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Abstract

Background: In response to the ongoing COVID-19 pandemic, several countries adopted measures of social
distancing to a different degree. For many countries, after successfully curbing the initial wave, lockdown measures
were gradually lifted. In Belgium, such relief started on May 4th with phase 1, followed by several subsequent phases
over the next few weeks.

Methods: We analysed the expected impact of relaxing stringent lockdown measures taken according to the phased
Belgian exit strategy. We developed a stochastic, data-informed, meta-population model that accounts for mixing and
mobility of the age-structured population of Belgium. The model is calibrated to daily hospitalization data and is able
to reproduce the outbreak at the national level. We consider different scenarios for relieving the lockdown, quantified
in terms of relative reductions in pre-pandemic social mixing and mobility. We validate our assumptions by making
comparisons with social contact data collected during and after the lockdown.

Results: Our model is able to successfully describe the initial wave of COVID-19 in Belgium and identifies interactions
during leisure/other activities as pivotal in the exit strategy. Indeed, we find a smaller impact of school re-openings as
compared to restarting leisure activities and re-openings of work places. We also assess the impact of case isolation of
new (suspected) infections, and find that it allows re-establishing relatively more social interactions while still ensuring
epidemic control. Scenarios predicting a second wave of hospitalizations were not observed, suggesting that the
per-contact probability of infection has changed with respect to the pre-lockdown period.

Conclusions: Contacts during leisure activities are found to bemost influential, followed by professional contacts and
school contacts, respectively, for an impending second wave of COVID-19. Regular re-assessment of social contacts in
the population is therefore crucial to adjust to evolving behavioral changes that can affect epidemic diffusion.
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Background
The COVID-19 pandemic has put a massive burden on
modern society. While the global death toll of the virus
has risen above 500,000 reported deaths on the 15th of
July [1], several countries are evaluating strategies to cope
with the virus on the medium to long term. As dur-
ing the first wave of the COVID-19 pandemic neither
a vaccine nor adequate therapeutic options were avail-
able, non-pharmaceutical interventions have been proven
effective in reducing the pressure on healthcare systems
[2–6]. After a massive implementation of lockdown mea-
sures, affecting as much as one third of the global world
population [7], governments have eased some of the
social distancing measures. After imposing a lockdown
on March 14th [8] , the Belgian government curtailed
some of these measures with a plan for a gradual reopen-
ing over several weeks, starting from the 4th of May.
The absence of substantial population immunity after
this first wave of COVID-19 in Belgium [9] increases the
risk of subsequent large-scale outbreaks when interven-
tions are relaxed which could result, when not contained,
in new COVID-19 waves with large numbers of new
confirmed cases and hospitalized persons. In this con-
text, data-driven models of disease spread can provide
useful insights into the expected impact of easing non-
pharmaceutical interventions [2, 6, 10]. Here we present a
scenario analysis of possible re-opening strategies easing
lockdown measures based on a data-driven metapopula-
tion model for Belgium for COVID-19 [11]. We compare
the expected epidemic trajectories and, at the same time,
we validate the modelled scenarios with social contact
data collected during and after lockdown.We aim to iden-
tify which intervention strategies have the largest poten-
tial impact on disease spread, based on the scarce data
available during the early stage of the pandemic.

Methods
We constructed a meta-population model for COVID-
19, in order to study the Belgian epidemic. The model
reproduces the demography of children (0-18 years) and
adults (19 years and above) in the 581 different Belgian
municipalities [12]. Publicly available data [13, 14] from
a social contact survey conducted in Flanders (Belgium)
anno 2010-2011 is used to inform mixing patterns of
the population [15–17]. Mobility data retrieved from the
Belgian census [18] is used to reconstruct mobility fluxes
due to school attendance and work. A stochastic compart-
mental model is used to describe the spread of COVID-19
in the population within each patch of the system. The
model is fitted to national hospitalization data [19].

Compartmental patch model
We use an extended SEIR stochastic compartmental
model (Fig. 1) in which we distinguish pre-symptomatic

(Ip), asymptomatic (Ia), and symptomatic (Ims and Iss)
transmission by assuming different transmission rates,
governed by different contact patterns during daytime
and night-time as two time steps per simulated day.
In particular, we assume that symptomatic individuals
(both mildly symptomatic Ims and severely symptomatic
Iss) reduce their number of contacts (following obser-
vations made during the 2009 Influenza pandemic [20])
and their commute (school/work) mobility. A fraction
of symptomatic adults can show severe symptoms and
thereforef require hospitalization (H) [5, 21]. Once this
happens, we assume that they cannot further infect other
people due to isolation measures [22]. We assume that
children have a 50% lower susceptibility to infection com-
pared to adults [4, 23, 24]. Table 1 shows a summary of
the model parameters and the distributional assumptions
thereabout.

Population mixing
According to the so-called social contact hypothesis [25]
the number of contacts is proportional to the transmis-
sion probability of the disease, allowing to use empirically
collected contact matrices to model disease transmission.
Population mixing is informed by social contact data for
different locations (work, home, school, transportation,
leisure activity and other) during weekdays and weekends
[15, 16], accessible through the Socrates tool [13, 14].
An asymptomatic individual interacts according to a con-
tact matrix that is the sum of the contact matrices that
correspond to different locations:

Casympt = Chome + Cwork + Cschool + Cleisure

+ Ctransport + Cother
(1)

The locations considered are the main ones used to clas-
sify contact location in social contact surveys [26, 27]
and include an overall category for leisure activities (e.g.
going to the gym, to a bar, etc.). Contributions from work,
school and transport contacts are considered only dur-
ing daytime timesteps of the simulation, whereas other
contributions are considered both for daytime and night-
time timesteps. Given the strong age-specific severity of
COVID-19, we assume that, when symptomatic, adults
reduce their contacts in a location-specific fashion, as
reported during the 2009 H1N1 pandemic [20]:

Csympt = Chome + 0.09 · Cwork + 0.06 · Cleisure

+ 0.13 · Ctransport + 0.25 · Cother
(2)

We assume that children do not change behavior when
symptomatic, as they are more likely to present fewer and
milder symptoms as compared to adults [28–30].
When intervention measures are implemented (see

“Exit strategies” section), location-specific contacts are
reduced. This has an impact on both Csympt and Casympt,
implicitly assuming that a reduction in contacts because
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Fig. 1 Schematic representation of the compartmental model: Individuals start as susceptible (S) and can become exposed to the disease (E) when
interacting with infected individuals (Ip , Ia , Ims and Iss). After a latent period, exposed individuals enter a pre-symptomatic phase (Ip), after which they
can either become symptomatic (Ims and Iss) or remain without symptoms (Ia). Symptomatic individuals can developmild symptoms (Ims) or severe
symptoms (Iss). When symptoms are severe, they are hospitalized (H). The final outcome of infected individuals is either recovery (R) or death (D)

of symptoms is the same during the pre-pandemic and
intervention period. The contact matrices then become:

Casympt = Chome + pw · Cwork + ps · Cschool

+ po · Cleisure + pw · Ctransport + po · Cother

(3)

Csympt=Chome + pw · 0.09 · Cwork + po · 0.06 · Cleisure

+ pw · 0.13 · Ctransport + po · 0.25 · Cother

(4)

where pw, ps, po are the percentages of contacts at work,
at school and during leisure/other activities.

Contact matrices depend explicitly on the day of the
week, as contact patterns during weekdays are profoundly
different from contact patterns during the weekend.

Population mobility
Data from the Belgian census [18] is used to infer the
daily commuting network among different Belgianmunic-
ipalities. These mobility patterns capture the regular,
day-to-day movement of individuals to reach their work-
ing/studying place. Commuting individuals make contacts
in their residence municipality during the night and in
their work/schoolmunicipality during the day. This is cap-
tured via the force of infection, described in detail in the
next section.
More details on population mobility can be found in

the Supporting Information.We assume that telework and

Table 1 Overview of the model parameters

Quantity Median (95% CI) Distribution Source

Latent period (ε) 1.4 days ([0:7] days) Exponential [21, 60]

Pre-symptomatic period (θ ) 2.4 days ([0:13] days) Exponential [21, 60]

Children infectivity (wrt adults) 0.5 — [4, 23, 28, 61]

Proportion asymptomatic (pa) 0.5 — [28, 61–63]

Proportion mild symptoms (pm) 0.5/0.476 (children/adults) — [23, 28, 61, 62]

Proportion severe symptoms (ps) 0 /0.024 (children/adults) — [9]

Symptomatic/asymptomatic period (μ) 2.4 days ([0:13] days) Exponential [53]

Symptom onset to hospitalization (σ ) 4.7 days ([0:17] days) Weibull [53]

Hospital admission to death (ξ ) 4 days ([1:9] days) Log-logistic [53]

Hospital admission to recovery (τ ) 5 days ([1:10] days) Weibull [53]

Fitted parameter Point estimate (95% CI)

Per-contact

transmission probability (β) 0.0449 [0.0446:0.0451]

Number of initial infected 14480 [12750:16217]

Lockdown reduction in number of contacts 85% [81%:89%]

Time to reach full compliance 7 days [7:7] days
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school closure, in addition to reducing contacts at work
and at school, reduce the mobility of the corresponding
age class. So, for example, if teleworking is reducing con-
tact at work by 60%, also the mobility of adults is reduced
by 60%. Considered values of mobility reduction for adults
(ma) and children (mc) for each scenario are reported in
Table 2.

Force of infection
The force of infection for age class i and patch p is
computed at each time step as:

λ(i, p, t) = β
∑

j

[

SusciCasympt
i,j (t)Inf j

Ipp, j(t)+Ipa, j(t)
Np(t)

+SusciCsympt
i,j (t)Inf j

Ipms, j(t)+Ipss, j(t)
Np(t)

]

(5)

where Ipx j(t) is the number of infectious individuals of
infection class x belonging to age class j present in patch
p at time t and Np(t) is the total patch population at
time t. Equation (5) can account for different suscepti-
bility (Susci) and infectivity (Infj) for age classes i and
j. The contact matrices used depend on time because
of week/weekend cycles and because of the intervention
strategies implemented at any given time (see following
sections). The force of infection presents an additional
dependence on time, as depending on the time steps com-
muting individualsmay contribute to the force of infection
of their residence patch or of their destination patch.
This contribution is considered both in the infected terms
Ipx j(t) as well as in the population term Np(t).

Interventions implemented on the 14th of March 2020
Starting from Friday 13th of March at midnight,
Belgian authorities have declared the nation-wide clo-
sure of schools and universities, together with restaurants,
cafes and gyms. Also, public gatherings were banished.
On the 17th of March, further dispositions were put in
place, limiting mobility of people in addition to closing
companies and shops offering non-essential services. We
model interventions by reducing mixing and mobility in

the population (see “Population mixing” and “Population
mobility” sections), with a compliance that increases lin-
early with time and reaches full compliance on the 23rd of
March.

Calibration
To calibrate our model, we used publicly-available
national data on daily hospital admissions [19]. We use
Bayesian Optimization [31, 32] to maximize the likeli-
hood of the simulated number of hospitalizations, given
the observed data. We estimate the per-contact transmis-
sion probability (β), the number of initial infected, the
reduction of the contact matrix during intervention with
respect to the pre-pandemic period and time to reach full
compliance (see Table 1). More details on the calibration
procedure can be found in the Additional file 1.

Exit strategies
The Belgian government lifted the lockdown gradually
from the 4th of May onward. Table 2 shows a simplified
summary of the different phases and their implementa-
tion. Changes with respect to the previous phase (i.e. the
previous row) are shown in bold. In our scenario analysis
we considered three phases:

• Phase 1: from the 4th of May, increasing the contacts
made at work and during commuting by adults, to
account for the increase of people going back to
work. Mobility of adults increases accordingly.

• Phase 2: from the 18th of May, increasing contacts
made at school and during commuting by children to
account for school re-opening. Mobility of children
increases accordingly.

• Phase 3: from the 8th of June, increasing contacts
made during leisure and in other locations, to assess
the impact of a possible re-opening of leisure
activities.

For these phases we considered a compliance that
increases linearly with time and reaches full compliance
after one week.

Table 2 Timing and concepts of lockdown relief

Timing
start/end

Work & trans-
portation
contacts (%)
(pw)

School contacts
(%) (ps)

Mobility adults
(%)(ma)

Mobility
children(%) (mc)

Leisure & other
contacts (%)(po)

Phase 1 (work) 04-05/17-05 20 [10-40] 0 20 [10-40] 0 10

Phase 2 (school) 18-05/07-06 20 [10-40] 20 [10-40] 20 [10-40] 20 [10-40] 10

Phase 3 (leisure) 08-06/30-06 20 [10-40] 20 [10-40] 20 [10-40] 20 [10-40] 20 [10-40]

Summer holidays 01-07/31-08 20 [10-40] 0 20 [10-40] 0 20 [10-40]

Each phase is implemented incrementally with respect to the previous ones. Bold values highlight the changes with respect to the previous phase (i.e. the previous row).
Intermediate parameter values are reported, with the full range between squared brackets. See sections ‘Population mixing’ and ‘Populationmobility’ for parameter definitions
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Case isolation
When extensive contact tracing and testing is available, a
viable option for disease mitigation is to isolate individu-
als that are infected. We assume that case isolation affects
both symptomatic and asymptomatic individuals and we
present our results in terms of a synthetic quantity, the
parameter α, that is the percentage of individuals enter-
ing the symptomatic/asymptomatic class (Ia, Ims and Iss)
that are effectively isolated. We assume that these isolated
individuals reduce their contacts by a factor of ten. We
do not cover here how to link the target α to an optimal
strategy for contact tracing and testing. Such a strategy
should take into account feasibility thereof in terms of the
number of index cases that can be traced, test features
(e.g. sensitivity, specificity) , and willingness to report con-
tacts [22, 33, 34]. We also assume that no isolation of
pre-symptomatic people is implemented (Ip). We consid-
ered that case isolation can start at the beginning of phase
2 (i.e. on the 18th of May) or at the beginning of phase 3
(i.e. on the 8th of June), to assess the impact of delay in
implementation.

Results
Impact of lockdown
Figure 2 shows the daily number of new hospitalizations
in the initial phase of the epidemic, compared with our
best model fit. Hospitalization data up to the 21st of
March are consistent with an exponential growth model
with a doubling time of 3.09 days (95% CI [ 3.05 : 3.11])
(red line). Combined with our estimated model param-
eters, this results in a basic reproduction number R0 =
3.40 (95% CI [ 3.36 : 3.44]). A strong, periodic effect

Fig. 2Model fitting. Data on hospital admissions is shown in
comparison with the best-fit model. Black points are used to calibrate
the model in the lockdown phase. In both panels median curves are
shown along with 50% confidence intervals (CIs; dark shade) and 95%
CI (light shade)

on the reported number of hospital admissions can be
observed, most likely due to delays in hospitalization dur-
ing weekends. The no-intervention model is in line with
hospitalization data up to the 21th of March, showing that
interventions took about one week to impact hospital-
izations. The model including the effect of interventions
(green line) is compatible with an overall reduction in the
total number of contacts of 85% with respect to the period
prior the COVID-19 pandemic (see Additional file 1 for
additional information on contact matrices).

Scenario analysis for lifting lockdown
Figure 3 shows the impact of the different phases of the
exit strategy on the number of new hospitalizations, con-
sidering different implementations (i.e. parameter values)
for each phase. We present estimation of the number of
new hospitalizations up to the 31st of August, as consider-
ing a longer timeframe would require additional assump-
tions with regard to social distancing after the summer
period. Results for the whole year are reported in the
Additional file 1 (Figure S4). In Fig. 3a, at the beginning
of phase 1 (4th of May), contacts at work and on trans-
portation are increased, ranging from 10% to 40% of pre-
pandemic values. As expected, there is a delay between
the implementation of the first phase and its effect on the
number of hospital admissions: after 3 weeks the num-
ber of hospital admissions stops decreasing as compared
to the lockdown scenario. One further week is required
to see differences between the three implementations of
phase 1. In Fig. 3b we show the impact of phase 2 (school
re-opening) once phase 1 is implemented for the small-
est value of contacts at work/transportation considered
(10%). The percentage of school contacts ranges from 10%
to 40%. In this case, the different curves start to diverge
4 weeks after the re-opening of schools. Summer school
holidays, starting on the 1st of July have a considerable
(delayed) effect on the number of hospital admissions only
in the 40% school contacts scenario. In Fig. 3c we show the
impact of phase 3, once phase 1 and 2 are implemented
with the smallest values of the considered parameters. Dif-
ferent implementations (i.e. parameter values) of phase 3
give different results after three weeks. Comparing the
three panels, it is clear that changing the implementation
of phase 3 has a larger impact than changing implemen-
tation of phase 1 or 2. The larger impact of phase 3
(leisure/other activities) is confirmed when comparing all
the scenarios we considered.
Figure 4 shows the number of daily hospitalization and

the cumulative number of hospitalizations up to the 31st
of August (results up to the 31st of December are avail-
able in Additional file 1: Figure S4). Results are shownwith
respect to the scenario in which the lockdown would con-
tinue until the end of the simulation (green, solid line of
panel a,b and c of Fig. 4) and that would result in 23.000
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Fig. 3 Exit scenarios using different timings and location-specific reductions. a: different implementations of phase 1 (work re-opening). b: different
implementations of phase 2 (school re-opening). c: different implementations of phase 3 (leisure re-opening). The top of each panel shows the
parameter values used. In all panels median curves are shown along with 50% confidence intervals (dark shade) and 95% CI (light shade).
Color-code is consistent across panels, with the same color marking the same scenario in different panels

hospitalizations by the end of August. A smaller impact
for school re-opening with respect to work and leisure
re-opening is observed, both for peak hospitalizations
and for total hospitalizations. Increasing the contacts at
school by 10% (i.e. considering a different symbol marker
but same color along the y-axis) has a smaller impact
than increasing contacts at work (i.e. same symbol, differ-
ent color along the y-axis) or leisure/other contacts (i.e.
moving along the x-axis) of the same amount. Increasing
contacts at work has a smaller impact in terms of peak

hospitalizations than increasing leisure/other contacts; a
similar impact is instead observed for the total number of
hospitalizations. When considering results over the whole
year (Additional file 1: Figure S4) the relative increase in
the epidemic peak is weakly affected. The total final size,
instead, increases for all scenarios, as the daily number
of hospitalizations is summed up over a longer period of
time.
However, hospitalization data is compatible with the

lockdown scenario (Fig. 2) up to the end of June. Compar-

Fig. 4 Summary of exit scenarios. a: peak value of daily hospital admissions up to the 31st of August. b: number of hospitalizations up to the 31st of
August. In both panels the y-axis shows the relative variation with respect to the best-case (least contacts) scenario. A circle denotes the scenario
used in the contact isolation analysis (Fig. 6)
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ison of the contact matrices used in the model with the
results of a recent social contact survey targeting Belgian
adults during and after the lockdown provides a means
to interpret this. Figure 5 shows the measured contact
matrices in comparison to the ones of the simulated sce-
narios. For the empirical contact matrices we report the
average number of contacts, together with bootstrap con-
fidence intervals ( n = 10, 000), whereas for the ones of
the model we report the average number of contacts and
the min/max values considered in the scenarios listed in
Table 2 and shown in Fig. 3. Ourmodel uses a higher num-
ber of contacts during phase 1 with respect to empirical
data, whereas for phase 2 and 3 we observe overlapping
intervals for the number of contacts used in themodel and
measured by the empirical data. Data for children is how-
ever not available (hence marked with an “X” in Fig. 5),
making a full comparison with empirical data not possible.

Case isolation
Figure 6 shows the impact of case isolation on the sce-
nario marked with a circle in Fig. 4 (10% contacts at
work/transportation, 40% contacts at school and 30%
leisure/other contacts scenario marked with a circle in
Fig. 4). The ability to isolate newly infected individuals has

a considerable impact on the number of hospital admis-
sions. The isolation of 25% of new cases is able to reduce
the expected number of hospital admission at the end of
August by 25%. The isolation of twice as many cases (50%
instead of 25%) would lead to a reduction of 37% of admis-
sions. Starting case isolation 3 weeks after (at the start of
phase 3 instead of phase 2) lessens the reduction to 21%
from 25%. A stronger effect of this delay is measured in
the 50% case isolation scenario: in this case, starting the
isolation at the start of phase 3 decreases the reduction in
admissions from 37% to 28%.

Discussion
We used a stochastic, discrete time, data-driven meta-
population model to evaluate several scenarios for lifting
the lockdown in three phases. The model includes data
on pre-pandemic mobility and mixing, and is calibrated
on hospital admissions. The initial phase of the COVID-
19 epidemic in Belgium is characterized by a fast spread
of the disease, with a doubling time of 3.09 days (95%
CI [ 3.05 : 3.14]), in line with values from other coun-
tries [2, 5, 35–37]. Combined with our parameter choices,
this results in R0 = 3.40 (95% CI [ 3.36 : 3.44]), which
lies within the interval estimated in recent meta-analysis

Fig. 5 Comparison of model contact matrix and measured ones. a-c: Contact matrices for phase 1 (a), phase 2 (b) and phase 3 (c) in the simulated
scenarios. For each matrix element we report the average value and the [min:max] interval over the different implementations of phases 1, phase 2
and phase 3 considered in Fig. 5. d-f: Contact matrices for phase 1 (d), phase 2 (e) and phase 3 (f) measured in a survey representative of the Belgian
adult population. For each matrix element we report the average value and the 95% bootstrap confidence interval. Contacts of children
participants, not measured in the survey, are marked with “X”. Data from [50], available at [59]
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Fig. 6 Effect of case isolation in a specific scenario. a: new hospitalizations per day. b: cumulative number of hospitalizations relative to the no case
isolation scenario. All curves are obtained considering 40% of working contacts, 40% of contacts at school and 40% of leisure/other contacts with
respect to pre-pandemic period (scenario denoted by a black circle in Fig. 4). In both panels median curves are shown along with 50% confidence
intervals (dark shade) and 95% CI (light shade)

(mean = 2.6, standard deviation = 0.54 [38] and mean
= 3.28 [37]). Our model appropriately describes hospital
admissions during the lockdown period if a strong reduc-
tion (85%) in the number of contacts is established. In
this situation the number of hospital admissions starts to
decrease 3 weeks after the start of the lockdown allow-
ing the healthcare system to cope with ICU demands. At
the end of the lockdown, the reproduction number is esti-
mated to be 0.73 (95% CI [ 0.70 : 0.76]). Such a strong
reduction in the average number of contacts marks the
disruption that a lockdown has on everyday life. Studies
inWuhan and Shanghai [4] found an even stronger reduc-
tion in the number of contacts during lockdown, while a
recent survey in the UK [38] measured a reduction of 75%.
Preliminary analysis of social contact data collected in
Belgium after the lockdown shows similar results as com-
pared to [4] and [38], in line with our modelling results.
Adherence to country-specific contact data is paramount,
as intervention measures can vary substantially between
countries, both in terms of implementation and in terms
of compliance. Collecting country specific contact data
during the different stages of the epidemic (i.e. before,
during and after intervention) is therefore of crucial
importance to adequately assess the impact of social dis-
tancing. Nevertheless, our knowledge of contact patterns
before the COVID-19 crisis can be used to identify the rel-
ative impact of introducing social distancing in different
locations. As we expect different locations to contribute
to COVID-19 diffusion according to their location specific

contact patterns, we can assess the impact of intervention
strategies formalizing them in location specific reductions
of contacts. In the current analysis this approach was
taken, whilst considering a plausible range of reductions
in social contacts in different circumstances. According
to our model, leisure activities have the largest potential
impact on the epidemic profile. This is consistent with
leisure/other contacts accounting for 25% to 40% of the
total contacts people make, according to representative
surveys [26, 27]. However, the absence of a resurgence
of hospitalizations by the end of June suggests that there
is a smaller per-contact probability of transmission after
lockdown with respect to pre-lockdown. This could be
due to behavioral changes in how contacts are established
(i.e. increased inter-personal distance or the wearing of
face masks [39]) after the lockdown or to environmen-
tal factors (e.g. humidity and temperature [40]) that could
affect transmission. As amatter of fact, surveys in Belgium
[41] have documented a marked increase in outdoor con-
tacts and face-mask wearing during the three phases of
lockdown relief (Figure S3 in Additional file 1), supporting
this hypothesis. In the light of that, our result are useful in
establishing a hierarchy of location-specific contacts, but a
careful interpretation of the absolute number of infections
is necessary.
We observed less impact of school closure on hospi-

tal admissions in contrast to social mixing at work and
during transport or leisure activities. First, as expected,
school closure leads to observable effects only in those
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scenarios in which a consistent fraction (i.e. 40% or more)
of school contacts are established in the population. Sec-
ond, as children have a much lower probability of being
symptomatic (and as such of being hospitalized) with
respect to adults [37], increased diffusion among children
increases the observed hospital admissions mostly indi-
rectly, through the increase of infected adults. We tested,
as a sensitivity analysis, a scenario in which children have
the same susceptibility to the disease: in this case school
closure would have a larger impact on the number of
infections, especially in the children’s age class. The role
of children is still unclear and, although their secondary
attack rate in household is similar to the one of adults
[29], there is evidence that they present smaller viral load
[42–45] and reduced transmissibility [28, 46], together
with a lower number of confirmed cases with respect to
adults [23]. This increased susceptibility scenario is there-
fore unlikely, given the information on COVID-19 we have
so far.
Since the expected resurgence in the number of hos-

pitalizations is not observed, this suggests that the pro-
portionality factor between conversational contacts and
transmission rates postulated in the so-called social con-
tact hypothesis [25] has changed from the lockdown to
the post-lockdown period. This is likely due to behav-
ioral changes (increased hygiene, prominence of outdoor
over indoor community contacts, face-mask wearing, etc.)
reducing the per-average contact transmission probability.
For instance, surveys [41] in Belgium have documented a
marked increase in outdoor contacts and face-mask wear-
ing during the three phases of lockdown relief (Figure
S3 in Additional file 1), supporting this hypothesis. In
our results, isolation of newly infected individuals has an
important impact on epidemic mitigation. Implementing
case isolation would allow to re-establish social interac-
tions while still ensuring epidemic containment.We stress
here that although we quantified the reduction of spread-
ing potential in terms of number of contacts, this may
also come as a combination of different effects, for exam-
ple when antivirals to be used in the early phase of the
infection will become available [47]. Also, a fast setup is
crucial: a 3 weeks delay in implementing case isolation
leads to a considerable impact on the number of new hos-
pital admissions. As a fast and reliable contact tracing is of
foremost importance, several digital solutions have been
proposed tomatch the need for personal information with
privacy concerns [48, 49].
Our model assumptions result in a set of limitations.

First, considering only two age classes does not allow
to fully capture the heterogeneity involved in COVID-19
transmission, like increased burden on senior popula-
tion. Including more age classes, however, would require
assumptions for those age-specific parameters that have
not been estimated for Belgium. In this sense our simpli-

fying assumption, although less flexible, presents an easier
to interpret picture.
The change in behavior for symptomatic individuals,

and the corresponding reduction in the number of con-
tacts, is informed by data collected during the 2009 H1N1
pandemic in the UK [20]. Although the COVID-19 pan-
demic presents different features with respect to the 2009
pandemic, a similar change of behavior in symptomatic
individuals is expected. In particular, data collected in
Belgium during and after the lockdown [50] has found
that self-isolation when symptomatic is regarded as highly
effective. Finally, although our model is specified at the
municipality level, hospitalization data at the municipal-
ity level was not available at the time of conceiving of this
study. We plan to expand our analysis at a smaller geo-
graphical scale in the future, to fully address heterogeneity
in spatial transmission.
Other models have been applied to the emergence of

COVID-19 in Belgium, either specifically [51–55] or in
multi-country applications [56]. Using different model
paradigms allows to focus on distinct aspects of the out-
break, like delay distributions of the clinical history of
patients [53], a more detailed and age-specific handling of
serological data with MCMC [52] or exploring individual-
specific heterogeneities in transmissions and contact trac-
ing options [51]. When evaluating intervention strategies
with profound societal impact, ideally different models
should be compared [57, 58].

Conclusion
In conclusion, we show the predicted impact of a phase-
based relief of lockdown measures taken in Belgium.
Through validation using empirical data on social con-
tacts and the observed trajectory of the epidemic, our
results suggest that the per-contact probability of infec-
tion has changed from pre- to post-lockdown. While
economic and societal needs urge governments to relieve
strict distancing measures and mobility restrictions,
caution is required. Contacts during leisure activities
were found to be most influential, followed by pro-
fessional contacts and school contacts, respectively, for
an impending second wave of COVID-19. Regular re-
assessment is crucial to adjust to evolving behavioral
changes that can affect epidemic diffusion. In addi-
tion to social distancing, sufficient capacity for exten-
sive testing and contact tracing is essential for successful
mitigation.
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