground truth.

L=Y (Y (A06) i) ()
k

n

Here f; is the output of the k-th upsampling block, X,
the n-th image and Y} , the ground truth heatmaps for
the n-th image, downscaled to the size of the k-th out-
put. Training is done using the ADAM (Kingma and
Ba, 2017) optimizer with a learning rate of 1.5¢7>.
The learning rate is scaled by 0.1 if the validation loss
has not improved for 10 epochs. A batch size of 16
is used with a maximum of 200 epochs. The network
stops training after showing no improvement for 20
epochs. The loss on the validation set is measured at
each epoch and the model with the lowest validation
error is kept. To improve robustness and generaliza-
tion towards real life images, a wide range of data
augmentation techniques are applied to the images.
These include affine transformations, blurring, adding
and multiplying, perspective transformations and ad-
ditive Gaussian noise. When transformations are ap-
plied, the heatmaps are adapted correspondingly.

44

5 RESULTS

The proposed method is first validated on a dataset
of tool images created specifically for this paper. To
show this method generalizes well to other domains
and to compare the results of this paper to an estab-
lished benchmark, the method is also validated on the
Pascal3D dataset (Xiang et al., 2014). Our approach
has been compared to two other methods for keypoint
detection: Stacked Hourglass Networks (SH) (Newell
et al., 2016; yuanyuanli85, 2018) with two stacks and
Simple Baselines (SB) (Xiao et al., 2018). The for-
mer is chosen as it is used often, achieves great accu-
racy and also employs a form of intermediate super-
vision. Since this method does not use transfer learn-
ing, the latter is also selected for validation, as trans-
fer learning might give an advantage when training
on synthetic data. A comparison is also made with a
trimmed version of our IHM, that generates heatmaps
of size (56,56) (IHMs¢), and with a version of our
model that was trained without intermediate supervi-
sion (HM).

The Percentage of Correct Keypoints (PCK) metric is
used to validate performance. A keypoint is consid-
ered to be correct when its distance from the ground
truth is below a certain fraction of the largest side of
the objects bounding box: o - max(w,h), with o usu-
ally at 0.1.

In the experiments described below, we train a sep-
arate neural network for each object, as opposed to
one network that can predict the keypoints of each
object. The benefit of this approach is that a smaller
network is required for each tool, leading to better
execution times. For this it is assumed that the sys-
tem knows which tools keypoints need to be found,
as executing the network for each tool would have the
opposite effect on the total execution time. Another
benefit of this approach is that new objects can eas-
ily be introduced into the system by simply training a
new network for only that tool. Although training one
large network for all objects could also have bene-
fits. Potentially, less training images per object could
be needed, as feature learning would be shared, and
features could be learned from each object. Addition-
ally this approach could decrease sensitivity to false
positives, as the network sees different types of tools
during training.

5.1 Tool Dataset

To validate our work, a dataset of images has been
created for four different tools. Of each tool 50 pho-
tographs are created with a mobile phone camera.
Photos are taken with a wide range of backgrounds,

Table 1: Comparison of the IHM, HM, SH and SB methods
on the Tool Dataset (PCKy—o.1).

Model IHM224 IHM56 HM SHN SB
(Ours) (Ours) (Ours)
Screwdriver | 82.0 82.0 78.0 46.0 74.0
Wrench 88.9 88.9 86.1 66.7 67.6
C.Wrench | 849 849 82.6 558 68.6
Hammer 72.9 74.0 68.8 45.8 63.5

0.9 —__
S A
amm= T
0.8 ,?—==?_=_'_’_T__-—< X m ==X
e At
e2% - -~
0.7 X
-t
§ /’x“——x 4——"*—_—4—
506 7 g
g - .
< IX’ ’*/
0.5 A K e -@- IHM (224) (Ours)
K i —w= IHM (56) (Ours)
044 / A -+- SHN
X /r’ -%- SB
03 Prad ~+= HM (Ours)

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19
PCK alpha threshold

Figure 6: PCK values for the five examined models for
varying thresholds.

lighting conditions, camera rotations and positions.
The tools are often truncated or partially occluded by
hands or other objects. The images are manually an-
notated with keypoint locations. For each tool six to
ten different 3D models with textures were collected
from the internet. These models were used to gener-
ate a dataset of 10.000 training images as described
in Section 3. For each tool, the five different models
were trained on that dataset.

For each model the PCK value was computed on the
validation dataset of real images, the results are dis-
played in Table 1. For each of the four tools, the In-
termediate Heatmap Model outperforms the Simple
Baseline and Stacked Hourglass models. The latter
is outperformed by a large margin, highlighting the
importance of transfer learning when using synthetic
training data. Also the model without intermediate
supervision is outperformed for each tool, showing
the importance of this learning method. To further
examine the accuracy, the performance of the mod-
els is measured for differing o values for the PCK.
The results, shown in Figure 6, indicate that IHM has
a way better localization error, as it manages to still
achieve a good PCK score at a very low o value com-
pared to the other models. Remarkably, the IHMsq
model with two less upsampling layers performs as
well as, or better than the full IHM model. To fur-
ther examine this, the distance between the keypoints
that were correctly predicted with o0 = 0.1 and the ac-

Real-time Detection of 2D Tool Landmarks with Synthetic Training Data

IHM (224) (Ours)
IHM (56) (Ours)
SHN

SB

HM (Ours)

il

25 A

Average Localisation Error (px)

Screwdriver Wrench CombWrench Hammer
Tool

Figure 7: Average localization error for correctly predicted
keypoints at oo = 0.1. The images are of size (224,224).

Figure 8: Six examples from the tool dataset. Predictions
made by the IHMs¢ model are indicated by the dots. Cor-
rectly predicted images were chosen.

tual ground truth is computed. These results per class
are shown in Figure 7. The IHMj74 model has an
average localization error of 8.4px for correctly pre-
dicted keypoints, whereas the [IHMs¢ model has an er-
ror of 7.9px. The SHN and SB methods have an error
of 25.2px and 18.8px respectively. This shows that
the final upsampling layers, that utilize the low-level
features from the feature detector, offer no benefit to
the final accuracy. This indicates the importance of
high level features when training on synthetic data.
Some correct predictions made by the best perform-
ing model IHMsg4 are shown in Figure 8.

5.1.1 Performance

The time needed to process an image is 0.04 sec-
onds on average for all our models, this equates to
25 frames per second. This time includes all post-
processing done to find the keypoint locations from
the generated heatmaps. This time was measured
on a machine with an NVidia GeFore RTX 2080 su-
per. The other models performed within comparable
times.

45

ROBOVIS 2021 - 2nd International Conference on Robotics, Computer Vision and Intelligent Systems

0.90 1 -+~ 3D rendered dataset et
—-%- Cut & Paste dataset /,,//
il X
0.85 4 o -’
R4 = — =
/// /’,
-t X
. 0.801 etmmr X
9 - ,
© r /
5 /7 9(’
o K _—
20754 ¢ Kol
/ Il
! /
4 /
4
0.70 X
e
/
/
,I
0.65 /
X

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19
PCK alpha threshold

Figure 9: PCK values for varying o thresholds of the IHM5¢
model trained on the Cut and Paste dataset compared to our
3D dataset.

5.1.2 Cut and Paste vs. 3D Generated Training
Data

To show the importance of using 3D generated train-
ing images for keypoint localization, as opposed to
cut and paste 2D images, an extra experiment is con-
ducted, comparing the two methods. For this ex-
periment the focus is on the screwdriver class. An
extra set of images with ground truth annotations is
created according to the method of (Dwibedi et al.,
2017). Images of ten different screwdrivers were col-
lected from the internet and their backgrounds were
removed. They were added to random background
images with a random rotation, translation and scale
using a random blending mode, as described in Sec-
tion 3 and (Dwibedi et al., 2017). This process was
repeated to generate 10.000 images. This dataset was
then used to train a version of the IHM model. This
model is compared to the model trained on the 3D
generated data. This comparison for a varying range
of o values can be seen in Figure 10. The model
trained on 3D data clearly outperforms the model
trained on the Cut and Paste generated images. This
shows that the extra variation that 3D generated data
brings has a clear benefit for the task of keypoint lo-
calization.

5.2 Pascal3D Dataset

As no established dataset or benchmark exists for this
specific problem, the proposed method is also vali-
dated on the Pascal3D dataset. Since the results from
the previous section already show that our method
generalizes to real images when trained on synthetic
ones, the focus is now on purely validating the task of
keypoint detection. Hence, for the Pascal3D dataset,
we train on the real images provided by the dataset

46

Table 2: Comparison of selected methods on the PAS-
CAL3D Dataset.

Method PCKy—0.1
IHM;5¢ (Ours) 74.2
HM (Ours) 76.7
Pavlakos et al. (Pavlakos et al., 2017) 82.5
Zhou et al. (Zhou et al., 2018) 78.6
Tulsiani et al. (Tulsiani and Malik, 2014) 68.8
Long et al. (Long et al., 2014) 48.5
Simple Baseline (Xiao et al., 2018) 42.7

and not synthetic ones generated by our method. For
each of the classes in the dataset a separate model is
trained to detect the keypoints specified in the dataset.
A separate validation set is withheld from training and
used to compute the PCK values.

The results of our models are compared to those of
a number of existing methods. This is shown in Ta-
ble 2. The PCK values are taken from the methods
respective papers. For the (Pavlakos et al., 2017)
method, the PCK value was computed by (Zhou et al.,
2018). Our IHMs model achieves an accuracy of
74.2 whereas our HM model achieves 76.7 PCK. In-
terestingly the model with intermediate supervision
performs worse than the model without. This indi-
cates that intermediate heatmap generation improves
accuracy when training on synthetic data, but is not
of useful when training is done using real data. Our
method performs well for most classes, achieving
+90% accuracy for the bus and car classes, but the
score is lowered significantly by bad performance on
the dining table and train classes. These results show
that, although not achieving state-of-the-art, the pro-
posed method still achieves decent performance when
applied to a different domain. The focus of this paper
is to detect tool keypoints in real-time when trained
on synthetic data, so scoring only 5.8 points below
SoA on a different task is reasonable.

6 CONCLUSION

In this paper a method for real-time tool keypoint
localization was proposed, along with a method for
synthetic data generation. Models were successfully
trained to detect the landmarks of four different tools
in real images, proving the usability of the proposed
data generator tool. It was shown that the method out-
performs existing methods at the task by predicting
the keypoints with a higher accuracy. Additionally
the importance of intermediate supervision when us-
ing synthetic data was shown, as a copy of our model
that does not use this scheme performs worse on syn-
thetic data. Furthermore, we have shown that an exact

3D model of an object is not necessary when generat-
ing synthetic training images, as long as a set of vary-
ing 3D models are used. Validation on the Pascal3D
dataset has shown that this method also generalizes to
domains other than tools.

ACKNOWLEDGEMENTS

This study was supported by the Special Research
Fund (BOF) of Hasselt University. The mandate ID
is BOF200WB24. Research was done in alignment
with Flanders Make’s PILS and FAMAR projects.

REFERENCES

Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf:
Speeded up robust features. In Leonardis, A., Bischof,
H., and Pinz, A., editors, Computer Vision — ECCV
2006, pages 404-417, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Burt, P. J. and Adelson, E. H. (1983). A multiresolution
spline with application to image mosaics. ACM Trans.
Graph., 2(4):217-236.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on com-
puter vision and pattern recognition, pages 248-255.
Ieee.

Dwibedi, D., Misra, 1., and Hebert, M. (2017). Cut, paste
and learn: Surprisingly easy synthesis for instance de-
tection. pages 1310-1319.

Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: A paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Commun. ACM, 24(6):381-395.

Ghiasi, G., Cui, Y., Srinivas, A., Qian, R., Lin, T.-Y., Cubuk,
E. D, Le, Q. V., and Zoph, B. (2020). Simple copy-
paste is a strong data augmentation method for in-
stance segmentation.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep resid-
ual learning for image recognition.

Hinterstoisser, S., Lepetit, V., Wohlhart, P., and Kono-
lige, K. (2017). On pre-trained image features
and synthetic images for deep learning. CoRR,
abs/1710.10710.

Hodan, T., Vineet, V., Gal, R., Shalev, E., Hanzelka, J.,
Connell, T., Urbina, P., Sinha, S. N., and Guenter, B.
(2019). Photorealistic image synthesis for object in-
stance detection. In 20719 IEEE International Confer-
ence on Image Processing (ICIP), pages 66-70.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. CoRR, abs/1502.03167.

Kingma, D. P. and Ba, J. (2017). Adam: A method for
stochastic optimization.

Real-time Detection of 2D Tool Landmarks with Synthetic Training Data

Law, H. and Deng, J. (2020). Cornernet: Detecting objects
as paired keypoints. International Journal of Com-
puter Vision, 128.

Long, J., Zhang, N., and Darrell, T. (2014). Do convnets
learn correspondence? CoRR, abs/1411.1091.

Lowe, D. (2004). Distinctive image features from scale-
invariant keypoints. International Journal of Com-
puter Vision, 60:91—.

Newell, A., Yang, K., and Deng, J. (2016). Stacked hour-
glass networks for human pose estimation. In Leibe,
B., Matas, J., Sebe, N., and Welling, M., editors, Com-
puter Vision — ECCV 2016, pages 483-499, Cham.
Springer International Publishing.

Pavlakos, G., Zhou, X., Chan, A., Derpanis, K. G., and
Daniilidis, K. (2017). 6-dof object pose from semantic
keypoints. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 2011-2018.

Peng, S., Liu, Y., Huang, Q., Zhou, X., and Bao, H. (2019).
Pvnet: Pixel-wise voting network for 6dof pose esti-
mation. pages 4556-4565.

Pérez, P., Gangnet, M., and Blake, A. (2003). Poisson im-
age editing. ACM Trans. Graph., 22(3):313-318.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: A simple way
to prevent neural networks from overfitting. Journal

of Machine Learning Research, 15(56):1929-1958.

Toshev, A. and Szegedy, C. (2014). Deeppose: Human pose
estimation via deep neural networks. In 2014 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 1653—-1660.

Tulsiani, S. and Malik, J. (2014). Viewpoints and keypoints.
CoRR, abs/1411.6067.

Wei, S., Ramakrishna, V., Kanade, T., and Sheikh, Y.
(2016). Convolutional pose machines. In 2016 IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4724-4732.

Xiang, Y., Mottaghi, R., and Savarese, S. (2014). Beyond
pascal: A benchmark for 3d object detection in the
wild. In IEEE Winter Conference on Applications of
Computer Vision (WACV).

Xiao, B., Wu, H., and Wei, Y. (2018). Simple baselines
for human pose estimation and tracking. In Ferrari,
V., Hebert, M., Sminchisescu, C., and Weiss, Y., edi-
tors, Computer Vision — ECCV 2018, pages 472487,
Cham. Springer International Publishing.

yuanyuanli85 (2018). Stacked_hourglass_network keras.
https://github.com/yuanyuanli85/Stacked_Hourglass_
Network Keras.

Zhou, X., Karpur, A., Luo, L., and Huang, Q. (2018).
Starmap for category-agnostic keypoint and viewpoint
estimation. CoRR, abs/1803.09331.

47

