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Extracting neuronal activity 
signals from microscopy recordings 
of contractile tissue using B‑spline 
Explicit Active Surfaces (BEAS) cell 
tracking
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Pieter Vanden Berghe1*

Ca2+ imaging is a widely used microscopy technique to simultaneously study cellular activity in 
multiple cells. The desired information consists of cell‑specific time series of pixel intensity values, in 
which the fluorescence intensity represents cellular activity. For static scenes, cellular signal extraction 
is straightforward, however multiple analysis challenges are present in recordings of contractile 
tissues, like those of the enteric nervous system (ENS). This layer of critical neurons, embedded within 
the muscle layers of the gut wall, shows optical overlap between neighboring neurons, intensity 
changes due to cell activity, and constant movement. These challenges reduce the applicability of 
classical segmentation techniques and traditional stack alignment and regions‑of‑interest (ROIs) 
selection workflows. Therefore, a signal extraction method capable of dealing with moving cells and 
is insensitive to large intensity changes in consecutive frames is needed. Here we propose a b‑spline 
active contour method to delineate and track neuronal cell bodies based on local and global energy 
terms. We develop both a single as well as a double‑contour approach. The latter takes advantage 
of the appearance of GCaMP expressing cells, and tracks the nucleus’ boundaries together with 
the cytoplasmic contour, providing a stable delineation of neighboring, overlapping cells despite 
movement and intensity changes. The tracked contours can also serve as landmarks to relocate 
additional and manually‑selected ROIs. This improves the total yield of efficacious cell tracking and 
allows signal extraction from other cell compartments like neuronal processes. Compared to manual 
delineation and other segmentation methods, the proposed method can track cells during large tissue 
deformations and high‑intensity changes such as during neuronal firing events, while preserving the 
shape of the extracted  Ca2+ signal. The analysis package represents a significant improvement to 
available  Ca2+ imaging analysis workflows for ENS recordings and other systems where movement 
challenges traditional  Ca2+ signal extraction workflows.

In order to understand how complex cellular systems operate and interact with each other, it is essential to be 
able to record activity from many individual cells simultaneously. Fluorescent calcium  (Ca2+) imaging, either 
with small organic  Ca2+ indicators or with genetically encoded  Ca2+ indicators (GECI)1,2, is a widely used method 
to study large amounts of cells simultaneously and examine their network activity. Since cytosolic  Ca2+ changes 
are tightly linked to action potential firing (and thus activity) in excitable cells like neurons, this imaging tech-
nique allows inferring neuronal activity of a large cellular population in both the central and peripheral nervous 
 systems3. Recent improvements in  Ca2+ indicator quality (higher quantum efficiency and therefore better signal 
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to noise) and imaging technologies allow monitoring larger populations of neurons at higher spatiotemporal 
 resolution4,5. As a result,  Ca2+ imaging became a powerful tool that provides unique insights in physiologi-
cal behavior of cells and tissues. The power of the method is in the fact that the focus of analysis can be at the 
individual cell level as well as on the network of interacting cells. As such it allows studying and understanding 
communication between cooperating functional groups of neurons (or other cells) at a high spatiotemporal 
 resolution6–8.

An extra complexity with live imaging of cells is that they may not be stationary in the microscopic field of 
view, either because they traffic themselves or the tissue, in which they are embedded, is contractile. Recordings 
in the central nervous system and acute brain slices can be assumed to have static scenes where the only move-
ments present are motion artifacts such as drift, as in brain slices, or cyclic movements, as induced by breathing 
in intravital recordings. However, recording activity from tissues with a predominantly contractile function, 
such as the heart or the intestine, or from in vivo imaging of awake animals (zebrafish, C. elegans, etc.) presents 
unique challenges due to the drastically high level of movement caused by muscle contractions.

In the intestine, all motor activity is controlled by a continuous network of neurons and glia cells embedded in 
between two concentric muscle layers. This enteric nervous system (ENS) regulates gut functions such as motility, 
secretion, and  absorption6,9. To understand how the complex circuits in the ENS operate to produce functional 
output, it is necessary to record and analyze the activity of large populations of ENS cells.  Ca2+ imaging is the 
optimal tool to achieve this goal. However, the extraction of  Ca2+ signals from these recordings is an important 
bottleneck in the analysis workflow. As a result, a compromise is needed, in which the tissues are prepared (by 
removing muscle layers that are innervated by the ENS) or treated (by adding pharmacological compounds), to 
limit movement in these recordings and as such facilitate signal  extraction3,10. In order to derive physiological 
information from the tissues in their most intact state, an alternative method for analysis is required.

A traditional analysis workflow in  Ca2+ imaging starts with image registration of the recorded frames to cor-
rect for motion artifacts and slight underlying movements aiming to attain a completely static scene where each 
pixel represents the same physical location throughout all  frames11. This step, if successful, is followed by signal 
extraction, where the different cells of interest are delineated and their pixel intensity profiles are extracted. For 
the large majority of  Ca2+ imaging experiments, this workflow is sufficient to efficiently analyze cellular activity 
profiles and has been used extensively in ENS  Ca2+ imaging provided that contractions are restrained either 
pharmacologically, physically, or in  combination12,13.

Multiple different software packages have been developed to automate the signal extraction process and 
efficiently analyze the ever-longer recordings and ever-increasing  Ca2+ imaging  datasets14,15. However, these 
automated analysis workflows also rely on an image registration step and assume that all objects in the image are 
spatially static after this step, in order to extract their signals. Contractile movements, as those in the intestine, 
can include complex deformations that cannot be compensated with rigid registration techniques. More advanced 
non-rigid registration techniques, which offer registration with a high degree of freedom to accommodate more 
complex deformations, can be used but they are susceptible to high noise levels and artifacts, two regularly occur-
ring problems in  Ca2+ imaging. The tight packing of neurons in small groups (ganglia), with their apparent over-
lap in optical recordings (Fig. 1A), is a first challenge that eliminates the use of classic segmentation workflows. 
Moreover, the rapidly oscillating fluorescence of active neurons in  Ca2+ imaging (Fig. 1B) has a negative impact 
on the success rate of registration algorithms as these rely on pixel intensity or image feature matching and thus 
have endogenous problems with changes in  intensity12,16,17. ENS  Ca2+ imaging combines the aforementioned 
challenges (Fig. 1C) and thus urges the development of an alternative analysis workflow to delineate and track 
individual cells in moving tissues, and extract their signals throughout the recordings.

A viable alternative to registration in these complex scenarios is cell tracking. While tracking techniques 
have been extensively used in cell migration analysis and lineage tree  construction18–20, the low level-based 
segmentation  techniques20,21 that are normally used in these applications perform poorly in ENS recordings 
since they are prone to noise, variability in the edge intensity due to overlap, and cannot adapt to the blinking 
cell appearance between different  frames22. The existing region-based tracking techniques are not sufficient to 
segment complex structures based on their texture  information23,24. Moreover, they are ineffective when dealing 
with nonhomogeneous and overlapping objects, such as cells with bright cytoplasm and dark nuclei (Fig. 1A) as 
is the case with the expression of the common  Ca2+ indicator GCaMP. Only one report, by Hennig et. al.25 was 
published, in which nucleus tracking of ENS neurons was used, by means of edge detection where dark nuclei 
were identified and segmented in each frame to extract fluorescent GCaMP signals from their surrounding pixels. 
Practically, manual region-of-interest (ROI) selection remains the most commonly used approach to analyze 
ENS recordings, at least for those in which motion can be easily corrected. Recordings that rigid registration 
cannot stabilize are routinely disregarded.

Due to its ease of application and flexibility in handling cell division, the main method used in the cell track-
ing field is segmentation, based on implicit functions such as level-sets26–28. However, the large flexibility in this 
implicit topological representation can easily produce incorrect  results29 especially in low signal to noise ratio 
(SNR) recordings. In these situations, explicit functions such as explicit active  contours30 perform better as 
they depend on parameters and therefore their evolution is more restricted and faster to  calculate31. The main 
disadvantage of explicit active surfaces is the inability in handling cell division, which is not relevant in the 
specific context of tracking  neurons21. In this paper, we implement B-spline-Explicit Active Surfaces (BEAS) 
as developed by Barbosa et. al.32 which allows the application of local and global region-based energy terms in 
segmentation, as originally developed for level-set  segmentation33, while controlling contour smoothness and 
keeping the computational cost  low32,34. This method is suitable to segment heterogeneous objects (such as cells 
with dark nuclei, with varying degrees of brightness and edge clarity, Fig. 1B) and to apply multiple local and 
global energy terms to reach that goal.
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Figure 1.  General features of  Ca2+ imaging in the ENS. (A) The appearance of an individual GCaMP expressing 
enteric neuron when not surrounded by other neurons (Left). The overlapping appearance of enteric neurons 
(arrow) and lack of clear borders (arrowhead) (Right). Scale bar represents 50 µm. (B) an example of the 
fluorescence signal increases between a neuron at rest (left, and marked with a dashed line) and during activity 
(right). C) ENS ganglion (left) containing approximately 20 neurons. Imposed images of different timepoint 
(colorcoded in green and magenta) in an ENS  Ca2+ recording (1 s. interval between frames). The mismatch in 
colors indicates the amount of movement that can be present between 2 frames.
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In this paper, we use the BEAS framework on 2D microscopy recordings to track and analyze multiple cells 
within a contractile and moving ENS tissue. Apart from employing multiple global and local energy terms to 
direct contour evolution, we also use a competition penalty to limit and manage overlap between neighboring 
cells. Furthermore, we develop ‘double contour (DC)’ tracking, a novel method that couples the development of 
two contour layers and takes advantage of the typical appearance of GCaMP expressing cells. Due to the nuclear 
exclusion of GCaMP, these cells present in  Ca2+ imaging recordings with a dark nucleus and a bright cytoplasm, 
the edges of which are respectively tracked by the two layers. This DC method enables accurate cell tracking 
even in the absence of visible external borders. We describe the elements in the  Ca2+ imaging and cell tracking 
algorithm developed and make this information freely available for external use.

In conclusion, we aimed to develop a set of techniques to better extract cellular activity levels from  Ca2+ imag-
ing recordings of non-static moving cells (Fig. 2). To this end, we used the ENS as a model system harboring fairly 
complex movement and activity-dependent intensity changes. The resulting workflow is however flexible and can 
be used to analyze other cellular recordings by tweaking the contour parameters to match the specific application.

Methodology
The workflow for the proposed cell tracking approach starts by drawing an ellipse around the cell to initialize 
the contour. This step is followed by deforming the contour iteratively by applying forces on individual contour 
control points until the functional energy minimum is reached as an initial segmentation step, which theoreti-
cally overlays the contour with the cell’s boundary. The initialization is followed by the cell tracking loop, which 
consists of a series of consequent segmentation tasks on individual frames, where each contour in a frame is 
used to initialize the contour’s segmentation on the following frame. During an intermediate step, parametric 
information about the contour is calculated and the contour center is also recalculated to be in the geometric 
centroid of the produced contour shape to ensure that the new center is inside the cell in each next frame, even 
if there was movement between frames (Suppl. Fig. 1). By stringing the segmentation results together, we acquire 
both the location of individual cells as well as their contours throughout the entire recording (Fig. 2B).

The goal of this approach is to use these dynamic contours as regions-of-interest (ROIs) from which the mean 
intensity signal is extracted to accurately represent  Ca2+ activity of cells in a non-static setting. These contours are 
then evaluated by the user. Furthermore, the tracked cell locations can also be used as landmarks to optionally 
track or displace additional and manually created ROIs, in cases where a tracked cell’s contour was not satisfac-
tory or when tracking additional ROIs posthoc is desired (Fig. 2A).

B‑Spline Explicit Active contours algorithm (BEAS). We implement the B-Spline Explicit Active 
Surfaces (BEAS)35 framework developed and optimized for segmenting and tracking heart chambers in 
 echocardiography34–36. The method uses an explicit function to represent the boundary of an object, where coor-
dinates of the contour points are explicitly given as a function of the remaining coordinates i.e.,x1 = ψ(x2, . . . , xn) 
where ψ is defined as a linear combination of B-spline basis functions

(1)x1 = ψ(x2, . . . , xn) = ψ(x∗) =
∑

k∈Zn−1

c[k]βd
(

x∗

h − k
)

Figure 2.  (A) diagram of the processing workflow including the main steps of cell tracking (Blue) and the 
optional ROI tracking (grey). (B) Example of the performance of the cell tracking procedure of multiple cells in 
ENS recordings, using one-layer tracking (left) and double contours (right).
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where βd(.) is the uniform symmetric B-spline of degree d. The knots of the B-splines are located on a rectangular 
grid, with a regular spacing given by h. The coefficients of the B-spline representation are gathered in c[k]. For 
this 2D segmentation problem, a polar coordinate system was chosen.

The evolution of the contour is governed by the minimization of the energy term E. This energy has two ele-
ments, the image data term  Ed and an internal energy  Er.

Data attachment. One‑layer contour. The data attachment energy term in Eq. 2 can be defined, following 
the BEAS formulation, as:

where Fcyt
(

y
)

 is the energy criterion driving the evolution of the contour and B
(

x, y
)

 is a mask function in which 
the local parameters that drive the evolution are estimated. δφcyt(x) is the Dirac operator applied to the level set 
function φ(x) = Ŵ(x∗)− x1 which is defined over the image domain Ω. The mask function B

(

x, y
)

 for a node 
(neighborhood radius) is specified as a column of pixels of length ρ in the normal direction centered around a 
contour node. The value of ρ is chosen a priori, based on the expected margin (frontier) size between objects 
and the rate of movement between frames. When segmenting GCaMP expressing cells, it is logical to set this 
parameter to be slightly smaller than the approximate radius of cells, to avoid detecting the cytoplasm-nucleus 
edge instead of the intracellular interface. The degree of visibility of a cell’s border in  Ca2+ imaging is quite vari-
able as its strength is based on the  Ca2+ concentration inside the cell of interest as well as that of adjacent cells. 
Moreover, the imaging conditions and imaging system chosen also impact the cell’s appearance (Fig. 1A). There-
fore, we chose a flexible localized energy term introduced by Yezzi et al.37 (Eq. 4), to maximize the difference of 
mean intensity inside and outside each contour node.

where ucyt and uout are the mean intensity values in the cytosolic region (inside the cell) and the region outside 
of the cell, respectively.

Double contour. In live fluorescent imaging (eg. in  Ca2+ imaging), the interface between the bright cytoplasm, 
which can be dim if intracellular  Ca2+ concentrations are low, and the heterogeneous background may lack con-
trast and as such limit cell tracking capability. GCaMP expressing cells have a bright cell body and a dark nucleus 
because the GCaMP molecule molecules do not enter the nucleus. Therefore, a second, and often sharper inter-
face, between the dark nucleus and the bright cytoplasm emerges. This interface is stable and has a predictable 
(dark) inner side and (bright) outer side. Therefore, we developed a coupled two-layer active contour segmenta-
tion of cells. The two layers delineate the nucleus-cytoplasm and the cytoplasm-background interfaces, respec-
tively. The inner layer φnuc is delineating the stable shape of the nucleus while the outer contour φcyt attempts 
to delineate cell outer borders forming a “double contour”. The image-data energy term in Eq. 2 can instead be 
defined as:

with Fnuc following Fcyt in its definition (Eq. 4). The double contour produces a more stable contour progression 
and keeps the contour attracted to cells in the event of non-visible cellular borders (Fig. 3). It also allows the 
extraction of the signal that originates from the cytoplasm pixels only, which improves the signal to noise ratios 
of the extracted mean fluorescence.

Data regularization. The energy term  Er in Eq. (2) relates to curvature, size, and size difference compared 
to the previous frame. We use prior knowledge about the properties of ENS neurons to impose local and global 
penalties to guide the contours and ensure that segmentation results and contour shapes will be plausible in their 
curvature, size, and size differential between timesteps. The regularization term  Er is defined as:

The curvature energy term  Eκ limits the negative local mean curvature since cell bodies mostly have positive 
curvature. The local curvature gradient term is given by:

where κ is the local mean curvature which is calculated efficiently as reported within the BEAS  framework34,38 
and H is the Heaviside function.

The area energy term  EA keeps the size of the contour within a reasonable range, where A represents the area 
within the contour. The parameters  Amin and  AMax ensure that the contour does not engulf bigger image regions. 
The equation for local energy calculation is governed by:

(2)E = Ed + Er

(3)Ed = ∫
�

δφcyt(x) ∫
�

B
(

x, y
)

· Fcyt
(

y
)

dydx

(4)Fcyt = −(ucyt − uout)
2

(5)Ed = ∫
�

δφnuc(x) ∫
�

B
(

x, y
)

· Fnuc
(

y
)

dydx + ∫
�

δφcyt(x) ∫
�

B
(

x, y
)

· Fcyt
(

y
)

dydx

(6)Er = wκEκ + wAEA + wASEAS

(7)∂Eκ
∂cWP [ki]

= ∫
Ŵ

κ(x∗)H(−κ(x∗))βd
(

x∗

h − ki

)

dx∗
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Next, we add the area stability energy term  EAS, which is a global energy term that attempts to minimize the 
change of the area within the contour keeping its size in a reasonable range for a cell, since apparent size changes 
are not real but are due to intensity variations or edge contrast changes and not caused by actual cell size changes.

The weights wκ , wA and wAS in Eq. (6) are chosen by the user based on the morphology and size of the cells 
in the image.

Contour competition. It is common for cells in microscopy recordings to appear overlapping, as an image 
is a projection of all fluorescent elements in the focus of the objective lens. Especially in widefield microscopy 
recordings where images result from many different in- and out-of-focus  planes39. This effect is minimized in 
confocal and multiphoton excitation approaches, but optical overlap remains an issue due to limited optical 
resolution. While banning overlap completely can facilitate interpretation of the extracted data, it does not rep-
resent the scene correctly and can lead to tracking errors. Therefore, we impose a competition penalty that allows 
a slight contour overlap to account for the optical overlapping effect while preventing contours from jumping 
between cells or engulfing multiple cells. We opted to impose a proximity penalty between neighboring contour 
nodes, as implemented previously in  BEAS40, to limit contour expansion into neighboring contours and reduce 
overlap ( Edist),

where dthresh represents the minimal distance parameter, ψ is a signed distance map between each node of the 
contour i against all nodes of contour j (and vice-versa), and H is the Heaviside operator. Note that H equals one 
only in nodes with ψ lower than dthresh and zero in the remaining nodes. Therefore, it only applies penalties in 
the neighboring regions of the  contours40.

We also added a stronger penalty for actual overlap on both contours ( Eoverlap ) producing a cell competition 
effect controlled by the cell competition weight parameter wc (Fig. 3) that is a priori chosen.

With D1, D2 being the pixels belonging to contour i and j, respectively and Ac is the area of overlap between 
two cells. Then, the regularization energy term Er (Eq. 6) can be rewritten to include the competition terms for 
a contour i with a neighboring contour j as:

(8)
∂EA

∂cWA [ki]
= (A− AMin)H(AMin − A)+ (AMax − A)H(A− AMax)

(9)EAS =
�At − At−1�

At−1

(10)Edisti→j (x
∗) =

(

dT − ψ i→j
)

.H
(

dT − ψ i→j
)

(11)Eoverlap
(

i, j
)

=

{

wcAc

(

i, j
)

, D1 ∩ D2 �= ∅

0, D1 ∩ D2 = ∅

(12)Eir = wκEκ + wAEA + wASEAS + Edist
(

i, j
)

+ Eoverlap
(

i, j
)

Figure 3.  The effect of a competition term on neighboring contours (top) The contour of a cell using 1-layer vs 
double contour in a GCaMP expressing neuron (bottom).
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The term is incorporated similarly in the energy term E and thus has to be minimized (as in Eq. 2) to find 
the optimal contours.

Landmark‑based geometrical transformation and ROI tracking. While we aim at effective cell 
tracking in every scenario using BEAS cell tracking, there are known challenges that can constrain tracking 
using active contour methods. These challenges include parameter sensitivity causing the algorithm to be subop-
timal for some cells in the field of view, despite being successful for other cells. Therefore, we introduce a robust 
optional step that uses the tracked locations of N cell contours using the BEAS approach as landmarks to find 
the optimal geometrical transformation T that represents the movement in the recorded scene between frames. 
The optimal parameters θ∗ of T are estimated by minimizing the similarity measure d41,42 which represents the 
Euclidian distance of the cell contour coordinates between two frames:

With xfi  being the centroid coordinates x of the contour i in frame f  . This geometrical transformation allows 
us to move additional ROIs selected manually by the user posthoc throughout the recording frames by perform-
ing the geometrical transformation  T43 on the positions of the ROIs.

Implementation details. Initialization is done by manually selecting ellipses that roughly overlap with 
the targeted cell bodies. These ellipses are fed as initial contours to the first frame segmentation step. The result 
of contour segmentation in a frame is then used for contour initialization in the next frame. Practically, the 
neighborhood radius ρ determines the range of cell movement between frames that is detectable by the segmen-
tation step. ρ is chosen empirically to detect large movements without extending far off the cell edge and losing 
its ability in finding local cell edges and relies on multiple parameters including image resolution and relative 
movement (Suppl. data). During the initialization step, overlap was not allowed to simplify the initial contour 
interactions and limit entanglement in later segmentation steps.

We choose to represent the B-spline contours in polar coordinates because cell bodies appear as closed 
ellipses. Therefore, the geometry functions took the form of r = ψ(θ). The geometrical center of the contour 
shape is calculated and the pole of the contour coordinates translated to this point after each time step (Suppl. 
Fig. 1). This step is essential as contours cannot be represented as a polar curve if the pole (coordinates’ origin) 
is outside of the cell contour.

The angular discretization factor denoting contour boundary nodes was set empirically to 32 nodes with regu-
lar angular interval dθ. When applied to the experimental recordings, this setting was found to provide a good 
balance between shape flexibility and representation at a reasonably low computational cost. We measured its 
effect and that of other parameters in a dedicated parameter sensitivity test. New contour nodes were resampled 
after the translation step to preserve the accuracy levels of the discretization and maintain the regular interval 
dθ. This was done by using linear interpolation of the contour nodes’ coordinates (r`, θ`) for polar angles θ` 
with a regular dθ interval.

A modified gradient descent with feedback step-adjustment was used to perform the energy criterion mini-
mization as explained in previous BEAS  implementations16,35. After implementation in MATLAB (ver. R2020b) 
Runtime was linearly dependent on the number of cells and the image size. The geometrical transformations 
T used in landmark-based ROI tracking is implemented in the form of a polynomial affine  transformation44.

Results
Segmentation strategy evaluation. To objectively evaluate the presented segmentation strategies, we 
created an artificial dataset that simulates the  Ca2+ imaging scenes, featuring movement at rates similar to what 
is measured in ENS recordings, several intensity-change patterns that represent  Ca2+ activity, overlapping neigh-
boring cells with similar baseline intensities, and multiple blurred frames to mimic out-of-focus imaging frames 
(Fig. 4).

We analyzed the signals in this dataset using four different approaches and compared how the extracted 
signals matched the ground truth signals. Using one-layer segmentation which targets the cytoplasmic border 
only, without the competition term, expectedly yields poor results, with contours overlapping significantly as 
the contour nodes cannot find clear edges or intensity gradients (Fig. 4A, left). As a result, the extracted signals 
are contaminated with information from neighboring cells. On the other hand, using the competition term in 
addition to the fixed global curvature term anchors the contours and restricts their shapes to prevent them from 
taking over neighboring cells (Fig. 4A, right), which improves the extracted signal quality drastically. In contrast, 
the double contour segmentation maintains the general shape even without a competition penalty due to the 
coupling between the two segmentation layers although a slight overlap can be observed. The small overlaps, in 
this case, are alleviated when the competition term is added (Fig. 4B).

Signals extracted from the artificial dataset confirm that one-layer contour tracking, without competition, is 
not reliable in extracting the original signal. This is shown in Fig. 4C top, where the activity from the neighboring 
cell appears in the activity trace of the measured cell (Fig. 4C, top row, red trace). Double contour segmentation 
and one-layer contours with competition terms, have no such issues and allow extraction of an accurate signal 
shape. This is especially the case for double contour segmentation, where the raw fluorescence level is closer to 
the original because now the dark nucleus pixels can be excluded from the calculation of the cytoplasm intensity 
(Fig. 4C, bottom).

(13)θ∗ = argminθd(fT , f+ 1) = argmin

N
∑

i=1

�x
f+1
i − T

(

x
f
i

)

�2
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Parameter sensitivity analysis in an artificial dataset. The impact of each of the selected parameters 
on segmentation and tracking results using active contours in both one-layer and the double contour methods 
are estimated by calculating the mean Root Mean-Square Error (RMSE), which is a measure of the difference 
between observed values and a reference, and in this case, between the extracted signals and reference or ground 
truth signals. (Fig. 5).

The first parameter ρ, the neighborhood radius (Fig. 5, top left), expectedly has, for smaller values, a big 
influence on the tracking results. Afterwards, the tracking is stable for several values until the radius is too large 
and tends to encounter multiple edges simultaneously. The second parameter, the matrix size, which determines 
the number of discretized contour nodes negatively affects the tracking at smaller matrix sizes (fewer num-
ber of nodes) for both one- and double contour tracking, with failure to track cells in case of double contour 
segmentation with the lowest (only sixteen) number of nodes (Fig. 5, top right). This indicates that due to its 
extra complexity, double contour segmentation is more sensitive to the number of nodes. While the curvature 
term does not affect the accuracy of segmentation (Fig. 5, bottom left), the addition of a competition term does 
improve segmentation, especially for the one-layer segmentation option. The effect of a competition term with 
double contour segmentation is negligible in this dataset (Fig. 5, bottom right).

Experimental results. When applied to actual recordings, we find that the proposed approach successfully 
tracks cells throughout significant tissue movements (Fig. 6, Top panel), allowing us to reliably resolve  Ca2+ 
peaks from the extracted signals (Fig. 6, bottom panel).

To compare with traditional analysis methods, we analyzed recordings with both the new contour tracking 
method as well as with manual routines, involving motion correction and rectangular ROI selection by a blinded 
expert. For that purpose, we used datasets of 3 recordings to compare the degree of similarity of the signals 
extracted by the traditional method against the one-layer contour and double contour methods, respectively 
(Fig. 7A,B). We found that  Ca2+ profiles are very comparable in shape between extraction from tracked cells 
versus manually drawn ROIs, with a normalized root-mean-square error (RMSE) of 0.093 and 0.114 for one-
layer or double contours respectively (Fig. 7B).

True validation of our analytical approach is not straightforward as it requires assessing the quality of signal 
extraction against a ground truth signal. Since the latter should be fully known, yet embedded in a context that 
holds all the biological, optical, and experimental complexity, we generated artificial  Ca2+ peaks in real  Ca2+ 
recordings in the cytoplasm of multiple moving cells (Suppl. movie 1). Then we used the contour cell tracking 
method to re-extract the  Ca2+ signals and compared the extracted signals to the original planted signal. We found 
that the  Ca2+ peak shape was preserved in most cells (Fig. 7C), and the median RMSE in the one-layer and double 
contour approach to be 0.1216 and 0.1738 (based on 22 tracked cells) to be comparable to that of the manually 
selected ROIs with an RMSE of 0.1212 (Fig. 7D). The higher RMSE values of DC tracking are simply due to a 
few complete tracking failures, see Discussion.

Finally, we used the newly developed tracking approach on actual recordings of ENS tissue (Suppl. movies 
22, 3) including movement in x and y and out-of-focus frames. We found that with optimized parameters one-
layer segmentation, proves reliable to track many cells in the field of view. Notably, the segmentation procedure 
performs well despite the presence of blurry out-of-focus frames (Fig. 7), which is an important advantage 
compared to edge-based segmentation  techniques45. In double contour segmentation, we observed less overlap 
of contours without a competition penalty resulting in good reliability in cells with non-visible edges. However, 
this method had more difficulties in scenes with faster movement and was expectedly not robust in cells without 

Figure 4.  Tracking of overlapping cells with the same base intensity level during rest and different intensity 
levels during activity using (A) one-layer contours without a competition parameter (left) and with a 
competition penalty added (right) and (B) double contours without a competition parameter (left) and with a 
competition penalty added (right) (C) Extracted signals from a cell using one-layer contours (top) and double 
contours (bottom).
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contrast between the nucleus and cytoplasm. While this new approach performs well, it is unavoidable that cell 
tracking fails to resolve some cells with challenging appearance or location in the image. The developed landmark 
ROI-tracking exploiting the known trajectory of successfully-tracked cells proved to be a useful and robust tool 
to overcome this challenge with minimal computational power needed (Suppl. movie 4). In addition, it gives 
the researcher the additional ability to extract signals from smaller structures, like cell processes or glial cells 
(Fig. 7A).

Discussion
Given the complexity of  Ca2+ imaging in the contractile ENS tissues, where a scene not only contains moving 
cells but these cells also display irregular fluorescence intensity  changes11, traditional methods based on image 
registration and ROI selection are cumbersome and prone to failure during signal extraction and quantitative 
 analysis3,10,46,47. Additionally, low-level cell tracking techniques cannot function reliably in this scenario due 
to multiple reasons, including low signal-to-noise ratio (often the case in live imaging), cellular overlap and 
variable cellular edges, which depend both on the imaging system and the labeling approach, as well as on the 
activity of the  cell48. In this paper, we developed a cell tracking algorithm targeted specifically to track neurons 
in such a challenging contractile scenario, with the additional complexity that cells in  Ca2+ imaging have blurry 
borders and constantly change fluorescence intensity. Our method successfully tracks blinking cells in moving 
ENS tissue, without the need for non-rigid image registration. The extracted temporal signals are comparable in 
quality to manual, expert-selected ROIs. Furthermore, the tracked cell coordinates allow additional rectangular 
ROI tracking and add robustness and flexibility to the workflow to process the most challenging recordings.

Comparison of segmentation strategies. In an artificial dataset that was created to simulate cell shape 
and behavior, specifically having moving cells without clear borders, we found the competition term to be 
important in one-layer cell tracking as the contours overlap and the contour nodes do not find edges to adhere 
to in their absence. The addition of a competition term and a significant curvature term prevents them from tak-
ing over neighboring cells resulting in good signal extraction.

Figure 5.  Parameter sensitivity analysis: comparison between one-layer vs. double contours where the Y-axis 
is the normalized RMSE of the extracted signals compared to the raw signals: (top left) effect of radius length 
values on segmentation sensitivity, double contour segmentation has less segmentation error for all values in the 
relevant range > 3. (top right) effect of the number of contour nodes: higher RMSE for one-layer segmentation 
for all values, note the segmentation failure of double contour method at low (e.g. sixteen) contour nodes 
number, as indicated with x. Curve regulation term (bottom left). Competition term (bottom right): lack of 
competition term causes high normalized-RMSE for one-layer segmentation.
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Figure 6.  Contours of multiple cells and cell movement (top). Pixel intensity signal from the one tracked cell in 
the top panel and the contour appearance at multiple time points before, during and after a peak in  Ca2+ activity.

Figure 7.  (A) Contours of tracked cells and manual rectangular ROIs which are moved based on the contours 
tracked. (B) RMSE of signals extracted using 1 layer (red) and double contour (blue) versus manually selected 
ROIs by an expert. (C) Comparison of the extracted signals (red/blue mean, light red/blue standard deviation) 
against a ground truth artificial peak (dotted green) using 1-layer contour tracking (left) and double contours 
(right) based on 22 cells. (D) RMSE of signals extracted from 22 cells injected with the artificial peak using 
manual ROIs (left), 1 layer (center) and double contour (right) versus the ground truth.
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The performance of cell segmentation in this simulated dataset is consistently improved by using the novel 
double contour method. The double contour uses the inner nucleus contours as a natural anchor that restricts 
the outer contour from taking over neighboring cells. It can conserve the shape with low, or even without, 
competition and curvature terms. However, the advantage of the coupled double contour approach is limited in 
recordings with large cell displacement between frames as it depends on tracking the smaller nucleus from its 
position in the previous frame. In this case, higher image acquisition rates are required, which adds complexity 
to the imaging setup, generates bigger datasets, and causes longer processing times. Nevertheless, we consider 
the double contour approach to be powerful in its application to GCaMP based recordings, as the reporter is 
genetically prevented from entering the nucleus, leaving the nucleus dark and thus enabling accurate tracking 
of cells and signal extraction selectively from the cytoplasm.

Parameter sensitivity analysis. Active contours are heavily reliant on multiple parameters and can be 
sensitive to parameter values limiting their robustness. Segmentation and tracking results are reliant on the 
values of multiple parameters controlled by the user. This means that a minimal understanding of how they 
might affect the final outcome is  required49, which is a drawback of all parametric segmentation models. There-
fore, we quantified the effects of the global penalty terms on the algorithm’s performance in both the one-layer 
and double contour strategies, by extracting and comparing the signals from simulated data. We observed gen-
eral similarity in sensitivity to the studied parameters, except for the inability to track cells when using only a 
few contour nodes in the double contour, which is at odds with the increased complexity of this strategy. The 
introduction of the cell competition term improved cell tracking when using one-layer contours, reduced the 
error rate to similar values as obtained by double contours in this dataset. Although the curvature term did not 
increase the accuracy of the extracted signal in the simulated dataset, it plays an important stabilizing role to the 
cell contours in real recordings, especially in blurred images or in frames where segmentation is struggling to 
delineate cells returning to baseline fluorescence. We found that tracking is generally insensitive to a wide range 
of parameter values in the simulated dataset despite our efforts to introduce the most challenging conditions, 
which all together indicate that the performance of the algorithm is robust.

In general, the global penalty terms are valuable to limit segmentation failure, which is a known drawback 
of active contour  segmentation33. However, they do not show significant effects on tracking results of cells that 
are already well within the means of the method, as shown in Fig. 5.

Experimental results. As the aim of the new approach was to extract accurate  Ca2+ signals from experi-
mental data, we compared contour tracking to the traditional extraction method and found a high similarity 
of the extracted signals between the two methods. We used an artificially embedded  Ca2+ peak to measure the 
similarity to the ground truth and found that these planted peaks were indeed detected in most cells, demon-
strating the applicability of the contour tracking workflow. The artificially embedded  Ca2+ peaks were then used 
to compare the quality of the signal extraction using the two contour types against the traditional extraction 
method. Results from the one-layer contours were highly similar to those of the traditional method in their 
error between the extracted signal and the ground truth values of the artificial peak (Fig. 7). We observed slightly 
lower average similarity between the ground truth signal and double contour method, which was mainly due to 
instances where the method failed to track those neurons without contrast between the nucleus and cytoplasm, 
which we, in order to be as close to reality as possible, also included in the dataset. This is easily mitigated by 
using the additional ROI tracking option, which we introduced to extract signals from cells for which contour 
tracking is inaccurate (Fig. 2A).

Practically, we find one-layer tracking to be robust in recordings with blurry out-of-focus frames and its 
stability largely depends on the neighborhood radius ρ in relation to movement intensity in-between frames. 
Furthermore, the introduction of a cell competition term improves cell tracking and reduces the error in experi-
mental recordings. Double contour tracking on the other hand is useful when the recording is not blurry and 
the movement in-between frames is generally less than the nucleus diameter. The latter limits the applicability in 
recordings with substantial displacement due to rapid muscle contractions, especially when fast image acquisi-
tion is not feasible. Its main advantage, which results from the inner nucleus contour acting as an anchor to the 
outer cellular contour, is the ability to track overlapping cells without clearly visible borders, a common sight 
for ENS neurons in the submucosal  layer6. Therefore, the two methods are complementary and can be used by 
subjectively assessing the recording at hand. The landmark-based ROI tracking possibility for manually-added 
ROIs provides a useful addition that allows tracking challenging cells, which the active contours method fails 
to correctly segment. It is a useful tool as it does not require re-running the tracking workflow and is applied 
post-hoc, providing a robust option fully controlled by the user. Compared to activity-based signal extraction 
methods used in  Ca2+ imaging, which require successful image registration and completely static scenes to then 
provide  Ca2+ signals from active cellular  regions50,51, this method allows for efficient analysis of  Ca2+ imaging 
datasets with a non-static scenery regardless of the effectiveness of image registration.

The method developed by Hennig et al.10, specifically for ENS tissue requires image thresholding of the bright 
cytoplasm-dark nuclei interface to segment nuclei and extract signals, which is suitable for non-blurry record-
ings of the bright GCaMP3  Ca2+  indicator10. In contrast, we are able to successfully track cells in partially-blurry 
recordings and using the more dynamic, but dimmer at rest,  Ca2+ indicator GCaMP6f. This helps us in analyzing 
faster neuronal activity and detecting the  Ca2+ transients elicited by individual action  potentials52.
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Conclusion
To satisfy the need for a robust analysis tool for  Ca2+ imaging in moving and contractile tissues, we introduced an 
efficient hybrid approach to track cell bodies relying on local region-based terms in evolving the contour, avoid-
ing the disadvantages of region-based segmentation (Fig. 2). We further developed a novel ‘double contour’ or 
coupled-layers tracking algorithm that takes advantage of the fact that cells in genetically encoded  Ca2+ imaging 
techniques appear with dark nuclei. We quantified the method’s performance in an artificial dataset that simulates 
experimental challenges under different parameter values and compared the two tracking algorithms. We then 
tested the algorithm’s robustness in tracking neurons in various ENS tissue  Ca2+ recordings and demonstrate, 
using embedded artificial  Ca2+ spikes, that the method reliably captures these spikes and represents them in 
the extracted signals. We expanded the analysis possibilities by implementing land-mark based ROI tracking, 
which increases the robustness of the workflow for challenging datasets. Finally, we packaged the workflow as 
a MATLAB GUI to enable efficient analysis of  Ca2+ imaging datasets with a non-static scenery. This novel cell 
tracking method uses multiple features of ENS neurons activity and appearance to effectively segment, track and 
extract the  Ca2+ signals from complex and biologically relevant recordings. It has the explicit advantage that it 
can deal with dramatically changing intensities, even when very dim and hardly above noise levels. Moreover, 
the technique behaves robust even if out-of-focus frames are present in the recordings. Even though the ENS 
was used as a model system, the technique can still be used on other cellular recordings by tweaking the contour 
parameters to match the specific application.
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