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Mediation analysis is often used to explore the com-
plex relationship between two variables through a third
mediating variable. This paper aims to illustrate the
performance of the deviance information criterion, the
pseudo-Bayes factor, and the Watanabe–Akaike infor-
mation criterion in selecting the appropriate multilevel
mediation model. Our focus will be on comparing the
conditional criteria (given random effects) versus the
marginal criteria (averaged over random effects) in this
respect. Most of the previous work on the multilevel
mediation models fails to report the poor behavior of
the conditional criteria. We demonstrate here the supe-
riority of the marginal version of the selection criteria
over their conditional counterpart in the mediated lon-
gitudinal settings through simulation studies and via an
application to data from the Longitudinal Aging Study of
the Amsterdam study. In addition, we demonstrate the
usefulness of our self-written R function for multilevel
mediation models.
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1 INTRODUCTION

Mediation analysis enables researchers to investigate the complex relationship between two vari-
ables through a third "mediating" variable. This indirect pathway through a mediating variable
(or mediator) helps explain how exposure affects an outcome (MacKinnon, 2008). The concept of
mediation being used in the estimation of single-level mediation for independent subjects from
random sampling (Hayes, 2017; MacKinnon, 2008) and multilevel mediation (McNeish, 2017;
Zigler & Ye, 2019) has broad applications in both biomedical and social science research.

Multilevel data is usually encountered in medicine where patients are nested within hospi-
tals, or repeated measurements are nested within patients. However, this type of multilevel data
violates the assumption of independence necessary for traditional regression methods (Zigler &
Ye, 2019). Hence, several authors have examined the use of mediation in multilevel data using
multilevel modeling (MLM)(Bauer, Preacher, & Gil, 2006; Krull & MacKinnon, 1999; MacKin-
non, 2008; Preacher, Zyphur, & Zhang, 2010; Rusá, Komárek, Lesaffre, & Bruyneel, 2018) and the
multilevel structural equation model (Lee, 2007; McNeish, 2017; Preacher et al., 2010; Yanuar,
Ibrahim, & Jemain, 2013; Zigler & Ye, 2019).

Krull and MacKinnon (2001) established the terminology for a multilevel mediation design.
They suggested the Predictor-Mediator-Outcome format, wherein a number indicates the level of
data where each variable is located. For example, a 1-1-1 means all three variables are measured
at level-1. Level 1 represents the lowest measurement level, for example, repeated measurements
within a person, and that level 2 represents the cluster level, for example, the subjects. In a lon-
gitudinal study, this means that all variables are time dependent. Other designs include the 2-1-1
design where the predictor is at level 2, and the outcome and mediator have been measured as
level 1. This is, for instance, true in an RCT (randomized controlled trial) with more than one
follow-up measurement. The intervention variable is not time-independent, that is, measured at
level 2. Figure 1 displays a 1-1-1 design for an MLM where the associations between the vari-
ables are split into between-cluster and within-cluster effects. For further details regarding this
terminology, see Krull and MacKinnon (2001).

Several MLMs have been proposed in the literature; therefore, evaluating the most appropri-
ate model that best fits the data would be a useful exercise. Model selection is a task of selecting an
appropriate statistical model from the list of candidate models, given data. It is an important step
in a statistical modeling exercise. In most mediation analyses, MLM models are typically evalu-
ated for bias, coverage probability, and power (Blood & Cheng, 2011; Gao & Albert, 2018; Wang,

F I G U R E 1 Longitudinal Aging Study of the Amsterdam (LASA) data example: Diagram for a two-level
mediation model in which the effect of Age on Cognitive Ability is partially mediated by Processing Speed: Age
affect Processing Speed (path 𝛼j), Processing Speed affect Cognitive Ability (path 𝛽j), and Age affect Cognitive
Ability (path 𝜏′j )
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ARIYO et al. 221

Chen, Goldstein, Buck Louis, & Gilman, 2019; Zigler & Ye, 2019). Few authors use model selec-
tion criteria using a frequentist (Wu, Carroll, & Chen, 2018) or the Bayesian (Rusá et al., 2018)
approach. Rusá et al. (2018) used the Watanabe–Alkaike Information criteria (WAIC) to com-
pare their flexible, moderated mediation model with competing models. However, the authors did
not consider the marginal version of the WAIC. Here, we compare the conditional and marginal
Bayesian model selection criteria performance to select the most appropriate MLM model for the
data at hand.

The choice between conditional and marginal criteria should be based on the aim of the study
(Vaida & Blanchard, 2005). For instance, the marginal model selection criteria should be used
when the study’s aim is to estimate the predictiveness of the model when new subjects (as in
longitudinal study) are involved. While the conditional criteria should be used when the aim is
to estimate the predictiveness of the model when new elements in the cluster (in longitudinal
studies, new observations from the existing subjects) are involved. The model selection criteria
based on the likelihood from which the random effects have been integrated out are referred to
as the marginal criteria whereas the model selection criteria based on the likelihood including
the random effects, that is, the conditional likelihood, result in conditional criteria. This paper
will compare the performance (the ability of the criteria to select an appropriate data-generating
model) of the conditional and marginal versions of three popular Bayesian model selection
criteria: the deviance information criteria (DIC), the Pseudo-Bayes factor (PSBF), and WAIC.

The conditional versions of the three model selection criteria discussed above are the most
popular and easiest to compute from the generated Markov Chain Monte Carlo (MCMC) samples.
Consequently, the marginal versions of the selection criteria are almost never reported. However,
it has been demonstrated theoretically (see, e.g. Li & Yu, 2012; Chan & Grant, 2016a; Celeux,
Forbes, Robert, & Titterington, 2006) and via simulation studies (see, e.g. Ariyo & Adeleke, 2021;
Ariyo, Lesaffre, Verbeke, & Quintero, 2021; Ariyo et al., 2019a, 2019; Chan & Grant, 2016b;
Merkle, Furr, & Rabe-Hesketh, 2018) that the use of the conditional likelihood is questionable.
In the theoretical argument, for instance, Li and Yu (2012) proved that the conditional likelihood
of the augmented data is nonregular and disprove the standard asymptotic arguments that are
needed to justify the DIC. Celeux et al. (2006) compared different DIC constructions and found
through theoretical studies that some of these constructions are simply not adequate for evaluat-
ing the complexity and fit of a model. Likewise, Chan and Grant (2016a) show that the numerical
SEs of the conditional DICs are often too large to be useful for models’ comparison. On practical
grounds (Ariyo & Adeleke, 2021; Ariyo et al., 2019a, 2019, 2021; Chan & Grant, 2016b; Merkle
et al., 2018; Millar, 2009) provide simulation studies in which the conditional DIC almost always
favors an overfitted model.

In practice, especially in medical and social science research, the researchers often rely on
the default software, presumably because of a lack of awareness of the marginal and conditional
criteria’ differences. In fact, in the analysis of mediation models, we are not aware of any pre-
vious work that distinguishes between the marginal and conditional criteria in the context of a
multilevel mediation model. Hence, this paper illustrates the marginal version of the selection cri-
teria’ superiority over their conditional counterparts in mediated longitudinal settings. As such,
we have aimed to conduct simulation studies to illustrate the performance of the conditional
and marginal criteria in selecting the true data-generating models under different scenarios: (a)
when the mediation paths are allowed to vary randomly across clusters (see, e.g. Raudenbush &
Bryk, 2002; Zigler & Ye, 2019), (b) when the mediation paths are fixed across clusters (see, e.g.
McNeish, 2017), (c) when the mediation path is zero, with "no mediation effects" (see, e.g. Zigler
and Ye (2019) and (d) when the distributions of the mediation paths are misspecified.
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222 ARIYO et al.

The outline of the paper is as follows. In Section 2, we introduce the Longitudinal Aging Study
of the Amsterdam (LASA) dataset. The basic concepts of mediation, moderation, and the com-
bination thereof are summarized in Section 3. We briefly discuss the model selection criteria in
Section 4. Different simulation settings and scenarios are presented in Section 5, while we illus-
trate the comparison between the conditional and marginal criteria on LASA data in Section 6.
Finally, concluding remarks are given in Section 7.

2 THE LONGITUDINAL AGING STUDY AMSTERDAM

LASA is a prospective cohort study intended to determine the predictors and consequences of age-
ing, specifically physical, cognitive, emotional, and social functioning in older adults (aged 55–85)
in the Netherlands. The participants were sampled from the registries of urban and rural munici-
palities in different parts of the country. The baseline measurement took place in 1992/1993, and
follow-up measurements have been conducted since then about every 3 years. The data collec-
tion consists of the main interview, a self-reported questionnaire, and a medical interview. The
example in this paper was initially analyzed and published by Robitaille, Piccinin, Muniz-Terrera,
et al. (2013), who examined processing speed (M) as a mediator between age (X) and cognitive
abilities (Y ). Processing speed was based on a coding task adapted from the Alphabet Coding
Task-15. The reasoning was based on the adapted version of the Raven Colored Progressive Matri-
ces test, and the cognitive ability was based on the 15 Word Test. The cognition has been based on
three different measures: (a) immediate recall, (b) delayed recall, and (c) reasoning as the outcome
variable. More information can be found in Robitaille et al. (2013).

Each model was based on data from the first five waves of the LASA study. Respondents were
excluded from the analyses if they had a 23 or lower score on the Mini-Mental State Examination
during any of the five waves (n = 798) or if they had missing education information (n = 3). The
analytical cohort consisted of 2,306 respondents in the first wave, of which 1,883 also participated
in the second wave (81.7%), with a further 1,562 in the third wave (83.0%), 1,300 in the fourth
wave (83.2%), and 1,021 in the fifth wave (78.5%). Detailed information on the LASA can be found
in (Hoogendijk et al., 2016; Huisman et al., 2011; Robitaille et al., 2013).

Robitaille et al. (2013) applied a lower-level mediation 1-1-1 model since all variables M, X ,

and Y were measured at level-1. Here, we aim to illustrate the performance of the conditional and
marginal criteria in the context of a multilevel mediation model using a 1-1-1 MLM model.

3 MULTILEVEL MEDIATION MODEL

Before discussing the 1-1-1 multilevel mediation model in detail, we explain a multilevel media-
tion model’s basic framework. When an outcome Y and a predictor X are mediated by a mediator
M, it means that M is correlated with X and explains the effect of X on Y . With a continuous
outcome Y and a mediator M, a single-level mediation equation is given as

Mi = 𝛽1 + 𝛼X + eM

Yi = 𝛽2 + 𝛽Mi + 𝜏′X + eY ,
(1)

where 𝛽1 and 𝛽2 denote intercept for mediator and outcome, respectively, and eM and eY denote
error terms in the equations. The direct effect of X on Y is denoted as 𝜏′ and the indirect effect of X
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ARIYO et al. 223

on Y through the mediator M is expressed as the product of 𝛼 and 𝛽, that is, 𝛼𝛽. It is important to
note here the four key assumptions in traditional mediation analysis, including (i) no unmeasured
confounder between the exposure variable X and the response variable Y ; (ii) no unmeasured con-
founder between the exposure variable X and the mediator M; (iii) no unmeasured confounder
between the mediator M and the response variable Y ; and (iv) any mediator Mi is not causally
prior to M−i, (the vector of mediators M without Mi.) Recently, Cao, Li, and Yu (2021) performed
sensitivity analysis of the impact of violation of assumptions on the estimation of mediation effects
using Yu et al.’s mediation analysis method.

Given that all variables are measured at level 1, the estimate of model parameters is straight-
forward using standard OLS-regression or maximum likelihood methods (Preacher & Selig, 2012;
Song, 2018). However, the direct application of such techniques to multilevel data (such as
mediation data) thereby ignoring the nested structure of the data will statistically bias (see also
Raudenbush & Bryk, 2002; Tom, Bosker, & Bosker, 2012) the estimates and the conclusions of
the analysis. Hence, we consider a set of standard MLM equations predicting Y from X including
a random effects structure (random intercept and slope(s)). Following the notation in Yuan and
MacKinnon (2009), one can write a two-level lower mediation model (as given in Figure 1) with
level 1 equations as:

Mij = 𝛽1j + 𝛼jXij + eMij

Yij = 𝛽2j + 𝛽jMij + 𝜏′j Xij + eYij ,
(2)

and level 2 is given as

𝛽1j = 𝛽3 + u1j

aj = 𝛼 + u2j

𝛽2j = 𝛽4 + u3j

𝛽j = 𝛽 + u4j

𝜏′j = 𝜏′ + u5j,

where eMij and eYij are level 1 error terms for M and Y , respectively; subscript i and j refer to individ-
ual and level-2 units; the parameters 𝛽1j and 𝛽2j are random intercepts, and 𝛼j, 𝛽j and 𝜏′j are random
slopes. The parameters 𝛽2 and 𝛽3 are population (or average) effects. For MLM, the first-level
residuals eMij and eYij are assumed to be independent and follow normal distribution, that is, eMij ∼
N(0, 𝜎2

eMij
) and eYij ∼ N(0, 𝜎2

eYij
) and the second-level residuals uj = (u1j,u2j,u3j,u4j,u5j)T follow a

multivariate normal distribution uj ∼ N(0,D) where D is 5 × 5 covariance matrix.
In multilevel mediation, the average indirect effects in the population are often of primary

interest. Yuan and MacKinnon (2009) gave the average indirect effects (applies to models with
only random slopes) formula to be

ab = E(𝛼j𝛽j) = 𝛼𝛽 + 𝜎𝛼j𝛽j , (3)

where 𝜎𝛼j𝛽j denotes the covariance between 𝛼j and 𝛽j.

MacKinnon (2008) and Kenny, Korchmaros, and Bolger (2003) also showed that the total effect
in a fully random, lower mediated multilevel model is

c = 𝜏′ + 𝛼𝛽 + 𝜎𝛼j𝛽j , (4)
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224 ARIYO et al.

and the relative average indirect effect can be expressed as

ab∕c =
𝛼𝛽 + 𝜎𝛼j𝛽j

𝜏′ + 𝛼𝛽 + 𝜎𝛼j𝛽j

. (5)

Equation (5) is often referred to as the proportion mediated in the mediation analysis literature
(Ananth, 2019; Ditlevsen, Christensen, Lynch, Damsgaard, & Keiding, 2005). This statistic has
some important disadvantages. For example, the proportion mediated effect cannot be used when
the mediation model is inconsistent (i.e., the direct and indirect effect have a different sign), which
is actually the case in the LASA data example (see Robitaille et al. (2013). In these situations,
the proportion mediated can exceed 1 and can be below 0 and the interpretation may become
meaningless (as the limits of a proportion are 0 and 1).

In practice, the heterogeneity in the causal effects across level 2 units may be of scien-
tific interest. For example, in Section 6, we analyze the LASA dataset to investigate whether
the processing speed mediates between age and cognitive abilities in older adults. The impor-
tance of random effects in the lower level mediation (1-1-1 model in particular) was pointed
out first in Kenny et al. (2003). For model represented in Equation (2) to be estimable and
ensure that the mediational effects are unbiased, some assumptions are required as given
below:

1. The predictors Xij must be uncorrelated with the random intercepts and slopes and with 𝛽2j,

𝛽j, 𝜏
′
j , and eYij .

2. The residuals eMj and eYij are normally distributed with mean zero and uncorrelated with each
other.

3. The level 1 residuals are uncorrelated with the random effects that is, eMj is uncorrelated with
𝛽1j, aj, 𝛽2j, 𝛽j, and 𝜏′j .

It is important to note that some of these assumptions may not hold in practice. In this paper,
we considered the performance of the conditional and marginal selection criteria when these
assumptions are violated.

4 BAYESIAN MODEL SELECTION

We considered three different Bayesian model selection criteria for evaluating a multilevel
mediation model: PSBF, DIC, and WAIC. We further distinguished between the marginal and
conditional version of these criteria. For MLM, let 𝚯 represent all the model parameters, the dis-
tinction is that the marginal MLM includes the fixed effects (i.e., the intercept for mediator and
outcome, when assume fixed) and the parameters making up the covariance matrix of the ran-
dom effects. Conversely, the conditional MLM includes the random effects (i.e., the direct and
indirect pathway of the model) in the 𝚯.

Further, we denote the collected (longitudinal) mediated outcomes by y and the obtained
covariate values by the matrix X moderated by M. The posterior distribution is p(𝜽|y,X,M) =
p(y|𝚯,X)p(𝚯)∕p(y|X,M). When the closed-form of this posterior distribution does not exist then
it is appropriate to use MCMC methods. Namely, K (dependent) values 𝚯1,… ,𝚯K are sampled
from the posterior distribution. The true posterior summary measures can then be approximated
by their sampled versions.
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ARIYO et al. 225

Recently, some authors have compared the performance of these criteria in different applica-
tion studies (see e.g. Ariyo & Adeleke, 2021; Dey, Delampady, & Gopalaswamy, 2019; Millar, 2018).
However, there is still no consensus about the best criterion for model selection in a Bayesian
context. For the distinction between the performance of the marginal against the conditional cri-
teria, other authors have shown that marginal criteria outperform the conditional criteria in most
settings for LMMs with some extensions (Ariyo et al., 2019a, 2019) and generalised linear mixed
models (GLMMs) (Ariyo et al., 2021; Millar, 2018; Quintero & Lesaffre, 2018). This is also true for
an item response model (Li, Qiu, Zhang, & Feng, 2016; Merkle et al., 2018; Millar, 2018). How-
ever, to our knowledge, the marginal criteria’ superiority over the conditional criteria has not been
demonstrated in the mediation analysis literature. We will (briefly) discuss the three Bayesian
model selection criteria in the subsequent sections for reasons of completeness.

4.1 The pseudo Bayes factor

Model comparison using Bayes’ factors requires the computation of the marginal likelihood of
two competing models. Given a model  and model parameters 𝜃, we assume that the data
y1,… , yn are conditionally independent. The marginal likelihood is given by:

p(y|) = ∫𝜃

n∏
i=1

p(yi|𝜃,)p(𝜃)d𝜃. (6)

However, Equation (6) is not analytically available in general. Therefore, Geisser and
Eddy (1979) suggested replacing (6) by the pseudo marginal likelihood

p̂(y|) =
n∏

i=1
p(yi|y−i,), (7)

where
∏n

i=1p(yi|y−i,) is the ith conditional predictive ordinate (CPOi) and the predictive den-
sity calculated at the observed yi given y−i, which is the set of all data except the ith observation.
The PSBF is then obtained by taking the ratio p̂(y | 1)∕p̂(y | 2) to evaluate the preference
of model 1 over model 2. Low value of this ratio reflect preference of model 2 based
on the current data. In practice, one often evaluates the logarithm of expression (7), leading to
the log pseudo marginal likelihood (LPML) for model r is given as LPMLr =

∑n
i=1 log(CPOr,i)

where

CPOr,i ≈

[
1
K
∑K

k=1
1

p(yi|𝜽k
r ,r)

]−1

,

and 𝜽k
r represents the model parameters for model r.

4.2 The deviance information criterion

Deviance is defined as D(𝚯) = −2 log p(y|𝜽). The DIC is then defined as DIC = −2 log p(y|𝜽) +
2pDIC, where 𝜽 is the posterior mean of the model parameter (parameter in focus), that is, 𝜽 =
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226 ARIYO et al.

E(𝜃|y) and pDIC corresponds to the effective number of parameters, given by

pDIC = −2 E𝜽|y[log p(y|𝜽)] + 2 log[p(y|𝜽)]. (8)

Two versions of pDIC are generally used (Gelman, Hwang, & Vehtari, 2014; Spiegelhalter, Best,
Carlin, & van der Linde, 2014): (i) pDIC in (8) which is considered to be numerically stable, and
(ii) pDIC2 = 2 Var𝜽|y[(y|𝜽)] which has the advantage of being always positive (Gelman et al., 2014).
Consequently, Celeux et al. (2006) suggested several forms for the DIC that can be used for differ-
ent hierarchical models and Ariyo et al. (2019a) have compared the performance of the marginal
and conditional versions of these DIC versions and have shown that there are inconsistencies in
the performance of the conditional versions of different forms of DIC whereas the marginal ver-
sions perform similarly. Supposed an additional vector of latent variables 𝝁with density p(𝝁|𝜽) is
added to the model p(y|𝜽) the we have:

p(y|𝜽) = ∫ p(y|𝜽,𝝁)p(𝝁|𝜽)d𝝁 = ∫ p(y,𝝁|𝜽)d𝝁, (9)

where p(y|𝜃,𝝁) is the conditional likelihood and p(y|𝜃) is the integrated likelihood. The marginal
DIC (mDIC) is obtained by integrating the likelihood in Equation (9). As such, the definition of
mDIC from integrated likelihood is given as

mDIC = −4E𝜽[log p(y|𝜽)|y] + 2 log p(y|𝜽̃). (10)

Consequently, the alternative definition of DIC via conditional likelihood (cDIC) is given as

cDIC = −4E𝜽,𝝁[log p(y|𝜽,𝝁)|y] + 2 log p(y|𝜽̃, 𝝁̃),
where (𝜽̃, 𝝁̃) is the joint maximum a posterior estimate of the pair (𝝁, 𝜃) given the data y (see
Celeux et al., 2006). Despite its popularity and availability in Bayesian software, DIC has been
criticized, see Spiegelhalter et al. (2014) for details. For instance, DIC is not invariant to non-
linear transformations of 𝜽 and negative value for pDIC can occur in some cases. The major
setback of mDIC is computational difficulties since the integral in Equation (10) is generally
intractable, notwithstanding, mDIC as been found to show superior performance in most cases
(Ariyo & Adeleke, 2021; Ariyo et al., 2019a, 2021; Ariyo, Lesaffre, et al., 2019; Chan & Grant, 2016a;
Quintero & Lesaffre, 2018).

4.3 Watanabe–Akaike information criterion

The WAIC is a Bayesian version of the AIC (Watanabe, 2010) and a worthy successor of DIC
(Spiegelhalter et al., 2014) as it uses the posterior predictive distribution of the data to estimate
the out-of-sample predictive accuracy of the model. The WAIC is then defined as

WAIC = −2l̂ppd + 2pWAIC,

where pWAIC corresponds to an estimate of the effective number of parameters given by

pWAIC = 2
n∑

i=1

[
log

(
1
K

K∑
k=1

p(yi|𝜽k)

)
− 1

K

K∑
k=1

log p(yi|𝜽k)

]
.
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and l̂ppd which can be estimated using an MCMC sample from the posterior distribution as

l̂ppd =
n∑

i=1
log

[
1
K

K∑
k=1

p(yi|𝜽k)

]
.

Similar to DIC, a model with smaller WAIC is preferred. One advantage of WAIC is its invariability
to the scale of the model parameters, which implies that WAIC does not change when𝜽 is replaced
by 𝝍 = h(𝜽), where h a strictly monotone function. For all the three model selection criteria, the
model with the smallest value is preferred.

5 SIMULATION STUDIES

We performed simulation studies to illustrate the conditional and marginal criteria’ performance
in MLMs. We opted to use 1-1-1 mediation models with random slopes for our simulation stud-
ies because this kind of model has been a model of interest in the fundamental work behind
multilevel mediation (see Preacher, Zhang, & Zyphur, 2011) and has been commonly used in
empirical studies (McNeish, 2017). A 1-1-1 design allows for the modeling of both the between and
within components of the indirect effects and model pathways (Zhang, Zyphur, & Preacher, 2009).
Additionally, we were motivated by previous investigations using LASA data (see Robitaille
et al., 2013)

5.1 Simulation study 1

Following the example of Kenny et al. (2003) and subsequently used in Bauer et al. (2006); we
conducted a simple simulation study. Here, we generated 500 datasets based on model (2) with the
following parameters: the random intercept for the mediator 𝛽1j had a mean 0 and variance of 0.6,
that is, 𝛽2j ∼ N(0, 0.6), the random intercept for the response 𝛽2j ∼ N(0, 0.4). These two random
intercept 𝛽1j, 𝛽2j were normally distributed. The level 1 variance of response (𝜎2

eY ) and the mediator
(𝜎2

eM) were set to 0.45 and 0.65, respectively, the 𝛼j and 𝛽j paths were normally distributed with a
mean of 0.6 and a variance of 0.16, while 𝜏′j ∼ N(0.2, 0.4). The covariance between 𝛼j and 𝛽j was
0.113, that is, 𝜎𝛼j𝛽j = 0.113, yielding a correlation of 0.706. We assume that neither 𝛼j and 𝛽j was
correlated with 𝜏′j . We further simulated a predictor Xij from Xij = Xi + eXij , where Xi ∼ N(0, 1)
and eXij ∼ N(0, 1).

In addition to Equation (2) as the true model, we fitted two alternative models: (i) Equation (2)
without mediation effects Yij = 𝛽2j + 𝜏′j Xij + eYij , (ii) Equation (2) without direct effect compo-
nent (i.e., 𝜏′j = 0), to evaluate the ability of the conditional and marginal criteria to select the
data-generating model. We further varied the number of clusters understudy from 10 to 100
(10, 25, 50, 100), as this number of clusters is similar to those previously used in the literature
(Bauer et al., 2006; McNeish, 2017). We also set the number of observations per level 2 units to
mj = 4, 8, 16, and32, which is consistent with those used by Krull and MacKinnon (2001) and
Bauer et al. (2006).

Regarding the choice of the prior distributions, we assigned independent noninformative uni-
form priors on regression parameters p(𝛽2, 𝛼, 𝛽, 𝜏

′). For the first-level variance parameters eMj , eYij

we assigned an inverse-gamma prior, while we assigned an Inverse-Wishart (IW(k,S)) for the
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228 ARIYO et al.

second-level covariance matrix U (Uj ∼ (0,D)). As suggested in JAGS (Plummer, 2013), the value
of the degree of freedom k is taken as 5 (the rank of U) while the scale matrix is a diagonal matrix
with small values such as 0.001 at the diagonal. All model parameters in the simulation studies
were estimated based on three chains of 10,000 iterations (discarding the first 5,000) and a thin-
ning factor equal to 10 to avoid correlation problems in the generated chains. The convergence of
the MCMC samples was assessed using the Brooks–Gelman–Rubin (BGR) diagnostic (Brooks &
Gelman, 1998; Gelman & Rubin, 1992), and in cases where the BGR was larger than 1.1, a new
MCMC sample was selected with 10,000 extra iterations until convergence was obtained. The
models were implemented using rjags (Plummer, 2016) software.

Table 1 displays the performance of the conditional and marginal criteria for a 1-1-1 multi-
level model in identifying the correct model when the mediation pathway was allowed to vary
in a normal, random fashion across clusters. As expected, the performance of both versions of
the criteria gets better as sample sizes increase. However, this increase is less obvious when the
sample size is larger than 25. Similarly, as the number of observations increases from 8 to 32, the
performance of both versions of the criteria are less obvious. An increase in observation units of
more than eight has a minimal impact on both versions of the criteria’ performance. As such,
these results are in agreement with the results previously described in the literature. For instance,
McNeish (2017) concluded that, if the right precautions have been taken, only a few clusters and
observations are needed to provide reliable results.

Additionally, McNeish and Stapleton (2016) suggested that 20 clusters with five or more
observations per cluster might be sufficient if the model is estimated with restrictive maximum
likelihood. Overall, the marginal criteria outperformed the conditional ones, which is in line with
the other results previously obtained in the literature (see Ariyo et al., 2019a, 2019, 2021; Chan &
Grant, 2016b; Merkle et al., 2018; Quintero & Lesaffre, 2018).

5.2 Simulation study 2

We evaluated the conditional and marginal criteria’ performance when the distribution of the
mediation paths was misspecified. As such, we generated 500 data sets based on Equation (2) with
the modification that the distributions of the random slopes 𝛼j and 𝛽j are generated from 𝜒2(3)
distribution, which has skewness 1.63 and kurtosis 4, which closely resembles the skew-normal
distribution (see e.g. Wang, Boyer, Genton, et al., 2004). In addition to the data-generating model,
we fit two alternative models: A model with mediation paths (i) assumed normal and (ii) assumed
skew-normal.

The percentage of the times that each criterion selected a data generating model is displayed in
Table 2. The results demonstrate that when the mediation paths are assumed to be skewed, both
criteria’ performance is better than if normality is assumed for the mediation pathways. These
results show that the assumption that the average mediation paths (especially the indirect effects)
follow a normal distribution might be unrealistic. This is why several authors warn researchers
against making these assumptions for hypothesis testing (Hayes & Scharkow, 2013; MacKinnon,
Lockwood, & Williams, 2004; Preacher & Selig, 2012; Song, 2018) and recommend approaches
that relax the normality assumption, such as using bootstrap confidence interval (Efron & Tib-
shirani, 1994; MacKinnon et al., 2004; MacKinnon, Fritz, Williams, & Lockwood, 2007) and
Monte Carlo (MC) simulations (Preacher & Selig, 2012) among others. Regardless of the media-
tion pathways’ assumptions, the marginal criteria display superior performance compared to the
conditional criteria.
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ARIYO et al. 229

T A B L E 1 The percentage of times the conditional and marginal criteria select the true model when
mediation path are random vary across clusters under different sample sizes and number of observation per units

Sample size

Number of observation/units Criteria 10 25 50 100 200

4 cDIC 65.4 71.4 77.2 77.8 78.2

cWAIC 62.0 68.6 73.4 74.6 75.6

cPSBF 62.0 67.6 73.6 73.4 78.2

mDIC 71.4 79.8 84.4 86.0 89.2

mWAIC 72.2 80.2 84.8 85.8 88.6

mPSBF 71.6 80.4 82.6 82.8 89.0

8 cDIC 69.4 76.8 78.2 78.2 79.8

cWAIC 67.6 77.4 79.6 80.0 83.6

cPSBF 67.4 77.6 78.8 80.2 82.6

mDIC 79.4 80.4 84.4 86.2 88.0

mWAIC 73.6 84.8 86.8 86.4 89.2

mPSBF 73.8 88.6 88.8 89.0 89.8

16 cDIC 76.0 79.4 80.0 80.2 81.4

cWAIC 75.6 78.2 80.2 80.0 81.4

cPSBF 73.6 74.8 79.2 80.0 80.8

mDIC 86.6 89.4 89.8 89.8 89.8

mWAIC 89.6 89.8 89.6 90.0 90.6

mPSBF 86.0 89.8 89.8 90.2 90.8

32 cDIC 76.2 78.8 80.4 82.4 84.2

cWAIC 74.8 78.6 81.2 84.0 84.6

cPSBF 73.0 78.0 80.6 83.6 84.8

mDIC 86.2 89.0 90.0 90.8 93.0

mWAIC 87.8 89.2 90.2 93.8 93.4

mPSBF 85.8 89.0 90.0 94.2 95.0

5.3 Simulation study 3

In the 1-1-1 model, the mediation paths can be estimated as fixed effects. However, when the
paths are not allowed to randomly vary across clusters, a large number of clusters may lead to
convergence problems while also diminishing the quality of the estimates (McNeish, 2017). Here,
we have illustrated the performance of the conditional and marginal DIC, WAIC, and PSBF when
the mediation pathways are not allowed to be random. Furthermore, we evaluated this condition
under a variety of clusters and a different number of observations per level 2 units, as described
in Section 5.1. As such, we generated 500 datasets based on Equation (1) with the following value
for each parameters: (i) indirect effect component 𝛼 = 𝛽 = 0.40, and (ii) direct effect component
𝜏′ = 0.40. Additionally, 𝛽1 = 0.45 and 𝛽2 = 0.45.
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230 ARIYO et al.

T A B L E 2 The percentage of times the conditional and marginal criteria select true model
when mediation are not normally distributed across clusters under different sample sizes

Sample

Path distribution Criteria 10 25 50 100 200

Skew-normal cDIC 69.4 76.8 78.2 78.2 79.8

cWAIC 67.6 77.4 79.6 80.0 83.6

cPSBF 67.4 77.6 78.8 80.2 82.6

mDIC 79.4 80.4 84.4 86.2 88.0

mWAIC 73.6 84.8 86.8 86.4 89.2

mPSBF 73.8 88.6 88.8 89.0 89.8

Normal cDIC 45.4 54.4 67.2 72.8 78.2

cWAIC 42.0 55.6 73.4 72.6 75.6

cPSBF 42.0 57.6 63.6 70.4 78.2

mDIC 51.4 68.8 76.4 81.0 87.2

mWAIC 52.2 76.2 73.8 83.8 85.6

mPSBF 51.6 78.0 70.6 82.8 88.0

T A B L E 3 The percentage of time selection criteria select true model
when the mediation pathways are fixed

Sample size

Criteria 10 25 50 100 200

cDIC 86.3 93.6 98.6 99.2 100.0

cWAIC 83.0 94.4 98.6 99.0 100.0

cPSBF 83.6 94.0 98.6 99.6 100.0

mDIC 86.3 93.6 98.6 99.2 100.0

mWAIC 83.0 94.4 98.6 99.0 100.0

mPSBF 83.6 94.0 98.6 99.6 100.0

We fitted three alternative models: (i) Model (1) (ii) Model (1) without mediation effect (i.e.,
𝛽 = 0), (iii) Model (1) without direct effect component (i.e., 𝜏′ = 0). The performance of the
marginal and conditional criteria in identifying the correct data-generating model when the dis-
tribution of the mediation paths have been fixed has been presented in Table 3. The results
show that regardless of the sample sizes, there is no difference between the performance of the
conditional and marginal criteria.

6 ANALYSIS OF LASA DATA

Here, we illustrate the performance of the conditional and marginal criteria using the LASA data
described in Section 2. We fitted four different models: (i) Model "A" based on equation (2), (ii)
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ARIYO et al. 231

Model "B" based on Equation (11), (iii) Model "C" based on Equation (12) and (iv) Model "D" based
on Equation (2) without mediation effects.

Mij = 𝛽1j + 𝛼jXij + eMij

Yij = 𝛽2j + 𝛽jMij + eYij .
(11)

Mij = 𝛽1j + 𝛼jXij + eMij

Yij = 𝛽2j + 𝛽jMij + 𝜏′j Xij + eYij ,
(12)

where
(

aj

bj

)
∼ (0,D) and D is a 2 × 2 covariance matrix. For each of the models, we calculate the

level-specific indirect effects (Equation (3)) and the level-specific total effects (Equation (4)).
The priors used has been described in Section 5.1. We used 10,000 iterations, which after dis-

carding the first 5,000 as burn-in and thinning was set to 10. The convergence of the MCMC
samples was assessed using the BGR criteria. In addition to the estimates of model parameters, we
compute the conditional and marginal criteria for each model. The results are displayed in Table 4.
It can be observed that the conditional criteria support Model "C" and "D." These models assume
that the level two parameters 𝛽1j and 𝛽2j are fixed. This seems to be an incorrect model since the
1-1-1 model assumed these parameters to be random across subjects. In contrast, the marginal
criteria favor model "A" which seems to be the most appropriate 1-1-1 mediation model. This
confirmed the results of the simulation that marginal criteria often outperform the conditional
criteria in selecting the most appropriate model.

7 CONCLUSION

We compared three Bayesian selection criteria in the context of multilevel mediation models.
Our focus was on illustrating the conditional and marginal criteria’ performance in selecting
the true, data-generating model under different distributional assumptions for mediation path-
ways. The simulation studies’ results demonstrated the superior performance of the marginal
criteria when the mediation pathways are assumed to be random. The conditional criteria often
select over-specified mediation pathways, while the marginal criteria select the correct model
often. Conversely, when the mediation pathways are assumed to be fixed for the 1-1-1 mediation
model, the marginal and conditional criteria’ performance is essentially the same. Both the con-
ditional and marginal criteria prefer (often) the correct model when the mediation pathways are
fixed. However, the motivation for assuming fixed or random pathways should be based on the
research question. The result from the LASA dataset analysis also confirmed the results obtained
in the simulation studies as the results of the marginal criteria were consistent with the summary
statistics.

These results confirm the results of (Ariyo et al., 2019a, 2019) for LMMs, Chan and
Grant (2016a) for volatility models, (Li et al., 2016; Millar, 2018) for item response models, Merkle
et al. (2018) for latent variable model and (Ariyo et al., 2021; Quintero & Lesaffre, 2018) for
GLMM. To encourage the applied researchers to use the marginal criteria, we provide an R func-
tion that computes not only the marginal criteria but also the conditional criteria with minimal
computational effort. The function is available at https://github.com/OludareAriyo/Bayesselect

The choice of a 1-1-1 multilevel mediation model with three variables was motivated by its
popularity in the literature and motivated by the LASA dataset. We believe that the results are
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valid for other multilevel mediation models as well. When more variables are involved in medi-
ation analysis, the clusters’ effects are likely to impact model selection criteria performance.
Hence, further studies could derive the likelihood for more complex mediation models to evaluate
Bayesian model selection’s performance in more complex settings.
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