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1  |  INTRODUC TION

Many aspects of gastrointestinal physiology are under the control 
of the enteric nervous system (ENS),1 which is an extensive neural 
network embedded within the wall of the entire gastrointestinal 
tract and operates, to a large extent, independently from commands 
arriving from the central nervous system.2 Enteric neurons and en-
teric glial cells (EGCs) form the core of the ENS and are assembled 
into two interconnected ganglionated plexus layers.3 While the cell 
bodies of enteric neurons are mainly localized within the submuco-
sal plexus (SMP),4 and between the circular and longitudinal muscle 
layers, within the myenteric plexus (MP),1- 3,5,6 EGCs can also be found 

in the mucosa and muscle layers. Different enteric neuron subtypes 
can be classified according to their morphological, electrical, neuro-
chemical, and molecular properties.7- 9 EGC subtypes can be classi-
fied based on their morphology and location.8,10,11

Owing to its location close to the contractile gut musculature and 
intimate association with other intestinal cell types, such as epithelial, 
immune, and stromal cells, the development of adequate methodol-
ogy to study the ENS has been a major challenge to the field.12- 14 The 
generation of in vitro techniques has allowed the acquisition, expan-
sion, and manipulation of ENS cells for a wide variety of research ques-
tions. They include (but are not limited to) primary ENS cell cultures 
in (semi- )monolayer, stem cell- derived 3D neurospheres, induced ENS 
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Abstract
Background: The enteric nervous system (ENS) is an extensive neural network em-
bedded in the wall of the gastrointestinal tract that regulates digestive function and 
gastrointestinal homeostasis. The ENS consists of two main cell types; enteric neu-
rons and enteric glial cells. In vitro techniques allow simplified investigation of ENS 
function, and different culture methods have been developed over the years helping 
to understand the role of ENS cells in health and disease.
Purpose: This review focuses on summarizing and comparing available culture pro-
tocols for the generation of primary ENS cells from adult mice, including dissection 
of intestinal segments, enzymatic digestions, surface coatings, and culture media. In 
addition, the potential of human ENS cultures is also discussed.
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cells from stem cell origin, and established cell lines. Initially, the inves-
tigation of the ENS using in vitro systems was established mostly in 
guinea pig gut,15- 19 because of the extensive knowledge on anatomy, 
physiology, and chemical coding of guinea pig neurons.9,20 However, 
the lack of genetically modified strains, as well as higher costs for 
housing and longer breeding times, made the ENS of mice the more 
commonly used exemplary.21 Primary ENS cells in early culture sys-
tems were extracted from neonatal tissue,18,19,22 but advancements in 
culture conditions, such as media and addition of growth factors have 
enabled the culture of adult primary ENS cells. To culture mature neu-
ronal cells can still be challenging for different reasons: (1) they do not 
take part in cell division, so they can only be maintained for a limited 
amount of time; (2) the risk of overgrowth by other non- ENS contam-
inants, for instance, fibroblasts and smooth muscle cells; (3) possible 
overgrowth of EGCs when the main interest is enteric neurons; and 
(4) risk of contamination by luminal contents containing bacteria and 
fungi. In this review, we summarize and compare currently available 

protocols for the isolation and culture of primary enteric neurons and 
EGCs obtained from the adult mouse intestine. We also discuss the 
methodology to generate human ENS cell cultures.

2  |  GENER ATION OF MURINE PRIMARY 
ENS CULTURES

The generation of primary ENS cell cultures occurs in different 
steps. Below we discuss the different possibilities for isolation of 
the target tissue, the available approaches for the dissociation of the 
target cells, and possible culture maintenance techniques for murine 
primary ENS cultures. We will discuss culture methodology for ENS 
cultures focused on the isolation of neuronal cells (termed “ENS cul-
tures”, as these cultures never consist of neurons solely) and for ENS 
cultures focused on the isolation of glial cells (termed “EGC cultures”, 
as they can be more purified).

F I G U R E  1 Schematic	representation	of	the	steps	involved	in	the	dissection	of	tissue	to	isolate	ENS	cells.	A Tissue dissection from the 
adult mouse, highlighting the different segments of the intestines. Isolated segments are cleaned and kept viable in BSS. B Two different 
isolation	techniques	for	the	LMMPs.	Technique	I	involves	the	isolation	of	LMMPs	from	unopened	segments	and	technique	II	includes	
opening	intestinal	segments	and	isolating	the	LMMP	from	the	underlying	mucosa	and	submucosa.	C Rinsing of isolated tissue pieces 
by	centrifugation	in	ice-	cold	BSS	and	resuspension	of	the	pellet.	Abbreviations:	BSS	=	basal	salt	solution;	LMMP	=	longitudinal	muscle	
myenteric plexus. Created with BioRender.com.
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2.1  |  Dissection and isolation

Depending on the research questions, different regions of the gut 
can	be	used	(Figure	1A).	In	the	small	intestines	of	adult	mice,	for	in-
stance, the ENS meshwork is loosely arranged, with longer connect-
ing nerve fiber strands resulting in a less compact structure.

In the colon, however, specifically in the proximal colon, ENS or-
ganization is more compact and dense within the MP, making the 
separation of the muscle layer from the underlying submucosal layer 
rather difficult, as observed in rat.23

The organ of choice can be isolated from the animal by steriliz-
ing and opening the abdominal wall, without injuring the underlying 
structures to expose the gastrointestinal tract, lifting the intestine 
with	forceps,	and	cutting	through	the	mesentery	with	scissors.	After	
removing the intestine(s) from the animal, it is essential to keep the 
tissue viable by continuously maintaining adequate levels of ionic 
and osmotic balance.24 This can be achieved by placing it imme-
diately in a balanced basal salt solution (BSS) supplemented with 
carbohydrates	(Figure	1A).	Different	basal	salt	solutions	have	been	
used including Hank's balanced salt solution (HBSS),25 Krebs,26,27 
Krebs- HBSS,28 Krebs- Ringer solution,29 and DPBS,30,31 generally 
containing the same essential constituents: calcium, magnesium, po-
tassium, sodium, and phosphate. The function of BSS is fivefold: (I) 
the maintenance of intra-  and extracellular osmotic balance during 
washing and dilution steps; (II) the preservation of intracellular water 
and ion concentrations essential for healthy cell physiology; (III) 
buffering the medium to maintain a physiological pH range; (IV) in 
case of supplementation with carbohydrates it provides a principle 
energy source; and (V) the provision of oxygen in case of bubbling 
with an O2/CO2 gas mixture.24

Depending on the type of cell culture, different plexus layers 
may be prioritized. For example, for ENS cultures, composed of 
both neurons and EGCs, longitudinal muscle containing the my-
enteric plexus	(LMMP)	preparations	are	commonly	used	as	the	MP	
accommodates a larger number of neurons than the SMP.25- 27,29,32 
However, it must be noted that SMP neurons and EGCs have differ-
ent properties than MP neurons and EGCs.33- 35 Cultures consisting 
solely of MP neurons might thus not adequately represent the prop-
erties of SMP neurons, which has to be taken into consideration. 
For cultures focused on the isolation of EGCs, the submucosa and 
mucosa,	as	well	as	the	LMMP,	have	been	used	as	tissue	sources,30,31 
indicating that either tissue source can be used depending on the 
research question.

Because the layers of the intestinal walls in rodents are very 
thin, soft, and delicate, the dissection and isolation of the ENS re-
quire careful tissue manipulation. Following the removal of debris 
and feces from the intestinal segments, the isolation of the plexus 
layers is usually performed by either of two techniques. Technique I 
includes cutting the intestine in small pieces and making a gentle in-
cision along the line where the mesentery was attached after placing 
the segment on a small rod or syringe, followed by gentle stroking 
with a wetted cotton swap along the entire segment to peel away 
the	LMMP	(Figure	1B).	Technique	II	involves	longitudinal	opening	of	

the intestinal segment along the mesenteric line and then peeling off 
the	LMMP	(Figure	1B).	In	both	techniques,	it	is	crucial	to	cut	along	
the mesenteric line, as the dissection of the MP is hindered here 
due to the presence of ducts and blood vessels.36 It should be noted 
that technique II requires more time than technique I, but allows for 
a more precise separation of the muscularis externa from the lam-
ina propria mucosa. The majority of the reviewed protocols utilized 
isolation technique I26- 29 compared to technique II.25,31 Some modi-
fications have been made on both techniques. For instance, Wahba 
et al. described a technique involving stretching and pinning of the 
unopened segment on a Sylgard plate instead of placing it on a rod, 
followed	by	 scraping	off	 the	 LMMP	 from	 the	entire	 length	of	 the	
intestinal segment with curved forceps.29

In the protocol used by Verissimo et al. (2019) for EGC culture, 
technique II is adapted by only removing the mucosa to obtain ENS 
cells from the SMP and MP.31 Wang et al. (2018), focusing on the 
isolation of EGCs from the mucosa, submucosa, and circular muscle, 
used	technique	I	to	separate	the	LMMP,	but	discarded	it	and	used	
the remaining tissue containing the SMP and lamina propria for fur-
ther processing.30 Following the isolation of the plexus, dissociated 
cells are cleaned and separated from remaining debris by rinsing and 
centrifuging three to four times with BSS, a step shared by all ana-
lyzed protocols (Figure 1C).

2.2  |  Cell dissociation

The dissociation of ENS cells for culturing can be achieved mechani-
cally and/or enzymatically. Mechanical dissociation involves either 
cutting, sieving, or triturating the isolated tissue and can be much 
faster than enzymatic digestion. It is suitable for large amounts of 
soft tissue, but can lead to tissue damage and lower yield of viable 
cells.37

Enzymatic digestion of cell- cell adhesion components using 
proteases is the most common step for cell isolation from adjacent 
tissues. Proteases are distinctive in their molecular specificity, and 
different tissues therefore require different enzymatic activity de-
pending on their matrix composition.38 In addition, DNase can be 
used	to	digest	the	DNA	that	is	released	due	to	the	digestion	of	con-
nective tissue and smooth muscle cells, as it can form long strings 
that tie up cells. The most common enzymes used in the protocols 
analyzed in this review were collagenases, trypsin, DNase, or a com-
bination thereof (Table 1). Only the study by Wang et al. made use of 
non-	enzymatic	digestion	(EDTA),	which	is	also	the	only	study	using	
the	submucosa,	mucosa,	and	circular	muscle	instead	of	the	LMMP.

Next to the choice of the particular enzyme(s) and their con-
centration, also the temperature and time of incubation are crucial 
determinants of successful enzymatic digestion. In order to allow 
the enzymes to reach their targets, the removal of fat tissue and 
unwanted muscle layers, and a sufficient level of mechanical dissoci-
ation prior to the digestion step greatly influence the efficacy of en-
zymatic dissociation of ENS cells. Together, these factors determine 
how well the tissue is dissociated and the subsequent cell viability.39 
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After	 dissociation,	 enzymes	 should	 be	 removed	 from	 the	 samples	
before seeding with gentle centrifugation steps to ensure that no 
further damage is exerted on the cells.37

One advantage of using enzymatic digestion for the isolation of 
ENS cells is the absence of collagen within the MP. The use of col-
lagenase therefore allows almost complete digestion of surrounding 
muscle-  and connective tissues while maintaining the structure of 
the ENS.32,40,41 However, over- digestion, thus destroying the extra-
cellular matrix (ECM) and endogenous structure completely, will lead 
to lower viable cell yield.

Collagenase cleaves the peptide bonds between neutral amino 
acids and glycine, a sequence commonly found in collagen.39 
Different types of collagenase exist, each recommended for dif-
ferent types of tissue. Collagenase exists in crude and highly puri-
fied form, whereas the crude collagenase mixtures usually contain 
a mixture of collagenase, and other enzymes with tryptic activity, 
enabling the digestion of other ECM components.39

Trypsin is a serine protease that cleaves peptide bonds at the 
C- terminal end of positively charged side chains of lysine or ar-
ginine. It is innately found in the pancreas of most vertebrates 
and aids the cleavage of dietary proteins into peptides.39 Trypsin 
has the strongest relative digestive power and is one of the most 
specific proteases known,38 making it less effective for tissue 
dissociation due to its decreased selectivity for extracellular pro-
teins.38 The tryptic activity has to be neutralized by either serum 
or trypsin inhibitors to reduce residual activity after washing.37 
It is important to note that the use of trypsin can alter excitabil-
ity of enteric neurons.42- 44 Neither of the protocols included in 
this review used trypsin alone for cell dissociation. It is mostly 
combined with collagenase to increase the specificity for ECM 
proteins, allowing the breakup of enteric ganglia and release of 
individual neurons.29

Deoxyribonuclease I (DNase I) is an endonuclease that cleaves 
phosphodiester	 linkages	 in	 single-		 and	 double-	stranded	DNA	 and	

has a less aggressive digestive capacity. It is often included in tissue 
dissociation mixtures to digest nucleic acids leaking into the dissoci-
ation medium, without damaging the intact cells in order to decrease 
viscosity and improve cell yield.38 Caution is warranted when com-
bined with other proteases, such as trypsin, which proteolytic activ-
ity inactivates other enzymes. Therefore, DNase I and trypsin should 
not be added together, but serially after washing.37

Both serial and combinatory enzymatic digestion steps were 
used in the reviewed articles (Table 1), and the most common com-
bination used was a type of collagenase together with trypsin,25,27,29 
followed by a collagenase and DNase I.26,31	All	enzymatic	digestion	
steps were performed at 37°C.

2.3  |  Culture maintenance

It is essential for neuronal survival in vitro to provide a coating 
substrate to facilitate adhesion.45,46 Prior investigations showed 
that ganglia in the adult (mammalian) MP are surrounded by an 
ECM arrangement of collagen IV, laminin, fibronectin, and proteo-
glycans.47,48 It has been shown that poly- D- lysine coated cover-
slips can support the attachment of primary neurons and neural 
precursor cells, and specifically enteric neurons, when combined 
with fibronectin or laminin.49	All	reviewed	studies	reported	to	coat	
coverslips or wells themselves, although commercially available 
coated coverslips and culture plates are currently readily available. 
The most used coating substrates for enteric neuronal cultures in-
clude	Matrigel,	laminin,	poly-	D-	lysine,	and	poly-	L-	lysine.	However,	
the choice for the adequate coating substrate for ENS and EGC 
cultures also greatly depends on experimental setup and purpose. 
Coating is especially beneficial for downstream microscopic analy-
sis, as cells less likely adhere to glass, the preferred material for 
most microscopic analyses, than to culture- treated plastics. Care 
must be taken to ensure that the chosen coating does not interfere 

TA B L E  1 Different	enzymatic	digestion	conditions	included	in	the	reviewed	protocols.	Concentrations	are	shown	as	described	in	the	
protocols, temperatures are indicated in Celsius, incubation times are presented in minutes. Missing values indicated by (- ).

Protocol source Enzyme Concentration Serial/combinatory Incubation time Temperature

Zhang and Hu. 201325 Collagenase IV
Trypsin

1 mg/ml
0.05%

Serial 15 min
10 min

37°C water bath shaker

Smith et al. 201327 Collagenase II
Trypsin

1.3 mg/ml
0.05%

Serial 60 min
7 min

37°C water bath shaker

Lowette	et	al.	201428 Collagenase
Protease
Albumin

14.67 mg/ml
10 mg/ml
5% in PBS

Combinatory 8 min 37°C

Wahba et al. 201629 Collagenase IV
Trypsin

1 mg/ml
0.05%

Serial 15 min
10– 15 min

37°C water bath
manual rotation

Brun	and	Akbarali.	201826 Collagenase I
DNase I

0.5 mg/ml
0.5 mg/ml

Serial 35 min 37°C water bath shaker

Verissimo et al. 201931

EGCs
Collagenase II
DNase I

- Combinatory 60 min 37°C

Wang et al. 201830

EGCs
Non- enzymatic digestion - - - - 
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with downstream analyses, such as second- harmonic genera-
tion imaging of cells grown on a collagen- containing matrix, like 
Matrigel.

Poly- D- lysine and poly- L- lysine are chemically synthesized ECM 
molecules, and the most commonly used coating substrates to aid 
cell adhesion in pre- treated tissue culture surfaces. The structure 
and molecular weight of Poly- D- lysine make it ideal for neuronal cul-
ture applications since this isoform is less readily digested by extra-
cellular proteases.50

Laminin is a glycoprotein component of the basement mem-
brane which modulates cellular functions including attachment, 
spread, growth, and mobility by binding to itself and other matrix 
components.51	Laminin	is	often	used	as	a	coating	substrate	in	neu-
ronal cultures since many neuronal cells express specific laminin- 
binding proteins.52 It is also part of the basement membrane and 
ECM surrounding the ENS,48 as well as in the muscle layers of the 
adult mouse gut.31 In enteric neuronal development, laminin also 
stimulates neurite outgrowth.53

Fibronectin is an ECM glycoprotein produced by fibroblasts and 
is involved in cell migration and adhesion during ENS development. 
It is frequently used in vitro to enhance cell attachment and prolif-
eration. Similar to laminin, fibronectin is part of the basement mem-
brane in the MP.48

Matrigel is a commercially available soluble basement membrane 
extract containing predominantly laminin, fibronectin, and proteo-
glycans. Its adherent matrices simulate the cells’ ECM environment 
more closely due to the mixture of several matrix components,47,48 
as is found in ECM in vivo. The usage of Matrigel in neuronal cul-
ture models is predominantly optimal for neural stem-  or progenitor 
cells,54,55 where it has been proven to enhance survival and differ-
entiation of neural crest cells from human and mouse.56 Zhang et al. 
2013 also achieved the highest efficacy in attachment and growth 
of primary enteric neurons, and differentiating and neural stem/pro-
genitor cells with Matrigel- coated coverslips.25 Similarly, Wahba et al. 
2015 reached the highest cell density with Matrigel- collagen coat-
ings, compared to other single and double coating substrates.29 The 
most commonly used double coatings are poly- lysine and laminin, 
with poly- D- lysine being the prioritized isoform27,28,30,31 over poly- 
L-	lysine.26 Matrigel coatings were applied in two ENS cultures.25,29 
Coating substrates in EGC cultures included poly- D- lysine- laminin30 
and	poly-	L-	lysine-	laminin.31

Furthermore, the success of a cell culture experiment is greatly 
influenced by the choice of the cell culture medium, and the constit-
uent cell types largely determine which medium is required. Basal 
culture media dispense a source of energy, maintain beneficial ionic 
strength, pH concentration, and take up debris and metabolites from 
cultured cells.57 Essential components usually include inorganic 
salts, glucose or other carbohydrates, essential amino acids, vita-
mins (B complex), and phenol red as a pH indicator.58 Besides these 
essential components, antibiotics and antimycotics are included to 
prevent microbial contamination. Despite the availability of spe-
cialized	 neuronal	 media	 (Neurobasal-	A,	 Gibco),	 standard	 DMEM	
medium supplemented with the F12 nutrient mix (Gibco)25,28- 31 and 

cell type- specific supplements are most frequently used in murine 
primary ENS cultures.

The addition of serum to the basal culture media is used to pro-
vide signals for survival, growth, and differentiation. Generally fetal 
bovine serum (FBS),26- 31 in concentrations ranging from 1 to 10%, 
was used for ENS cultures. Only one protocol uses chick embryo 
extract (CEE) instead of FBS.25 FBS is the most widely used form 
of serum due to low contents of complement factors and immu-
noglobulins.59 However, serum- free media and supplements allow 
culturing of neurons at low density, which enables the study of 
individual neurons and their projections.60 Next to serum, certain 
growth factors, for example, nerve growth factor (NGF) and glial 
cell line- derived neurotrophic factor (GDNF), and hormones are 
often added as well. These can be supplied individually or as part 
of commercially available supplement mixtures such as B27, N2, 
and G5. Despite the supplements, no major differences have been 
observed between the use of media for ENS cultures compared to 
EGC cultures. Table 2 gives a detailed overview of the culture pro-
tocols used in the reviewed studies, including culture type, isolation 
techniques, enzymatic digestion, coating substrates, and culture 
media.

2.4  |  Cell density, viability, and functionality

Although	the	protocols	show	similarities	in	the	different	steps	of	es-
tablishing culture systems (Table 2), the lack of representative out-
come parameters regarding viability, functionality, and the presence 
of subtypes represents a significant limitation in our comparison.

2.4.1  |  ENS	cultures

Zhang and Hu (2013) proposed a standardized protocol for the iso-
lation of primary ENS cells, with the extension of generating neu-
rospheres starting from the same protocol. Briefly, the intestines 
of 8 week- old mice were isolated by technique II described above 
(Figure 1B), and enzymatic digestion was performed with collagenase, 
followed	 by	 trypsin.	 After	 1–	2	 days	 in	 culture,	 the	 cells	 attached	
to the substrate and developed longer processes. Morphological 
changes could be observed daily, and the attempts to form plexuses 
over a layer of glial cells, resembling ganglionic structures, were seen 
after 5– 7 days in vitro. Staining with the neuronal marker βIII tu-
bulin validated the presence of enteric neurons in these cultures. 
However, no data on the density, count, or functionality of cultured 
cells were shown in this study, nor in other studies using the same 
protocol.61,62	Brun	and	Akbarali	(2018)	developed	a	protocol	for	the	
isolation of ENS cultures from the ileum of adult mice, providing two 
variations depending on the subsequent use of the cell culture: (1) a 
gentler digestion method involving only collagenase II is proposed 
for suspension cultures, which were used to assess the phenotype of 
neurons after stimulation; (2) extensive digestion for electrophysi-
ological studies, involving serial treatment with collagenase II and 
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trypsin. However, no results regarding cell viability, density, count, 
and functionality were reported for this protocol.63,64

The protocols by Smith et al. and Wahba et al. both assessed 
functionality of the cultured ENS cells by calcium imaging after one 
week in vitro, confirming functionally viable cells in culture,29 iden-
tifying two electrophysiological distinct neuronal subtypes with a 
current	 clamp;	 synaptic	 (S-	)	 and	 after-	hyperpolarization	 (AH-	)neu-
rons.27 Both protocols are based on dissection technique I and per-
formed serial digestion with collagenase and trypsin, while Wahba 
et	al.	used	DMEM/F12	and	Smith	et	al	used	Neurobasal-	A	medium	
supplemented with B27. Moreover, Wahba et al. tested a variety 
of coating substrates (Table 2). Immunofluorescence staining after 
5–	7	days	 in	 culture	 for	DAPI,	βIII tubulin, neuronal subtype mark-
ers,	and	the	glial	cell	marker	GFAP	confirmed	the	presence	of	dis-
tinctive	neurochemical	 subtypes	 (nNOS,	VIP,	and	ChAT)	 in	culture	
established by Wahba et al., and the presence of EGCs and enteric 
neurons in both studies. In the study by Wahba et al., the cellular 
density was found to be the highest when using collagen- Matrigel 
double coatings, whereas Smith et al. kept the cell density low to 
avoid contamination, reaching 10%– 40% confluence after one day 
in culture with Poly- D- lysine- aminin coatings.

The cell culture approach developed by Smith et al. has been 
adopted in several other studies, investigating viability, and func-
tionality of enteric neurons in response to fungal extracts65 and 
morphine,66 as well as in studies using optogenetics analysis.67 
Furthermore, the same protocol has been used to study EGCs,68 to 
generate other protocols for EGC cultures30 and was used together 
with intestinal stem cells and epithelial cells in co- culture models.69

The	 protocol	 for	 primary	 ENS	 cultures	 used	 by	 Lowette	 et	 al.	
(2014) to investigate the role of corticosterone in the ENS, was sim-
ilar to the study from Smith et al. in most steps, except for the 
enzymatic digestion, in which a combinatory digestion mixture of 

collagenase and proteases was used (Table 1). However, no data re-
garding viability, heterogeneity, or density of ENS cells in culture was 
described and can therefore not be compared.28

2.4.2  |  EGC	cultures

The protocols for EGCs cultures showed similarities by using DMEM/
F12 culture media and serial enzymatic digestion with collagenase and 
DNase. The protocol by Wang et al. (2018), however, applies an en-
tirely different approach by isolating the EGCs from the submucosa 
and	lamina	propria,	 instead	of	extracting	them	from	the	LMMP,	fol-
lowed	by	enzyme-	free	digestion	using	EDTA	 incubation.30 Flow cy-
tometry confirmed the presence of more than 95% EGCs after three 
days in culture. Yields of about 40,000– 100,000 cells morphologically 
consistent with EGCs in vivo were confirmed after 1– 3 days in culture 
on poly- D- lysine- laminin substrate and expressed the main glial cell 
markers such as S100β,	GFAP,	and	Sox10.	Verissimo	et	al.	(2019)	estab-
lished a protocol for the isolation of primary EGCs from both the SMP 
and MP to investigate the effects of laminin and environmental cues 
on the differentiation of EGCs into neurons.31 Immunofluorescence 
staining	 for	 glial-		 (GFAP	 and	 Sox10)	 and	 neuron-	specific	 markers	
(βIII- tubulin) was employed to investigate the proportions of cells ex-
pressing one or both markers. The authors showed increased num-
bers of cells expressing both glial markers on the control substrate 
fibronectin and decreasing numbers of cells expressing both glial and 
neuronal markers on laminin substrate after seven days in vitro. Cell 
viability and activity were not assessed, and cultures were maintained 
for	21	days.	Although	comparing	the	ENS	culture	protocols	in	terms	
of outcomes remains challenging, murine primary ENS cultures have 
been used for many different research applications (a non- exhaustive 
list of experimental methods used in ENS cultures is shown in Table 3).

ENS culture type Application

ENS culture Phenotypic assessment (immunofluorescence)25- 27,29,61- 66,69

Assessment	of	gene	expression	(RNA)63

Assessment	of	protein	levels/alterations61

Cytokine measurements69

Cytotoxicity62

Viability65

Activity	(electrophysiology)26,27,66,67

Activity	(calcium	imaging)28,65,67

Optogenetics67

Co- culture69

EGC culture Phenotypic assessment (immunofluorescence)30,31,68,112

Assessment	of	gene	expression	(RNA)31

Assessment	of	protein	levels68

Cytotoxicity112

Viability112

Activity	(calcium	imaging)30

TA B L E  3 Key	applications	of	murine	
ENS cultures.
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3  |  GENER ATION OF HUMAN ENS 
CULTURES

All	protocols	for	the	isolation	and	culture	of	human	primary	ENS	cells	
to date focus on the isolation of EGCs70- 73 (Table 4). Cells are gen-
erally isolated from the MP of small intestine,70- 74 but SMP73 and 
also colon have been used as well.73,74 Technique II is used for tissue 
dissection32,70- 74 as the size of the tissue renders the use of technique 
I inadequate. The human ENS is bigger and more complex, there-
fore, requiring longer digestion times for cell dissociation, which has 
been tested in direct comparison with murine and rat ENS.74 Most 
protocols use a combination of protease and collagenase71- 74 for tis-
sue	dissociation,	while	Grubišić	et	al.	have	successfully	used	a	 se-
rial digestion with liberase (a blend of collagenase and protease) 
and DNase. The primary human EGCs are either grown in a culture 
dish without coating,70- 72 or on glass slides coated with gelatin,74 
or double coated with laminin and poly- D- lysine.73 In all protocols, 
the human EGCs are maintained on DMEM- F12 medium with 10% 
fetal calf serum (FCS)71,72,74 or FBS70,73 and antibiotic/antimycotic, 
without additional (glia- specific) supplements. Instead, for purifying 
the culture of human primary EGC, magnetic beads linked to specific 
targets, such as Thy- 1.171,72 or D7- Fib70,73 are often used to elimi-
nate	fibroblasts	from	the	culture.	With	this	method,	Liñán-	Rico	et	al.	
and	Grubišić	et	al.	reached	a	cell	enrichment	of	10,000–	20,000	fold.	
Soret et al. took a different approach and switched the medium after 
48h to a DMEM- based medium (not DMEM- F12) without an addi-
tional purification step. They report a purity of around 80% EGCs 
and 20% other cell types, determined by immunohistochemistry.

In addition to direct isolation of ENS cells from human tissue, 
methods have been developed to differentiate human pluripotent 
stem cells into ENS cells. These cells are self- renewing and can be 
used for many applications. Several protocols have been established 
to generate neural crest- derived cells from pluripotent stem cells75- 82 
and further differentiate them to produce enteric neural lineages.83- 86

Generally, neural crest cell differentiation protocols depend on 
the manipulation of the BMP, WNT, FGF, NOTCH, TGFβ, and EGF 
pathways.	In	2009,	Chambers	et	al.	formulated	dual	SMAD	inhibition	
in pluripotent stem cells to produce neural crest cells in 11 days.87 
This protocol has since been further optimized by the addition of the 
WNT activator CHIR99021 to the differentiation recipe, enhanc-
ing the efficiency of differentiation to neural crest cells.82,88	Later,	
Fattahi	et	al.	used	retinoic	acid	(RA)	between	days	6	and	11	to	pro-
mote the vagal fate of the neural crest cells which then expressed 
HOXB2-	B5,	PAX3,	EDNRB,	and	RET.85	After	 an	 intermediate	 step	
of suspension culture for 4 days in FGF2 and CHIR99021, further 
differentiating vagal neural crest cells using ascorbic acid and GDNF 
yielded TuJ+ neurons expressing a spectrum of markers including 5- 
HT,	GABA,	and	nNOS.	The	presence	of	glial	cells	 in	these	cultures	
was not reported. In 2019, Barber et al. optimized the differentiation 
protocol further by replacing the undefined serum in culture media, 
and by the use of BMP4 in the first 2 days to promote neural crest 
specification.83 With this culture method, not only TuJ+ neurons 
were	 evident,	 but	 also	GFAP+ and SOX10+ glial cells. The parallel So
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inhibition of NOTCH- signaling skews the differentiation toward neu-
ronal lineages.84

On the other hand, a combination of EGF and FGF2 was used 
to induce the formation, and maintenance of neural crest cells that 
can	be	directed	to	their	vagal	fate	using	RA.77,78,89 Coculturing these 
neural crest cells with pluripotent stem cell- derived intestinal or-
ganoids or gut explants, or implanting them into aneural gut tissue 
promotes their differentiation into enteric neurons and glia.77,89,90

4  |  DISCUSSION

This review provides an overview and comparison of different 
protocols to isolate and culture primary ENS cells from adult mice. 
Overall, the reviewed articles described similar approaches to ob-
tain primary cultures from the ENS. However, because different out-
come parameters were used, a direct comparison between protocols 
was difficult.

Different sections of the mouse intestine are used for primary 
ENS cultures, with a preference for the small intestines, because 
of differences in muscle layer thickness, plexus density,27 and total 
number of ENS cells.91 It is important that dissection of the intestinal 
segments is done rapidly, as lengthy dissection times may reduce cell 
viability, due to degradation of the tissue in the presence of microbes 
and pancreatic enzymes, as the tissue is no longer protected against 
autodigestion by a functional intestinal barrier.92,93 In general, two 
techniques are being used for the isolation of ENS cells. Technique I, 
the	extraction	of	the	LMMP	from	the	unopened	intestines	(on	a	rod),	
is	a	faster	procedure	than	technique	II,	extracting	the	LMMP	after	
opening the intestines in a Sylgard dish, and technique I is therefore 
recommended.

We found significant variation in the steps involving cell disso-
ciation. Both a combination of digestive enzymes, serial enzymatic 
digestions, and enzyme- free cell dissociation are being applied. 
Combinations of different enzymes allow for almost complete dis-
sociation of the tissue, while preventing over- digestion caused by 
long incubation times or high enzyme concentrations. Depending 
on the specific gut region that is targeted, incubation times have to 
be adapted.32	Also,	adult	tissue	appears	to	be	more	challenging	to	
dissociate due to increased complexity of the connective tissue and 
ECM with age.37 The use of collagenase for primary ENS cells is ideal 
due to the lack of internal collagen within the MP, allowing almost 
complete digestion of surrounding muscle-  and connective tissue 
while keeping ENS structures mostly intact.32,40,41 Trypsin, the en-
zyme used in all reviewed protocols, has a very high digestive capac-
ity,38 making incubation times of no longer than 10 minutes optimal.

Regarding cellular adhesion, combinations of different coating 
substrates can enhance the complexity of the adherence matrix in 
in vitro systems, resulting in increased cell adhesion and survival. 
Wahba et al. (2015) investigated the differences of coating sub-
strates on cell yield and density of cultures using poly- D- lysine, 
collagen, and Matrigel as single coating substrates, and poly- D- 
lysine- Matrigel and collagen- Matrigel double coating.29	Using	DAPI	

to label individual cells, the authors observed the highest cell den-
sities with a collagen- Matrigel double coating. With respect to cell 
attachment, similar results were obtained for poly- D- lysine and 
Matrigel	 as	 single	 coatings.	 Adding	 poly-	D-	lysine	 or	 collagen	 to	
Matrigel coatings further improved cell attachement.29

Coating substrates may also influence cell differentiation in cul-
ture systems, more specifically, different compositions of the neural 
ECM can modulate the differentiation of ENS progenitors.47	A	sim-
ilar setup was used in the study by Verissimo et al. (2019). By using 
primary EGC cultures from adult murine intestines, the authors in-
vestigated the effects of laminin and other environmental cues on 
the neurogenic potential of EGCs. The study suggests that laminin 
possibly simulates the endogenous ECM microenvironment, result-
ing in significant inhibition of neuronal trans- differentiation of EGCs 
in adult mice, compared to fibronectin- coated plates.31 This empha-
sizes the importance of selecting an appropriate coating substrate 
for different adult ENS culture types. However, it is still not fully elu-
cidated how EGCs activate their neurogenic potential in vitro and in 
vivo. Understanding the potential ability of these cells to give rise to 
neurons is challenging but would provide beneficial advancements 
on	 the	 role	of	ENS	 cells	 in	 regeneration	 and	 aging.	As	 is	 the	 case	
for coating substrates, medium composition also influences (trans)
differentiation and proliferation. The addition of specific growth 
factors, such as GDNF, can favor survival and proliferation of ENS 
(precursor) cells.94

One of the limitations of the current review was the lack of avail-
able data on the assessment of important cellular outcome param-
eters, such as cell viability and differentiation. The primary focus of 
the studies included was to characterize morphological and neuro-
chemically defined subtypes of ENS cells in vitro by immunofluo-
rescence assays, as well as imaging and electrophysiological studies 
to assess the functional properties of ENS populations. In order to 
assess and compare isolation protocols, it is important to validate if 
morphology, gene expression, and activity of ENS cells in vitro rep-
resent their characteristics in vivo. Potential markers to assess EGC 
cultures are S100β,	 Sox10,	 and	GFAP,	 as	 they	 represent	 the	main	
EGC phenotype in vivo.10 For ENS cultures, the presence and per-
centage of βIII- tubulin+ cells in the culture should be reported, ide-
ally	with	other	neuronal	subtype	markers	such	as	nNOS	and	ChAT.	
Depending on the research question, other validation methods can 
be added. This will improve the comparison between ENS culture 
protocols and the translatability of in vitro models. For example, 
Schneider et al. have validated purinergic receptor expression in 
their EGC cultures, similar to in vivo expression,95 and the protocols 
by Smith et al. and Wahba et al. have validated neuronal functional-
ity in their ENS cultures.27,29

Applications	for	primary	ENS	cultures	include	assessment	of	ENS	
response	 to	 different	 signals,	 such	 as	GLP-	1,96 HIV protein,97 and 
gastrin,68 and studying effects of drugs and toxic agents on cell via-
bility, proliferation, differentiation, and disease development.66 Co- 
culture models with ENS cells and epithelium are also used to assess 
possible interactions and cell- cell communication.69,98 However, 
it is difficult to study the effects of one specific cell type in these 
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primary cultures, as they are generally a mix of different cell types 
including enteric neurons and glia. Of note, even though neuronal 
markers, like βIII tubulin, are expressed after several days of culture, 
it is possible that these enteric neurons are derived from enteric 
glia cells or enteric glia- like precursor cells that are present in adult 
mice99- 102 instead of being isolated enteric neurons.

Although	 this	 review	 focuses	 on	 primary	 ENS	 cultures	 from	
adult mice, other available and robust methods for culturing ENS 
cells from distinct developmental stages should not be overlooked. 
A	vast	amount	of	primary	ENS	culture	protocols	that	are	currently	
published have focused on embryonic-  or postnatal animals as a tis-
sue source to obtain ENS cells.103- 105

Although	they	are	less	favorable	to	study	the	physiology	of	ma-
ture enteric neurons and glia as they are stem cell- derived cultures, 
the generation of 3D neurospheres is another possibility to study 
the ENS in vitro. They are mainly used to assess proliferation, multi-
potency, and stemness99,101,106 or are grown to serve as a source of 
donor cells in cell transplantation studies.107,108 Recently, progress 
has been made in the generation of ENS cultures, thereby gener-
ating a possibility to study human ENS cells, enabling genetic ed-
iting and regenerative medicine purposes.109 In addition, intestinal 
organoids with a functional ENS can be generated to study cell- cell 
communication in a complex and more holistic approach.89,110,111 
Nonetheless, primary murine ENS cultures are still a valuable tool to 
understand fundamental aspects of ENS cell biology.

The use of primary ENS cultures from mice as a model to inves-
tigate the role of the ENS in health and disease has been instrumen-
tal to advance our current understanding of ENS physiology and 
disease. Despite their limitations, primary cultures represent the 
physiological state of the cells better when compared to cell lines 
(generally derived from cancer cells), especially in the gut. ENS cul-
tures allow studies on the molecular pathways that drive the phys-
iological and pathological properties of these cells, which can be 
difficult	to	observe	in	vivo.	Although	the	absence	of	microenviron-
mental cues acting in vivo significantly reduces the physiological rel-
evance of in vitro studies, the improved accessibility to manipulate 
different components of the ENS outside the organism represents 
an important advantage for the understanding of specific questions 
related to ENS cell biology.
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