OLTERNOTE

GHG EMISSIONS IMPACT OF SUSTAINABLE AVIATION FUELS PRODUCED FROM THE HYDROPROCESSING OF OILSEED CROPS

Gonca Seber¹, Neus Escobar², Hugo Valin², Robert Malina¹

¹Hasselt University, Environmental Economics, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium ²Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

gonca.seber@uhasselt.be

BACKGROUND

Carbon cycle

Emissions from aviation

- 2.1% of global greenhouse gas emissions (GHG) in 2019.
- International aviation: 1.3%

ICAO (International Civil Aviation Organization)

- Tracks emissions from international civil aviation
- Aspirational goals
 - Medium-term: Carbon neutral growth from 2020
 - Long-term: Reduce net emissions to 50% of what they were in 2005 by 2050

Basket of measures

- Sustainable aviation fuels (SAF)
 - Drop-in: Usable with existing infrastructure in a mixture with kerosene up to 50%
 - ➢ 40 million L of SAF was used by commercial flights globally in 2019, less than 1% of total use (ATAG 2020)

Life Cycle Assessment (LCA)

- Methodology used to understand environmental impacts associated with a product, process or service
- <u>Functional Unit</u>: gCO₂e/MJ jet fuel
- <u>System Boundary</u>: Well-to-wake

- <u>Baseline</u>: ICAO Baseline for jet fuel is 89 gCO₂e/MJ jet
- Hydroprocessed esters and fatty acids (HEFA) fuels: Hydroprocessing produces paraffin-rich liquids from the triglyceride molecules in the lipid feedstocks such as plant oils, waste oils and algal oils

<u>Market-based measures</u>

- e.g. CORSIA (Carbon Offsetting and Reduction Scheme for International Aviation)
- Using CORSIA Eligible Fuels (CEF): 10% net GHG reductions should be achieved, and biomass for these fuels should not be obtained from land with high carbon stock
- <u>Co-products</u>: Emissions can be distributed/allocated among co-products using various allocation methods or displacement
- <u>Attributional LCA</u>: Input/output analysis
- Stochasticity: Probability density functions were assigned into key parameters for Monte Carlo analysis, using available data from the literature and industry sources.
- <u>Direct land use change (DLUC)</u>: Conversion of land from previous uses to agricultural production (e.g., to grow biofuel feedstock).
 - IPCC's Tier 1 procedure: GHG emissions from DLUC estimated as differences in land carbon stocks before and after the land conversion

RESULTS AND CONCLUSIONS

Oilseed crops for ALTERNATE

Feedstock ¹	Distribution	Av.Yield	Oil content	Potential jet fuel production	Co-products:	Co-products
			(WC /0)	range (L/ha) ⁷		
Camelina	N. America, EU	1.9 ²	36.0	799-3,085	Meal	Fodder
Castor	India, Brazil, China	1.1 ³	47.0	398-1,535	Meal	Fertilizer, fodder (after detox.)
Jatropha	Asia, Africa, S. America	2.5 ⁴	35.0	1,185-4,573	Meal/ husk/ shell	Fertilizer, fodder (after detox.) / combusted
Palm (OP)	Malaysia, Indonesia	17.9 ⁵	22.4	10,018-38,666	Palm kernel meal	
Pennycress	Eurasia, N. America	1.0	34.0	456-1,759	Meal	Fodder
Rapeseed	EU	3.4 ⁵	44.0	1,238-4,779	Meal	Fodder
Salicornia	Africa, Middle East, S. America, China, US	2.0 ⁴	28.2	1,169-4,511	Meal / straw	Fodder/ fuel production
Cauhaan	N America Drazil	2 25	10.1		Maal	Foddor

Attributional LCA Results*

Juybean	N. America, Drazii	5.2	1.7.1	2,723-10,311	Ivical	Touder
Tobacco	China, Brazil, India, US, Greece	2.1 ⁶	38.0	925-3,568	Meal	Fodder

¹Shaded rows indicate ALTERNATE feedstocks that are evaluated for this work, ²Angelini et al. 2020, ³Carrino et al. 2020, ⁴Stratton et al. 2010, ⁵FAOSTAT, ⁶Fatica et al. 2019 ⁷ Estimated using the product slate from Pearlson et al. 2013.

Sol mineralization Sol closs So

Asia Cont: Asia continental; Asia In: Asia insular; C. temp: cool temperate; Deg. Grassl.: Degraded grassland; Grassl.: grassland; High: high input intensity; low: low input intensity; Med.: medium input intensity; NT: No tillage; RT: Reduced tillage; South Am: South America; T: Tillage; W. temp: warm temperate.

- DLUC emission factors are high if forest or shrubland is converted for cultivation. High DLUC emission factors are also due to low seed yields from the corresponding crops.
- Grassland and degraded grassland yield the lowest DLUC emission factors if they are converted into cropland.

 The main contributors to the life cycle emissions are cultivation and fuel production steps.

- The results show at least ±15 % variability. Parameters such as fertilizer and diesel use for cultivation are the main reasons for this variability. Sensitivity analysis also show a dependence on the hydrogen production technology.
- Energy allocation assigns a relatively small share of the emissions into the meal, whereas mass allocation allocates a high share of emissions due to large mass of meal produced as a co-product in most cases. Market-based allocation is done based on calculated prices from the literature, and or using soybean meal as proxy.
- Most of the ALTERNATE feedstocks provide GHG emissions savings (at least 17%) if they are grown on grassland or degraded grassland.

Scenario-specific DLUC emission factors *

