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Abstract
In this paper we derive and analyse a class of linearly implicit schemes which includes
the one of Feistauer and Kučera (J Comput Phys 224:208–221, 2007) as well as the
class of RS-IMEX schemes (Schütz and Noelle in J Sci Comp 64:522–540, 2015;
Kaiser et al. in J Sci Comput 70:1390–1407, 2017; Bispen et al. in Commun Comput
Phys 16:307–347, 2014; Zakerzadeh in ESAIMMathModelNumerAnal 53:893–924,
2019). The implicit part is based on a Jacobian matrix which is evaluated at a reference
state. This state can be either the solution at the old time level as in Feistauer and
Kučera (2007), or a numerical approximation of the incompressible limit equations as
in Zeifang et al. (Commun Comput Phys 27:292–320, 2020), or possibly another state.
Subsequently, it is shown that this class of methods is asymptotically preserving under
the assumption of a discrete Hilbert expansion. For a one-dimensional setting with
some limitations on the reference state, the existence of a discrete Hilbert expansion
is shown.
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1 Introduction

We consider multi-dimensional systems of hyperbolic conservation laws that depend
on a parameter ε ∈ (0, ε0], ε0 > 0 fixed,

∂tw(x, t, ε) + ∇ · f (w(x, t, ε), ε) = 0, (1)

which are stiff as ε tends to 0. Here (x, t) ∈ � × R+ ⊂ R
d × R+ are the space-time

variables, and

w : � × R+ × (0, ε0] → N ⊂ R
m (2)

is the solution vector, consisting of the conserved quantities.HereN ⊂ R
m is a suitable

image space depending on the problem at hand, e.g., taking into account positivity of
density and the like. The function

f : N × (0, ε0] → R
m×d (3)

is the flux matrix. We assume that for any unit vector n ∈ R
d and any

w ∈ N , the Jacobian matrix f ′(w, ε) · n is real diagonalizable with eigenvalues
λ1(w, ε, n), . . . , λm(w, ε, n), and that for fixed w and n,

min
j=1,...m

{|λ j (w, ε, n)| = O(ε0) (4)

max
j=1,...m

{|λ j (w, ε, n)| = O(ε−1) (5)

as ε → 0. A classical example is low Mach number Euler equations of gas dynamics,
which is also the system that we will consider in the sequel. A key issue is the choice
of time discretization. For explicit schemes, the CFL condition imposes a small time
step of order O(εΔx). This might be feasible for a very fast, highly parallel solver
such as [19] for some given ε, but there exists a threshold on ε such that for any
value smaller than this threshold, the restriction on Δt becomes too demanding. Fully
implicit schemes, on the other hand, necessitate solving large systems of nonlinear
equations, whose condition number deteriorates as the parameter ε tends to zero. Our
focus here is on IMEX (implicit-explicit) schemes [2,3,8,32], which attempt to split
the system into a fast part (treated implicitly) and a slow part (treated explicitly).

Besides the questions of accuracy and efficiency, there is also a qualitative issue
of change of type of the system of conservation laws as ε tends to zero. For instance,
weakly compressible solutions become incompressible in this limit. An important
question is whether this property holds also for the numerical approximation.

The literature on numerical methods for singularly perturbed hyperbolic conserva-
tion laws is huge. The interest of this paper is on IMEXschemes for theEuler equations;
those schemes necessitate a splitting of the function f (w(x, t, ε), ε) into stiff and non-
stiff parts. Possible splittings have been introduced in, e.g., [6,12,16,18,24,31,40], see
also the references in the cited papers. For asymptotic analysis and/or alternative
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methods such as staggered or relaxation schemes, we refer to the recent works [1,4,9–
11,14,25,29,36,37].

The linearly implicit scheme presented in [15], building heavily on the work of
[13], is not of the IMEX (implicit/explicit) type. In [13,15] it is presented for the
dimensional Euler equations, so there is no (explicit) ε-dependency. The scheme is
based on a linearization of the implicit Euler time discretization of the Euler equations.
The equations are discretized in space using the discontinuous Galerkin (DG) method
on triangular meshes. The linearization in time is based on homogeneity of the Euler
fluxes and the specific form of the Vijayasundaram numerical flux. The resulting
linear systems are solved either by block-Jacobi preconditioned GMRES or by a direct
solver. For transonic and supersonic flows, local element-wise artificial diffusion is
added to suppress spurious oscillations in the solution. Extensive numerical testing
of the scheme was performed in [13,15], where good performance of the scheme is
demonstrated for low-Mach, as well as transonic and supersonic flows with shocks.

Our interest here is to compare asymptotic properties of the scheme [15], which we
call here Dolejší–Feistauer–Kučera , with the RS-IMEX scheme presented in [40].

The latter scheme is also a linearly implicit one, see [6,16,40], it is based on a lin-
earization of the Euler equations, but around a different reference state. The reference
state used for linearization is the solution of the corresponding incompressible Euler
equations. In terms of (1), it is the limit as ε → 0. Spatial discretization is done using
the discontinuous Galerkin spectral element method [19,26] which is a very efficient
variant of the DG method on quadrilateral elements. The Lax–Friedrichs/Rusanov
type numerical fluxes are used, see [40]. The algorithm allows an identification of
‘stiff’ and ‘non-stiff’ terms. Thus, the IMEX Runge–Kutta methods are used, more
precisely, IMEX-ARS-222 (second order, [2]), IMEX-ARS-443 (third order, [2]) and
IMEX-ARK-4A2 (fourth order, [28]). The order of the time integrator should fit to the
order of the spatial discretization, hence, for piecewise linear ansatz functions, IMEX-
ARS-222 is used. The linear systems of equations arising in the time integration are
solved using a matrix-free Newton-GMRES method with analytical block-Jacobi pre-
conditioner [39]. The focus was on low-Mach equations only, thus no treatment of
discontinuities was taken into account. Numerical testing of the scheme can be found
in [39,40]. These results indicate very efficient behaviour of the algorithm in the low
Mach limit.

This research has been motivated through the following observation: Although
different in type, numerically, both schemes perform very well in the ε → 0 limit.
For the RS-IMEX scheme, a formal asymptotic consistency analysis has been given in
[22]; no such analysis has been presented for the Dolejší–Feistauer–Kučera scheme.
Even more, the Dolejší–Feistauer–Kučera scheme is not designed to work with the
nondimensionalized equations. Nevertheless, consider the convergence results shown
in Fig. 1.

These results present error behaviour of a travelling vortex computation for the
isentropic Euler equations. For the Euler system this experiment was proposed in
[7], see also [5, page 122]. Having periodic boundary conditions, the solution is also
periodic. Carefully made pictures of the initial conditions can be found in [5, p. 123,
Fig. 8.8]. The equations are ε-dependent, and so is the vortex. For ε → 0 the equations
converge towards the incompressible isentropic Euler equations. For more details on
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Fig. 1 Numerical results for the RS-IMEX scheme (left) and the Dolejší–Feistauer–Kučera scheme (right);
errors are in density and momentum. It can be seen that the errors are apparently independent of ε, which is
typically a good indicator for a scheme being asymptotically consistent. Errors and mesh sizes have been
scaled (independently on ε), so that they begin at (1, 1). To account for the dimensions in the Dolejší–
Feistauer–Kučera scheme, error in density is scaled by ε−2. Please note that quantities on the left and on
the right cannot be compared right away

solver parameters, we refer to [15,39]. As already mentioned above, it is important
to note that these schemes are not directly comparable due to different linear solvers,
different triangulations, different numerical fluxes or different representative mesh
sizes. The key observation is that they perform very well for ε → 0 which is a clear
indicator for a scheme being AP.

The contribution of the present paper comes in three parts:

– First, we present a unified framework of the RS-IMEX (RS for reference solution)
and a class of linearly implicit schemes.

After having unified the schemes, we solely focus on the full Euler equations of gas
dynamics given in form (1), for the ease of presentation formulated in two dimensions,
with

w :=

⎛
⎜⎜⎝

ρ

ρu
ρv

E

⎞
⎟⎟⎠ , f :=

⎛
⎝

ρu
ρu ⊗ u + p

ε2
I d

u(E + p)

⎞
⎠ . (6)

Throughout the paper, ε denotes a reference Mach number. Here u has been defined
as the velocity vector u := (u, v); the equations come along with the dimensionless
equation of state:

E = p

γ − 1
+ ε2

2
ρ|u|2. (7)

It is known that for ε → 0, the solution w converges towards the solution of the
incompressible equations if initial and boundary data are so-called well-prepared, see
Definition 4, see [33]; see also [34] for a generalization and review of the existing
results and [30] for a discussion in the case of more generalized initial conditions.
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– Assuming the existence of an asymptotic expansion of the discretization, we show
that the semi-discrete-in-time algorithm converges for ε → 0 to a consistent
discretization of the incompressible Euler equations. This property has been named
in [20] asymptotic preserving (AP), we refer a reader to [27] where this property
has been firstly studied. See also [17] for the so-called unified preserving schemes.

– Subsequently, we show under some restrictions that there exists an asymptotic
expansion of the semi-discrete-in-time discretization.

In this paper, we work with the strong form of the equations. It is hence very
important to state the following assumption:

Assumption 1 Throughout the paper, we consider initial data and final times in such
a way that w remains sufficiently smooth.

The paper is organized as follows: In Sect. 2 we introduce the so-called RS-IMEX
schemes. We write them as a class of linearly implicit schemes and show that Dolejší–
Feistauer–Kučera is a particular, and canonical, member of this class. Section 3 shows
that this class of schemes is asymptotically preserving assuming the existence of a
discrete Hilbert expansion. Under some restrictions on the reference state, we show in
Sect. 4 that this discrete Hilbert expansion exists in one spatial dimension. Section 5
offers conclusion and outlook.

2 Linearly implicit schemes based on a reference state

In this section, we formulate a unified framework containing both the Dolejší–
Feistauer–Kučera and theRS-IMEXscheme. For simplicity of exposition,we suppress
the dependence on ε and rewrite (1) as

∂tw + ∇ · f (w) = 0. (8)

Definition 1 (Flux splitting) Given a reference state wR : � × R+ → N , let

f̃ (w;wR) := f (wR) + f ′(wR)(w − wR) (9)

f̂ (w;wR) := f (w) − f̃ (w;wR) (10)

be the stiff and non-stiff fluxes. Note that for fixed wR and ε, the stiff flux f̃ (w;wR)

is linear in w.

The underlying idea is that the Jacobian matrix f̃
′
contains all singular eigenvalues

(of order ε−1), and f̃ will hence be discretized implicitly. The Jacobian f̂
′
contains

eigenvalues of order ε0, and f̂ will hence be discretized explicitly. We call f̃ the stiff
and f̂ the non-stiff flux.

In the following, we introduce the RS-IMEX scheme, which is based on a reference
state that is a function depending on time and space:
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Definition 2 (Time-discretization based on a reference solution (RS-IMEX)) Let
wn

R(·) := wR(·, tn) and wn+1−
R (·) := wR(·, tn+1 − 0). Then the RS-IMEX scheme is

given by
wn+1 − wn

Δt
= −∇ ·

(
f̃ (wn+1;wn+1−

R ) + f̂ (wn;wn
R)

)
. (11)

Next we introduce a variant of the RS-IMEX scheme which is not based on a
reference solution wR(t), but on a reference state wn

R which is constant in the time
interval [tn, tn+1) (but possibly variable in space):

Definition 3 (IMEX time-discretization based on a reference state)
Here we suppose that wR(t) ≡ wn

R is constant in time on the interval [tn, tn+1).
We call wn

R : � → N the reference state. Then the RS-IMEX scheme based on a
reference state is given by

wn+1 − wn

Δt
= −∇ ·

(
f̃ (wn+1;wn

R) + f̂ (wn;wn
R)

)
. (12)

The following lemma considerably simplifies the form of the scheme (12). It also
provides a convenient basis for a DG space discretization:

Lemma 1 (Linearly implicit scheme based on a reference state) The scheme (12) is
equivalent to the linearly implicit scheme

wn+1 − wn

Δt
= −∇ · (

f (wn) + f ′(wn
R)(wn+1 − wn)

)
. (13)

Proof From (9) and (10),

f̃ (wn+1;wn
R) + f̂ (wn;wn

R)

=
(
f (wn

R) + f ′(wn
R)(wn+1 − wn

R)
)

+ (
f (wn) − f̃ (wn,wn

R)
)

=
(
f (wn

R) + f ′(wn
R)(wn+1 − wn

R)
)

+ f (wn) −
(
f (wn

R) + f ′(wn
R)(wn − wn

R)
)

=
(
f ′(wn

R)(wn+1 − wn
R)

)
+ f (wn) −

(
f ′(wn

R)(wn − wn
R)

)

= f (wn) + f ′(wn
R)(wn+1 − wn).

	

Remark 1 Taking the reference state to be the discretization at time level n, i.e., wn

R =
wn , then (13) reduces to the classical linear implicit scheme

wn+1 − wn

Δt
= −∇ ·

(
f (wn) + f ′(wn)(wn+1 − wn)

)
(14)

If, in addition, the flux is homogeneous of degree one, i.e. f (w) = f ′(w)w, then

wn+1 − wn

Δt
= −∇ ·

(
f ′(wn)wn+1

)
. (15)
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Asymptotic properties of a class of linearly implicit… 85

This is at the basis of the Dolejší–Feistauer–Kučera scheme, proposed in [13,15] for
the Euler equations of gas dynamics.

Remark 2 In his dissertation [21], Kaiser observed that for the full Euler equations
in multiple space dimensions, the Jacobian of the non-stiff flux, f̂

′
(wn

R), may have
complex eigenvalues if the tangential velocities are large enough compared with the
normal velocities. This was remedied in [40] by removing terms of order ε2 from the
linearized equation of state.

Remark 3 To simplify the notation, wewill usually omit the bar atwR andwrite simply

wR =: (ρR, ρRuR, ρRvR, ER) (16)

whenever this does not lead to confusion. From now on, it is assumed that wR is of
the form given in Definition 3.

In Sect. 3, we study the asymptotic consistency of the RS-IMEX scheme given in
Definition 3 for the two-dimensional Euler equations of gas dynamics. In Section 4, we
specialize to the one-dimensional case and a constant reference solutionwR and prove
the existence of an asymptotic expansion for our class of linearly implicit schemes.

3 AP analysis

Considering the Euler fluxes (6) and defining w := (w1, w2, w3, w4)
T , one can write

the two Euler fluxes in terms of w as

f 1(w) =

⎛
⎜⎜⎜⎜⎝

w2
3−γ
2

w2
2

w1
+ 1−γ

2
w2
3

w1
+ γ−1

ε2
w4

w2w3
w1

γw2w4
w1

− ε2(γ−1)
2

w3
2+w2w

2
3

w2
1

⎞
⎟⎟⎟⎟⎠

,

f 2(w) =

⎛
⎜⎜⎜⎜⎝

w3
w2w3
w1

1−γ
2

w2
2

w1
+ 3−γ

2
w2
3

w1
+ γ−1

ε2
w4

γw3w4
w1

− ε2(γ−1)
2

w2
2w3+w3

3
w2
1

⎞
⎟⎟⎟⎟⎠

. (17)

Using this notation (1) reads

∂tw + ∂x f 1(w) + ∂y f 2(w) = 0. (18)
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Jacobi matrices of f 1 and f 2 with respect to w (written in terms of the physical
variables density ρ, momentum ρu and energy E) are given by

f ′
1(w) =

⎛
⎜⎜⎜⎝

0 1 0 0
γ−3
2 u2 + γ−1

2 v2 (3 − γ )u (1 − γ )v
γ−1
ε2−uv v u 0

− γ Eu
ρ

+ ε2(γ − 1)u(u2 + v2),
γ E
ρ

− ε2
γ−1
2 (3u2 + v2), ε2(1 − γ )uv, γ u

⎞
⎟⎟⎟⎠ ,

(19)

f ′
2(w) =

⎛
⎜⎜⎜⎝

0 0 1 0
−uv v u 0

γ−1
2 u2 + γ−3

2 v2 (1 − γ )u (3 − γ )v
γ−1
ε2

− γ Ev
ρ

+ ε2(γ − 1)v(u2 + v2), ε2(1 − γ )uv,
γ E
ρ

− ε2
γ−1
2 (u2 + 3v2), γ v

⎞
⎟⎟⎟⎠ .

(20)

We fix the boundary conditions as follows:

Assumption 2 In the following we assume either periodic boundary conditions or slip
(wall) boundary conditions for the velocity: u ·n = 0 on ∂�, where n is the unit outer
normal to �.

3.1 Formal expansion of the scheme

We make the following formal assumption on the existence of a Hilbert expansion.
For the validity of this assumption, we refer the reader to Sect. 4.

Assumption 3 We assume that the physical quantities ρ, u, E and p on each time
level have a formal Hilbert expansion of the form (written e.g. for ρn)

ρn(x) = ρn
(0)(x) + ερn

(1)(x) + ε2ρn
(2)(x) + O(ε3), (21)

similarly, this is assumed for the reference state wR .

Remark 4 It is trivial that wR used in the RS-IMEX [40] has a Hilbert expansion,
because it does not depend on ε. For the Dolejší–Feistauer–Kučera scheme [15],
however, this is not clear, as wR is the solution from the previous time iterate.

Substituting the Hilbert expansions into the expressions (19) and (20) gives the
expansion

f ′
s(w) = ε−2 f ′

s,(−2)(w) + ε−1 f ′
s,(−1)(w) + ε0 f ′

s,(0)(w) + O(ε), (22)

for s = 1, 2, where

f ′
1,(−2)(w) =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 (γ − 1)
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , f ′

2,(−2)(w) =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 (γ − 1)
0 0 0 0

⎞
⎟⎟⎠ (23)
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and f ′
s,(−1)(w) = 0 for s = 1, 2. Finally, since

1

ρ
= 1

ρ(0)
− ρ(1)

ρ2
(0)

ε + O(ε2) (24)

due to the Taylor expansion, we have

f ′
1,(0)(w) =

⎛
⎜⎜⎜⎝

0 1 0 0
γ−3
2 u2(0) + γ−1

2 v2(0), (3 − γ )u(0), (1 − γ )v(0), 0
−u(0)v(0) v(0) u(0) 0

− γ E(0)u(0)
ρ(0)

γ E(0)
ρ(0)

0 γ u(0)

⎞
⎟⎟⎟⎠ , (25)

f ′
2,(0)(w) =

⎛
⎜⎜⎜⎝

0 0 1 0
−u(0)v(0) v(0) u(0) 0

γ−1
2 u2(0) + γ−3

2 v2(0), (1 − γ )u(0), (3 − γ )v(0), 0

− γ E(0)v(0)
ρ(0)

0 γ E(0)
ρ(0)

γ v(0)

⎞
⎟⎟⎟⎠ . (26)

Taking all the expansions (21)–(26) and substituting into the linearized problem
(13), we gather terms according to the powers of ε. For ε−2 and ε−1 we get the
following lemma.

Lemma 2 The functions En
(0), E

n
(1), p

n
(0) and pn(1) are constant in space for every n.

Proof By gathering the terms of order ε−2 and ε−1 from (13), we obtain

∇(
pn(0) + (γ − 1)(En+1

(0) − En
(0))

) = 0, (27)

∇(
pn(1) + (γ − 1)(En+1

(1) − En
(1))

) = 0. (28)

Taking the ε0 and ε1 terms from the equation of state (7) at time level n gives

En
(0) = pn(0)

γ − 1
, En

(1) = pn(1)
γ − 1

. (29)

Substituting into (27) and (28) gives ∇En+1
(0) = ∇En+1

(1) = 0, hence En+1
(0) and En+1

(1)

are constant in space for every n. Equation (29) implies the same for pn+1
(0) and pn+1

(1) .
	


Collecting the ε0 terms of the mass equation from (13) gives

ρn+1
(0) − ρn

(0)

Δt
+ ∇ · (ρn+1

(0) un+1
(0) ) = 0, (30)

Similarly, from the momentum equation we get
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ρn+1
(0) un+1

(0) − ρn
(0)u

n
(0)

Δt
+ ∂x

(
ρn

(0)(u
n
(0))

2 + pn(2)

+ ( γ−3
2 u2R,(0) + γ−1

2 v2R,(0)

)
(ρn+1

(0) − ρn
(0)) + (3 − γ )uR,(0)(ρ

n+1
(0) un+1

(0) − ρn
(0)u

n
(0))

+ (1 − γ )vR,(0)(ρ
n+1
(0) vn+1

(0) − ρn
(0)v

n
(0)) + (γ − 1)(En+1

(2) − En
(2))

)

+ ∂y

(
ρn

(0)u
n
(0)v

n
(0) − uR,(0)vR,(0)(ρ

n+1
(0) − ρn

(0)) + vR,(0)(ρ
n+1
(0) un+1

(0) − ρn
(0)u

n
(0))

+ uR,(0)(ρ
n+1
(0) vn+1

(0) − ρn
(0)v

n
(0))

)
= 0 (31)

and

ρn+1
(0) vn+1

(0) − ρn
(0)v

n
(0)

Δt
+ ∂x

(
ρn

(0)u
n
(0)v

n
(0) − uR,(0)vR,(0)(ρ

n+1
(0) − ρn

(0))

+ vR,(0)(ρ
n+1
(0) un+1

(0) − ρn
(0)u

n
(0)) + uR,(0)(ρ

n+1
(0) vn+1

(0) − ρn
(0)v

n
(0))

)

+ ∂y

(
ρn

(0)(v
n
(0))

2 + pn(2) + ( γ−1
2 u2R,(0) + γ−3

2 v2R,(0)

)
(ρn+1

(0) − ρn
(0))

+ (1 − γ )uR,(0)(ρ
n+1
(0) un+1

(0) − ρn
(0)u

n
(0)) + (3 − γ )vR,(0)(ρ

n+1
(0) vn+1

(0) − ρn
(0)v

n
(0))

+ (γ − 1)(En+1
(2) − En

(2))

)
= 0. (32)

Finally from the energy equation we get

En+1
(0) − En

(0)

Δt
+ ∇ ·

((
En

(0) + pn(0)
)
un(0) − γ

ER,(0)uR,(0)

ρR,(0)
(ρn+1

(0) − ρn
(0))

+ γ
ER,(0)

ρR,(0)
(ρn+1

(0) un+1
(0) − ρn

(0)u
n
(0)) + γ uR,(0)(E

n+1
(0) − En

(0))

)
= 0. (33)

We note that if we assume periodic or slip boundary conditions e.g. for un , then the
same boundary conditions hold for the individual terms in its Hilbert expansion. This
can be seen (e.g. in the case of slip boundary conditions) by taking the limit ε → 0 in
the boundary condition un · n = 0, which immediately gives un(0) · n = 0. Then we

have 0 = εun(1) · n + ε2un(2) · n + O(ε3) which we can divide by ε and take ε → 0 to
obtain un(1) · n = 0. Similarly un(2) · n = 0, etc.

Lemma 3 Assuming either slip boundary conditions for uR and un for all n or periodic
boundary conditions, the functions En

(0) and pn(0) are constant in space and independent
of n.
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Proof We integrate (33) over � and apply Green’s theorem. Since En
(0) and En+1

(0) are
constant by Lemma 2, we get

|�| E
n+1
(0) − En

(0)

Δt
+

∫
∂�

E · n dσ = 0, (34)

where E corresponds to the terms under the divergence symbol in (33). Since each
of these terms contains either uR,(0), un(0) or un+1

(0) , all of which have zero normal
component on ∂�, thewhole boundary integral in (34) vanishes. This is the case of slip-
boundary conditions, for periodic boundary conditions, the boundary integral vanishes
due to spatial periodicity of all the terms. Altogether, (34) then implies En+1

(0) = En
(0)

and (29) implies pn+1
(0) = pn(0). 	


3.2 Asymptotic preserving property

In this section we prove that the zero order variables from the Hilbert expansion satisfy
the incompressible Euler equations. First, we start with the incompressibility.

Lemma 4 Assume either slip boundary conditions for uR and un for all n or periodic
boundary conditions. Let ρn

(0) and ρR,(0) be constant in space and let ∇ · un(0) =
∇·uR,(0) = 0. Then ρn+1

(0) = ρn
(0), i.e. ρ

n+1
(0) is also constant in space, and∇·un+1

(0) = 0.

Proof We can simplify the energy equation (33) using Lemma 3 and the assumptions
∇ρn

(0) = 0 and ∇ · un(0) = ∇ · uR,(0) = 0 to obtain

− uR,(0) · ∇(ρn+1
(0) − ρn

(0)) + ∇ · (ρn+1
(0) un+1

(0) ) = 0. (35)

Substituting this equality into the mass equation (30) gives us

ρn+1
(0) − ρn

(0)

Δt
+ uR,(0) · ∇(

ρn+1
(0) − ρn

(0)

) = 0. (36)

Denoting for simplicity 
 := ρn+1
(0) − ρn

(0), we write (36) as

1
Δt 
 + uR,(0) · ∇
 = 0. (37)

We wish to prove that 
 = 0, i.e., that ρn+1
(0) = ρn

(0). To this end, we multiply (37) by

 and integrate over �:

1

Δt

∫
�


2 dx +
∫

�

uR,(0) · ∇
 
 dx = 0. (38)
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We apply Green’s theorem to the second integral to obtain

∫
�

uR,(0)·∇
 
 dx=
∫

∂�

uR,(0) · n
2 dσ
︸ ︷︷ ︸

=0

−
∫

�

∇ · uR,(0)

2 dx

︸ ︷︷ ︸
=0

−
∫

�

uR,(0)·∇
 
 dx,

(39)
where thefirst and second right-hand side terms are zero due to the boundary conditions
and the divergence-free assumption on uR,(0), respectively, while the last term equals
the left-hand side. Therefore, (39) gives us

∫
�
uR,(0) · ∇
 
 dx = 0, which together

with (38) implies

1

Δt

∫
�


2 dx = 0 �⇒ 
 = 0 a.e. in � �⇒ ρn+1
(0) = ρn

(0). (40)

Thus we have obtained the first statement of the Lemma.
Finally, since we now know that ∇ρn+1

(0) = ∇ρn
(0) = 0, equation (35) simplifies to

∇ · un+1
(0) = 0, which completes the proof. 	


Nowwe prove that the lowest order terms in the Hilbert expansion satisfy the semi-
discrete incompressible Euler equations, implicitly discretized in time.One then has an
O(Δt) consistency error which comes from the time discretization and a consistency
error arising due to the linearization of the fluxes. As we shall mention later, for the
Dolejší–Feistauer–Kučera andRS-IMEX schemes this consistency error is of the order
O(Δt2).

Theorem 1 Let the initial condition satisfy ∇ · u0(0) = 0 and ρ0
(0) being constant in

space. Let the reference solution satisfy ∇ · unR,(0) = 0 and ρn
R,(0) being constant in

space for all n. Assume either slip boundary conditions for unR and un for all n or

periodic boundary conditions. Then for each n, the pair
(
un+1

(0) , pn+1
(2) /ρn+1

(0)

)
solves

the implicit semi-discrete incompressible Euler equations

un+1
(0) − un(0)

Δt
+ ∇ ·

(
un+1

(0) ⊗ un+1
(0)

)
+ ∇ pn+1

(2)

ρn+1
(0)

= En+1,

∇ · un+1
(0) = 0,

(41)

where En+1 is a consistency error term satisfying

|En+1| ≤ C‖un+1
(0) − un(0)‖W 1,∞

(
‖un+1

(0) − un(0)‖W 1,∞ + ‖un(0) − unR,(0)‖W 1,∞
)
, (42)

where C depends only on γ .

Proof Lemma 4 implies that un+1
(0) is divergence-free. To show the first part of (41),

we will work with Eq. (31) for the x-component of momentum, equation (32) can be
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treated similarly. Since ρn
(0) = ρn+1

(0) is constant in space due to Lemma 4, we can
divide (31) by density and simplify:

un+1
(0) − un(0)

Δt
+ ∂x

(
(un(0))

2 + pn(2)
ρn

(0)
+ (3 − γ )uR,(0)(u

n+1
(0) − un(0))

+ (1 − γ )vR,(0)(v
n+1
(0) − vn(0)) + γ − 1

ρn
(0)

(En+1
(2) − En

(2))

)

+ ∂y

(
un(0)v

n
(0) + vR,(0)(u

n+1
(0) − un(0)) + uR,(0)(v

n+1
(0) − vn(0))

)
= 0. (43)

The pressure and energy terms from (43) can be expressed using the equation of state
(7), namely by considering its O(ε2) terms

E(2) = p(2)

γ − 1
+ 1

2
ρ(0)|u(0)|2. (44)

We obtain

1

ρn
(0)

(
pn(2) + (γ − 1)(En+1

(2) − En
(2))

)

= 1

ρn
(0)

(
pn(2) + (γ − 1)

( pn+1
(2)

γ − 1
+ 1

2
ρn+1

(0) |un+1
(0) |2 − pn(2)

γ − 1
− 1

2
ρn

(0)|un(0)|2
))

= pn+1
(2)

ρn+1
(0)

+ γ − 1

2

(
|un+1

(0) |2 − |un(0)|2
)
. (45)

Substituting (45) into (43) leads to

un+1
(0) − un(0)

Δt
+ ∂x

(
(un(0))

2 + (3 − γ )uR,(0)(u
n+1
(0) − un(0))

+ (1 − γ )vR,(0)(v
n+1
(0) − vn(0)) + pn+1

(2)

ρn+1
(0)

+ γ − 1

2

(
|un+1

(0) |2 − |un(0)|2
))

+ ∂y

(
un(0)v

n
(0) + vR,(0)(u

n+1
(0) − un(0)) + uR,(0)(v

n+1
(0) − vn(0))

)
= 0. (46)

We now collect all the terms under the ∂x symbol in (46) which contain the x-
component of u or uR :

(un(0))
2 + (3 − γ )uR,(0)(u

n+1
(0) − un(0)) + γ−1

2

(
(un+1

(0) )2 − (un(0))
2)

= (un+1
(0) )2 − (un+1

(0) )2 + (un(0))
2 + (3 − γ )uR,(0)(u

n+1
(0) − un(0))

+ γ−1
2

(
(un+1

(0) )2 − (un(0))
2)

= (un+1
(0) )2 + γ−3

2

(
un+1

(0) − un(0)
)(
un+1

(0) + un(0) − 2uR,(0)
)
. (47)
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Similarly, we collect all the terms under the ∂x symbol in (46) which contain the
y-component of u or uR :

(1 − γ )vR,(0)(v
n+1
(0) − vn(0)) + γ−1

2

(
(vn+1

(0) )2 − (vn(0))
2)

= γ−1
2 (vn+1

(0) − vn(0))
(
vn+1
(0) + vn(0) − 2vR,(0)

)
. (48)

Now we take all the terms under the ∂y symbol in (46):

un(0)v
n
(0) + vR,(0)(u

n+1
(0) − un(0)) + uR,(0)(v

n+1
(0) − vn(0))

= un+1
(0) vn+1

(0) − un+1
(0) vn+1

(0) + un(0)v
n
(0) + vR,(0)(u

n+1
(0) − un(0))

+ uR,(0)(v
n+1
(0) − vn(0))

= un+1
(0) vn+1

(0) − (vn+1
(0) − vn(0))(u

n+1
(0) − uR,(0)) − (un+1

(0) − un(0))(v
n
(0) − vR,(0)).

(49)

Altogether, if we substitute (47)–(49) into the momentum equation (46) we get

un+1
(0) − un(0)

Δt
+ ∂x

(
(un+1

(0) )2 + pn+1
(2)

ρn+1
(0)

)
+ ∂y

(
un+1

(0) vn+1
(0)

)
= E1 + E2, (50)

This equation is simply the backward Euler discretization of the equation for the
x-component of velocity from the incompressible Euler equations with error terms

E1 = −∂x

(
γ−3
2

(
un+1

(0) − un(0)
)(
un+1

(0) + un(0) − 2uR,(0)
)

+ γ−1
2 (vn+1

(0) − vn(0))
(
vn+1
(0) + vn(0) − 2vR,(0)

))
,

E2 = ∂y

(
(vn+1

(0) − vn(0))(u
n+1
(0) − uR,(0)) + (un+1

(0) − un(0))(v
n
(0) − vR,(0))

)
. (51)

It is now straightforward to estimate these terms as in (42). The second momentum
equation (32) can be treated similarly. 	


If we denote δn := ‖un(0) − unR,(0)‖W 1,∞ , the consistency error estimate (42) is of
the order

|En+1| ≤ CΔt(Δt + δn). (52)

The Dolejší–Feistauer–Kučera scheme is based on the choice unR,(0) = un(0), hence
δn = 0 and the consistency error satisfies

En+1 = O(Δt2). (53)

On the other hand, for the RS-IMEX scheme, we take unR,(0) = uref(tn), hence δn =
O(Δt) and again En+1 = O(Δt2).
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Remark 5 Together with (52)–(53), Theorem 1 identifies the ε → 0 limit scheme
of the RS-IMEX and the Dolejší–Feistauer–Kučera methods to be the implicit Euler
scheme. This is in agreement with previous results on the RS-IMEX schemes [23,40].

Remark 6 It might be tempting to interpret Theorem 1 along with (53) as a proof that
the class of linearly implicit schemes is of second order accuracy in time.Unfortunately
this is not true, since the schemes are O(Δt2) consistent with (41) that represents a
first order fully implicit scheme for the incompressible Euler equations. If the scheme
showed the same consistency w.r.t. the incompressible Euler equations without any
time discretization, one might hope for second order accuracy in time, at least for very
small Mach numbers, due to (53). However in our case, we are formally second-order
consistent with respect to the first order discretized incompressible Euler equations
that have an O(Δt) error w.r.t. the non-discretized incompressible Euler equations.
Thus the resulting error of the scheme is onlyO(Δt)w.r.t. to the incompressible Euler
equations.

Remark 7 In contrast to the setting considered in the previous remark, the Dolejší–
Feistauer–Kučera scheme was initially designed for the computation of steady state
solutions. Theorem 1 explains the excellent performance of this scheme in the steady-
state regime, where the time derivative (approximated by a first order difference) is
close to zero and the consistency error is of second order due to (53).

3.3 Well prepared initial data

Taking into account the results from the previous sections, we will now assume that
our initial conditions are well-prepared, physically speaking, this means that those
initial data do not contain acoustics. Since acoustics areO(ε) perturbations of density,
pressure and divergence of velocity, this assumption amounts to having only O(ε2)

perturbations in these quantities.

Definition 4 We say that the initial data are well prepared if

ρ0 = const+O(ε2), p0 = const+O(ε2), ∇ · u0 = O(ε2). (54)

We note that if the mentioned quantities possess Hilbert expansions, Definition 4
amounts to ρ0

(1) = p0(1) = ∇ · u0(1) = 0. Now we prove that if the initial data are well

prepared then also ρn = const+O(ε2), pn = const+O(ε2) and ∇ · un = O(ε2) for
all n.

Theorem 2 Let the assumptions of Theorem 1 hold. Assume also that the initial data
are well prepared in the sense of Definition 4 and that ρn

R,(1) = 0 for all n. Then
ρn

(1) = pn(1) = ∇ · un(1) = 0 for all n.

Proof We collect the ε1 terms of the mass equation from scheme (13):

ρn+1
(1) − ρn

(1)

Δt
+ ∇ · (

ρn+1
(0) un+1

(1) + ρn+1
(1) un+1

(0)

) = 0. (55)
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Similarly, we collect the ε1 terms of the energy equation from scheme (13), taking
into account (24):

En+1
(1) − En

(1)

Δt

+ ∇ ·
((

En
(0) + pn(0)

)
un(1) + (

En
(1) + pn(1)

)
un(0) − γ

ER,(0)uR,(0)

ρR,(0)
(ρn+1

(1) − ρn
(1))

− γ
( ER,(0)uR,(1) + ER,(1)uR,(0)

ρR,(0)
− ER,(0)uR,(0)(ρR,(1))

2

ρR,(0)

)
(ρn+1

(0) − ρn
(0))

+ γ
ER,(0)

ρR,(0)

(
ρn+1

(0) un+1
(1) + ρn+1

(1) un+1
(0) − ρn

(0)u
n
(1) − ρn

(1)u
n
(0)

)

+ γ
( ER,(1)

ρR,(0)
− ER,(0)ρR,(1)

(ρR,(0))2

)(
ρn+1

(0) un+1
(0) − ρn

(0)u
n
(0))

+ γ uR,(0)(E
n+1
(1) − En

(1)) + γ uR,(1)(E
n+1
(0) − En

(0))

)
= 0. (56)

Now we proceed similarly as in the proofs of Lemmas 3 and 4. We integrate (56)
over � and apply Green’s theorem. Similarly as in (34), the resulting boundary terms
are equal to zero due to boundary conditions. This gives us En+1

(1) = En
(1) for all n.

Consequently also pn+1
(1) = pn(1) for all n, by taking the ε1 terms in (7). This implies

that pn(1) = p0(1) = 0 for all n.
We proceed by induction and assume that the assumptions of the theorem hold

on time level tn . Gathering the assumptions and all previous results, we have that
En

(0), E
n
(1), p

n
(0) and pn(1) are independent of x and n, ∇ · un(0) = ∇ · un+1

(0) = ∇ · un(1) =
∇ · uR,(0) = 0 and ρn+1

(0) = ρn
(0). These results allow us to simplify (56) to

− uR,(0)∇ · (ρn+1
(1) − ρn

(1)) + ∇ · (
ρn+1

(0) un+1
(1) + ρn+1

(1) un+1
(0)

) = 0. (57)

The second term can be substituted into the mass equation (55) to obtain

ρn+1
(1) − ρn

(1)

Δt
+ uR,(0)∇ · (ρn+1

(1) − ρn
(1)) = 0. (58)

Now we can proceed similarly as in the proof of Lemma 4—we multiply (58) by
ρn+1

(1) − ρn
(1) and apply Green’s theorem. All resulting integral terms vanish either due

to boundary conditions or since ∇ · uR,(0) = 0. This implies that ρn+1
(1) − ρn

(1) = 0,

hence, by induction ρn+1
(1) = ρ0

(1) = 0. Using this fact in (55) implies ∇ · un+1
(1) = 0.

This completes the proof. 	
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4 Existence of the Hilbert expansion

It is not clear whether the Hilbert expansion at the new time level n+1 used in Sect. 2
exists. In most AP proofs this is assumed, and only a few authors, see e.g., [5,7]
explicitly show it. In this work, we will, for a restricted, yet instructive, case show that
this Hilbert expansion exists. The following assumptions on domain and solutions are
used:

Assumption 4 Assume that boundary conditions are periodic, and that the domain
� ⊂ R. For the sake of simplicity, take � = [−π, π ]. (This last assumption is of
course not crucial.) Assume that all the occurring quantities are sufficiently smooth.
More precisely, we assume that the components of w are in H∞, with

H∞ :=
{

ϕ ∈ L2(�) |
∑
k∈Z

(
1 + |k|2

)p |ϕ̂(k)|2 < ∞, ∀p ∈ N

}
.

ϕ̂(k) denote the Fourier coefficients of ϕ.
Note that the severe smoothness condition can be somewhat relaxed.

To simplify the analysis, we make the following assumption:

Assumption 5 Assume that wn
R is constant in space. (Note that in the sequel, we will

omit the superscript n and simply write w.)

Remark 8 It is clear that this is not the most general case; still, it is a very important
step towards the full AP analysis.

Because of the assumptions made above, we can consider the slightly different, yet
equivalent formulation of (13), namely

δwn+1 + Δt∂x
(
f ′(wR)δwn+1

)
+ Hn = 0, (59)

where we have defined

δw := w − wR . (60)

Hn covers all the terms that only depend on time level n. For later reference, we denote

Hn =: (
δρ∗, δ(ρu)∗, δE∗)T .

The inductive proof of the existence of the Hilbert expansion heavily relies on the fact
that ’known’ quantities at time level n are assumed to have a Hilbert expansion. Then,
alsoHn has a Hilbert expansion:

Lemma 5 Assume that δwn possesses a Hilbert expansion. Then the terms collected
inHn have a Hilbert expansion.
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In the case we are considering here, i.e., � ⊂ R, there holds

f ′(wR)δwn+1 =
⎛
⎜⎝

δ(ρu)

−u2Rδ(ρ) + 2uRδ(ρu) + pL
ε2

− uR ER
ρR

δρ + ER
ρR

δ(ρu) + uRδE − uR pR
ρR

δρ + pR
ρR

δ(ρu) + uR pL

⎞
⎟⎠ ,

(61)
where we have defined the linearized pressure

pL := (γ − 1)

(
δE − ε2

2

(
−u2Rδρ + uRδ(ρu)

))
. (62)

Note that we have omitted the index n + 1 on the right-hand side for the sake of a
clearer presentation.

Remark 9 It will be crucial for the proof to follow that pL = const+O(ε2). This can
already be seen from (61), because the only term that could destroy aHilbert expansion
is pL

ε2
. There is a divergence in front, so pL being constant up to ε2 is the right choice.

In the following, we aim to reformulate eq. (59) in terms of pL . To this end, we
first define an operator acting on momentum.

Definition 5 Define the operator θ through

θ : H∞ → H∞, m �→
(
Id+2ΔtuR∂x · +Δt2u2R∂xx ·

)
m.

Lemma 6 There holds:

1. θ is linear.
2. θ is invertible.
3. If a smooth function m∗ has a Hilbert expansion, then both θ(m∗) and θ−1(m∗)

have a Hilbert expansion.
4. There holds: ∂xθ(m) = θ(∂xm). The same is true for the inverse of θ .

The proof of the lemma is rather straightforward, which is why we omit it here.
Using the operator θ it is possible to express the momentum at time level n + 1

as a function of pL . What we are doing here is very similar to the work of [5], in the
discrete case, it could be interpreted as a Gaussian elimination procedure.

Lemma 7 There holds:

δ(ρu)n+1 = −Δt

ε2
θ−1(∂x p

n+1
L ) + δ(ρu)∗∗, (63)

with δ(ρu)∗∗ being a quantity that possesses a Hilbert expansion.

Proof There holds

δρn+1 = −Δt∂xδ(ρu)n+1 + δρ∗. (64)
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Plugging this into the momentum equation yields (note that, again, we have omitted
the time level n + 1 on the right-hand side)

δ(ρu)n+1 = −Δt∂x
(
−u2Rδ(ρ) + 2uRδ(ρu) + pL

ε2

)
+ δ(ρu)∗

= −Δt∂x
(
−u2R (−Δt∂xδ(ρu)) + 2uRδ(ρu) + pL

ε2

)
+ δ(ρu)+.

By δ(ρu)+ we denote terms that are known to have a Hilbert expansion in ε. Rear-
ranging terms yields

(
Id+2ΔtuR∂x + Δt2u2R∂xx

)
︸ ︷︷ ︸

θ

δ(ρu) = −Δt

ε2
∂x pL + δ(ρu)+.

Exploiting the properties of θ formulated in Lemma 6 yields the claim. 	

Based on this lemma, we can find that pL fulfills a third-order differential equation:

Lemma 8 Let pL be given as in (62). Then pL satisfies at time level n+1 the equation

ω0 p
n+1
L + ω1∂x p

n+1
L + ω2

ε2
∂xx p

n+1
L + ω3

ε2
∂xxx p

n+1
L = p∗

L , (65)

with the constants ωi being defined by

3ω0 = −1

γ − 1
, ω2 =Δt2

ρR

(−γ − 5

γ − 1
ER + γ 2 + 5

(γ − 1)2
pR

)
(66)

ω1 = −ΔtuR
5 + γ

2(γ − 1)
, ω3 =Δt3uR

ρR

( −2

γ − 1
ER + γ 2 − γ + 2

(γ − 1)2
pR

)
;
(67)

and p∗
L ∈ H∞ being a function that possesses a Hilbert expansion.

Proof The proof consists of lengthy and tedious, but rather straightforward computa-
tions. The important steps are the following:

– First, write δEn+1 explicitly based on (61). Use (64) and (63) to express all quan-
tities δρ and δ(ρu) in terms of pL . Substitute En+1 on the right-hand side by using
the definition of pL in (62). Then, apply θ to the equation, which results in

θ(δEn+1) = ωl
0 pL + ωl

1∂x pL + ωl
2∂xx pl + ωl

3∂xxx pL + δE∗∗. (68)

As above, δE∗∗ is a smooth term having a Hilbert expansion. The constants ωl
i are

given by

3ωl
0 = 0, ωl

2 = Δt2

ε2ρR

(
γ 2 + γ + 2

(γ − 1)2
pR − 2γ + 2

γ − 1
ER

)

123



98 V. Kučera et al.

ωl
1 = − γ

γ − 1
ΔtuR, ωl

3 =Δt3uR

ε2ρR

(
γ

γ − 1
pR − 2

γ − 1
ER

)
.

– Second, write δEn+1 explicitly, this time based on the definition of pL in (62),
substitute δρ and δ(ρu) accordingly. Applying θ on both sides then yields

θ(δEn+1) = ωr
0 pL + ωr

1∂x pL + ωr
2∂xx pl + ωr

3∂xxx pL + δE∗∗∗. (69)

Again, δE∗∗∗ is a smooth term with a Hilbert expansion. The constants ωr
i are

given by

3ωr
0 = 1

γ − 1
, ωr

2 = Δt2

ε2ρR

(
3 − γ

γ − 1
ER − 3 − γ

(γ − 1)2
pR

)

ωr
1 = ΔtuR

5 − γ

2(γ − 1)
, ωr

3 =0.

– Equating (68) and (69) and subtracting the constants yields the claim.

	

Lemma 9 Let γ ≥ 1. Then ω2 and ω3 cannot be zero simultaneously.

Proof Assume that ω2 = 0 and ω3 = 0. Then there holds

ER = γ 2 + 5

(γ − 1)(γ + 5)
pR

and

ER = γ 2 − γ + 2

2(γ − 1)
pR .

Hence,

γ 2 + 5

(γ − 1)(γ + 5)
= γ 2 − γ + 2

2(γ − 1)
.

The only roots of this equation are γ = −3 and γ = 0, they are hence outside the
range of γ .

Theorem 3 Let γ ≥ 1. Furthermore (as in this whole section), assume that Assump-
tions 4 and 5 hold. Then pL fulfilling the Eq. (65) has aHilbert expansion, in particular
it holds

pL = const+O(ε2).
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Proof Note that pL fulfills the equation

ω0 pL + ω1∂x pL + ω2

ε2
∂xx pL + ω3

ε2
∂xxx pL = p∗

L ,

see (65); with p∗
L having a Hilbert expansion. Due to Lemma 9 ω2 and ω3 cannot be

zero simultaneously. Because we are operating under periodic boundary conditions,
we apply the Fourier expansion for pL

pL(x) :=
∑
k∈Z

p̂L(k)eikx .

Plugging this into (65) yields the algebraic equation for p̂L(k)

1

ε2

(
ε2ω0 + ε2ikω1 − ω2k

2 − ω3ik
3
)
p̂L(k) = p̂∗

L(k),

where p̂∗
L(k) denotes the Fourier coefficients of the right-hand side. Because we know

that the right-hand side has the Hilbert expansion, we also know that there exists a
Hilbert expansion for p̂∗

L(k). In particular, with respect to ε, we have p̂∗
L(k) = O(1).

The Fourier coefficients of pL are hence given by

p̂L(k) = ε2 p̂∗
L(k)

ε2ω0 + ε2ikω1 − ω2k2 − ω3ik3
.

For k = 0 this yields

p̂L(0) = p̂∗
L(0)

ω0
= O(1),

while for k �= 0, there holds (note that ω2 and ω3 are not zero simultaneously!)

p̂L(k) = −ε2
p̂∗
L(k)

ω2k2 + ω3ik3
+ O(ε3) = O(ε2).

Consequently, we have

pL(x) = p̂L(0) +
∑

k∈Z�=0

p̂L(k)eikx = const+O(ε2),

which concludes the proof. 	


The following corollary guarantees the existence of a Hilbert expansion having the
information on pL .
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Corollary 1 Under the assumptions made in Theorem 3, δwn+1 has a Hilbert expan-
sion, i.e., it can be written as

δwn+1 = δwn+1
0 + εδwn+1

1 + ε2δwn+1
2 + . . .

Proof Due to (63), δ(ρu)n+1 can be written as

δ(ρu)n+1 = −Δtθ−1

(
∂x p

n+1
L

ε2

)
+ δ(ρu)∗∗.

Because
∂x p

n+1
L

ε2
= O(1) and the properties of θ−1, see Lemma 6, also δ(ρu)n+1 can

be written in terms of a Hilbert expansion. Due to (64) this property carries over to
δρn+1. Now, as pL , δρ and δ(ρu) have the Hilbert expansions, it is clear that also δE
has the Hilbert expansion, too, due to (62). This proves the claim. 	


5 Conclusion and outlook

In this work we have introduced and analysed a class of linearly implicit methods
for the discretization of the full Euler equation that unifies several already existing
schemes, in particular the Dolejší–Feistauer–Kučera and the RS-IMEX scheme. We
have shown that this class of methods is asymptotically consistent, and prove that the
asymptotic limit scheme of the expansion is the semidiscrete implicit Euler scheme.
Furthermore, for a prototype example,we have shown that this unified class ofmethods
possesses the Hilbert expansion in the case of the full Euler equations which is, to the
best of our knowledge, a novel contribution.

Ongoingwork focuses on the extension of the analysis, in particular the existence of
the Hilbert expansion, to more general situations in multiple dimensions. It is unclear
whether the Fourier analysis is then still a suitable framework, as the straightforward
extension of the approach we presented here is severely more complicated and it is
restricted to the periodic boundary conditions. Finally, it remains to investigate numer-
ically the efficiency and accuracy of the proposed splittings in general experiments.
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