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Unveiling the Dynamic Behavior
of Fuzzy Cognitive Maps

Leonardo Concepción, Gonzalo Nápoles, Rafael Falcon, Senior Member, IEEE,
Koen Vanhoof and Rafael Bello

Abstract—Fuzzy Cognitive Maps (FCMs) are recurrent neural
networks comprised of well-defined concepts and causal rela-
tions. While the literature about real-world FCM applications
is prolific, the studies devoted to understanding the foundations
behind these neural networks are rather scant. In this paper,
we introduce several definitions and theorems that unveil the dy-
namic behavior of FCM-based models equipped with transfer F -
functions. These analytical expressions allow estimating bounds
for the activation value of each neuron and analyzing the covering
and proximity of feasible activation spaces. The main theoretical
findings suggest that the state space of any FCM model equipped
with transfer F -functions shrinks infinitely with no guarantee for
the FCM to converge to a fixed point but to its limit state space.
This result in conjunction with the covering and proximity values
of FCM-based models helps understand their poor performance
when solving complex simulation problems.

Index Terms—Fuzzy Cognitive Maps, Recurrent Neural Net-
works, Non-linear Systems, Shrinking State Spaces.

I. INTRODUCTION

Fuzzy Cognitive Maps (FCMs) [1] [2] continue to grow
in popularity because of their flexibility to model complex
systems and transparency. In a search carried out in 12/2019,
there were over 2000 papers indexed by Scopus, most of them
related to applications. A closer inspection on the algorithmic
developments in this field reveals that the new proposals are
primarily dedicated to learning methods [3] [4] [5] or solving
machine learning problems [6] [7] [8]. Other equally relevant
theoretical contributions reported in the literature refer to new
FCM-like models as illustrated in [9].

Existing theoretical studies on FCMs are mainly devoted to
convergence issues. For example, Boutalis et al. [10] studied
the existence and uniqueness of fixed points in FCMs equipped
with continuous, differentiable transfer functions. Later on, the
authors in [11] generalized the findings in [10] by consid-
ering the slope parameter of each sigmoid transfer function.
However, these theorems have been disproved with numerical
counterexamples as explained in [12]. Other results reported
in [13] [14] [15] [16] study the convergence of FCM models
used in prediction/classification scenarios.
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With respect to the theoretical analysis of FCM models and
their dynamics, this paper brings two contributions. First, we
introduce several definitions and theorems that allow studying
the dynamic behavior of FCMs equipped with monotonically
increasing functions bounded into non-negative intervals. The
strong version of our theorem proves that the state space
of an FCM shrinks infinitely and converges to a so-called
limit state space, which could be a fixed-point attractor in
some cases. This allows envisaging, to some extent, the FCM
model’s behavior prior to the inference stage. As a second
contribution, we explore the covering and proximity of feasible
activation spaces, which help explain why FCMs sometimes
perform poorly when solving complex prediction problems. In
other words, we show why we should not expect impressive
prediction rates when the model has low covering values as
the FCM feasible state space is small.

The rest of this paper is organized as follows. Section II
goes over the FCM’s mathematical underpinnings. Section III
introduces important definitions, while Section IV elaborates
on the concept of shrink functions in FCM-based models.
Section V enunciates two theorems that allow unveiling the
dynamics behind FCM-based models. Section VI supports
the theoretical findings with numerical simulations illustrating
why FCM-based models with a reduced number of neurons
perform poorly in solving prediction tasks.

II. FUZZY COGNITIVE MAPS

Concisely speaking, FCMs are knowledge-based recurrent
neural networks for modeling complex systems [17]. The FCM
topology is denoted by a directed and weighted graph where
nodes correspond to neural concepts, while edges represent the
causal relations. Unlike traditional neural networks, the FCM
topology is often defined by experts in the application domain.
The weight wij ∈ [−1, 1] denotes the causal influence exerted
by neuron Ci upon neuron Cj . The influence may be excitatory
(wij > 0), inhibitory (wij < 0) or null (wij = 0). Hence,
the weight matrix WM×M holds the causality information
between all pairs of neurons in the graph.

Equation (1) displays the FCM reasoning rule, which re-
sembles the McCulloch-Pitts model [18],

A
(t+1)
i = f

 M∑
j=1

wjiA
(t)
j

 , i 6= j (1)

where A(t)
i represents the activation value of the i-th neuron at

the t-th iteration step (t ∈ N), while f(.) denotes the transfer
function used to clamp the activation value of a neuron to a
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desired interval. The above reasoning rule can be expressed as
f
(
wiA

(t)
)

such that A(t) = (A
(t)
1 , A

(t)
2 , . . . , A

(t)
M ) denotes

the activation vector and wi = (w1i, w2i, . . . , wi−1i, 0, wi+1i,
. . . , wMi) ∀i ∈ {1, 2, . . . , M}.

The most widely used transfer functions are [19] the sigmoid
function and the hyperbolic tangent. The bivalent, trivalent
and threshold functions have also been employed. The former
have continuous open intervals as their image set, while the
latter have discrete image set (bounded into closed intervals
instead). Generally speaking, any bounded and monotonically
increasing function over the set of real numbers is a candidate
transfer function, since the image set of a bounded function
belongs to an interval.

Let F be the set of all monotonically increasing functions
bounded into non-negative intervals. Let F 0 ⊂ F and F ′ ⊂ F
be the subsets bounded into open intervals and closed intervals
respectively. Also, let fi ∈ F be the transfer function used in
the activation process of neuron Ci (i.e., every neuron has its
own transfer function). This means that fi is bounded into a
non-negative interval (either open or closed). In this paper, we
refer to an F -function as any function belonging to F .

The reasoning rule displayed in Equation (1) is iteratively
repeated until either (i) the FCM converges to a fixed-point
attractor or (ii) a maximal number of iterations is reached.
The former condition implies that the FCM is stable whereas
the latter suggests that it is unstable, and its outputs are either
cyclic or completely chaotic. These states can be mathemati-
cally defined as follows [17]:
• Fixed-point (∃tα ∈ {1, 2, . . . , (T − 1)} : A(t+1) =
A(t),∀t ≥ tα): the map produces the same output after
the iteration tα, so A(tα) = A(tα+1) = A(tα+2) = · · · =
A(T ).

• Limit cycle (∃tα, P ∈ {1, 2, . . . , (T − 1)} : A(t+P ) =
A(t),∀t ≥ tα): the map produces the same output
periodically after the period P , so A(tα) = A(tα+P ) =
A(tα+2P ) = · · · = A(tα+jP ) where tα + jP ≤ T , such
that j ∈ {1, 2, . . . , (T − 1)}.

• Chaos: the map continues to produce different state
vectors for successive iterations.

III. THEORETICAL PRELIMINARIES AND DEFINITIONS

In this section, we introduce some definitions that provide a
formal analysis framework to better understand the semantics
behind FCM-based models.

Let L be the set of all non-negative closed intervals and
let SM be the set of all M -ary Cartesian products over the
elements in L. Formally, SM = {I1 × I2 × . . .× IM : Ii ∈
L,∀i = 1, 2, . . . ,M}. Every element in SM is an M -ary
Cartesian product of closed intervals.

Definition 1. Let I ∈ L and I ′ ∈ L. Interval I contains in-
terval I ′ (denoted by I ⊇ I ′) if inf(I) ≤ inf(I ′)∧ sup(I) ≥
sup(I ′). Analogously, interval I strictly contains interval I ′
(denoted by I ⊃ I ′) if inf(I) < inf(I ′)∧ sup(I) > sup(I ′).

Definition 2. The closed interval Ii is a feasible activation
space for the neuron Ci if Ci’s activation values always lie
inside Ii. Formally, A(t)

i ∈ Ii ∀t ∈ N.

Remark. The activation values A(t)
i are confined to the (0,1)

interval in sigmoid FCMs, but if a hyperbolic tangent function
is used instead, these activation values will lie within (-1,1).
We remark that the feasible activation space for a neuron Ci
is not unique, therefore multiple feasible activation spaces for
the same neuron may exist. If Ii is a feasible activation space
for the neuron Ci, then every closed interval containing Ii is
also a feasible activation space for Ci.

Definition 3. The closed interval Ii is the induced activation
space for neuron Ci if it is the smallest closed interval
containing the interval its associated transfer function fi is
bounded to.

Remark. If Ii is the induced activation space then, transfer
function associated with neuron Ci produces values that
always lie inside it. Moreover, if I ′i contains Ii then I ′i is a
feasible activation space for Ci.

The following definition extends Definition 2 such that we
can refer to specific iterations.

Definition 4. The closed interval I(t)i is a feasible activation
space at t-th iteration for Ci if activation values for Ci always
lies into I(t)i at t-th iteration. Formally, the closed interval
I(t)i is a feasible activation space at t-th iteration for Ci if
A

(t)
i ∈ I

(t)
i .

Remark: The 0-th iteration refers to the initial activation
values of neurons (input values).

Definition 5. A feasible state space S is the M -ary Cartesian
product over the feasible activation spaces for each map
neuron and defined as S = I1 × I2 × . . . × IM , where Ii
is a feasible activation space for neuron Ci. Formally, S is a
feasible state space if A(t) ∈ S ∀t.

The aforementioned definition relies on Definition 2 to
describe a particular state space of an FCM. Elements in
S are M -tuples, so we have S = I1 × I2 × . . . × IM and
A(t) = (A

(t)
1 , A

(t)
2 , . . . , A

(t)
M ). Therefore, we can affirm that

S ∈ SM . Observe that A(t) ∈ S is equivalent to stating that
A

(t)
i ∈ Ii,∀i = 1, 2, . . . ,M .

Definition 3 can be expanded so we can introduce the
general notion about the induced activation space.

Definition 6. The induced state space S is the M -ary
Cartesian product over the induced activation spaces for each
map neuron and defined as S = I1 × I2 × . . . × IM , where
Ii is the induced activation space for neuron Ci.

Also, by means of Definitions 4 and 5 we can define the
concept of feasible state space in a specific iteration, which
will be a pivotal cornerstone in our theorems.

Definition 7. A feasible state space S(t) at the t-th iteration
is the M -ary Cartesian product over the feasible activation
spaces for each map neuron at the t-th iteration and defined
as S(t) = I(t)1 × I

(t)
2 × . . . × I

(t)
M , where I(t)i is a feasible

activation space at the t-th iteration for neuron Ci. Formally,
S(t) is a feasible state space at the t-th iteration if A(t) ∈ S(t).
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Definition 8. A state space S = I1 × I2 × . . . × IM
contains state space S ′ = I ′1 × I ′2 × . . .× I ′M if Ii contains
I ′i ∀i = 1, 2, . . . ,M . Formally, S ⊇ S ′ (state spaces are sets).
Analogously, state space S = I1 × I2 × . . . × IM strictly
contains state space S ′ = I ′1×I ′2× . . .×I ′M if S contains S ′
and Ii strictly contains I ′i for at least one i = 1, 2, . . . ,M .
Formally, S ⊃ S ′.

The reader can notice that Definition 8 expands Definition
1 as it goes from real intervals to state spaces. In general, Def-
initions 1-8 set the ground up by establishing the terminology
to be used in the following sections.

IV. SHRINK FUNCTIONS IN FCM-BASED MODELS

Assuming that G is the set of all FCMs, letHW : G×SM →
SM and HT : G × SM → SM be functions that, from an
FCM with M neurons and an M -ary Cartesian product of non-
negative closed intervals, produce another M -ary Cartesian
product of non-negative closed intervals. We refer to HW and
HT as shrink functions, which are defined as HW (M,S(t)) =
S(t+1) and HT (M,S(t)) = S(t+1), respectively, such thatM
is an FCM and S(t) ∈ SM ∀t.

Both functions take an FCM M and a feasible state space
at the t-th iteration S(t) for this map and return a feasible
state space at the (t+1)-th iteration S(t+1) for the same map.
The difference between these functions is that HW uses the
weight matrix W of M to calculate a feasible state space for
the (t+ 1)-th iteration and HT uses the neurons connections
(FCM’s topology only).

Let a(t)j and b(t)j denote the bounds (infimum and supremum
respectively) of the closed interval I(t)j attached to neuron Cj .
Given that S(t) is a feasible state space at the t-th iteration,
the following inequality holds:

a
(t)
j ≤ A

(t)
j ≤ b

(t)
j ∀j. (2)

As derived from Equation (1), the dot product between wi
and A(t) is computed for every neuron Ci in order to compute
its activation value. In this research, we assume that each
neuron is influenced by, at least, another neural processing
entity. In the case of input neurons, their activation values
either remain unchanged or become inactive (depending on
the FCM implementation). Whichever the case, their values
are easy to predict. Next, we show how to calculate the bounds
for the dot product between wi and A(t).

Case 1: the weight matrix W is unknown. In this case, the
minimum value for the dot product is:

min
T

(
wiA

(t)
)
= −

M∑
j=1

b
(t)
j (3)

and the maximum value is

max
T

(
wiA

(t)
)
=

M∑
j=1

b
(t)
j . (4)

Proof. In order to calculate minT (wiA
(t)), each map neuron’s

influence upon Ci (i.e., the product between its activation

value and the connection’s weight) must be minimal. This is
accomplished when the activation value is b

(t)
j (maximum)

and the weight is −1 (minimum possible value in traditional
FCMs). Conversely, to compute maxT (wiA

(t)), each map
neuron’s influence upon Ci must be maximal, which happens
with b

(t)
j as activation value and 1 (maximum possible value

in traditional FCMs) as the connection’s weight. Equations
(3) and (4) are obtained after applying this reasoning to every
neuron in the map (though only neurons influencing Ci matter,
the connection weight for other neurons is 0 and this does not
affect the validity of these formulas). �

Case 2: the weight matrix W is known. In this case, the
minimum value for the dot product wiA(t) is:

M∑
j=1

wji

(
b
(t)
j (1− sgn(wji)) + a

(t)
j (1 + sgn(wji))

)
2

(5)

and the maximum value is

M∑
j=1

wji

(
b
(t)
j (1 + sgn(wji)) + a

(t)
j (1− sgn(wji))

)
2

. (6)

Proof. The proof is analogous to the previous case. Aiming at
computing minW = minW (wiA

(t)), if wji is negative, then
the activation value must be b(t)j (maximum), thus obtaining
wjib

(t)
j . But if wji is not negative then the activation value

must be a(t)j (minimum), thus obtaining wjia
(t)
j . Conversely,

to calculate maxW = maxW (wiA
(t)), if wji is negative, then

the activation value must be a(t)j , but if wji is not negative then
the activation value must be b(t)j . Equations (5) and (6) above
are obtained after applying this reasoning to every neuron in
the FCM-based model. In order to achieve both extreme values
within a single equation (with no ramifications) we use sign
function (sgn(wji)). �

From the monotonically increasing property of fi ∈ F
(transfer function for neuron Ci), we can state that:

a
(t+1)
i = fi (minT ) ≤ A(t+1)

i ≤ fi (maxT ) = b
(t+1)
i ∀i (7)

a
(t+1)
i = fi (minW ) ≤ A(t+1)

i ≤ fi (maxW ) = b
(t+1)
i ∀i

(8)
In both cases, I(t+1)

i = [a
(t+1)
i , b

(t+1)
i ] denotes a feasible

activation space at the (t+1)-th iteration for the neuron Ci, i =
1, 2, . . . ,M . Then S(t+1) = I(t+1)

1 ×I(t+1)
2 × . . .×I(t+1)

M is a
feasible state space at the (t+1)-th iteration. This confirms that
shrink functions HT and HW take as inputs an FCMM and a
feasible state space at the t-th iteration for this map and returns
a feasible state space at the (t + 1)-th iteration. Formally,
HT (M,S(t)) = S(t+1) and HW (M,S(t)) = S(t+1).

Overall, we can therefore assert that, over the same FCM,
these two shrink functions transform feasible state spaces into
state spaces which are also feasible.
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V. STATE SPACE ESTIMATION IN FCM-BASED MODELS

In this section we use the definitions formalized above to
show that the activation values in FCMs at each iteration are
not completely unpredictable.

We know that an FCM’s transfer function produces values
lying inside an interval (either open or closed). According
to Definition 6 we have the induced state space S(0) =

[a
(0)
1 , b

(0)
1 ]× [a

(0)
2 , b

(0)
2 ]× . . .× [a

(0)
M , b

(0)
M ].

In other words, it can be stated that fi : R → [a
(0)
i , b

(0)
i ]

or fi : R → (a
(0)
i , b

(0)
i ) ∀i = 1, 2, . . . ,M . Using the shrink

functions HT and HW for the map M, we can produce fea-
sible activation spaces S(t+1) from S(t) ∀t ∈ N. Inductively,
having S(0) = [a

(0)
1 , b

(0)
1 ]× [a

(0)
2 , b

(0)
2 ]× . . .× [a

(0)
M , b

(0)
M ], then

values for S(1),S(2),S(3), . . . can be obtained.

Theorem 1 (Weak shrinking state space). In an FCMM, S(t)
contains S(t+1), ∀t ∈ N, when state spaces are iteratively cal-
culated using either shrink function HT or HW with induced
state space S(0) = [a

(0)
1 , b

(0)
1 ]× [a

(0)
2 , b

(0)
2 ]× . . .× [a

(0)
M , b

(0)
M ]

and fi ∈ F ′ ∀i ∈ {1, 2, . . . ,M}.

This theorem asserts that the state spaces shrink from one
iteration to the next one, although it is possible that S(t) =
S(t+1), which implies that S(t) = S(t+k) ∀k ∈ N. So, the
state spaces may not shrink forever.

Proof. Let S(t−1) = {[a(t−1)1 , b
(t−1)
1 ], . . ., [a

(t−1)
M , b

(t−1)
M ]},

S(t) = {[a(t)1 , b
(t)
1 ], . . ., [a

(t)
M , b

(t)
M ]} and S(t+1) = {[a(t+1)

1 ,

b
(t+1)
1 ], [a(t+1)

2 , b
(t+1)
2 ], . . ., [a(t+1)

M , b
(t+1)
M ]}.

To prove that S(t) contains S(t+1), the fact that [a(t)i , b
(t)
i ]

contains [a
(t+1)
i , b

(t+1)
i ] for every i = 1, 2, . . . ,M must be

demonstrated. Proceeding by induction, let us assume that
S(t−1) contains S(t) and then prove that S(t) contains S(t+1).
So, having that I(t−1)i contains I(t)i for every i = 1, . . . ,M ,
we will prove that I(t)i contains I(t+1)

i .
We have that S(1) is calculated using S(0), so the induced

state space S(0) contains every state space generated by shrink
functions because bounds of S(0) for every neuron match the
transfer function’s bounds for this neuron. This implies that
S(0) ⊇ S(t) ∀t, and hence S(0) contains S(1).

Case 1: the weights are unknown. The bounds for the dot
product between wi and A(t−1) and between wi and A(t) are
calculated using Equations (3) and (4), respectively.

For all i, we have that:
• I(t)i = [fi(minT (wiA

(t−1))), fi(maxT (wiA
(t−1)))]

• I(t+1)
i = [fi(minT (wiA

(t))),fi(maxT (wiA(t)))].
As the next step, we will prove that the lower bound of

I(t)i is less than or equal to the lower bound of I(t+1)
i ∀i =

1, 2, . . . ,M . More explicitly,

minT (wiA
(t−1)) ≤ minT (wiA(t))

−
N∑
j=1

b
(t−1)
j ≤ −

N∑
j=1

b
(t)
j .

We should prove that −b(t−1)j ≤ −b(t)j ∀j, which is true
because b(t−1)j ≥ b(t)j by hypothesis (S(t−1) contains S(t)), so

higher bounds of activation space I(t−1)i are not smaller than
higher bounds for activation space I(t)i .

Also, let us prove that the upper bound of I(t)i is bigger or
equal than the upper bound of I(t+1)

i . That is to say,

maxT (wiA
(t−1)) ≥ maxT (wiA(t))

N∑
j=1

b
(t−1)
j ≥

N∑
j=1

b
(t)
j .

By doing so, it is sufficient to prove that b(t−1)j ≥ b
(t)
j ∀j,

which holds by hypothesis.
Case 2: the weights are known. The bounds for the dot

product between wi and A(t−1) and between wi and A(t) are
calculated using Equations (5) and (6), respectively.

Having S(t) = I(t)1 × I(t)2 × . . . × I(t)M and S(t+1) =

I(t+1)
1 × I(t+1)

2 × . . . × I(t+1)
M , we also know that I(t)i =

[fi(minW (wiA
(t−1))), fi(maxW (wiA

(t−1)))] and I(t+1)
i =

[fi(minW (wiA
(t))), fi(maxW (wiA

(t)))] ∀i.
As the following step, we will prove that the lower bound

of I(t)i is less than or equal to the lower bound of I(t+1)
i ∀i.

Given that fi is monotonically increasing, it suffices to prove
the following inequality:

minW (wiA
(t−1)) ≤ minW (wiA

(t))

that is to say

M∑
j=1

wji

(
b
(t−1)
j (1− sgn(wji)) + a

(t−1)
j (1 + sgn(wji))

)
2

≤
M∑
j=1

wji

(
b
(t)
j (1− sgn(wji)) + a

(t)
j (1 + sgn(wji))

)
2

.

It is sufficient to prove that, for every j, that:

wji

(
b
(t−1)
j (1− sgn(wji)) + a

(t−1)
j (1 + sgn(wji))

)
2

≤
wji

(
b
(t)
j (1− sgn(wji)) + a

(t)
j (1 + sgn(wji))

)
2

.

There are three possible scenarios depending on the sign of
wji:
• Scenario 1. If sgn(wji) = −1 then

wji

(
b
(t−1)
j (2) + a

(t−1)
j (0)

)
2

≤
wji

(
b
(t)
j (2) + a

(t)
j (0)

)
2

b
(t−1)
j wji ≤ b(t)j wji

which is true because sgn(wji) = −1 and b(t−1)j ≥ b
(t)
j

by hypothesis.
• Scenario 2. If sgn(wji) = 1 then

wji

(
b
(t−1)
j (0) + a

(t−1)
j (2)

)
2

≤
wji

(
b
(t)
j (0) + a

(t)
j (2)

)
2
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a
(t−1)
j wji ≤ a(t)j wji,

which is true because sgn(wji) = 1 and a
(t−1)
j ≤ a

(t)
j

by hypothesis.
• Scenario 3. If sgn(wji) = 0 then the inequality holds

because both sides are zero.
Also, let us prove that the upper bound of I(t)i is greater

than the upper bound of I(t+1)
i ∀i. That is to say,

maxW (wiA
(t−1)) ≥ maxW (wiA

(t))

so,

M∑
j=1

wji

(
b
(t−1)
j (1 + sgn(wji)) + a

(t−1)
j (1− sgn(wji))

)
2

≥
M∑
j=1

wji

(
b
(t)
j (1 + sgn(wji)) + a

(t)
j (1− sgn(wji))

)
2

.

It is sufficient to prove that, for every j, that:

wji

(
b
(t−1)
j (1 + sgn(wji)) + a

(t−1)
j (1− sgn(wji))

)
2

≥

wji

(
b
(t)
j (1 + sgn(wji)) + a

(t)
j (1− sgn(wji))

)
2

.

Analogously to the previous case, there are three possible
scenarios depending on the sign of wji.
• Scenario 1. If sgn(wji) = −1 then

wji

(
b
(t−1)
j (0) + a

(t−1)
j (2)

)
2

≥
wji

(
b
(t)
j (0) + a

(t)
j (2)

)
2

a
(t−1)
j wji ≥ a(t)j wji

which is true because sgn(wji) = −1 and a(t−1)j ≤ a(t)j
by hypothesis.

• Scenario 2. If sgn(wji) = 1 then

wji

(
b
(t−1)
j (2) + a

(t−1)
j (0)

)
2

≥
wji

(
b
(t)
j (2) + a

(t)
j (0)

)
2

b
(t−1)
j wji ≥ b(t)j wji

which is true because sgn(wji) = 1 and b(t−1)j ≥ b(t)j by
hypothesis.

• Scenario 3. If sgn(wji) = 0 then the inequality holds
because both sides are zero.

At this point the thesis is proved for both cases (unknown
and known weights) and the theorem is true. �

Theorem 2 (Strong shrinking state space). In an FCM M,
S(t) strictly contains S(t+1), ∀t ∈ N, when state spaces are
iteratively calculated using either shrink function HT or HW
with induced state space S(0) = [a

(0)
1 , b

(0)
1 ]×[a(0)2 , b

(0)
2 ]×. . .×

[a
(0)
M , b

(0)
M ] and fi ∈ F 0 ∀i ∈ {1, 2, . . . ,M}.

Remark. Notice that transfer functions are now bounded into
open intervals, which implies that the activation bounds a(0)i

and b(0)i are never reachable by any neuron Ci at any iteration.
This means that S(t) 6= S(t+k) ∀k ∈ N, and hence, the state
spaces will shrink forever.

Proof. In order to prove that S(t) strictly contains S(t+1), the
fact that [a

(t)
i , b

(t)
i ] strictly contains [a

(t+1)
i , b

(t+1)
i ] for every

i = 1, 2, . . . ,M must be demonstrated.
Let us assume that S(t−1) strictly contains S(t) and then

prove that S(t) strictly contains S(t+1). So, having that I(t−1)i

strictly contains I(t)i for every i = 1, 2, . . . ,M , we will prove
that I(t)i strictly contains I(t+1)

i .
We have that S(1) is calculated using S(0) and applying

transfer functions. Then, start of the induction is easily verified
and we can affirm that induced state space S(0) strictly con-
tains every state space generated by shrink functions because
bounds of S(0) for every neuron match transfer function’s
bounds (open intervals) for this neuron, meaning that S(0) ⊃
S(t) ∀t. This happens because between two intervals with
equal bounds, the closed one strictly contains the open one.
Consequently, S(0) strictly contains S(1).

The proof is analogous to the weak version of the theorem,
except that all inequalities are turned into strict ones. This
means that every occurrence of the ≤ and ≥ symbols is
replaced with the < and > symbols, respectively. Therefore,
the strong version of the theorem is true. �

The above results lead to the question of whether the state
spaces will shrink until they reach a single point. Reaching a
single point would imply that every feasible activation space
has zero length, thus indicating that every FCM converges to
a fixed-point attractor. This situation is false, as we know by
other studies (e.g., [20], [14], [16]). Such concerns serve as a
motivation to define the limit state space.

Definition 9. S(∞) ∈ SM is the limit state space of M,
when state spaces are iteratively calculated using either shrink
function HT or HW and starting with S(0), such that S(∞) =
limt→∞ S(t).

It is a fact that, at any iteration, a feasible state space is the
M -ary Cartesian product over the feasible activation spaces
for each map neuron and that feasible activation spaces are
closed intervals over the set of real numbers. The shrinkage of
these feasible state spaces implies a shrinkage of the feasible
activation spaces. Also, from a mathematical point of view,
iterative feasible state spaces are a sequence of elements over
SM and iterative feasible activation spaces are a sequence
of elements over L. A sequence over L can be interpreted
as two other sequences: the sequence of lower bounds and
the sequence of upper bounds of the iterative intervals (both
sequences are defined over the set of real numbers). We say
that a sequence over L is convergent, if the sequences of lower
and upper bounds are also convergent.

The theorem implies that closed intervals associated with
neurons become smaller from one iteration to the following,
meaning that the lower bound becomes bigger and the upper
bound becomes smaller. This suggests that the lower bounds
sequence increases and the upper bounds sequence decreases.
Besides, both sequences are bounded from each other, so the
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lower bounds sequence is a lower bound for the higher bound
sequence and vice versa. Thus, both sequences are convergent
because the monotone convergence theorem [21] and have a
limit (in the extreme case, the limit is a closed interval with
identical lower and upper bounds). Now, we have that the
sequence of feasible activation spaces is convergent, implying
the convergence of the sequence of feasible state spaces. At
this point, there is no doubt about the existence and unicity of
a limit for iterative feasible state spaces.

Remark. Even though state spaces do not always shrink until
reaching a fixed-point attractor, there are some cases where the
limit state space contains a single point as we will observe in
the following simulations.

VI. COVERING AND PROXIMITY OF FCM MODELS

In this section, we discuss two evaluation measures that
help understand the properties of FCM-based systems. Such
measures are based on the theorems introduced in Section V
and the limit state space definition.

A. Evaluation Measures

Definition 10. The covering (representativeness) of a feasible
activation space at t-th iteration for neuron Ci is the quotient
between the associated interval’s length (lfas) and the length
of the induced activation space (lias) for Ci. If neuron Ci
is independent, the covering of every associated feasible
activation space at any iteration is 0,

covering(Ii) =

{
lfas
lias

if Ci has influencing neurons
0 if Ci has no influencing neurons.

This measure quantifies the proportion of the induced acti-
vation space that is reachable by the neuron’s activation values.
For example, a covering value of 0.2 means that the neuron’s
activation values reach at most 20% of the induced activation
space. A covering of 0 means that at some iteration, the neuron
will reach a constant value (because a zero-length interval
contains a single value) and will remain there from that point
on, regardless of the initial stimulus.

Definition 11. The covering of a feasible state space at t-th
iteration S(t) = I(t)1 × I

(t)
2 × . . . × I

(t)
M , in the FCM M, is

the average covering of all feasible activation spaces at t-th
iteration I(t)1 , I(t)2 , . . . , I(t)M . Formally, it is

covering(M) =
1

M

M∑
i=1

covering(Ci).

Analogously to the above example, a covering value of 0.2
means that, on average, every neuron’s activation value reaches
at most 20% of its induced activation space. We could vaguely
say that the tuple A(t) = (A

(t)
1 , A

(t)
2 , . . . , A

(t)
M ) reaches at

most 20% of their induced state space. A covering value of
zero means that the FCM will reach a fixed-point attractor
regardless of the initial stimulus.

Covering is related to the universal approximation property
ascribed to multilayer feedforward networks [22]. For instance,
suppose we have such a network with a single output neuron

whose value lies in [0, 1] and a problem with output values
close enough to either 0 or 1. Covering values far from 1
suggest poor approximations to the given input-output set, but
values close to 1 do not imply good approximations although
they might be good indicators of it.

We know that S(∞) is the limit state space of M, but it
would be convenient to identify whetherM’s activation values
lie close to the boundaries established by S(∞) or not. The
following definitions will help investigate such situations.

Definition 12. The proximity (closeness) at the t-th iteration
for neuron Ci, given a feasible activation space for Ci at the
t-th iteration, is proximity(Ci) = d

l , where d is the smallest
distance between its activation value A(t)

i and the boundaries
of the activation space and l is the length of the given feasible
activation space.

Remark. The highest proximity value that can be computed
is 0.5, which means that the neuron’s activation value is near
the center of its feasible activation space.

Definition 13. The proximity at the t-th iteration for FCM
M, given a feasible state space S(t) = I(t)1 × . . . × I

(t)
M at

the t-th iteration, is the average proximity of all its neurons
given the feasible activation spaces I(t)1 , . . . , I(t)M

proximity(M) =

∑M
i=1 proximity(Ci)

M
.

For example, if S(t) = [0.2, 0.6]× [0.2, 0.6]× . . .× [0.2, 0.6]
is the given state space forM and we obtain a proximity value
close to 0.5, then it means that the activation values of every
neuron are, on average, at the center of the [0.2, 0.6] interval.
A proximity value close to 0 suggests that activation values
of every neuron are, on average, near to the boundaries of
[0.2, 0.6]. This measure is not really useful when applied over
unstable FCMs because the proximity can easily vary from
one iteration to the following.

B. Experimental Scenarios

To illustrate the significance of the theoretical results in this
paper, we use covering and proximity measures over the set
of synthetically generated FCMs.

For experimentation purposes, we generated 400 FCM-
based models (200 stable and 200 unstable). The number of
neurons is randomly generated and may vary between 5 and
30, whereas weights are uniformly distributed in the [−1, 1]
interval. Such cognitive networks are generated with different
connectivity or percentage of relationships (10%, 20%, . . . ,
100%) but self-connections are not allowed.

Moreover, we generated 20 initial state vectors such that
each record comprises an initial stimulus and the expected
response after 100 iterations, where neuron activation values
are randomly distributed in [0, 1]. Responses associated with
every stimulus are calculated using the sigmoid transfer func-
tion f(x) = 1/(1+ e−λ(x−h)), such that λ and h are positive
numbers randomly selected for each case. Discrete functions
(bivalent, trivalent and threshold) could be used because they
are compatible with our theorems. However, we decided to
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exclude them from the experiments based on the findings in
[20] related to their inference capabilities.

Observe that the generated FCMs correspond to simulation
problems in which each concept can be regarded as either an
input or output variable. FCM-based models used for pattern
classification are neglected due to two main reasons. Firstly, in
our previous papers [13] [14] [15] [16], the issues related with
FCM-based classifiers have been widely discussed. Secondly,
the literature reports notably fewer FCM solutions for pattern
classification problems as they regularly perform poorly when
compared with traditional classifiers.

For each synthetic FCM model, we calculate two feasible
state spaces S(t) at the t-th iteration: one using the HW shrink
function (i.e., knowing the weight matrix) and the other using
the HT function (i.e., only knowing the FCM’s topology).
For each feasible state space, we calculate the FCM model’s
covering and proximity. We remark that all FCMs employ the
sigmoid function as their transfer function, which belongs to
F 0 because it is bounded into (0, 1). Applying the Strong
Shrinking State Space Theorem, we obtain that A(t) ∈ S(t).
Due to the difficulty of mathematically computing S(∞), we
opt by a computational approach. In the following experiments
we set T = 100, hence we calculate S(T ) using both HW and
HT . From now on, we divide the experiments according to: (i)
their FCM stability features and (ii) the shrink function used
to calculate the feasible state spaces.

In the generated FCM models, we analyze the influence
of several factors such as number of neurons, connectivity,
stability and the shrink function (HW or HT ) upon the final
results in terms of covering and proximity. Connectivity is
the ratio of the number of causal relations among neurons to
the maximum number of such possible relations in the FCM.
Also, we provide an interpretation for the obtained values of
covering and proximity while paying attention to the number
of iterations needed for the convergence of every state space
to the limit state space (i.e., not the theoretical definition but
its computational approximation).

1) Unstable FCMs and HT shrink function: This function
makes no use of the FCM weights, so we assume that weights
range within [−1, 1]. This means that results are more general
and hence applicable to every FCM with the same topology.
Yet the calculated feasible state spaces are wider than those
calculated using the weight matrix.

Fig. 1 depicts the results for the unstable FCMs obtained
in our numerical simulations. Regardless of the number of
neurons or connectivity, covering values are always very high.
Moreover, we gathered computational evidence that every
FCM reaches the limit state space before the 100-th iteration
(on average only 10 iterations were needed), which suggests
that the calculated feasible state spaces are good computational
approximations of the limit state spaces.

Fig. 2 portrays the distribution of covering values for unsta-
ble FCMs. From this experiment we cannot draw meaningful
conclusions, in spite of the high covering values reported for
these maps. In a nutshell, the FCMs’ instability and lack of
knowledge about weights when computing the feasible state
spaces render these estimated feasible state spaces unable to
bear any predictive information.

Number of neurons
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Fig. 1: Covering values for unstable FCM models using the
HT shrink function.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2: Distribution of covering values among the unstable
FCMs using the HT shrink function.

2) Unstable FCMs and HW shrink function: An awareness
of the matrix W leads to better results in the sense that feasible
state spaces are more compact. It can be noticed from Fig. 1
that higher connectivity values mean higher covering values
and that the number of neurons appears to have no significant
influence on the covering values. The covering value is 1 in
almost every case when the number of neurons is higher than
15 and the connectivity is higher than 0.5. Also, we realized
that 178 FCMs reached the limit state space before the 100-th
iteration (on average we required 58 iterations), which is an
indicator of good computational approximations.

Fig. 3 displays the distribution of covering values for this
scenario. Notice that there are some FCMs with small covering
values, which confirm that weights help estimate small feasible
state spaces where these activation values belong, even in the
case of unstable FCM-based models.

Overall, unstable FCMs rarely have small covering values
(regardless of the use of the causal weights in the calculations)
because the activation values of neurons constantly change
without understandable patterns.

3) Stable FCMs and HT shrink function: In this experi-
ments, both covering and proximity values are shown because
these FCMs do reach stable states, hence these values remain
almost unchanged toward the last iterations.

According to Fig. 4 it can be concluded that higher con-
nectivity values lead to higher covering values and that the
number of neurons in the network has no significant influence
on the covering values. Of course, in real FCM-based models,
we can expect a straightforward relation between the number
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Covering values for unstable FCM models using the HW
shrink function.
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Fig. 3: Distribution of covering values for unstable FCMs
using the HW shrink function.

of neurons and the connectivity.
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Fig. 4: Covering values for stable FCM models using the
HT shrink function.

Fig. 5 discloses the distribution of covering values for this
scenario. Covering value reaches 1 in almost every case when
connectivity is higher than 0.6. Moreover, every FCM reaches
the limit state space before the 100-th iteration (on average
only 12 iterations were needed).

It can be observed that the lack of knowledge about the
weights significantly diminishes our capacity to estimate in-
formative state spaces. The results also illustrate that there are
some FCMs with small covering values, which implies that

0 0 4 3 4 7 6 6 12 13
145

0

100

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 5: Distribution of covering values for stable FCMs
using the HT shrink function.

our experiment helps estimate small feasible state spaces to
which the activation values belong, even when only the FCM
topology is known. Overall, an FCM-based model with a small
covering value for a fixed topology implies that, regardless of
the weight matrix, the covering will be less than or equal to
the one without considering the weights. Thus, if we obtain
zero covering with a fixed topology, every FCM matching this
topology will converge to a fixed-point attractor.

Fig. 6 shows the distribution of proximity values for this
scenario. According to this figure, almost every proximity
value lies between 0.2 and 0.4. Only 8 FCMs have proximity
values below 0.2, which means that, in general, the activation
values are not close to the boundaries of the corresponding
activation spaces. On the other hand, notice that the activation
values do not commonly lie in the middle of the activation
spaces because only 12 FCMs are nearby.

0 1 7
54

126 12
0

100

200

0 0.1 0.2 0.3 0.4 0.5

Fig. 6: Distribution of proximity values for stable FCMs
using the HT shrink function.

Based on the results of both measures (covering and prox-
imity) we can conclude that the predicted state spaces are not
good enough approximations of the real activation values when
the knowledge about weights is not available, even in presence
of FCM models to converge to a fixed point.

4) Stable FCMs and HW shrink function: Fig. 7 shows the
covering values resulting for this scenario. The results have
shown that higher connectivity values and higher number of
map neurons do have a considerable influence on attaining
higher covering values. In the current experiment, 149 FCMs
reached the limit state space before the 100-th iteration (on
average 57 iterations were needed), which confirms the use-
fulness of the calculated feasible state spaces to approximate
the limit state spaces.

Being more explicit, note that covering values are regularly
near to 1 when the connectivity is higher than 0.6. We obtained
zero covering for almost every FCM with connectivity 0.2 or
under (about 20% of the neuron pairs are connected, which
means that every neural entity is connected to 1 in 5). We also
have zero covering for almost every FCM-based model with
10 neurons or less. This result is very important in the FCM
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Fig. 7: Covering values for stable FCM models using the
HW shrink function.

field, since most real-world models usually involve topologies
with a limited number of neurons. By calculating covering we
can peek at the FCM’s behavior without running the inference
process, so we could notify the expert about the limitations of
the FCM model to reach good approximations.

Now with stable FCMs and the knowledge of causal weights
in the calculations, we obtain predictive information about the
FCM’s behavior. As already discussed, the covering value for
every FCM is the average covering for every neuron. Hereby, a
zero covering value is a computational evidence of fixed-point
attractors for every one of these FCM models. This implies
that, regardless of the initial stimulus, the FCM will always
converge to a fixed-point attractor, and Fig. 8 illustrates that
at least 81 FCMs obey this pattern.

81
40 1 3 3 4 5 6 9 16

32
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100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 8: Distribution of covering values for stable FCMs using
the HW shrink function.

Fig. 8 reveals that 121 FCMs have small covering values
(between 0 and 0.1), thus we can estimate small feasible state
spaces to which these activation values belong. We generate
datasets consisting of 20 input-output pairs to analyze these
FCMs from the accuracy point of view. Accuracy is defined as
the average of (always positive) differences between expected
outputs and activation values at the last iteration. Also, using
the limit state space for each FCM, we can compute the
best possible accuracy that could be achieved with a specific
dataset by means of the distance of the outputs to the neurons’
activation space. After this testing, we discovered that the
average of all best possible accuracies is around 0.272. This
outcome, obtained before starting the inference process, means
that we cannot expect better results than 0.272 on average.

Actually, we empirically confirmed this conclusion by getting
an average accuracy of 0.275. We can see how low covering
is associated to poor performance in FCM-based models.

Despite these encouraging results, some FCMs escape the
orbit of our math and we cannot narrow down their state
spaces. Perhaps some state spaces cannot be tighter than what
we estimated and the FCMs converge to different fixed-point
attractors, which could be widely spread along the induced
state space. While the literature reports some FCM-based
scenarios on which unique fixed points are convenient, the
truth is that the convergence to different fixed-point attractors
is a pivotal feature to produce heterogeneous responses in a
stable way. Therefore, we should avoid zero covering in FCMs
when we need diverse responses.

90

2 0
31 40 37
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0 0.1 0.2 0.3 0.4 0.5

Fig. 9: Distribution of proximity values for stable FCMs
using the HW shrink function.

According to Fig. 9, nearly half of the proximity values
are exactly zero. So, almost surely, 90 FCMs converge to a
fixed-point attractor (regardless of their initial stimulus vector).
It is almost surely because, when a stable FCM has 0 valued
proximity, it means the activation value for every neuron at any
high enough iteration will match the lower or higher bound
of predicted feasible activation state for current iteration. This
is highly unlikely, except if every feasible activation state has
length 0. This last situation implies that covering is 0 and then
the FCM converges to a fixed-point attractor. In this case, the
activation intervals for FCMs are not as wide as in previous
cases and the current results must be carefully interpreted. For
example, a proximity of 0.5 means that, on average, the actual
activation values lie in the middle of the activation space.
However, for an specific neuron, this does not imply that its
activation is far from the boundaries because the length of the
activation space could be approaching zero.

In stable FCMs and using weights in our calculations,
we conclude that combining the results of both evaluation
measures, the predicted state spaces are good enough approxi-
mations of the real activation values in many cases. Moreover,
by means of the Strong Shrinking State Space Theorem, we
gathered computational evidence about the convergence to a
fixed-point attractor in such maps.

C. Discussion of Simulation Results

In many situations (e.g., pattern recognition), stable FCMs
with covering values close to 1 (high representation ability)
and proximity values close to 0 (high accuracy) are regularly
desired. In other situations, like control scenarios (where a goal
may be to produce the same response despite the activation
vector used to activate the map), covering values close to 0 are
sought-after. The simulations reported more valuable results in
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the presence of stable FCM models and when the knowledge
comprised into the weight set is available.

In our experiments, we obtained high covering values for the
case of unstable FCMs and when we only take their topology
into account. In this case, the feasible activation spaces are not
a narrow representation of the real activation values, as we can
observe from the high proximity values in the results. Also,
we conclude that there is not such chaos in every unstable
FCM, because sometimes their activation values reside within
small activation spaces (see Fig. 3).

The results confirmed that the predictive information about
the system is found by working with stable maps and their
weight sets. Small covering values are evidence of the reduced
representativeness of induced activation space, but sometimes
we desire high covering values to represent the most diverse
sets of outputs. The last scenario has proven useful to predict
the FCMs’ behavior (e.g., fixed-point attractors) by means of
covering and proximity values. As illustrated, such measures
have a straightforward connection with the Strong Shrinking
State Space Theorem. More importantly, they help explain why
FCMs sometimes perform poorly when applied to prediction
problems that demand high accuracy. Having a low covering
value means there is a vast state space region where no FCM
responses lie in. In this situation, it is more likely to have
desired responses residing into the aforementioned region.
Such responses will never be reached by the FCM in question,
hence substantially reducing its accuracy.

VII. CONCLUDING REMARKS

In this paper, we have introduced a theoretical formalism
consisting of definitions and theorems to unveil the dynamical
behavior of FCMs equipped with transfer F -functions. To
the best of our knowledge, similar studies reported in the
literature focus on the existence and unicity of the fixed-point
attractor. Our research however goes a step further since it
analyses the dynamical behavior of FCM-based models from
the perspective of their state spaces.

The Strong Shrinking State Space theorem enunciated in this
paper ensures that the feasible state space of an FCM-based
system equipped with a tranfer F -function shrinks infinitely,
yet the system converges to its limit state space. As shown
in the experiments, approximating an FCM’s limit state space
is useful to predict fixed-point attractors. This is consistent
with the notions of E-stability and E-instability proposed by
Nápoles et al. [16]. Likewise, we illustrated that the covering
of feasible activation spaces is often poor and irregular for
FCMs with reduced network topologies. This knowledge could
be injected into the learning procedure in order to improve
network’s performance. Of course, it is not expected of FCM-
based models to fulfill the universal approximation property
due to their lack of hidden neurons and the fact that both
weights and neurons’ activation values are bounded. As a
future work, we will use our results to improve the prediction
capability of FCM-based models.
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