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Abstract: Seed endophyte inoculation can enhance the plant tolerance to pollutants, which allows
plant cultivation on trace element (TE) polluted soils. Methylobacterium sp. CP3 and Kineococcus
endophyticus CP19 were tested in vitro for their tolerance to Zn and Cd and their plant growth
promotion traits. The in vivo effects of bioaugmentation with individual strains or both strains were
tested using two poplar cultivars, Populus deltoides x (P. trichocarpa x P. maximowiczii) ‘Dender’ and
‘Marke’, grown in TE polluted soil for six weeks. Methylobacterium sp. was found to grow on media
enriched with 0.4 and 0.8 mM Cd, and both endophytes tolerated 0.6 and 1 mM Zn, due to the
presence of genes involved in Zn and Cd tolerance and transport. Methylobacterium sp. showed an
extracellular ion sequestration mechanism. Production of indole-3-acetic acid by Methylobacterium
sp. and K. endophyticus, as well as phosphorus solubilization by Methylobacterium sp. were observed.
Bioaugmentation with both endophytes increased the shoot length of Populus ‘Marke’ and enhanced
the Mg uptake in both cultivars. Inoculation with Methylobacterium sp. reduced the bioaccumulation
of Zn in ‘Marke’, conferring it an excluder strategy. Methylobacterium sp. and K. endophyticus seemed
to improve the plant nutritional status, which can alleviate abiotic stress.

Keywords: cadmium; Kineococcus endophyticus CP19; Methylobacterium sp. CP3; plant growth promo-
tion; Populus; zinc

1. Introduction

Soil pollution by trace elements (TE) is a worldwide problem due to the negative
consequences to soil quality, food safety, and human health. The main sources of TE
pollution, include mining, industrial waste, phosphate fertilizers, pesticides as well as
atmospheric deposition by industrial activities [1]. Globally, around 10 million sites are
considered polluted, of which more than 50% by TE [2]. In the EU, about 6.2% of agricul-
tural land is potentially polluted by TE [3], including an area of 280 km2 in the northeast of
Belgium [4]. In this agricultural region, the activities of several pyrometallurgical smelters
resulted in soil pollution by Zn, Cd and Pb [4,5]. The cultivation of TE-tolerant non-food
crops in this area would allow to lower the negative impacts of the polluted soil on the
environment as well as to support the local economy [6–9]. Suitable candidates belong to
the Salicaceae family, which includes some woody species (i.e., poplars and willows), with
high biomass production and the capability for TE phytoextraction [9–13]. In particular,
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Populus ‘Dender’ and ‘Marke, which select cultivars of controlled crossings (P. deltoides x
(P. trichocarpa x P. maximowiczii)), show fast growth and they are suitable for short rotation
biomass production [14]. The cultivation of TE tolerant and fast-growing trees can allow
the valorization of polluted agricultural land, through the production of biomass as for
energy or other purpose as well as a gradual soil depollution by extracting TE [15,16].

Trace element-tolerant microorganisms can improve plant establishment and growth
under conditions of TE phytotoxicity, and thus improve the overall phytostabilization
performance. Amongst these plant-associated microorganisms, endophytes interact very
intimately with their host. In this mutual symbiosis, plants provide nutrients to the
microorganisms, and the latter can enhance plant growth and health [17]. Specifically,
endophytic bacteria can improve plant growth through the production of plant growth
regulators, nitrogen fixation and by increasing the availability of some elements such
as phosphorous and iron. In addition, some endophytes may possess ion sequestration
capacities, reducing their phytotoxicity [18,19]. Sequestration mechanisms include the
bioaccumulation of ions inside the cell, as well as the physical adsorption to the cell wall,
binding ions to anionic functional groups and to polysaccharides on cell surfaces [20].
Seed endophytes can provide benefits to their host plants through the growth promotion
and increasing their tolerance to abiotic stresses, as TE presence in soil. The core seed
microbiome in wheat includes endophytes able to produce auxins and siderophores, as
well as to solubilize phosphate [21]. Similar traits have been observed in cucurbit seed
endophytes, resulting in increased nutrient uptake and plant growth [22]. Nicotiana tabacum
possesses seed endophytes with the capability to enhance biomass production, as well as to
increase Cd concentrations in inoculated tobacco plants under Cd stress [17]. Moreover, the
transmission of such endophytes through several seed generations supports the adaptation
process of plants to polluted conditions [23–26]. The exploitation of seed endophytes that
occur in metallophytes can be a strategy to improve the plant tolerance to TE polluted
soils [27]. Crotalaria pumila is an herbaceous plant colonizing metalliferous soils in Mexico,
with a phytoextraction potential for Zn. The bacterial seed endophytic communities of C.
pumila have been described, including Kineococcus endophyticus CP19 and Methylobacterium
sp. CP3 strains, over three seed generations. Methylobacterium is the most abundant
genus of the C. pumila core microbiome, with the potential to improve the nutrient uptake
and TE tolerance of the host plant. Moreover, as observed in Arabidopsis thaliana, plant
colonization by Methylobacterium involves a migration towards aerial tissues through xylem
vessels [28–30].

To the best of our knowledge, little information is available regarding the role and
fate of inoculated endophytic bacteria in trees, like poplar, growing on TE polluted soil.
For the purpose of improving our knowledge, Methylobacterium sp. CP3 and Kineococcus
endophyticus CP19 strains were further characterized with regard to their TE tolerance
and capability to support plant growth. Subsequently, an inoculation experiment was
performed to assess the effects of inoculation of these selected endophytes on poplar
TE-tolerance and uptake using Populus ‘Dender’ and ‘Marke’ cultivars, growing in soil
originating from a TE polluted area (Lommel, Belgium). Additionally, we also investigated
the fate of the inoculated strains, separately and in association, in plant organs, in order to
elucidate whether the observed effects are due to an indirect or direct effects of the bacteria
colonizing the plant.

2. Materials and Methods
2.1. Bacterial Strains Characterization
2.1.1. In Vitro Plant Growth Promotion Traits and TE Tolerance

Methylobacterium sp. CP3 and Kineococcus endophyticus CP19 were characterized
in vitro for their potential plant growth promotion traits, production of indole-3-acetic
acid (IAA) and phytate mineralization, as well as their TE tolerance and production of
siderophores and organic acids. Before testing, bacterial strains were grown overnight in
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869 medium [31], and the different assays were performed after washing the bacterial cells
with 10 mM MgSO4.

IAA production was assessed according to Patten and Glick method [32]. 25 µL of
bacterial suspension was incubated for 4 days at 30 ◦C in 1 mL 1/10 strength 869 medium
supplemented with 0.5 g l−1 tryptophan. 1 ml of Salkowski reagent (0.5 M FeCl3 and 35%
HClO4) was added to 0.5 ml of supernatant and colorimetrically evaluated. Phytate min-
eralisation by the bacteria was estimated by measuring the halo-zones produced around
colonies, growing on National Botanical Research Institute’s phosphate solid medium at
28 ◦C for 12 days [33]. Siderophore production was verified according to the colorimetrical
method proposed by Schwyn and Neilands [34]. An amount of 20 µL of bacterial suspen-
sion was incubated in 800 µL selective 284 medium [35], containing carbon sources and
supplemented with 0, 0.25 or 3 µM Fe(III)citrate (deficient, optimal and oversupplying
Fe conditions, respectively) at 30 ◦C. After 5 days, 100 µL of the blue chrome-azurol S
(CAS) reagent was added and change of color was evaluated. Organic acid production
was evaluated using the method proposed by Cunningham and Kuiack [36]. An amount
of 800 µL sucrose tryptone medium was added to 20 µL of bacterial suspension. After a
30 ◦C incubation, for 5 days, 100 µL of 0.1% (v/v) Alizarine red S was added and the pro-
duction was qualitatively evaluated. The TEs with values above the threshold for Flanders
legislation were selected for bacterial tolerance. The maximum inhibitory concentrations
for selected bacteria were also assessed: A total of 20 µL of bacterial suspension was plated
on selective 284 medium supplemented with a carbon source [35], and 0.0, 0.4 and 0.8 mM
CdSO4 or 0, 0.6 and 1.0 mM ZnSO4. After 14 days incubation at 30 ◦C, bacterial growth
was assessed.

2.1.2. Scanning Electron Microscopy (SEM) and EDX Analysis

Based on TE tolerance results, Methylobacterium sp. CP3 and Kineococcus endophyticus
CP19 were chosen for scanning electron microscopy (SEM) and EDX analysis. Methylobac-
terium sp. CP3 was grown in liquid 284 medium supplemented with 1 mM ZnSO4 and
0.8 mM Cd CdSO4, Kineococcus endophyticus CP19 in 1 mM ZnSO4 supplemented medium.
Cell fixation was performed according to the method of Holmes et al. [37]. Briefly, bacteria
pellets were washed 3 times with 0.01 M phosphate-buffered saline buffer (PBS, pH 7.0) to
remove unbound ions, sugars and proteins. Pellets were resuspended in 2% glutaraldehyde
for 1h at room temperature. Subsequently, samples were centrifuged for 3 min at 3000× g
and pellets were washed 3 times with Millipore water. A total of 1 µL of each sample was
placed on a sample holder, covered with carbon conductive tape. Then, samples were
coated with a gold layer and analyzed using a Scanning Electron Microscope (FEI Quanta
200F FEG-SEM with ThermoFisher Pathfinder Alpine EDS system with UltraDry Premium
(60 mm2 active area) EDS detector). Images were taken using accelerating voltages of 7.5,
12.5 kV or 15 kV.

2.1.3. Genome Sequencing and Assembly

Total DNA extraction and sequencing of Methylobacterium sp. CP3 and Kineococcus
endophyticus CP19 were carried out in a previously study [26]. The RAST annotation system
was used to perform the open reading frame prediction and gene annotation [38]. The
prokaryotic genome automatic annotation pipeline of the National Center for Biotechnology
Information [39], and the platform MicroScope were performed using the tool Magnify-
ing Genomes, MaGe (http://www.genoscope.cns.fr, access date: 3 February 2021) [40].
Clusters of Orthologous Genes [41] and metabolic pathway reconstruction was carried
out using the databases of Kyoto Encyclopedia of Genes and Genomes (KEGG) [42] and
MetaCyc [43].

http://www.genoscope.cns.fr
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2.2. Inoculation Experiment
2.2.1. Soil and Plant Collection

Polluted soil was sampled in Lommel (Belgium, 51◦12′41” N; 5◦14′32” E), in an
abandoned agricultural area at 500 m north-east of a Zn smelter. The soil has a sandy
texture with a pH of 4.6–5 [9,44]. Cuttings of two poplar cultivars (‘Dender’ and ‘Marke’)
were provided by Sylva nurseries (Lievegem, Belgium).

2.2.2. Plant Inoculation

The inoculation experiment was carried out in March and April 2019. Cuttings of the
Populus cultivars ‘Dender’ ‘Marke’ were placed in water to allow root development, under
greenhouse conditions (25 ◦C day/19 ◦C night; 60% humidity; 500 mL per day nebulised
watering; 400 µmoL cm−2 s−1 PAR). After the cuttings developed roots, bacterial inocula-
tions were performed. Methylobacterium sp. CP3 and Kineococcus endophyticus CP19 were
incubated at 30 ◦C in 869 liquid medium for 2 days, until mid-exponential phase and an
optical density of 1 U at 600 nm (≈108 CFU/mL) was achieved (visible spectrophotometer
Novaspec Plus, Holland). The bacterial cultures were centrifuged (15 min at 4000 rpm) and
bacterial pellets were washed 3 times with 10 mM MgSO4 solution. Afterwards, the pellets
were resuspended in 100 mL of tap water and added to the cuttings in water. Cuttings of
each cultivar were placed in a total of four 10 L containers (one container per inoculation
condition). Conditions were the following: Non-inoculated (Control), Methylobacterium sp.
CP3 inoculation (M), Kineococcus endophyticus CP19 inoculation (K), and Methylobacterium
sp. CP3 + Kineococcus endophyticus CP19 inoculation (M+K) (Figure 1). Seven days after the
inoculation, 17 cuttings of each cultivar were transferred to plastic pots, filled with 3.5 kg
of polluted soil and kept in greenhouse conditions. Cuttings were grown on polluted soil
for 6 weeks to avoid possible plant stress to improve growing conditions.
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Figure 1. Scheme of inoculation setup using four 10 L containers, filled with tap water, in which
the poplar cuttings were inoculated. Ctrl (Control): Non-inoculated cuttings; M: Methylbacterium sp.
CP3 inoculation; K: Kineococcus endophyticus CP19 inoculation; M+K: Methylbacterium sp. CP3 and
Kineococcus endophyticus CP19 inoculation.

2.3. Specific Automated Ribosomal Intergenic Spacer Analyses (ARISA)

After 6 weeks of growth, total DNA was extracted from the roots and leaf samples of
3 inoculated cuttings per condition, and from Methylobacterium sp. CP3 and Kineococcus
endophyticus CP19 pure colonies, using for all the samples the E.Z.N.A. Bacterial DNA kit
(Omega Bio-Tek, VWR, Leuven, Belgium). Plant samples were surface sterilized before
DNA extraction with 5% NaOCl for 3 min, ethanol 70% for 3 min and rinsed three times
with sterile water. Surface sterilization was checked by plating 1 mL of the rinsing water
on Petri dishes filled with 869 medium. In circumstances where no colonies were observed
after an incubation time of two weeks, sterilization was considered to be adequate. The
16S-23S internal transcribed spacer (ITS) regions were amplified by PCR with ITSF (5-
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GTCGTAACAAGGTAGCCGTA-3) and ITSreub (5-GCCAAGGCATCCACC-3) primers [45],
using the FastStart High Fidelity PCR system, dNTPack (Sigma-Aldrich, St. Louis, USA).
Afterwards, 1 µL of DNA samples were loaded on a DNA-chip (DNA 1000 kit, Agilent
Technologies, Diegem, Belgium) and analyzed on a 2100 Bioanalyzer (Agilent Technologies,
Diegem, Belgium). Expert Software (Agilent Technologies) was used to digitalize the
ARISA fingerprints, resulting in electropherograms in ASCII formats. ASCII formats were
processed using the StatFingerprints package [46].

2.4. Plant Health and Growth

Poplar growth was examined once per week, in terms of shoot height, leaf number and
area of the first three fully expanded leaves. The chlorophyll content was also estimated
using a CCM-200 plus Chlorophyll Content Meter (OPTI-SCIENCES, Inc., Hudson, USA).
In addition, the efficiency of photosystem II (PSII) was evaluated by the detection of
chlorophyll a fluorescence, using the Plant stress kit (ADC Bioscientific Ltd, Hoddesdon,
UK). More specifically, the maximum quantum efficiency of PSII was measured as Fv/Fm,
where Fv is the variable fluorescence, calculated as the difference between maximum
fluorescence (Fm) and the minimum fluorescence yield (F0). Fm was measured after
application of a saturating light pulse [6000 µmoL (photon) m−2 s−1]. After 6 weeks of
growth, shoots and roots were harvested for determining fresh (FW) and dry weight (DW).
Shoots and roots were dried in an oven at 60 ◦C until unchanged weight and DW biomass
were measured.

2.5. Trace Element and Nutrient Concentrations in Soil

Trace element and nutrient concentrations were evaluated in the soil used prior to
the greenhouse experiment. Oven-dried soil samples were analyzed for total Zn and Cd
concentrations and nutrients (Ca, Mg, Mn, K, Cu), using the USEPA 3051 HNO3-microwave
assisted digestion method [47]. Amounts of 37% HNO3 and 37% HCl solution (1:3 v:v)
were added to 0.5 g of soil, and soil samples were digested in a microwave over (Milestone
1200 MEGA, Milestone Systems, Belgium) at 160 ◦C (25 min ramp time, 10 min ventilation).
The obtained extracts were diluted to a final volume of 50 mL with Millipore water and
subsequently analyzed with inductively coupled plasma optical emission spectrometry
(ICP-OES, Agilent Technologies, 700 series, Belgium). Plant available metal fractions were
estimated by determining the exchangeable metal concentrations, while 20 ml 0.01 M CaCl2
was added to 2 mg of dry soil sample, and after a 4h incubation at 25 ◦C, soil samples were
centrifuged (15,000× g; 15 min) and extracts were filtered. Cd and Zn concentrations in
the extracts were measured using ICP-OES. All samples were analyzed in triplicate. For
the quality control, blank and standard references were included in the analysis (sewage
sludge amended soil, Standard Reference Material 143R, Commission of the European
Communities).

2.6. Element Concentrations in Plant Tissues

To determine total Cd, Zn, micro- (Cu, Mn) and macronutrient (Ca, Mg, K) concentra-
tions in plant biomass, 0.2 g of dried plant roots and leaves were powdered and digested
in glass tubes in a heating block, using the USEPA 3050B Acid Digestion of Sediments,
Sludges, and Soils [48]. Three digestion cycles were carried out for each sample. The
first one in 1 ml HNO3 (70%) followed by one cycle in 1 ml HCl (37%) at 120 ◦C for 4 h.
After the digestion, samples were dissolved in HCl (37%) and diluted to a final volume of
5 ml (2% HCl) with Millipore water. The extracts were analyzed using the same ICP-OES,
as mentioned before. All samples were analyzed in triplicate. Blanks (only HNO3) and
standard references (NIST Spinach 1570a) were included.

2.7. Bioaccumulation and Translocation Factors

To evaluate the phytoextraction capabilities of inoculated and non-inoculated Populus
‘Dender’ and ‘Marke’ cultivars, the bioaccumulation (BAF) and translocation (Tf) factors
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were calculated after 6 weeks in polluted soil. The BAF was calculated as the ratio of
total Cd and Zn concentrations in each plant organ to total the Cd and Zn concentrations
detected in soil, while Tf as ratio of total Cd and Zn concentrations in leaves to root
ones [49].

2.8. Statistical Analysis

After confirmation of normality (Shapiro-Wilk normality test) and homoscedasticity
(Bartlett test) of the data, one-way ANOVA, followed by Tukey’s Multiple Comparison Test
(p ≤ 0.05), was applied to plant growth and photosynthetic parameters, as well as to TE
concentration data in plant tissues and relative indices (bioaccumulation and translocation
factors). Statistical analyses were performed using R 3.6.0. Principal Component Analysis
(PCA) was computed with the main results of the experiment, in order to investigate the
correlations between variables (shoot height, biomass, element concentrations, Tf and BAF)
within Methylobacterium sp. CP3 and Kineococcus endophyticus CP19 inoculations. PCA that
explained more than a single parameter alone (eigenvalues >1) were considered, using
Orange: Data Mining Toolbox in Python.

3. Results
3.1. Characterization of the Bacterial Strains

The in vitro TE tolerance and plant growth promotion traits of Methylobacterium sp.
CP3 and Kineococcus endophyticus CP19 are presented in Table 1. Methylobacterium sp.
CP3 could grow in media supplemented with 0.6 and 1 mM Zn, as well with 0.4 and
0.8 mM Cd, while K. endophyticus CP19 only developed in Zn enriched medium (0.6 and
1 mM Zn). Both bacterial strains produced IAA and only Methylobacterium sp. CP3 showed
the capacity to solubilize phosphate.

Table 1. Trace element tolerance and in vitro plant growth promotion (PGP) traits of Kineococcus endophyticus CP3 and
Methylobacterium sp. CP19. + = positive response; − = negative response.

Metal Tolerance PGP Traits

Bacteria Strains Cd
(0.4 mM)

Cd
(0.8 mM)

Zn
(0.6 mM)

Zn
(1 mM) IAA Sid Org acid P-mi

K. endophyticus CP19 − − + + + − − −
Methylobacterium sp. CP3 + + + + + − − +

IAA = auxine production; Sid = siderophore production; Org acid = organic acid production; P-mi = phytate mineralization.

A functional characterization of Methylobacterium sp. CP3 and Kineococcus endophyti-
cus CP19 and their interaction with Cd and Zn was performed (Table 2). The draft genomes
of Methylobacterium sp. CP3 and Kineococcus endophyticus CP19 disclosed the presence
of genes involved in Zn and Cd transport and tolerance, especially genes of the operons
czc and znu involved in the tolerance to Cd and Zn. In addition, gene annotation revealed
the presence in Kineococcus endophyticus CP19 of the iaaH gene which is encoding for
indole-3-acetamide hydrolase in the pathway of IAA production. The draft genome of
Methylobacterium sp. CP3 included the phoA gene, which is encoding for alkaline phos-
phatase that is involved in the mineralization of phosphate. Moreover, the absence of genes
for the production of some organic acids was confirmed by the genome annotation.

SEM-EDX analysis enabled the physical interaction between bacterial strains and trace
elements to be observed. Cadmium (Figure S1) and Zn (Figure S2) are clearly present
on/in the bacterial cell. After 2 days of growth in liquid cultures, enriched with 0.8 mM
Cd (Figure S1) and 1 mM Zn (Figure S2), it was possible to distinguish trace element rich
zones as being the brighter regions on the cell wall of Methylobacterium sp. CP3.
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Table 2. Main genes and relative encoded protein involved in Kineococcus endophyticus CP19 and Methylobacterium sp. CP3
responses to Cd and Zn. ABC = ATP-binding cassette.

Trace Element Gene Encoded Protein/Enzyme Bacteria

Cd, Zn czcD CzcD, cation efflux system protein Methylobacterium
K. endophyticus

Cd, Zn czcA CzcA, proton antiport (CzcCBA chemiosmotic transporter) Methylobacterium

Cd, Zn czcB CzcB, proton antiport (CzcCBA chemiosmotic transporter) Methylobacterium
K. endophyticus

Cd, Zn cadA3 Cd2+ -P-type exporting ATPase
Methylobacterium
K. endophyticus

Zn, Cd zntA Zn2+ -P-type exporting ATPase
Methylobacterium
K. endophyticus

Zn Zur Zur, Zinc uptake regulation protein Methylobacterium
K. endophyticus

Zn znuA ZnuA, Zn2+ ABC transporter, periplasmic-binding protein
Methylobacterium
K. endophyticus

Zn znuB ZnuB, Zn2+ ABC transporter, inner membrane permease subunit
Methylobacterium
K. endophyticus

Zn znuC ZnuC, Zn2+ ABC transporter, ATP-binding subunit
Methylobacterium
K. endophyticus

3.2. Inoculation Experiment
3.2.1. Trace Element Concentrations in Soil

The total TE concentrations of soil were: 223.4 ± 9.74 mg Zn kg−1 and 3.6
± 0.18 mg Cd kg−1. CaCl2-extractable Zn and Cd concentrations were 5.72 ± 0.032
and 0.13 ± 0.008 mg kg−1, respectively. The total Zn and Cd concentrations exceeded
the background values (59 and 0.69 mg kg−1, respectively) for sandy arable soil in Flan-
ders legislation [50]. The nutrient concentrations in soil were: 1611 ± 160.5 mg kg−1 Ca;
409.7 ± 46.9 mg kg−1 K; 695 ± 83.1 mg kg−1 Mg; 66 ± 6.0 mg kg−1 Cu.

3.2.1.1. Plant Growth and Biomass Production

In order to evaluate the possible effects of bacterial inoculation on the performance
of Populus ‘Dender’ and ‘Marke’ cuttings, growth and photosystem II (PSII) efficiency
were examined during the experiment. Growth was assessed by measuring shoot height,
number of leaves and leaf area. Populus ‘Marke’ cuttings showed a significant increase
in shoot length after inoculation with both Methylobacterium sp. CP3 and Kineococcus
endophyticus CP19, compared to the control (Figure 2).
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Figure 2. Shoot height in Populus ‘Dender’ (A) and Populus ‘Marke’ (B) cultivars detected during
the 4-weeks inoculation experiment. Ctrl (control): non-inoculated cuttings; M: Methylobacterium sp.
CP3 inoculation; K: Kineococcus endophyticus CP19 inoculation; M+K: Methylobacterium sp. CP3 and
Kineococcus endophyticus CP19 inoculation. Bars represent ±SD. ** p < 0.01.

No significant differences were detected between inoculated and non-inoculated
control cuttings, in terms of number of leaves and leaf area (Figure S3). Chlorophyll
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a fluorescence confirmed the good health status of the poplar cuttings. Both cultivars
showed a good PSII performance: Fv/Fm, with values between 0.75 and 0.85. In addition,
no significant differences between the chlorophyll contents were detected between the
different treatments (Figure 3).
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determined during the 4-week experiment. Ctrl (control): Non-inoculated cuttings; M: Methylobac-
terium sp. CP3 inoculation; K: Kineococcus endophyticus CP19 inoculation; M+K: Methylobacterium sp.
CP3 and Kineococcus endophyticus CP19 inoculation. Bars represent ±SD.

In Figure 4, shoot and root dry weights of Populus ‘Dender’ and ‘Marke’ are presented.
Shoot and roots were collected after 6 weeks of growth in trace element polluted soil.
Bacterial inoculation did not have any significant effect on the dry weights of both poplar
cultivars.
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Figure 4. Dry weights (g) of shoots and roots of Populus ‘Dender (A) and Populus ‘Marke’ (B) after
6 weeks of growth in trace elements polluted soil. Ctrl (control): non-inoculated cuttings; M: Methy-
lobacterium sp. CP3 inoculation; K: Kineococcus endophyticus CP19 inoculation; M+K: Methylobacterium
sp. CP3 and Kineococcus endophyticus CP19 inoculation. Statistical significance was tested with
one-way ANOVA followed by Tukey’s Multiple Comparison Test (p ≤ 0.05).
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3.2.1.2. Element Concentrations in Plant Leaves and Roots

After 6 weeks of growth in the polluted soil, the total Cd and Zn concentrations were
determined in leaves and roots of both poplar cultivars. One-way ANOVA indicated no
significant differences for Cd and Zn concentrations between inoculated plants and non-
inoculated ones, for both poplar cultivars (Figure 5), as well as for Cd and Zn translocation
factors (Figure S4). Bioaccumulation factors (BAF, Figure 6) showed that the average values
are higher than 1 for Cd and Zn in leaves and roots of cuttings of both cultivars. The
concentration of Zn was significantly lower (−40%) in roots of cuttings of cultivar ‘Marke’
inoculated with Methylobacterium sp. CP3 (1.3 ± 0.06), compared to the non-inoculated
ones (2.2 ± 0.76).
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Figure 5. Cd and Zn concentrations (mg kg−1 dry weight) in leaves and roots of cuttings of Populus
cultivars ‘Dender’ (A,C) and ‘Marke’ (B,D) after 6 weeks of growth in trace elements polluted soil.
Ctrl (control): Non-inoculated cuttings; M: Methylobacterium sp. CP3 inoculation; K: Kineococcus
endophyticus CP19 inoculation; M+K: Methylobacterium sp. CP3 and Kineococcus endophyticus CP19
inoculation. Statistical significance was determined with one-way ANOVA followed by Tukey’s
Multiple Comparison Test (p < 0.05).
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Figure 6. Bioaccumulation factors (BAF) for Cd and Zn calculated after 6 weeks of growth in trace
elements polluted soil in leaves and roots of cuttings of the Populus cultivars ‘Dender’ and ‘Marke’.
Ctrl (control): non-inoculated cuttings; M: Methylobacterium sp. CP3 inoculation; K: Kineococcus
endophyticus CP19 inoculation; M+K: Methylobacterium sp. CP3 and Kineococcus endophyticus CP19
inoculation. Statistical significance was determined with one-way ANOVA followed by Tukey’s
Multiple Comparison Test (p ≤ 0.05).
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3.2.1.3. PCA Results

PCA was performed to elucidate the poplar responses, in terms of growth and trace
element accumulations, to inoculations with Methylobacterium sp. CP3 and K: Kineococcus
endophyticus CP19 (Figure 7). The highest eigenvalues were achieved for two principal
components which explained a 93% in total of the variability. The first principal component
was determined by root biomass, Tf for Cd and Zn, BAF for Cd and Zn in root and BAF for
Cd in shoot, while the second one was represented by shoot biomass, BAF Cd in root, BAF
Zn in shoot and shoot height. PCA revealed that the differentiation between inoculated
and non-inoculated plants was mainly determined by these factors.
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Figure 7. Principal component analysis computed with the main results of the experiment. Plant
height refers to shoot length. Data obtained from different types of inoculation were reported in
different colors and symbols. Control as red crosses (non-inoculated cuttings); Methylobacterium sp.
CP3 inoculation as blue points; Kineococcus endophyticus CP19 inoculation as green triangle.

3.2.1.4. Plant Nutritional Status

Tables 3 and 4 show the micro-and macronutrient concentrations in the roots and
leaves of cuttings after 6 weeks of growth in polluted soil. The Mg concentration was signif-
icantly higher (+16%) in leaves of cuttings of the Populus ‘Dender’ cultivar inoculated with
Methylobacterium sp. CP3 and Kineococcus endophyticus CP19, compared to non-inoculated
cuttings (Table 3). In leaves of cuttings of the ‘Marke’ cultivar the Mg concentrations
were higher (+10%) when inoculated with with Methylobacterium sp. CP3 and Kineococcus
endophyticus CP19, compared to non-inoculated cuttings (Table 4).

3.2.1.5. Specific Automated Ribosomal Intergenic Spacer Analyses (ARISA)

In order to evaluate the plant colonization by the two bacterial strains Methylobacterium
sp. CP3 and Kineococcus endophyticus CP19, an ARISA analysis was performed (Figure S5).
Heatmaps and the relative Pearson correlation analysis revealed the possible presence
of Kineococcus endophyticus CP19 in some root samples of Populus ‘Marke’ (Figure S5A)
and leaves of Populus ‘Dender’ cuttings (Figure S5B) inoculated with one or both strains.
Methylbacterium sp. CP3 was not detected in none of the roots or leaves of both cultivars.
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Table 3. Micro- (Cu, Mn) and macronutrient (Ca, Mg, K) concentrations (mg kg−1 DW) in leaves (L) and roots (R) of cuttings
of the Populus cultivar ‘Dender’ after 6 weeks of growth in trace elements polluted soil. Ctrl (control): Non-inoculated
cuttings; M: Methylobacterium sp. CP3 inoculation; K: Kineococcus endophyticus CP19 inoculation; M+K: Methylobacterium sp.
CP3 and Kineococcus endophyticus CP19 inoculation. Statistical significance was determined with one-way ANOVA followed
by Tukey’s Multiple Comparison Test (p ≤ 0.05).

Organ Ctrl M K M + K ANOVA

Cu L 6 ± 1.35 8 ± 1.5 9 ± 2.8 6.3 ± 0.8 0.3019
R 33 ± 9.9 40 ± 8.5 34 ± 7.5 41 ± 1.0 0.051

Mn L 14.1 ± 3.5 16 ± 2.6 26 ± 16.2 16.5 ± 1.4 0.311
R 49 ± 22.3 81 ± 11.9 71 ± 4.9 73 ± 4. 8 0.214

Ca L 8771 ± 1574.1 10167 ± 1521.7 11443 ± 2510.3 10712 ± 728.6 0.160
R 5007 ± 667.8 5015 ± 823.0 5130 ± 597.7 5062 ± 684.1 0.993

Mg L 1906 ± 105.3b 2118 ± 189.4b 2091 ± 190.0b 2286 ± 66.6a 0.015
R 1532 ± 133.6 1400 ± 129.9 1451 ± 181.1 1402 ± 49.8 0.135

K L 3374 ± 306.2 3792 ± 562.3 3765 ± 828.9 4229 ± 456.8 0.058
R 2960 ± 524.4 2636 ± 462.9 3699 ± 701.5 2553 ± 431.1 0.581

Table 4. Micro- (Cu, Mn) and macronutrient (Ca, Mg, K) concentrations (mg kg−1 DW) in leaves (L) and roots (R) of cuttings
of the Populus cultivar ‘Marke’ after 6 weeks of growth on trace elements polluted soil. Ctrl (control): non-inoculated
cuttings; M: Methylobacterium sp. CP3 inoculation; K: Kineococcus endophyticus CP19 inoculation; M+K: Methylobacterium sp.
CP3 and Kineococcus endophyticus CP19 inoculation. Statistical significance was determined with one-way ANOVA followed
by Tukey’s Multiple Comparison Test (p ≤ 0.05).

Ctrl M K M + K ANOVA

Cu L 6 ± 1.1 6 ± 0.8 6 ± 0.9 6 ± 1.2 0.971
R 28 ± 11.3 23 ± 1.5 22 ± 6.1 34 ± 5.2 0.1212

Mn L 14.2 ± 3.1 16 ± 4.1 18 ± 4.8 16 ± 3.6 0.652
R 35.3 ± 23.5ab 21 ± 2.5ab 22.5 ± 7.6b 41.4 ± 14.6a 0.029

Ca L 10767 ± 948.1 11099 ± 1756.6 12904 ± 1732.7 11661 ± 956.3 0.233
R 4284 ± 765.5ab 3880 ± 231.4ab 3630 ± 410.9b 4842 ± 283.4a 0.022

Mg L 2030 ± 129.6a 2203 ± 221.3ab 2196 ± 67.6ab 2267 ± 57.9b 0.029
R 1442 ± 2018.4 1269 ± 71.9 1282 ± 119.4 1502 ± 176.7 0.135

K L 3799 ± 429.0 3818 ± 661.8 4134 ± 366.3 4442 ± 497.3 0.241
R 2941 ± 514.0 2435 ± 461.5 2354 ± 56.2 2339 ± 320.2 0.107

3.3. Discussion

The study of the seed microbiome of metallophytes revealed interesting endophytes,
demonstrating high TE tolerance and plant growth promotion properties [28]. A bioaug-
mentation approach using endophytes previously isolated from metallophytes, can im-
prove the tolerance of plants to trace elements [27]. Therefore, two seed endophytic
bacteria isolated from C. pumila colonizing a mining area in Mexico, were characterized
and inoculated on cuttings of two poplar cultivars growing in TE polluted soil.

In vitro tests indicated that the two seed endophytes possess potential plant growth
promoters (Table 1). Both Methylobacterium sp. CP3 and Kineococcus endophyticus CP19
can synthetize the plant hormone indole-3-acetic acid (IAA). Some of the effects of IAA
production are positively related to root elongation and the numbers of root branches and
hairs, which can lead to a higher water and nutrient uptake potential [32]. The production
of IAA by bacteria is mostly promoted by the release of certain molecules (amino acids,
sugar and organic acids) by the host plants [51]. In addition, Methylobacterium sp. CP3
showed the ability to mineralize phytate in vitro, most likely through the production of
organic and inorganic compounds as well as phosphatase enzymes [52,53], suggesting
some capability to convert insoluble phosphorous into an available form for plants [54].
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Therefore, Methylobacterium sp. CP3 can be considered as a phosphobacteria, like other
bacterial strains belonging to the genera Pseudomonas, Serratia, Pantoea, Bacillus, Agrobac-
terium and Microccocus [55,56]. These in vitro plant growth promoting traits have been
verified in an in vivo experiment in which cuttings of Populus ‘Marke’ were inoculated with
Methylobacterium sp. CP3 and Kineococcus endophyticus CP19. In vitro, Methylobacterium sp.
CP3 could grow on 0.4 and 0.8 mM Cd, as well as 0.6 and 1 mM Zn supplemented media
(Table 1), confirming the endophyte tolerance for these TEs [29]. Kineococcus endophyticus
CP19 showed only tolerance for Zn (0.6 and 1 mM). Earlier, copper tolerance has been
reported in the genus Kineococcus [57]. This study increased the knowledge bank and
applicability for such endophyte.

Generally, different mechanisms can be involved in bacteria TE defense, including the
reduction of the TE uptake through enzymatic transformation [58]. Redox reactions may
decrease the mobility and/or toxicity of TE (e.g., Cr) and methylation enables the trans-
formation of some TE into a gaseous state, due to the volatility of the methylated TE [59].
Other TE tolerance mechanisms in bacteria include the sequestration of TE as physical
adsorption of Zn and Cd through binding sites [60], for instance carboxyl groups in gram-
negative (e.g., Methylobacterium sp. CP3) or involving extracellular polymer substances
(EPS). Such high molecular weight polyanionic polymers which can contribute to metal
immobilization, outside the bacterial cell [61–63]. The EPS properties to bind metals, i.e.
Cu and Pb, have been studied in other bacterial species of the genus Methylobacterium [64].
In our study, the capability of Methylobacterium sp. CP3 to interact with trace elements
was highlighted via SEM-EDX imaging (Figures S1 and S2) and the gene annotation (Ta-
ble 2). Bacteria can actively transport ions outside the membrane through ion antiporter
systems and the subsequent increase in pH leads to the precipitation of TE as insoluble
forms, e.g., carbonates [65,66]. In our study, the presence of Cd and Zn in/on the bacterial
surfaces can be related to the presence of czc ion efflux system, protecting the bacterial cell
in a TE polluted environment. In fact, the czc is an ion antiporter efflux system and the
czc-mediated efflux of cations, followed by the precipitation of TE carbonates in bacteria
walls, has been observed in bacterial cultures, growing in high TE concentrations [67,68].
The dissimilar responses to high TE concentrations amongst studied endophytes could be
related to the different TE resistance systems (Table 2). The ability of Methylobacterium sp.
CP3 to tolerate high concentration of Zn and Cd could reflect the presence of encoded CzcA,
CzcB and CzcD proteins, while Kineccoccus endophyticus CP19 encoded CzcB and CzcD. The
CzcA protein is mainly involved in Cd and Zn resistance and coupled with CzcB and CzcD
contributes to the efflux of TE outside the bacterial cell [69]. The Zn tolerance detected at
high Zn concentrations in both bacterial strains could be related to the encoded ZnuABC
systems (Table 2), mainly involved in Zn homeostasis [70]. However, deeper investigation
into this area is required to fully unravel the specific mechanisms adopted by the studied
bacteria, especially influenced by growing media. In fact, the composition of the medium
can affect the detoxification strategies adopted by bacteria to cope with non-physiological
concentrations of TE, as investigated for Cd by Holmes [37].

In an in vivo experiment, the inoculation with Methylobacterium sp. CP3 led to a
decrease of the bioaccumulation factor of Zn in roots of cuttings of the Populus ‘Marke’
cultivar (Figure 6). Previous studies also reported a lower bioaccumulation of Zn in tomato
plants inoculated with other species of the genus Methylobacterium [71], and in Spartia
maritima inoculated with other TE tolerant and PGP endophytes [72]. Due to such a
protective role through the reduction in Zn uptake, Methylobacterium sp. CP3 may confer to
the Populus cultivar ‘Marke’ an excluder strategy, thus also conferring the ability to grow
in soils with Zn concentrations that are phytotoxic for non-inoculated plants [73]. Trace
element pollution in soils can lead to nutrient deficiency in plants, as TE ions and essential
nutrients are taken up by the same plant transporter proteins [74]. We observed higher Mg
concentrations in the leaves in both poplar cultivars, inoculated with both Methylobacterium
sp. CP3 and Kineococcus endophyticus CP19 (Tables 3 and 4). Magnesium is the central
element in chlorophyll molecules and an important co-factor in several enzymes [75].
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Moreover, the role of Mg in alleviating TE toxicity has been demonstrated. This element
is involved in plant protection mechanisms that include synthesis of organic acids and
sequestration of TE ions. In addition, maintaining a good Mg nutritional status in plants is
effective to limit photooxidative damage due to ROS production under abiotic stress [76].
These positive effects of Methylobacterium sp. CP3 and Kineccoccus endophyticus CP19 on the
Mg concentration in leaves might increase the tolerance of poplar to TE exposure in the
long-term.

The ARISA confirmed the presence of the inoculated Kineococcus endophyticus CP19
in certain of the plant tissues, especially in Populus ‘Marke’ (Figure S5). The increased
plant growth and nutrient uptake in Populus ‘Marke’ could be related to a direct effect
of Kineococcus endophyticus CP19 in such cultivar. In Populus ‘Dender’, the effects of
inoculation on trace element bioaccumulation and nutrient uptake (Figure 7; Tables 3 and 4)
are observed, although the presence of the inoculated endophytes was not confirmed.
More extensive and robust investigations of inoculation success, using specific primers, is
required. This will also hypothesize the eventual indirect effects of inoculation.

3.4. Conclusions

Methylobacterium sp. CP3 and Kineococcus endophyticus CP19 are seed endophytes,
whose tolerance and close physical interaction with Zn and Cd have been confirmed in this
study. In addition, the ability to produce IAA by both strains and the phytate mineralization
by Methylbacterium sp. CP3 were demonstrated in vitro. The inoculation of both bacteria
positively affected the growth of the Populus cultivar ‘Marke’. This study also puts forward
Methylobacterium sp. CP3 as a possible candidate for the increase in Zn tolerance of the host
plant. Apparently, Zn uptake is lowered, while the Mg concentration in poplar leaves is
enhanced by inoculation of both Methylobacterium sp. CP3 and Kineococcus endophyticus
CP19, already after six weeks of plant growth. The improvements in TE tolerance of poplar
in the long-term, as well as the inoculation success need to be more deeply investigated.
In addition, the link between the bacteria TE tolerance and the presence of certain genes
needs to be clarified through transcriptomic analyses.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11101987/s1, Figure S1: SEM image of Methylobacterium sp. CP3 culture and relative
EDX spectra in a 0.8 mM Cd containing medium, Figure S2: SEM image of Methylobacterium sp. CP3
culture and relative EDX spectra in 1 mM Zn containing medium, Figure S3: Number of leaves and
leaf area in Populus ‘Dender and Populus ‘Marke’ cul-tivars detected during the 4-weeks inoculation
experiment, Figure S4: Translocation factors for Cd and Zn calculated for cuttings of the Populus
cultivars ‘Dender’ and ‘Marke’ after 6 weeks of growth in trace elements polluted soil, Figure S5:
Heatmaps derived by ARISA analysis for Pop-ulus ‘Marke’ roots and ‘Dender leaves.
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